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Da a b ist, so werden die Koordinaten der Kreispunkte :

x' + 0 und z'=+-=L=- l/l _ k2

Je zwei der Kreispunkte der durch Gleichung (2) dargestellten
Rotationsellipsoide und -Hyperboloide fallen demnach in einen
einzigen zusammen, so dass im ganzen nur zwei übrig bleiben;
sie liegen symmetrisch zur (x y)-Ebene und haben im alten System
die Koordinaten:

s sk
x a„ 0 und z + 00 1-k2 -y/1-k2

Für jedes Rotationsellipsoid fallen die Kreispunkte zusammen
mit den Endpunkten der Rotationsachse 2 c und bei variablem
Parameter k bewegen sie sich nach der in § 4 aufgestellten
Parabelgleichung (b.). Für die Rotationshyperboloïde wird die
Ordinate der Kreispunkte

sk sk _ sk
z + 9 + „ — -f i „ imaginär,- ^1 _ k2 - i v/k2 - 1 ^ \Jk2 - 1

8

d. h. es gibt auf den Rotationshyperboloïden keine Kreispunkte.
Das System paralleler Schnittebenen, welches in der Fläche
Kreise ausschneidet, ist parallel der (x y)-Ebene und setzt sich
nach beiden Richtungen bis ins Unendliche fort.

§ 10.

Polarebenen in Bezug auf das Rotationsflächensystem (1).

Soll die Polarebene eines beliebigen festen Punktes P0(x0y0z0)
in Bezug auf eine Fläche 2. Grades bestimmt werden, so wird deren

Gleichung zunächst mit w homogen gemacht ; Gleichung (1) geht
also über in (l — k2)x2 + (l — k2) y2 f z2 — 2sx w + s2 w2 0,

wo w die Bedeutung 1 hat. Die Gleichung der Polarebene wird
dann nach der Formel bestimmt:

Of dt of, Of
+ y ^r +z TT" + w ^r °

d*o dYo dzo ôwo
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Es ist nun -^- =2 (l — k2) x0 — 2 s w0

2(l-k2)y0

:2z0

Ôf
ôx0
dt
Sïo
et
sh
dt

Sw0
: — 2 s x0 -f 2 s2 w0

Also wird die Gleichung der Polarebene des Punktes P0 (x0 y0 z0)i

wenn w0 w 1 gesetzt wird :

[d-k2)x0-s] x+(l-k2)y0y + z0z-s(x0-s) 0 oder

(1 — k2) [x0 x -4- y0 y] - s x + z0 z — s (x0 — s) 0 (15)
Als Pol wählen wir vorerst einen beliebigen Punkt P0 (x0, 0, 0)
der (x)-Achse. Wir haben also in der Gleichung (15) für y0 z0 0

zu setzen, und sie geht dann über in

s(x0-s)
x

(1 - k2) x0 - s

Wir sehen hieraus, dass allgemein die Polarebene eines Punktes
der (x)-Achse in Bezug auf jede beliebige Fläche des Systems zu
der (y z)-Ebene des Koordinatensystems parallel ist. Wählt man
speziell den festen Punkt F (s, 0,0) als Pol und erinnert sich

daran, dass nach § 4 die (z)-Achse die Leitlinie, d. h. die Polare
in Bezug auf den einen Brennpunkt F aller Schnittkegelschnitte
in der (x z)-Ebene darstellt, so folgt, dass alle Polarebenen des

Punktes F mit der (y z)-Ebene zusammenfallen ; denn sie müssen
die (z)-Achse enthalten und zugleich zur (x)-Achse senkrecht
stehen. Setzt man in der Polareben engleichung (15) für x0 —s,
y0 — z0 0, so geht sie wirklich für jedes beliebige k über in
x — 0, die Gleichung der (y z)-Ebene.

Für den Pol P0 (0, 0, 0), also den Ursprung des Koordinatensystems,

wird die Polarebenengleichung x s. Auch die Polarebene

des Nullpunktes ist also für alle Flächen der Schar dieselbe ;

sie ist parallel zu der (y z)-Ebene und geht durch den Punkt F.
Wir wählen nun einen beliebigen aber festen Punkt

P (x0 y0 z0) und betrachten seine Polarebenen in Bezug auf alle
Rotationsflächen des ganzen Systems. Dann spielt in der
Polarebenengleichung (15) die Grösse (1 — k die Rolle eines ver-
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änderlichen Parameters, der alle Werte von 1 bis — oo annehmen

kann, und die Gleichung (15) stellt daher bei veränderlichem k ein
Ebenenbüschel dar. Die Gleichungen seiner Grundebenen sind :

Ex x0 • x + y0 • y 0 und
E2 s • x — z0 • z -f s (x0 — s) 0

Die Grundebene Ex steht senkrecht auf der (xy)-Ebene
und geht durch die (z)-Achse. Ihre Spurgerade in der (x y)-

x0
Ebene hat die Gleichung y x; sie ist die Polarebene des

yo

Punktes P in Bezug auf die Fläche k oo des Systems, welche
die (z)-Achse ist. Die Grundebene E2 des Büschels steht
senkrecht auf der (x z)-Ebene ; ihre Spurgerade hat die Gleichung

S S
z - x -)— (x0 — s) ; sie ist die Polarebene des Punktes P in

zo zo

Bezug auf die Fläche k 1 des Systems, welches ein parabolischer

Cylinder ist.
Die Achsenabschnitte der Grundebene E2 sind x s — x0

g
und z - (x0 — s). Die Scheitelkante des Büschels, durch welche

zo

alle Polarebenen des Punktes P (x0 y0 z0) in Bezug auf alle
Rotationsflächen des Systems hindurch gehen, hat die
Doppelgleichung :

y0 zo
x y= — z — xn-f-sx/ s « ^

Diese Gerade geht durch die (z)-Achse und zwar im Abstand
S

z — — (x0 — s). Ihr Durchstosspunkt mit der (x y)-Ebene hat die
zo

x0
Koordinaten x s — x0 und y — (x0 — s)

yo

Haben wir zwei verschiedene Pole P1 (xx yx zx) und P2 (x2 y2 z2)1

so werden die Polarebenengleichungen des Rotationsflächensystems

in Bezug auf Px und P2 nach Gleichung (15) :

(1 — k2) [xt x Ar yy
y] —- s x -f- z1 z — s (xx — s) 0 und (a)

(1 - k2) [x2 x -f- y2 y] - s x -f z2 z — s (x2 — s) 0 (b)

Betrachtet man wieder die Grösse (l — k2) als variablen
Parameter, so lassen sich die beiden letzten Gleichungen abgekürzt
in der Form schreiben
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(1 — k2) Ex 4- E2 0 und (c)

(l-k2)E3+E4 0 (d)

Dabei stellen Ex und E2 die Grundebenengleichungen des
Ebenenbüschels für den Pol Pt, E3 und E4 diejenigen für den Pol P2

dar, welche die oben angegebene Bedeutung als Polarebenen
der Grenzflächen k oo und k 1 haben. Weil der Parameter
(1 — k in den Gleichungen (c) und (d) der beiden Ebenenbüschel

dieselben Werte durchläuft, so stellen diese Gleichungen
zwei projektivische Ebenenbüschel dar. Jedem Parameterwert

entspricht in jedem Büschel eine bestimmte Ebene; zwei
solche Ebenen heissen entsprechende Ebenen. Je zwei
entsprechende Ebenen schneiden sich in einer Geraden, und die
Gesamtheit aller dieser Schnittgeraden bildet in ihrer
Aufeinanderfolge eine Linienfläche oder windschiefe Regelfläche. Man
erhält ihre Gleichung, wenn man aus den beiden Büschelgleichungen
den veränderlichen Parameter (l — k eliminiert. Es folgt dann
als Eliminationsgleichung:

E2 E3 — E: E4 — 0 oder
s (xx - x2) x2 -f- s (y, - y2) x y + (x2 zx - x1 z2) x z f (y2 zx - yx z2) y z

+ s2 (x2 — xi)x +s [s (y2 — yi) H- (x2 yi — xi y2)î y=° (16)

Da diese Linienfläche vom zweiten Grade ist, so stellt die

Gleichung (16) entweder ein einschaliges Hyperboloid oder ein

hyperbolisches Paraboloid dar. Um dies zu entscheiden, muss
die Determinante ô der allgemeinen Flächengleichung 2. Grades
berechnet werden. Für die Gleichung (16) wird sie :

<5

s(xi— x2) • ö O'i ~ ^)

2(yi-y2)
1,
ö(X2Zl-X

2 (X2 Zl Xl Z2J

(y2zi yiz2)

(y2zi-yiz2)
oder ausgerechnet :

0 (y2 zi - yi z2) | (yi—y2) (x2 zi - xiz2)'

t2)(y2 •yr



y, zt
a) y2 zx — yt z2 0 oder — —. Dies ist der Fall, wenn
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Wenn der Determinantenwert ò von Null verschieden ist, so
stellt die Gleichung (16) eine centrisene Fläche 2. Grades dar,
also ein einschaliges Hyperboloid. Verschwindet dagegen der
Wert von ò, so rückt der Mittelpunkt der Fläche ins Unendliche ;

sie stellt dann im allgemeinen ein Paraboloid dar, kann aber in
speziellen Fällen auch in zwei Ebenen zerfallen. Für das
Verschwinden der Determinante ô gibt es folgende mögliche Fälle:

yl z.

Z2

die Verbindungsgerade der beiden Pole Pt und P2 die (x)-Achse
schneidet. Die Flächengleichung (13) geht dann über in :

s (Xl — x2) x2 + s (y: — y2) x y 4- (x2 Zj - x, z2) x z 4-
s2 (x2 — xi)x -h s [s (y2 — Yi) + (x2 y1 — xx y2)] y 0

Dies ist die Gleichung eines hyperbolischen Parabolo'ides.

b) yj y2 und xt x2. Wenn diese Bedingungen gleichzeitig
erfüllt sind, so liegen die beiden Pole Pj und P2 auf einer Parallelen
zur (z)-Achse. Setzt man in der Gleichung (16) yt y2 und

xt x2, so zerfällt sie in die beiden Ebenengleichungen :

z 0 und xx • x 4- y, • y 0

Die eine Ebene wird gebildet von der (xy)-Ebene des Koordinatensystems

und die andere steht auf ihr senkrecht; sie geht durch
die (z)-Achse und erzeugt eine Spurgerade von der Gleichung

xi
y x

yi
c) x1 x2 und zx -- z2. Die Pole Pt und P2 müssen in dem

Fall auf einer Parallelen zur (y)-Achse liegen. Die
Flächengleichung (16) zerfällt dann in :

y 0 und sx-fz^z 4- s2 4- s x1 0

Dies sind die Gleichungen zweier Ebenen; die erste fällt
zusammen mit der (x z)-Ebene des Koordinatensystems, die zweite
steht dazu senkrecht und erzeugt die Achsenabschnitte:

s (s Ar Xj)
x =- — ('s 4/ Xj) und z

Die beiden projektivischen Polarebenenbüschel zweier Pole
Px und P2 in Bezug auf das Rotationsflächensystem erzeugen

Bern. Mitteil. 1911. Nr. 1789.
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also ein hyperbolisches Paraboloid, wenn die Verbindungsgerade
Pj P2 die (x)-Achse schneidet, zwei Ebenen, wenn sie entweder
zur (z)- oder zur (y)-Achse parallel ist, in allen andern Fällen
dagegen ein einschaliges Hyperboloid.

§U.
Ort der Schnittpunkte von drei sich rechtwinklig

schneidenden Tangentialebenen für die verschiedenen Flächen
des Rotationsflächensystems.

Die Achsengleichung einer beliebigen centrischen Fläche
2 2 2

2. Grades hat allgemein die Form —2 4- ^ -4- —- =- 1. Nun ist derabcOrt aller Punkte im Raum, von denen aus drei zueinander
senkrecht stehende Tangentialebenen an eine solche Fläche gelegt
werden können, eine mit der Fläche concentrische Kugel vom
Radius R — v/a2 -f- D2 -f- c2. Da die Halbachsen unserer Rotations-

s k s k
fläche a b r, und c — — sind, so ist der Radius

1-k2 y/i-k2
der Kugel von obiger Beschaffenheit

~2s2k2 s2k2 sk~ Li ä IL S K & K / ,2 -,R V / 7 -Äs H 9 2 V 3 — k (a)V (1 - k2)2 1-k2 1 - k2

Wir können aus diesem Wert für R bereits schliessen, dass nur
für diejenigen Flächen des Rotationsflächensystems eine Kugel von
der oben erwähnten Eigenschaft besteht, für welche k -< \J 3 ist,
also für alle Rotationsellipsoide und für die Rotationshyperbolo'ide
k •< \J3. Für jede dieser Flächen lässt sich die Gleichung einer
Kugel bestimmen, deren sämtliche Flächenpunkte Schnittpunkte
von je drei senkrecht aufeinander stehenden Tangentialebenen
an die betreffende Fläche sind; diese Kugelgleichung lautet

x '2
s2k2

-f y'2 + z'2-(T^2y2(3-k2) (17)

Um diese Gleichung auf das alte Coordinatensystem zu beziehen,
shaben wir in ihr x' — x -, y' y und z' z zu setzen;1-k

die Gleichung (17) geht dann über in
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