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Ebene ebenfalls in jener doppelt gelegten Geraden der (x y)-Ebene. -
Man kann sich vorstellen, dass die beiden Flichenstiicke im
Unendlichen sich in der unendlich fernen Doppelgeraden der
(x y)-Ebene aneinander schliessen und so eine zusammenhingende
Fliche bilden, die drei Gerade enthilt, nimlich die (z)-Achse, die
unendlich ferne Gerade der (y z)-Ebene und die unendlich ferne
Gerade der (x y)-Ebene als Doppelgerade.

§ 13.
Ueber Polarflaichen der Hauptschnittfliche 3. Grades.

Die Hauptschnittfliche 3. Grades hat die Gleichung
X2 —sx’+ sy +8x=0 (11)
oder homogen gemacht:
f(xyzw)=x72 —sxXwsywtsxw=0
Nun hat die erste Polarfliche in Bezug auf einen festen Pol
P’ (x’,y’,z") die Gleichung:
' 0 of , of

of of
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Af*xax_l—yﬁy_}-z 6z+w GW_O

Nach der homogenen Flichengleichung ergeben sich fir die
partiellen Differentialquotienten folgende Werte:
of

o 2_ 2
—a——};-—z 2SX+S
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Daher wird die Gleichung der quadratischen Polarfliche der
Hauptschnittfliche 3. Grades, bezogen auf einen festen Pol
P (x,¥,7):

s(xX’—y)—x'-2"—27 -xz2—2s(s—x')x—2sy . y—s'x'=0 (19)
Wir nehmen nun an, der Pol P’ (x/, y/, z’) sei nicht fest, sondern
er nehme successive andere Lagen an; er durchlaufe z. B. die
ganze (x)-Achse des Koordinatensystems. In diesem Falle haben
wir in der Gleichung der quadratischen Polarfliche (19) fiir
y' =2’ =0 zu setzen, und fir x’ substituieren wir einen ver-
anderlichen Parameter n, der alle Werte von — oo bis 4 oo an-

nehmen soll. Dann geht die Gleichung (19) iiber in
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$X° — Syz——nzg———Zszx;} 2ns-x—ns =0 (20)
Bei variablem Parameter n stellt diese Gleichung eine Schar von
unendlich vielen Flichen 2. Grades dar. Alle diese Fliachen bilden
in ihrer Gesamtheit die Schar von unendlich vielen quadratischen
Polarflichen, bezogen auf die sémtlichen Punkte der (x)-Achse
als Pole. '

Da die Gleichung (20) keine Glieder in xy, xz oder yz ent-
hilt, so geniigt eine Parallelverschiebung des Koordinatensystems,
um die Flachengleichung auf die Achsengleichung zu transformieren.
Wir haben zu diesem Zwecke in Gleichung (20) fir y=y', z=12’

und fir x=x' -+ s — n zu substituieren; sie geht dann tber in

2 2 2
x’ yr nz

n’ 4 ns +s° n’4ns4+s s@tnsH &)
Die Mittelpunkte M samtlicher Flichen der durch Gleichung (20)
gegebenen Polarflichenschar liegen demnach auf der (x)-Achse
und zwar im Abstand x ==s —n vom Koordinatenursprung. '

Wir nehmen nun zunichst an, der Pol P’ durchlaufe den
positiven Teil der (x)-Achse, so dass der Parameter n alle
Werte annimmt zwischen n = -} co und n=0. Dann sind in
der Gleichung (20a) alle Nenner positiv, und die quadratische
Polarfliche des Punktes P’ ist ein zweischaliges Hyperboloid,
von den Halbachsen :

a=b=¢\/n"+ns-+} s und c==\/§~(n2—{—ns+sz)
Seine Scheitel liegen auf der (x)-Achse im Abstand
x' == Vo®4+ns + s vom Mittelpunkt M. (S. Fig. 12).

%
4

T

) Fig.12.
Bern. Mitteil. 1911, Nr. 1791.
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Um die Polarfliche des unendlich fernen Punktes der
(x)-Achse zu bestimmen, dividieren wir die Gleichung (20) durch
n und setzen dann fiir n=o0; sie wird dann

i —28x 4§ = (a)
Dies ist die Gleichung eines parabolischen Cylinders; sie ist
identisch mit Gleichung (b) in § 2. Wir finden somit, dass die
Rotationsfliche k =1 unseres Rotationsflichensystems zugleich
quadratische Polarfliche der durch Gleichung (11) gegebenen
Hauptschnittfliche 3. Grades ist, bezogen auf den unendlich fernen
Punkt der (x)-Achse als Pol P’. (S. auch Fig. 4).

Der Pol P’ riicke nun auf der positiven (x)-Achse ins
Endliche, der Parameter n werde also immer kleiner! Dann
werden alle Halbachsen des zweischaligen Hyperboloides (20a)
zuniichst abnehmen; wandert der Pol P’ bis in den Nullpunkt,
wird also n immer kleiner und zuletzt gleich Null, so reduziert
sich die Linge der Halbachsen a und b auf a="h=s. Der
Mittelpunkt M des Hyperboloides riickt gleichzeitig auf der
negativen (x)-Achse ins Endliche, und fiir n = 0 befindet er sich
auf der positiven (x)-Achse im Abstand x ==s. Die Halbachse ¢
nun erreicht schon vorher ein gewisses Minimum ihrer Liinge,
nimlich dann, wenn i(n + s+ E) —]1 — i, =0 wird, also

dn n n°
wenn n==\/s ist, oder wenn der Pol P’ im Punkte x ==\/s liegt.
Wird n noch kleiner, so nimmt die Linge der Halbachse ¢ rasch
wieder zu und far n=0 ist sie unendlich gross.

Die quadratische Polarfliche in Bezug auf den Nullpunkt
des alten Koordinatensystems ist also ein zweischaliges Rotations-
hyperboloid, dessen eine imaginire Halbachse unendlich lang ist;
diese Flache wird daher vorteilhafter aufgefasst als hyperbolischer
Cylinder, dessen Gleichung wir direkt aus der Polarflichen-
gleichung (20) finden, wenn man ihr n =0 setzt:

X —y —2sx=0 (b)
Dies 1st die Gleichung der Kurve, in welcher der gleichseitige
hyperbolische Cylinder die (x y)-Ebene schneidet. Es ist die
Gleichung einer gleichseitigen Hyperbel von der Halbachse s.
Der Mittelpunkt dieser Schnittkurve liegt im Abstand x = s vom
Koordinatenursprung O, also im Flachenpunkte F. Die Asymptoten-
gleichungen sind y =+ (x —s). Die Erzeugenden des hyper-
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bolischen Cylinders stehen auf der (x y)-Ebene senkrecht; die
(z)-Achse ist auch Cylindererzeugende, also hat die Polarfliche
die (z)-Achse mit der Hauptschnittfliche gemein, Dieses Resultat
entspricht dem aligemein giltigen Satze, dass, wenn der Pol auf
der Fliche selbst liegt, dann die samtlichen Polarflichen die
Tangentialebene in ithm berithren. (S. Fig. 13).

7
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Fig. 13.

Der Pol P’ gehe nun im Koordinatenursprung auf den
negativen Teil der (x)-Achse iiber; dann miissen wir in der
Polarflichengleichung n durch — n ersetzen und n wieder alle
Werte von 0 bis oo annehmen lassen, wenn der Pol P’ bis ins
Unendliche riickt. Die Gleichung (20a) geht nun dber in

'2 r2 L2
x S + nz 5 —1 (20b)

n°—ns+4s n—nsts sm—ns+ts

Der Ausdruck (n>—ns 4s°) im Nenner dieser Gleichung hat
immer einen positiven Wert, denn die Wurzeln der Gleichung
n° —ns 4 s°=0 sind komplex; der Parameter n kann aber nur
reelle Werte annehmen, also kann kein Wert von n der Gleichung
n’—-ns4&=0 geniigen. Der Ausdruck n*—ns 4 s’ nimmt
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daher stetig vom Werte s” bis oo zu, und die Gleichung (20b)
r2 1?2 2

hat immer den allgemeinen Typus }5—2 —3;)—2 ié—z 1. Dies ist
a C

die Gleichung eines einschaligen Hyperboloides, dessen imaginire

v

\

Fig. 14.

Achse in der (y')-Achse liegt. Fig. 14. Wenn also der auf der
(x)-Achse gelegene Pol P’ vom Nullpunkt aus in negativer Richtung
weiter riickt, so geht der durch Gleichung (b) bestimmte hyper-
bolische Cylinder in ein einschaliges Hyperboloid iiber. Jener
lasst sich auch als Grenzfall eines zweischaligen und eines ein-
schaligen Hyperboloides betrachten, namlich als ein solches,
dessen eine Achse, ¢, unendlich gross wird, wihrend die beiden
andern einander gleich, a=b =5, sind. Nimmt der Parameter
n zu, so wird die Halbachse ¢ des Hyperboloides kleiner,
sie nimmt endliche Werte an. Ein Minimum wird sie, wenn

\ 2

d (n —s+ S—) =1— 8—2 = 0 1st, also wenn der Parameter
dn n n

n=-=s ist, d. h. firr den Punkt x = —s als Pol; ihre Linge ist
dann ¢=s. Wird |n|>s, so wichst die Halbachse ¢ wieder,
und fir n = oo, wenn sich also der Pol P’ in x = — oo befindet,
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ist ¢ wieder unendlich gross. Die beiden Halbachsen a und b
~ haben fir n=0 den Wert a=b =s; wenn der Parameter n
bis ins Unendliche wichst, so nimmt ihre Linge stetig zu und
wird fir n = oo ebenfalls unendlich gross. Der Mittelpunkt der
quadratischen Polarfliche befindet sich fiir n =0 auf der posi-
tiven (x)-Achse im Abstand x = -} s. Bei zunehmendem n riickt
er in positiver Richtung weiter, und fiir n = oo befindet er sich
im Unendlichen. Die quadratische Polarfliche des unendlich fernen
. Punktes der negativen (x)-Achse ist demnach ein einschaliges
Hyperboloid, dessen Halbachsen unendlich lang sind und dessen
Mittelpunkt sich im Abstand x == - oo befindet. Die (x)-Achse
schneidet daher das Hyperboloid im Endlichen nur einmal. Der im
Endlichen liegendeTeil desselben lisstsich als parabolischer Cylinder
auffassen, welcher identisch ist mit demjenigen von der Gleichung (a).

Die Zusammenfassung der letzten Resultate ergibt folgendes:
betrachtet man simtliche Punkte der (x)-Achse von -} ov bis — oo
successive als Pole in Bezug auf die Hauptschnittfliche 3. Grades,
so erhilt man eine Schar von unendlich vielen quadratischen Polar-
flichen. Die Polarfliche des unendlich fernen Punktes der posi-
tiven (x)-Achse ist ein parabolischer Cylinder, dessen Erzeugende
auf der (xz)-Ebene senkrecht stehen und dessen Scheitel vom
Koordinatenursprung den Abstand x =% besitzt. Riickt der Pol
ins Endliche, so geht dieser Cylinder in ein zweischaliges Hyper-

boloid tuber. Wihrend der Pol die ganze positive (x)-Achse

durchlduft, riickt der eine Scheitel desselben von x-————% nach

x=2s, der andere von x = — oo durch die ganze negative
(x)-Achse nach dem Koordinatenursprung. Fillt der Pol mit
dem Nullpunkt der (x)-Achse zusammen, so geht das zweischalige
Hyperboloid in einen hyperbolischen Cylinder iber, dessen Er-
zeugende senkrecht auf der (x y)-Ebene stehen und dessen Scheitel
die Abstinde x =2 s und x == 0 besitzen. Wenn der Pol P’ die
ganze positive (x)-Achse durchliuft, so durchwandert der Mittel-
punkt der entsprechenden Polarflichen die ganze negative (x)-
Achse in positiver Richtung von x = — oo bis x == - s. Sobald
nun der Pol P’ auf die negative (x)-Achse iibergeht, wird die
quadratische Polarfliche ein einschaliges Hyperboloid, dessen
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imaginire Achse in der (x y)-Ebene parallel zur (y)-Achse liegt.
Durchlauft der Pol die ganze negative (x)-Achse von x ==0 bis
X = — oo, 80 riickt der Mittelpunkt der Polarfliche im bisherigen
Sinne weiter von x = } s bis x =} oo. Die Schnittpunkte des
einschaligen Hyperboloides mit der (x)-Achse riicken von x =+-2s

bis X = oo, beziiglich von x =0 bis x:% Die quadratische

Polarfiiche der Hauptschnittfliche in Bezug auf den unendlich
fernen Punkt der negativen (x)-Achse als Pol 1st dann wieder
der parabolische Cylinder, mit dem die Entwicklung der Flichen-
schar beginnt. Ueber die gesamte Lageverinderung des Mittel-
punktes und der Achsenabschnitte in der (x)-Achse gibt folgende
Tabelle Aufschluss:

i n Mittelpunkt
f
—i— 0l X = — 00
0 =S8
— O = + o0

Wir gehen nun dber zur Untersuchung der quadratischen
Polarflichen der Hauptschnittfliche 3. Grades fiir den Fall, dass
der Pol P’ (x" y’ z’) die (z)-Achse des Koordinatensystems durch-
lauft. Wir setzen daher in der allgemeinen Gleichung (19) der
ersten Polarfliche fir x" =y’ =0 und 2z’ =n, wo n wieder
variabler Parameter ist und alle Werte von — oo bis -} oo an-
nehmen kann; sie geht dann iiber in

sx’-sy —2nxz—28x =0 (21)

Diese Gleichung stellt unendlich viele Flichen dar; jede Fliche
der Schar geht durch den Nullpunkt des Koordinatensystems
und enthilt die (z)-Achse desselben als Erzeugende, denn die
Koordinaten x =0 und y==0 leisten der Gleichung (21) fir
jeden Wert von z Geniige. Da nun nach § 12 jeder Punkt der
(z)-Achse auf der Hauptschnittfliche 3. Grades liegt und zudem
ein parabolischer Flichenpunkt ist, so miissen nach der Theorie
der Polarflichen alle Flichen des obigen Biischels Kegel
2. Grades sein. (S. Fig. 15).
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Fig. 15.

Ihre Scheitelgleichung finden wir, wenn in Gleichung (21)

2

fir x=x", y=y" und fir z=12 ——Sl—l substituiert wird. Sie
gcht dann iiber in
sx’—sy”’—2nx 2 =0 (21a)
Zur Bestimmung der Schnittkurven dieser Kegelschar mit der
(x y)-Ebene des urspriinglichen Koordinatensystems setzen wir
in Gleichung (21) fir z=0 und finden so die Gleichung
xX’—y —2sx=0; sie stellt eine gleichseitige Hyperbel dar,
welche identisch 1st mit der Schnittkurve des vorhin besprochenen
hyperbolischen Cylinders mit der (x y)-Ebene; sie bleibt fiir alle
Flichen der Schar dieselbe. Also schneidet jeder Kegel zweiten
Grades, der durch die in x" y’ 2z’ homogene Gleichung (21a) dar-
gestellt wird, die (x y)-Ebene in der niamlichen gleichseitigen
Hyperbel; 1hr Mittelpunkt liegt im Abstand x =s auf der (x)-
Achse, 1hre Halbachse = s; der eine Scheitel fillt mit dem
Koordinatenursprung zusammen, der andere liegt im Abstand
x =2s. Der Kegelscheitel S liegt auf der (z)-Achse und hat
2

vom alten Nullpunkt den Abstand z’ = — % Dem Pol P’ (z = n)

auf der (z)-Achse entspricht der Scheitel S seines Polarkegels
2
Z o= ——%; da 7.2 = —s" == konstant und negativ ist, so bilden
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die Punktepaare (P’,S) auf der (z)-Achse eine elliptische Punkt-
involution vom Mittelpunkt O. Fiir n =s wird z—=s und z’ = —s,
welche beiden Punkte P und S symmetrisch zu O liegen.

Fir alle Werte von n zwischen 0 und - oo bewegt sich
der Kegelschnitt S von z= — oo bis z =0, fiir diejenigen von
0 bis — oo dagegen von z=: | o bis z=0. Wenn der Pol P’
im Endlichen von der positiven (z)-Achse auf die negative iiber-
geht, also den Koordinatenursprung passiert, so riickt der Kegel-
scheitel S 1m Unendlichen von der negativen (z)-Achse auf die
positive. Fiir den Polabstand z =+ o< ist der Koordinatenursprung
Kegelscheitel; alle Erzeugenden durch denselben schneiden aber
die (x y)-Ebene zugleich noch in einem Punkte der Schnitthyperbel
(b), sie liegen also alle in der (x y)-Ebene des alten Koordinaten-
systems, und diese ist die erste Polarfliche der Hauptschnitt-
fliche 8. Grades in Bezug auf den unendlich fernen Punkt der
(z)-Achse als Pol; die quadratische Polarfliche hat sich also auf
eine Ebene reduziert. Wihlt man dagegen den Koordinaten-
ursprung als Pol, so dass der Kegelscheitel im Abstand z = o<
liegt, so sind alle Erzeugende einander parallel und senkrecht zur
(x y)-Ebene, d. h. der Kegel 2. Grades ist identisch mit dem durch
Gleichung (b) bestimmten hyperbolischen Cylinder. (Fig. 13).

Wir lassen nun den Pol P’ (x'y’z') die (y)Achse des
Koordinatensystems durchlaufen und bestimmen die Schar von
quadratischen Polarflichen, die den Punkten derselben entspricht.
Es ist daher in der allgemeinen Gleichung (19) der quadratischen
Polarfliche x’ =1z’ =0 und y’ gleich einem variabeln Parameter
n zu setzen und wir erhalten die Gleichung:

x2——y2-—2sx—2ny=0 (22)
Da n alle Werte von -} o© bis — oo annehmen kann, so stellt
diese Gleichung, im Raume gedeutet, eine Schar von gleich-
seitigen hyperbolischen Cylindern dar, deren Erzeugende auf der
(x y)-Ebene senkrecht stehen. Die Koordinaten x =0 und y =0
geniigen der Gleichung (22) fir jedes z, also ist die (z)-Achse des
Koordinatensystems fiir jede Fliache der Schar eine Erzeugende
derselben. Simtliche Cylinderflichen der Schar schneiden die
(x y)-Ebene in einer gleichseitigen Hyperbel von der Gleichung
(22); die Mittelpunkte dieser Schnitthyperbeln liegen alle auf
einer durch den Punkt F gehenden Geraden, die parallel ist zur
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(y)-Achse, denn ihre Koordinaten sind y = —n und x =s==
konstant, und durch die Substitution x=x'-+s und y=y —n
geht die Hyperbelgleichung (22) in die Achsengleichung iiber,
welche lautet:

2 2
x’ yr g
$—n? £—n®
] 2 2 (22a)
oder, wenn s <n ist y X
2 3 s =1
nn—s° n—s

O ST
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/

Fig. 16.

Ueber die Aenderungen der Lage der Hyperbelmittelpunkte O’
und die Linge der Halbachse bei variablem Parameter n gibt

folgende Tabelle Aufschluss:

Bern. Mitteil. 1911. Nr, 1792



Zunichst zeigt sich wieder, dass die quadratische Polarfiiiche in
Bezug auf den Koordinatenursprung als Pol ein hyperbolischer
Cylinder 1st, der in Fig. 13 dargestellt und bereits besprochen
wurde. Riickt nun der Pol P’ auf der (y)-Achse vom Nullpunkt
aus In positiver Richtung vorwirts, so wandert der Mittelpunkt
O’ der Schnitthyperbel auf der Geraden x =s in negativer (y)-
Richtung weiter, und zugleich nimmt die Linge der Halbachsen
a=>b vom Anfangswerte s an ab. Wenn sich der auf der (y)-
Achse liegende Pol im Abstand y == +-s befindet, so sind die
Halbachsen der Schnitthyperbel a =b =0 und der hyperbolische
Cylinder reduziert sich auf zwei sich rechtwinklig schneidende
Ebenen, die beide auf der (x y)-Ebene senkrecht stehen, wihrend
sie. nit den beiden andern Koordinatenebenen je Winkel von
45° bilden. Der Durchstosspunkt ihrer Schnittgeraden mit der
(x y)-Ebene hat die Koordinaten x =s und y = — s.

v

-

>
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Fig. 17.

Geht der Pol im bisherigen Sinne weiter und durchliuft
er die (y)-Achse von y= s bis y= 4 oo, so ist der Para-
meter n>s, und wir haben als Gleichung der gleichseitigen
Schnitthyperbel die zweite Gleichung (22a) zu betrachien. Es
zeigt sich, dass aus den zwei sich rechtwinklig schneidenden
Geraden, in welchen die soeben besprochenen Ebenen die
(x y)-Ebene schneiden, nun eine solche gleichseitige Hyperbel
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entsteht, deren reelle Achse in die (y)-Richtung und deren
imaginire Achse in die (x)-Richtung fallt, wahrend fir 0<<n <s
die Verhiltnisse entgegengesetzte waren. Der Mittelpunkt der
Schnitthyperbel, also auch die Achse des entsprechenden hyper-
bolischen Cylinders, rickt bei wachsendem n auf der Geraden
x=s5 in der eingeschlagenen Richtung immer weiter, so dass er
sich immer gleich weit hinter der (x z)-Ebene befindet, wie der
Pol P’ vor derselben; ist der Abstand des Pols y = -}- o¢, so ist
derjenige der Cylinderachse y = — oo. Die Liinge der Hyperbel-
halbachsen a="b nimmt vom Werte Null an stetig zu und fiir
n=oc werden sie unendlich gross. Fiir grosse Werte des
Parameters n ist der Abstand des Hyperbelmittelpunktes von der
(x)-Achse des Koordinatensystems verhdltnismissig nur wenig
grosser als die Lange der Hyperbelachse; die Scheitelerzeugende
der einen Schale des hyperbolischen Cylinders entfernt sich da-
her nur wenig von der (x)-Achse, so dass die (z)-Achse des
Koordinatensystems immer Cylindererzeugende ist. Befindet sich

Fig. 18.

der Pol P’ im Abstand y == oo, so ist sowohl der Abstand
des Hyperbelmittelpunktes als auch die Linge der Halbachse
unendlich gross, und die im Endlichen liegende Schale des
hyperbolischen Cylinders geht in eine Ebene, die (x z)-Ebene
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des Koordinatensystems, iiber; diese ist also 1. Polarfliche in
Bezug auf den unendlich fernen Punkt der (y)-Achse. Dasselbe
Resultat erhidlt man auch, wenn man die Gleichung (22) durch
n dividiert und dann fiir n = oo einsetzt; sie geht dann uber
m y =20, die Gleichung der (x z)-Ebene.

Lassen wir den Pol P’ (x’y’z’) statt der positiven die
negative (y)-Achse durchlaufen, so erhalten wir die nimliche
Schar von quadratischen Polarfiichen, nur mit dem Unterschiede,
dass der Mittelpunkt ihrer Schnitthyperbel die Gerade x =s in
positiver (y)-Richtung von y =0 an durchliuft.

Durchlauft der Pol P’ alle Punkte der (x y)-Ebene, so ist
in der Polarflichengleichung (19) z’ =0 zu setzen; x’ und y’
konnen jeden beliebigen Wert zwischen — o© und -}-o< an-
nehmen. Setzt man daher far x’ den Parameter n und fir y’
den Parameter m, so erhilt man als Gleichung der quadratischen
Polarflichen in Bezug auf alle Punkte der (x y)-Ebene

sx’—8y —nzZ —28x42nsx —2msy-—-ns’ =0
Fir variable Parameter n und m stellt diese Gleichung ein Netz
von Flichen 2. Grades dar. Analog liessen sich die Gleichungen
zweler weiterer Netze von Flachen aufstellen, wenn man den
Pol P’ die (x z)-, beziglich die (y z)-Ebene, durchlaufen lisst.

Wir gehen nun iiber zur Bestimmung der zweiten Polar-
flache der Hauptschmttfliche 3. Grades, bezogen auf einen festen
Pol P’ (x' y' 2"); sie ist eine Fliche 1. Grades, also eine ¥bene.
Wiéhlen wir den Pol P’ im Nullpunkt, so liegt er auf der
Hauptschnittfliche und die Polarebene fillt mit der Tangential-
ebene in ihm zusammen; sie hat die Gleichung x =0. Aus dem
gleichen Grunde hat der Flichenpunkt F im Abstand x =s vom
Nullpunkt die Polarebene x =s.

Allgemein hat die zweite Polarfliche einer Fliache folgende
Gleichung:

AN f=0 oder
32 o f o2 f o f
/2 ror
2x" 7 —— 19 -
2+ 8y+ 0x 0z He Gxé’w
00" f 6’ t o f g 6°F
! T 2 ! ! 2 IWI . ! -
RRAFRS yz&yaz+ Y 6y8w+zazz
2 2
poww TE gt
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Nach der homogenen Flichengleichung
f(xyzw)=x72 —sx’wHsywtsxw' =0 wird nun

3—f:zz—ZSXW—I—-sZW2 ﬁ=2syw
Jd X ,
_6£=2xz -a—f—_———sx2—|-sy2—|—282xw
dz ow
und hieraus

2 32 2
a_f2:_2$ —fznzzs af =O
0 X dy dw oz

i S A
axay_ Bxay—

2 2 2

0 0

__a_fv_=22 s _=28y f2=282X
0x 0z oyow ow

2 2
ot =—2sx } 25 6£=2X
0xow oz

Demnach wird die Gleichung der Polarebene des Punktes
P A=y a ) |

(*+2°—28x)x+2sy' y+2x 2" z+s(y" —x?+2sx')=0 (23)
Nun soll der Pol P’ die (x)-Achse durchlaufen, x’ also alle

Werte von — oo bis 4 o© annehmen; wir ersetzen daher x’ durch

den variabeln Parameter n und y' =z’ durch 0. Dann geht die

Polarebenengleichung (23) iiber in

n°—2sn

s—2n

Diese Gleichung stellt eine Schar von unendlich vielen Polar-

ebenen dar, den unendlich vielen Punkten der (x)-Achse ent-

sprechend; sie sind alle parallel zur (y z)-Ebene, und ihr Abstand

von derselben kann alle Werte von — o© bis -} o© annehmen.

Durchliauft der Pol P’ die (y)-Achse, so ist fir x" =2z"=0
und y'=n zu setzen. Die Polarebenengleichung geht dann
iber in

X .=

S X +2ny+n2=: 1
Betrachtet man in dieser Gleichung n als variabeln Parameter,
so stellt sie eine Schar von unendlich vielen den Punkten der
(y)-Achse entsprechenden Polarebenen dar, die alle auf der
(x y)-Ebene senkrecht stehen. In ihrer Gesamtheit hiillen sie
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einen Cylinder ein, dessen Erzeugende senkrecht auf der (xy)-
Ebene stehen und dessen Gleichung man erhilt durch Bestimmung
der Enveloppe aller Geraden, die bei variablem n durch die
Gleichung s x 4 2ny 4 n° =0 gegeben sind.

Fig. 19.

Eliminiert man aus den beiden Gleichungen F (x yn)=
sx+2ny+n’==0 und %:y-{—n:O den Parameter n, so
erhiilt man als Gleichung der Enveloppe die Parabelgleichung
vy’ =sx. Der umhiillte Cylinder ist also ein parabolischer. Seine
Achse wird gebildet durch die positive (x)-Achse; die Scheitel-
erzeugende fillt: zusammen mit der (z)-Achse des Koordinaten-
systems. Der Halbparameter der Schnittparabel in der (xy)-
Ebene istgzg (S. Fig. 19).

Schhiesslich durchlaufe der Pol P’ noch die (z)-Achse; wir
haben dann in der Polarebenengleichung x’ =y’ =0 und 2z’ =n
zu setzen und sie geht iber in: _

$x4n'x=0 oder x=0
d. h. simtliche Polarebenen der Hauptschnittfliche, bezogen auf
einen beliehigen Punkt der (z)-Achse, fallen zusammen und zwar
in der (yz)-Ebene des Koordinatensystems. Dieses Resultat lasst
sich auch daraus schliessen, dass die (z)-Achse selber in der
Hauptschnittfliche liegt und die (y z)-Ebene in jedem Punkte
der (z)-Achse Tangentialebene der Hauptschnittfliche ist.
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