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§ 1

Um die Seiten eines spitzwinkligen Dreiecks AB C als
Durchmesser schlagen wir Kreise, so gehen diese Kreise je durch
die Fusspunkte der von den Endpunkten der betreffenden Seite
ausgehenden Hohenperpendikel. Die Hohenperpendikel A D,
BE, CF des gegebenen Dreiecks sind daher die gemeinsamen
Sehnen je zweier dieser Kreise, und der Hohenpunkt H
des Dreiecks ABC ist der Punkt gleicher Potenzen
in Bezug auf diese drei Kreise.

Die drei Hohen des Dreiecks ABC mogen nun die ent-
sprechenden Kreise in den Punktenpaaren 1,1; k,K; 1,L schneiden,
und zwar mogen D1, Ek, Fl je dieselben Richtungen wie DA,
EB, FC und DI, EK, FL die entgegengesetzten Richtungen
haben. Sollen die Punktenpaare 1, I; k, K; 1, L alle reell
werden, so muss das Dreieck ABC spitzwinklig sein.
Alsdann liegen die Ecken A, B, C ausserhalb der um die Gegen-
seiten als Durchmesser beschriebenen Kreise, und die Punkte
1, k, ] l1iegen innerhalb des Dreiecks.

Da nun H der Potenzpunkt der drei Kreise ist, so haben wir

Hi-HI=Hk-HK=H]-HL=
=HA.-HD=HB.-HE=HC- HF.

Beim spitzwinkligen Dreieck i1st HA . AD negativ, und es
liegt somit der Hohenpunkt H zwischen den Punkten-
paaren 1I, kK, 1L.

Nun ist DH = BD . cotg C = C“":if: g’s O 9Rcos BeosC,

*) In der Programmabhandlung des Gymnasiums zu Beuthen i894:
«Aufgaben und Lehrsiitze tiber Linien im Dreieck» betrachtet Herr
0. Brackerhoff die oben mit i, k, 1 bezeichneten Punkte so wie die Punkte
p, q, I, und zeigt im Lehrsatz VI wie oben, dass die Geraden Ap,Bq,Cr
sich in einem nimlichen Punkte n schneiden. Diese Betrachtungen suchte
ich zu vervollstindigen und zu erweitern, und habe dariiber auch mit
meinem Freunde, Herrn A. Droz-Farny in Pruntrut, korrespondiert; so ist
unsere obige gemeinsame Arbeit entstanden. G. Sidler.
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— 218 —

wo R der Radius des Umkreises von ABC ist; ferner HA =
AF bcosA

smB~ smB

Hi- HI=Hk-HK==Hl-HL =

=2Rcos A. Wir finden somit

=HA-HD=HB.-HE=HC:-HF = 1.
— — 4 R? cos A cos B cos C.

Aus 1 folgt Bk = HL.
H1 HK

und KHL sind also einander dhnlich, und kl und KL
liegen zueinander antiparallel.

Die Scheiteldreiecke k H1

Die Polare von H in Bezug auf den Kreis um BC als
Durchmesser geht durch- die zwei ibrigen Diagonalpunkte des
Vierecks BECF d.h. durch A und durch den Schnittpunkt D’ von
EF mit BC. Die zu H in Bezug auf die Strecken 11, kK,
1L harmonischen Punkte sind daher die Ecken A, B, C
des gegebenen Dreiecks.

Auf den Hoéhenperpendikeln des Dreiecks ABC
haben wir also die harmonischen Relationen:

(AH, il)=-— 1, (BH, kK) = — 1, (CH, 1L)=—1. 2.

Die Punktenpaare 1,I; k,K; I, L kann man daher
auch definieren als die Punktenpaare, die im Dreileck
ABC die Eckabschnitte AH, BH, CH der Hohenper-
pendikel harmonisch teilen, und zwar so, dass die
Mitten dieser Punktenpaare die Fusspunkte D, E, F der
betreffenden Hohenperpendikel sind.

Aus dieser Definition folgt Di°’ = DI’ =DH - DA. Die

dhnlichen Dreiecke CDH und BDA geben aber D—Ii=9~]w3—, und
| CD DA

somit wird Di* = DI?* = CD - DB, woraus wieder folgt, dass die
Dreiecke BiC und BIC respektive in i und I rechtwinklig sind,
und somit 1 und I die Schnittpunkte des Hohenperpendikels A D
mit dem um BC als Durchmesser beschriebenen Kreise dar-
stellen. Dieses ist wieder die frithere Definition.



	

