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Ebene ebenfalls in jener doppelt gelegten Geraden der (x y)-Ebene.
Man kann sich vorstellen, dass die beiden Flächenstücke im
Unendlichen sich in der unendlich fernen Doppelgeraden der
(x y)-Ebene aneinander schliessen und so eine zusammenhängende
Fläche bilden, die drei Gerade enthält, nämlich die (z)-Achse, die
unendlich ferne Gerade der (y z)-Ebene und die unendlich ferne
Gerade der (x y)-Ebene als Doppelgerade.

§13.
Ueber Polarflächen der Hauptschnittfläche 3. Grades.

Die Hauptschnittfläche 3. Grades hat die Gleichung
xz2-sx2-f- sy2-f-s2x 0 (11)

oder homogen gemacht:

f(xyzw) xz — sx w -4- s y w -f- s" x w" 0
Nun hat die erste Polarfläche in Bezug auf einen festen Pol
P'(x',y',z') die Gleichung:

Af xä \~T a h - ä—h W ä— 0'— d x d j dz 3w
Nach der homogenen Flächengleichung ergeben sich für die

partiellen Differentialquotienten folgende Werte:
dt 2 o I 2

-=— z —2sx 4-s
OX

-5— 2sydy J

|i 2x,
d z

dt 2 1 2 t o 2
-— — sx 4-sy -f-2s xd-w J

Daher wird die Gleichung der quadratischen Polarfläche der
Hauptschnittfläche 3. Grades, bezogen auf einen festen Pol
P'(x',y',z'):
s(x2-y2)-x'.z2-2z'-xz-2s(s-x')x-2sy'-y-s2x'=0 (19)
Wir nehmen nun an, der Pol P' (x', y', z') sei nicht fest, sondern
er nehme successive andere Lagen an; er durchlaufe z. B. die

ganze (x)-Achse des Koordinatensystems. In diesem Falle haben
wir in der Gleichung der quadratischen Polarfläche (19) für
y' z' 0 zu setzen, und für x' substituieren wir einen
veränderlichen Parameter n, der alle Werte von — 00 bis -4- 00
annehmen soll. Dann geht die Gleichung (19) über in
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sx'_sy^_ ~_z — 2sx-4 2ns-x — ns =0 (20)
Bei variablem Parameter n stellt diese Gleichung eine Schar von
unendlich vielen Flächen 2. Grades dar. Alle diese Flächen bilden
in ihrer Gesamtheit die Schar von unendlich vielen quadratischen
Polarflächen, bezogen auf die sämtlichen Punkte der (x)-Achse
als Pole.

Da die Gleichung (20) keine Glieder in xy, xz oder yz
enthält, so genügt eine Parallelverschiebung des Koordinatensystems,
um die Flächengleichung auf die Achsengleichung zu transformieren.
Wir haben zu diesem Zwecke in Gleichung (20) für y y', z —z'
und für x x' -f- s — n zu substituieren ; sie geht dann über in

nz r2

n2 -f n s -f s2 -s r- r-\A_- ^
1 (20a)

n -j-ns-f-s s (n -f- n s -\- s J

Die Mittelpunkte M sämtlicher Flächen der durch Gleichung (20)
gegebenen Polarflächenschar liegen demnach auf der (x)-Achse
und zwar im Abstand x — s — n vom Koordinatenursprung.

Wir nehmen nun zunächst an, der Pol P' durchlaufe den
positiven Teil der (x)-Achse, so dass der Parameter n alle
Werte annimmt zwischen n — -f- oo und n — 0. Dann sind in
der Gleichung (20a) alle Nenner positiv, und die quadratische
Polarfläche des Punktes P' ist ein zweischaliges Hyperboloid,
von den Halbachsen :

a — b V / n2 -f- n s -4- s2 und c — 1 /- (n2 -\r n s -{- s2)

Seine Scheitel liegen auf der (x)-Achse im Abstand
x' + \/n2 4- n s 4- s2 vom Mittelpunkt M. (S. Fig. 12).

Bern. Mitteü. 1911.
Fig.12.

Nr. 1791.
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Um die Polarfläche des unendlich fernen Punktes der
(x)-Achse zu bestimmen, dividieren wir die Gleichung (20) durch
n und setzen dann für n oo ; sie wird dann

z3-2sx4-s2 0 (a)
Dies ist die Gleichung eines parabolischen Cylinders ; sie ist
identisch mit Gleichung (5) in § 2. Wir finden somit, dass die
Rotationsfläche k 1 unseres Rotationsflächensystems zugleich
quadratische Polarfläche der durch Gleichung (11) gegebenen
Hauptschnittfläche 3. Grades ist, bezogen auf den unendlich fernen
Punkt der (x)-Achse als Pol P'. (S. auch Fig. 4).

Der Pol P' rücke nun auf der positiven (x)-Achse ins
Endliche, der Parameter n werde also immer kleiner! Dann
weiden alle Halbachsen des zweischaligen Hyperboloides (20a)
zunächst abnehmen; wandert der Pol P' bis in den Nullpunkt,
wird also n immer kleiner und zuletzt gleich Null, so reduziert
sich die Länge der Halbachsen a und b auf a b s. Der
Mittelpunkt M des Hyperboloides rückt gleichzeitig auf der
negativen (x)-Achse ins Endliche, und für n 0 befindet er sich
auf der positiven (x)-Achse im Abstand x — s. Die Halbachse c

nun erreicht schon vorher ein gewisses Minimum ihrer Länge,
d / s\ snämlich dann, wenn n -f- s -|—( 1 5 0 wird, also

d n V n / n"

wenn n —- y s ist, oder wenn der Pol P' im Punkte x y s liegt.
Wird n noch kleiner, so nimmt die Länge der Halbachse c rasch
wieder zu und für n 0 ist sie unendlich gross.

Die quadratische Polarfläche in Bezug auf den Nullpunkt
des alten Koordinatensystems ist also ein zweischaliges Rotations-
hyperboloïd, dessen eine imaginäre Halbachse unendlich lang ist;
diese Fläche wird daher vorteilhafter aufgefasst als hyperbolischer
Cylinder, dessen Gleichung wir direkt aus der Polarflächen-
gleichung (20) finden, wenn man ihr n 0 setzt:

x2 — y2 — 2 s x 0 (b)

Dies ist die Gleichung der Kurve, in welcher der gleichseitige
hyperbolische Cylinder die (x y)-Ebene schneidet. Es ist die

Gleichung einer gleichseitigen Hyperbel von der Halbachse s.

Der Mittelpunkt dieser Schnittkurve liegt im Abstand x — s vom
Koordinatenursprung O, also im Flächenpunkte F. Die Asymptotengleichungen

sind y + (x — s). Die Erzeugenden des hyper-
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bolischen Cylinders stehen auf der (x y)-Ebene senkrecht; die

(z)-Achse ist auch Cylindererzeugende, also hat die Polarfläche
die (z)-Achse mit der Hauptschnittfläche gemein. Dieses Resultat
entspricht dem allgemein gültigen Satze, dass, wenn der Pol auf
der Fläche selbst liegt, dann die sämtlichen Polarflächen die

Tangentialebene in ihm berühren. (S. Fig. 13).

6 0-

» M

Fig. 13.

Der Pol P' gehe nun im Koordinatenursprung auf den

negativen Teil der (x)-Achse über; dann müssen wir in der

Polarflächengleichung n durch — n ersetzen und n wieder alle
Werte von 0 bis oo annehmen lassen, wenn der Pol P' bis ins
Unendliche rückt. Die Gleichung (20a) geht nun über in

n z

n — ns4-s" n — n s 4- s
1 (20b)

s (n — ns-f s")

Der Ausdruck (n" — n s -j~ s") im Nenner dieser Gleichung hat
immer einen positiven Wert, denn die Wurzeln der Gleichung
n" — n s 4- s =0 sind komplex; der Parameter n kann aber nur
reelle Werte annehmen, also kann kein Wert von n der Gleichung
n2 — n s 4- s" 0 genügen. Der Ausdruck n2 — n s -f- s nimmt
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daher stetig vom Werte s2 bis oo zu, und die Gleichung (20b)
/2 ,2 ,2

X V zhat immer den allgemeinen Typus -2 —~^-\ 2~==^- Resist
a" b c

die Gleichung eines einschaligen Hyperboloides, dessen imaginäre

Fig. 14.

Achse in der (y')-Achse liegt. Fig. 14. Wenn also der auf der
(x)-Achse gelegene Pol P' vom Nullpunkt aus in negativer Richtung
weiter rückt, so geht der durch Gleichung (b) bestimmte
hyperbolische Cylinder in ein einschaliges Hyperboloid über. Jener
lässt sich auch als Grenzfall eines zweischaligen und eines
einschaligen Hyperboloides betrachten, nämlich als ein solches,
dessen eine Achse, c, unendlich gross wird, während die beiden
andern einander gleich, a b — s, sind. Nimmt der Parameter
n zu, so wird die Halbachse c des Hyperboloides kleiner,
sie nimmt endliche Werte an

ó_

dn \ n/ n
n s ist, d. h. für den Punkt x — s als Pol ; ihre Länge ist
dann c s. Wird | n | > s, so wächst die Halbachse c wieder,
und für n oo, wenn sich also der Pol P' in x — oo befindet,

2\ 2

s + ^) l-^0
Ein Minimum wird sie, wenn

ist, also wenn der Parameter
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ist c wieder unendlich gross. Die beiden Halbachsen a und b
haben für n 0 den Wert a b s ; wenn der Parameter n
bis ins Unendliche wächst, so nimmt ihre Länge stetig zu und
wird für n oo ebenfalls unendlich gross. Der Mittelpunkt der
quadratischen Polarfläche befindet sich für n 0 auf der
positiven (x)-Achse im Abstand x 4- s. Bei zunehmendem n rückt
er in positiver Richtung weiter, und für n oo befindet er sich
im Unendlichen. Die quadratische Polarfläche des unendlich fernen
Punktes der negativen (x)-Achse ist demnach ein einschaliges
Hyperboloid, dessen Halbachsen unendlich lang sind und dessen

Mittelpunkt sich im Abstand x -f- oo befindet. Die (x)-Achse
schneidet daher das Hyperboloid im Endlichen nur einmal. Der im
Endlichen liegen deTeil desselben lässt sich als parabolischer Cylinder
auffassen, welcher identisch ist mit demjenigen von der Gleichung (a).

Die Zusammenfassung der letzten Resultate ergibt folgendes :

betrachtet man sämtliche Punkte der (x)-Achse von 4- oo bis — oo
successive als Pole in Bezug auf die Hauptschnittfläche 3. Grades,
so erhält man eine Schar von unendlich vielen quadratischen
Polarflächen. Die Polarfläche des unendlich fernen Punktes der
positiven (x)-Achse ist ein parabolischer Cylinder, dessen Erzeugende
auf der (x z)-Ebene senkrecht stehen und dessen Scheitel vom

s
Koordinatenursprung den Abstand x -- besitzt. Rückt der Pol

Li

ins Endliche, so geht dieser Cylinder in ein zweischaliges Hyperboloid

über. Während der Pol die ganze positive (x)-Achse

durchläuft, rückt der eine Scheitel desselben von x -- nach

x 2 s, der andere von x — oo durch die ganze negative
(x)-Achse nach dem Koordinatenursprung. Fällt der Pol mit
dem Nullpunkt der (x)-Achse zusammen, so geht das zweischalige
Hyperboloid in einen hyperbolischen Cylinder über, dessen

Erzeugende senkrecht auf der (x y)-Ebene stehen und dessen Scheitel
die Abstände x 2s und x — 0 besitzen. Wenn der Pol P' die

ganze positive (x)-Achse durchläuft, so durchwaüdert der Mittelpunkt

der entsprechenden Polarflächen die ganze negative (x)-
Achse in positiver Richtung von x — oo bis x -f- s. Sobald
nun der Pol P' auf die negative (x)-Achse übergeht, wird die
quadratische Polarfläche ein einschaliges Hyperboloid, dessen
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imaginäre Achse in der (x y)-Ebene parallel zur (y)-Achse liegt.
Durchläuft der Pol die ganze negative (x)-Achse von x 0 bis

x — oo, so rückt der Mittelpunkt der Polarfläche im bisherigen
Sinne weiter von x 4- s bis x -4- oo. Die Schnittpunkte des

einschaligen Hyperboloides mit der (x)-Achse rücken von x -j- 2 s

bis x oo, bezüglich von x 0 bis x —. Die quadratische
Li

Polarfläche der Hauptschnittfläche in Bezug auf den unendlich
fernen Punkt der negativen (x)-Achse als Pol ist dann wieder
der parabolische Cylinder, mit dem die Entwicklung der Flächenschar

beginnt. Ueber die gesamte Lageveränderung des

Mittelpunktes und der Achsenabschnitte in der (x)-Achse gibt folgende
Tabelle Aufschluss:

n
Mittelpunkt Scheitel

Si s2

-f- oo X — oo
s

Xi=2 X2=— oo

0 S 2s 0

— oo Ar °° 4— oo ^2
Wir gehen nun über zur Untersuchung der quadratischen

Polarflächen der Hauptschnittfläche 3. Grades für den Fall, dass

der Pol P' (x' y' z') die (z)-Achse des Koordinatensystems durchläuft.

Wir setzen daher in der allgemeinen Gleichung (19) der
ersten Polarfläche für x' y' 0 und z' n, wo n wieder
variabler Parameter ist und alle Werte von — oo bis 4- oo
annehmen kann; sie geht dann über in

s x2 -- s y2 — 2 n x z — 2 s2 x 0 (21)

Diese Gleichung stellt unendlich viele Flächen dar; jede Fläche
der Schar geht durch den Nullpunkt des Koordinatensystems
und enthält die (z)-Achse desselben als Erzeugende, denn die
Koordinaten x — 0 und y 0 leisten der Gleichung (21) für
jeden Wert von z Genüge. Da nun nach § 12 jeder Punkt der
(z)-Achse auf der Hauptschnittfläche 3. Grades liegt und zudem
ein parabolischer Flächenpunkt ist, so müssen nach der Theorie
der Polarflächen alle Flächen des obigen Büschels Kegel
2. Grades sein. (S. Fig. 15).
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Fig. 15.

Ihre Scheitelgleichung finden wir, wenn in Gleichung (21)
2

S"
für x x', y y' und für z z'

geht dann über in

substituiert wird. Sie

s x T/2sy'" —2nx'z' 0 (21a)
Zur Bestimmung der Schnittkurven dieser Kegelschar mit der
(x y)-Ebene des ursprünglichen Koordinatensystems setzen wir
in Gleichung (21) für z 0 und finden so die Gleichung
x" — y" — 2sx 0; sie stellt eine gleichseitige Hyperbel dar,
welche identisch ist mit der Schnittkurve des vorhin besprochenen
hyperbolischen Cylinders mit der (x y)-Ebene ; sie bleibt für alle
Flächen der Schar dieselbe. Also schneidet jeder Kegel zweiten
Grades, der durch die in x' y' z' homogene Gleichung (21 a)
dargestellt wird, die (x y)-Ebene in der nämlichen gleichseitigen
Hyperbel; ihr Mittelpunkt liegt im Abstand x s auf der (x)-
Achse, ihre Halbachse s ; der eine Scheitel fällt mit dem

Koordinatenursprung zusammen, der andere liegt im Abstand
x 2 s. Der Kegelscheitel S liegt auf der (z)-Achse und hat

2
g

vom alten Nullpunkt den Abstand z' Dem Pol P' (z n)

auf der (z)-Achse entspricht der Scheitel S seines Polarkegels

z ; da z ¦ z
n

konstant und negativ ist, so bilden
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die Punktepaare (P', S) auf der (z)-Achse eine elliptische
Punktinvolution vom Mittelpunkt 0. Für n s wird z s und z' — s,
welche beiden Punkte P und S symmetrisch zu 0 liegen.

Für alle Werte von n zwischen 0 und -)- oo bewegt sich
der Kegelschnitt S von z =¦ — oo bis z 0, für diejenigen von
0 bis — oo dagegen von z —- -4- oo bis z — 0. Wenn der Pol P'
im Endlichen von der positiven (z)-Achse auf die negative übergeht,

also den Koordinatenursprung passiert, so rückt der
Kegelscheitel S im Unendlichen von der negativen (z)-Achse auf die

positive. Für den Polabstand z + oo ist der Koordinatenursprung
Kegelscheitel; alle Erzeugenden durch denselben schneiden aber
die (x y)-Ebene zugleich noch in einem Punkte der Schnitthyperbel
(b), sie liegen also alle in der (x y)-Ebene des alten Koordinatensystems,

und diese ist die erste Polarfläche der Hauptschnittfläche

3. Grades in Bezug auf den unendlich fernen Punkt der
(z)-Achse als Pol ; die quadratische Polarfläche hat sich also auf
eine Ebene reduziert. Wählt man dagegen den Koordinatenursprung

als Pol, so dass der Kegelscheitel im Abstand z oo

liegt, so sind alle Erzeugende einander parallel und senkrecht zur
(x y)-Ebene, d. h. der Kegel 2. Grades ist identisch mit dem durch
Gleichung (b) bestimmten hyperbolischen Cylinder. (Fig. 13).

Wir lassen nun den Pol P' (x' y' z') die (y)-Achse des

Koordinatensystems durchlaufen und bestimmen die Schar von
quadratischen Polarflächen, die den Punkten derselben entspricht.
Es ist daher in der allgemeinen Gleichung (19) der quadratischen
Polarfläche x' — z' 0 und y' gleich einem variabeln Parameter
n zu setzen und wir erhalten die Gleichung:

x2 — y2 — 2sx — 2ny 0 (22)

Da n alle Werte von -4- oo bis — oo annehmen kann, so stellt
diese Gleichung, im Räume gedeutet, eine Schar von
gleichseitigen hyperbolischen Cylindern dar, deren Erzeugende auf der

(x y)-Ebene senkrecht stehen. Die Koordinaten x 0 und y — 0

genügen der Gleichung (22) für jedes z, also ist die (z)-Achse des

Koordinatensystems für jede Fläche der Schar eine Erzeugende
derselben. Sämtliche Cylinderflächen der Schar schneiden die

(x y)-Ebene in einer gleichseitigen Hyperbel von der Gleichung
(22); die Mittelpunkte dieser Schnitthyperbeln liegen alle auf
einer durch den Punkt F gehenden Geraden, die parallel ist zur
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(y)-Achse, denn ihre Koordinaten sind y — n und x s

konstant, und durch die Substitution x x' -f- s und y y' — n
geht die Hyperbelgleichung (22) in die Achsengleichung über,
welche lautet:

r<2 .'2

2 2 2 2
s — n s — n

1

oder, wenn s <<n ist y'2 ,'2
2 2 2 2

n — s n — s
1

(22 a)

Fig. 16.

Ueber die Aenderungen der Lage der Hyperbelmittelpunkte 0'
und die Länge der Halbachse bei variablem Parameter n gibt
folgende Tabelle Aufschluss:

n X — S y — n a ^b-vV-s2

-J-00 S — oc oo

+ s S — s 0

0 S 0 s

— s S + s 0

— oo S -4- oo oo

Bern. Mitteil. 1911. Nr. 1792.
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Zunächst zeigt sich wieder, dass die quadratische Polarfläche in
Bezug auf den Koordinatenursprung als Pol ein hyperbolischer
Cylinder ist, der in Fig. 13 dargestellt und bereits besprochen
wurde. Rückt nun der Pol P' auf der (y)-Achse vom Nullpunkt
aus in positiver Richtung vorwärts, so wandert der Mittelpunkt
0' der Schnitthyperbel auf der Geraden x s in negativer (y)-
Richtung weiter, und zugleich nimmt die Länge der Halbachsen
a — b vom Anfangswerte s an ab. Wenn sich der auf der (y)-
Achse liegende Pol im Abstand y 4- s befindet, so sind die
Halbachsen der Schnitthyperbel a b—0 und der hyperbolische
Cylinder reduziert sich auf zwei sich rechtwinklig schneidende
Ebenen, die beide auf der (x y)-Ebene senkrecht stehen, während
sie mit den beiden andern Koordinatenebenen je Winkel von
45° bilden. Der Durchstosspunkt ihrer Schnittgeraden mit der
(x y)-Ebene hat die Koordinaten x s und y - s.

Fig. 17.

Geht der Pol im bisherigen Sinne weiter und durchläuft
er die (y)-Achse von y -4- s bis y — 4- oo, so ist der
Parameter n > s, und wir haben als Gleichung der gleichseitigen
Schnitthyperbel die zweite Gleichung (22 a) zu betrachten. Es
zeigt sich, dass aus den zwei sich rechtwinklig schneidenden
Geraden, in welchen die soeben besprochenen Ebenen die
(x y)-Ebene schneiden, nun eine solche gleichseitige Hyperbel
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entsteht, deren reelle Achse in die (y)-Richtung und deren
imaginäre Achse in die (x)-Richtung fällt, während für 0 < n < s
die Verhältnisse entgegengesetzte waren. Der Mittelpunkt der
Schnitthyperbel, also auch die Achse des entsprechenden
hyperbolischen Cylinders, rückt bei wachsendem n auf der Geraden
x s in der eingeschlagenen Richtung immer weiter, so dass er
sich immer gleich weit hinter der (x z)-Ebene befindet, wie der
Pol P' vor derselben; ist der Abstand des Pols y — 4^ oo; So ist
derjenige der Cylinderachse y — oo. Die Länge der Hyperbel-
halbachsen a b nimmt vom Werte Null an stetig zu und für
n oo werden sie unendlich gross. Für grosse Werte des
Parameters n ist der Abstand des Hyperbelmittelpunktes von der
(x)-Achse des Koordinatensystems verhältnismässig nur wenig
grösser als die Länge der Hyperbelachse ; die Scheitelerzeugende
der einen Schale des hyperbolischen Cylinders entfernt sich
daher nur wenig von der (x)-Achse, so dass die (z)-Achse des

Koordinatensystems immer Cylindererzeugende ist. Befindet sich

,''-...L.*- >'

"<\

Fig. 18.

der Pol P' im Abstand y — -f- oo, so ist sowohl der Abstand
des Hyperbelmittelpunktes als auch die Länge der Halbachse
unendlich gross, und die im Endlichen liegende Schale des

hyperbolischen Cylinders geht in eine Ebene, die (x z)-Ebene
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des Koordinatensystems, über; diese ist also 1. Polarfläche in
Bezug auf den unendlich fernen Punkt der (y)-Achse. Dasselbe
Resultat erhält man auch, wenn man die Gleichung (22) durch
n dividiert und dann für n oo einsetzt ; sie geht dann über
in y 0, die Gleichung der (x z)-Ebene.

Lassen wir den Pol P' (x' y' z') statt der positiven die

negative (y)-Achse durchlaufen, so erhalten wir die nämliche
Schar von quadratischen Polarflächen, nur mit dem Unterschiede,
dass der Mittelpunkt ihrer Schnitthyperbel die Gerade x s in
positiver (y)-Richtung von y 0 an durchläuft.

Durchläuft der Pol P' alle Punkte der (x y)-Ebene, so ist
in der Polarflächengleichung (19) z' — 0 zu setzen; x' und y'
können jeden beliebigen Wert zwischen — oo und -f- oo
annehmen. Setzt man daher für x' den Parameter n und für y'
den Parameter m, so erhält man als Gleichung der quadratischen
Polarflächen in Bezug auf alle Punkte der (x y)-Ebene

2 p p p 9

sx —sy —nz —2s x -f- 2 n s x — 2ms y -—--n s =0
Für variable Parameter n und m stellt diese Gleichung ein Netz
von Flächen 2. Grades dar. Analog Hessen sich die Gleichungen
zweier weiterer Netze von Flächen aufstellen, wenn man den
Pol P' die (x z)-, bezüglich die (y z)-Ebene, durchlaufen lässt.

Wir gehen nun über zur Bestimmung der zweiten Polarfläche

der Hauptschnittfläche 3. Grades, bezogen auf einen festen

PolP'(x'y'z'); sie ist eine Fläche 1. Grades, also eine Sbene.
Wählen wir den Pol P' im Nullpunkt, so liegt er auf der
Hauptschnittfläche und die Polarebene fällt mit der Tangentialebene

in ihm zusammen ; sie hat die Gleichung x 0. Aus dem

gleichen Grunde hat der Flächenpunkt F im Abstand x s vom
Nullpunkt die Polarebene x s.

Allgemein hat die zweite Polarfläche einer Fläche folgende
Gleichung :

A2f 0 oder

/2 d2t n d2t „ e2t d2t
xM—24-2x'y' —f-2x'z'—-- + 2 x' w

dx ' J
<9 x <3 y

' dxdz ' dxdv?
i /2

à2 f i o ' i à2t d2i ,-d2i+ y ^~2+2y z - - +2y wV~s—L'z t~*oy oyoz cycw dz

+ 2z'w'-^f-|-w'2^i
d w 8 z ôw"
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Nach der homogenen Flächengleichung

f(xyzw) xz2 — sx2w4-sy2w4-s2xwJ 0 wird nun
dt 2 0 2 2 dt 0— z — 2sxw-(-sw — 2syw

d x d y

— 2xz — =— sx -4-sy -f-2s xw
dz d w

und hieraus
d2f „ d2t „ d2f

—2s — 2s — 0

0

<9x d j d w d z

d2l d2t

d x dy dxdy
d2î ô2t d'i -

— 2z ==2sy ô 2 s x
d x d z d y d v? 5w"

d2t „ „ 2 d2i
— 2SX + 2S" r, 2x

d xd W (5 z"

Demnach wird die Gleichung der Polarebene des Punktes

P'(x'y'z'):
(s2 + z'2-2sx')x + 2sy'y+2x'z'-z4-s(y'2-x'2-f-2sx') 0 (23)

Nun soll der Pol P' die (x)-Achse durchlaufen, x' also alle
Werte von — oo bis -4- oo annehmen ; wir ersetzen daher x' durch
den variabeln Parameter n und y' z' durch 0. Dann geht die

Polarebenengleichung (23) über in
2 on — 2 s n
s —2n

Diese Gleichung stellt eine Schar von unendlich vielen
Polarebenen dar, den unendlich vielen Punkten der (x)-Achse
entsprechend ; sie sind alle parallel zur (y z)-Ebene, und ihr Abstand
von derselben kann alle Werte von — oo bis -f- °° annehmen.

Durchläuft der Pol P' die (y)-Achse, so ist für x' z' 0
und y' n zu setzen. Die Polarebenengleichung geht dann
über in

sx-f 2ny-fn =0.
Betrachtet man in dieser Gleichung n als variabeln Parameter,
so stellt sie eine Schar von unendlich vielen den Punkten der
(y)-Achse entsprechenden Polarebenen dar, die alle auf der

(x y)-Ebene senkrecht stehen. In ihrer Gesamtheit hüllen sie
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einen Cylinder ein, dessen Erzeugende senkrecht auf der (x y)-
Ebene stehen und dessen Gleichung man erhält durch Bestimmung
der Enveloppe aller Geraden, die bei variablem n durch die

Gleichung sx-f-2ny4-n =0 gegeben sind.

Fig. 19.

Eliminiert man aus den beiden Gleichungen F (x y n)
- tp

sx f 2ny4-n —0 und --— y Ar n 0 den Parameter n, so

erhält man als Gleichung der Enveloppe die Parabelgleichung
y2 s x. Der umhüllte Cylinder ist also ein parabolischer. Seine
Achse wird gebildet durch die positive (x)-Achse; die
Scheitelerzeugende fällt zusammen mit der (z)-Achse des Koordinatensystems.

Der Halbparameter der Schnittparabel in der (x y)-

Ebene ist| -| (S. Fig. 19).

Schliesslich durchlaufe der Pol P' noch die (z)-Achse; wir
haben dann in der Polarebenengleichung x' y' =0 und z' n
zu setzen und sie geht über in:

s" x -j- n x 0 oder x 0
d. h. sämtliche Polarebenen der Hauptschnittfläche, bezogen auf
einen beliebigen Punkt der (z)-Achse, fallen zusammen und zwar
in der (y z)-Ebene des Koordinatensystems. Dieses Resultat lässt
sich auch daraus schliessen, dass die (zl-Achse selber in der
Hauptschnittfläche liegt und die (y z)-Ebene in jedem Punkte
der (z)-Achse Tangentialebene der Hauptschnittfläche ist.
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