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§ I-

Um die Seiten eines spitzwinkligen Dreiecks A J3 C als
Durchmesser schlagen wir Kreise, so gehen diese Kreise je durch
die Fusspunkte der von den Endpunkten der betreffenden Seite
ausgehenden Höhenperpendikel. Die Höhenperpendikel AD,
BE, CF des gegebenen Dreiecks sind daher die gemeinsamen
Sehnen je zweier dieser Kreise, und der Höhenpunkt H
des Dreiecks ABC ist der Punkt gleicher Potenzen
in Bezug auf diese drei Kreise.

Die drei Höhen des Dreiecks ABC mögen nun die
entsprechenden Kreise in den Punktenpaaren i,I; k,K; 1,L schneiden,
und zwar mögen Di, Ek, Fl je dieselben Richtungen wie DA,
EB, FC und DI, E K, FL die entgegengesetzten Richtungen
haben. Sollen die Punktenpaare i, I; k, K; 1, L alle reell
werden, so muss das Dreieck ABC spitzwinklig sein.
Alsdann liegen die Ecken A, B, C ausserhalb der um die Gegenseiten

als Durchmesser beschriebenen Kreise, und diePunkte
i, k, 1 liegen innerhalb des Dreiecks.

Da nun H der Potenzpunkt dei- drei Kreise ist, so haben wir

Hi.HI HkHK=Hl.HL
HA • HD HB • HE HC • HF.

Beim spitzwinkligen Dreieck ist HA »AD negativ, und es

liegt somit der Höhenpunkt H zwischen den Punktenpaaren

il, kK, IL.

NunistDH BD-cotgC^CCOsB^°sC^2RcosBcosC,° sin C

*) In der Programmabhandlung des Gymnasiums zu Beuthen 1894:

«Aufgaben und Lehrsätze über Linien im Dreieck» betrachtet Herr
0. Bröckerhoff die oben mit i, k, 1 bezeichneten Punkte so wie die Punkte

p, q, r, und zeigt im Lehrsatz VI wie oben, dass die Geraden Ap, Bq, Cr
sich in einem nämlichen Punkte n schneiden. Diese Betrachtungen suchte
ich zu vervollständigen und zu erweitern, und habe darüber auch mit
meinem Freunde, Herrn A. Droz-Farny in Pruntrut, korrespondiert; so ist
unsere obige gemeinsame Arbeit entstanden. G. Sidler.
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wo R der Radius des Umkreises von ABC ist; ferner HA
AF bcosA
sin B sin B

2 R cos A. Wir finden somit

Hi- HI Hk-HK^ Hl • HL
HA-HD HB.HE HC-HF=: 1.

— 4 R2 cos A cos B cos C.

H k HT
Aus 1 folgt Die Scheiteldreiecke k H 1

Hl HK
und KHL sind also einander ähnlich, und kl und KL
liegen zueinander antiparallel.

Die Polare von H in Bezug auf den Kreis um BC als
Durchmesser geht durch die zwei übrigen Diagonalpunkte des
Vierecks BECF d. h. durch A und durch den Schnittpunkt D' von
EF mit BC. Die zu H in Bezug auf die Strecken il, kK,
IL harmonischen Punkte sind daher die Ecken A, B, C

des gegebenen Dreiecks.

Auf den Höhenperpendikeln des Dreiecks ABC
haben wir also die harmonischen Relationen:

(AH, il) — — 1, (BH, kK) - 1, (CH, IL) — 1. 2.

Die Punktenpaare i, I; k, K; 1, L kann man daher
auch definieren als die Punktenpaare, die im Dreieck
ABC die Eckabschnitte AH, BH, CH der Höhenperpendikel

harmonisch teilen, und zwar so, dass die
Mitten dieser Punktenpaare die Fusspunkte D, E, F der
betreffenden Höhenperpendikel sind.

Aus dieser Definition folgt Di2 DI2 DH • DA. Die
DH DB

ähnlichen Dreiecke C D H und BDA geben aber und8 CD DA
somit wird Di2 DI2 CD • DB, woraus wieder folgt, dass die
Dreiecke B i C und BIC respektive in i und I rechtwinklig sind,
und somit i und I die Schnittpunkte des Höhenperpendikels AD
mit dem um BC als Durchmesser beschriebenen Kreise
darstellen. Dieses ist wieder die frühere Definition.


	

