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welcher den Abstand der Ebene des Hauptschmittes vom Koor-
dinatenursprung O darstellt. Als Resultat dieser Elimination
ergibt sich die Gleichung:

sy'? + a, z2® a,s (s—a;) =0.

- In dieser Gleichung ist s eine Konstante; a, dagegen kann
als laufende Koordinate betrachtet werden, da es bei verinder-
lichem k alle Werte der positiven und negativen (x)-Achse durch-
laufen kann, ausgenommen diejenigen der Strecke OF. Substi-
tuiert man daher fir a, =x, ersetzt ferner y’ wieder durch y
und z' durch z, so wird obige Gleichung:

x2' — s (xX*—y)) 4’ x =0, (11)
Durch sie ist der Ort aller Hauptschnitte parallel der (yz)-Ebene
fir simtliche Rotationsflichen bestimmt. Sie stellt eine Fliche
3. Ordnung in den rechtwinkligen Koordinaten x, y, z dar, die
symmetrisch liegt zu der (xy)- und (xz)-Ebene. Die Diskussion
dieser Hauptschnittfliche 3. Grades erfolgt in § 12.

§ 7

Die Schnitte der Rotationsilichenschar mit einer
Ebene durch die (x)-Achse.

Es werde durch die (x)-Achse unseres Koordinatensystems
(xyz) eine Ebene gelegt, welche mit der (xy)-Ebene einen be-
liebigen Winkel ¢ bildet; wir betrachten sie als neue Koordi-
natenebene (x'y’) und transformieren nun die Gleichung des be-
trachteten Rotationsflichensystems
(1) (1—k%) x*4+(1—K)y’ 42 —2sx 4 §"=0
auf das neue Koordinatensystem (x’y’z’). Dabei gelten folgende
Transformationsformeln:

y=7y cos¢gp —2z sing
z=17y sin g -4z’ cos ¢
X o X

Die Gleichung (1.) geht dann iiber in

1— k) x"”° 4 (1—K° cos’¢) y'* + (1—k* sin® ¢) 2
4+ kK sin2¢.y' 2 —2sx’ f°==

Um die Gleichung der Schnittkurven des Rotationsflichen-
systems mit der (x'y’)-Ebene zu erhalten, ist in der letzten
Gleichung z' =0 zu setzen, und wir erhalten als Gleichung des
Schnittkurvensystems

(1—k*) x" 24 (1—Kk° cos® ¢) y'* — 2s%’ 4 =0 (12)
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Dies ist eine Gleichung zweiten Grades, jede Ebene durch
die (x)-Achse schneidet also das Rotationsflichensystem im all-
gemeinen in einem Kegelschnitt,

Die Gleichung (12) enthilt zwei Parameter, namlich k und ¢.
Wir wollen zunichst zwei Spezialfille betrachten, indem wir

vorerst ¢ = 0 und dann ¢ = %r wihlen.

Fir ¢ = 0 geht die Kegelschnittgleichung (12) tber in
1—k) x4 (1-k)y® —2sx’ =0
und wenn man diese Gleichung durch die Transformationsformeln
I 1t _”_.E._
x'=x""+ R
man die Kreisbiischelgleichung (8) in § 5. Diese stellt den Schnitt
des Rotationsflichensystems mit der (xy)-Ebene dar (s. Fig. 7).

und y' = y’’ auf die Normalform bringt, so erhélt

Setzt man fir ¢ = Z;— und wendet die vorigen Transfor-

mationsformeln an, so geht die Gleichung (12) iiber in die Gleichung
(7) § 4, welche das Schnittkurvensystem der Rotationsflichen in
der (xz)-Ebene darstellt (Fig 5).

Wir untersuchen nun das durch Gleichung (12) dargestellte
Kegelschnittsystem fiir einen bestimmten, konstanten Winkel ¢,
der zwischen 0° und 90° liegt; der Parameter k dagegen soll
alle Werte von Null bis oo durchlaufen.

Sollen vorerst die Asymptotenrichtungen der Kegelschnitte
bestimmt werden, so muss man die Glieder 2. Grades gleich
Null setzen, also

(1—k%) x4+ (1—Kk’cos” ¢) y° =0 oder

- k*—1
g + \/- z == X, a
d ¥V 1—Kcos’ ¢ @)

Die Asymptoten der Kegelschnitte sind reell, wenn Zihler
und Nenner dieser Wurzel entweder beide negativ oder beide
positiv sind. Dies ist der Fall, wenn

a) k® <1 und k° cos” ¢ > 1 oder
1
cos ¢

k <1 und k>

was unmdoglich ist, da immer grosser als 1 1st.



— 137 —

b) wenn k> 1 und k® cos”p << 1 oder

1 1 1
cosqg also cos ¢ <C &
Dieser letzte Fall ist moglich. Fuar Werte von k, die grisser

sind, besitzt der durch Gleichung (12)

k >1und k<

als 1 aber klemner als

08 (
dargestellte Kegelschnitt reelle Asymptoten, die von einander
verschieden sind; er ist also eine Hyperbel.

Ist k =1, so fallen nach Gleichung (a) die beiden Asymp-
totenrichtungen in der Geraden y’ = o zusammen. Der Kegei-
schnitt ist daher in diesem Fall eine Parabel von der Gleichung
sin ¢ - y?—2sx 48 ==0. Die (x')-Achse ist Parabelachse.

Wenn der Parameter k den Wert k= 1
Ccos ¢

geht die Kegelschnittgleichung (12) tiber in
(lw—- 12 )X’2~23X’+82:0.
cos” ¢
Dies 1st eine quadratische Gleichung in x’; 16st man sie auf, so
zerfillt sie in die beiden Geradengleichungen

annimmt, so

,  8cCosg ,__ 8cOSQ
T 1 feosq HOE By e oS ¢
Fir den Parameterwert k —= coirp besteht also die Schnittkurve
(12) aus zwei Parallelen zur (y')-Achse; 1hre Abstinde von der-
: ) Scosy - p___ SCosSq
selben sind x ' = T oot beziiglich x, T —os o

Dieser Fall tritt dann ein, wenn die durch die (x)-Achse gelegte
Schnittebene (x’y’) aus dem Rotationshyperboloid zwei zur (y z)-
Ebene parallele Erzeugende herausschneidet. Da diese durch die
auf der (x)-Achse liegenden Scheitel des Hyperboloides gehen,

so muss 1hr Abstand = kgi% sein (s, Seite 121). KEs besteht da-

her die Beziehung
S COS ¢ S COS @ 28k

1-4coseg 1—cos<p_k2———1
Lost man diese Gleichung nach k auf, so erhilt man als positive,

(einzig in Betracht fallende), Wurzel wieder k = Ec—)z—(,o

Bern. Mitteil., 1911. Nr. 1787.
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1

, 1st
COS ¥

Liegt der Wert von k nicht im Bereiche 1 <k <C

also k<1 oder k> Eols_ff’ so werden die Asymptotenrichtungen

des Kegelschnittes nach Gleichung (a) imaginar, er ist also eine
Ellipse. Fassen wir die bisherigen Ergebnisse zusammen, so folgt:
Eine durch die (x)-Achse gelegte Ebene, welche mit der Koor-
dinatenebene (x y) den Winkel ¢ einschliesst, schneidet alle Ro-
tationsellipsoide des durch Gleichung (1) gegebenen Rotations-
flichensystems in einer Ellipse, den paralolischen Cylinder k =1
in einer Parabel, und die Rotationshyperboloide entweder in einer
Ellipse, oder in zwei parallelen Geraden (Erzeugende des Hyper-

boloides), oder in einer Hyperbel, je nachdem cos (f%i 1st.

Um die durch Gleichung (12) dargestellten Kegelschnitte
genauer zu untersuchen, transformieren wir die Gleichung auf

ihre Achsen, indem wir fir x’' = x"’ —|—-1— S % und far y' =y"’

substituicren. Sie nimmt dann folgende Form an:

_

N

Fig. 10.
Xl 2 —I_ yr;'d
32 k2 S2 k2

(1— K% (1—k) (1—k* cos’ ¢)

|
p—

(b)
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Der Mittelpunkt und die beiden in der (x)-Achse liegenden Scheitel
jedes Kegelschnittes dieses Systems fallen mit denjenigen der
entsprechenden Rotationsfliche zusammen, und die eine Achse
des Kegelschnittes liegt immer in der (x)-Achse des alten Koor-
dinatensystems.

Wir betrachten vorerst die Ellipsen, in welchen die Ro-
tationsellipsoide k << 1 von der durch die (x)-Achse gelegten
Ebene geschnitten werden. Der Abstand ihres Mittelpunktes vom

Koordinatenursprung wird gegeben durch a, = 3 i = Wenn k

—_—

von Null bis 1 wichst, so nimmt er alle Werte von -+ s bis
sk

T und

-+ oo an. Die Halbachsen der Ellipsen sind a =

b= 5K _, fiir k = O reduziert sich die Ellipse

V(1 —%°) (1 — K cos’ ¢)
auf emen Punkt, der mit F zusammenfillt; ber von 0 bis 1
wachsendem Parameter k nehmen beide zu von 0 bis oo, wobel
a immer grosser als b ist. Der eine Scheitel S, bewegt sich
bei zunehmendem k von x,’=s bis XZ':—;—, der andere von
X, =4 s bis x,/) =} oo. Die lineare Excentrizitit dieser

s k sin ¢
1—Kk)V1—K cos’g

Ellipsen e = nimmt vom Werte 0 an zu

: : . e k sin
bis oo, die numerische dagegen — —=— ¢ von 0

a"_\/1 — k% cos’ ¢

bis 1.
Um die Gleichung der Parabel zu finden, in welcher der
parabolische Cylinder von der Ebene durch die (x)-Achse ge-

schnitten wird, setzen wir in Gleichung (12) den Parameter k =1
ein und finden y"* = .228— (x’ #E) (c)
sin” ¢ 2

Durch die Transformationsformeln y’ =y’ und x’ = x’ +%

geht die Gleichung (c.) in die Scheitelgleichung der Schnittparabel

iiber, welche heisst y'"* = .—22-8- X (d)
sin” ¢
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Die (x)-Achse ist Parabelachse, ihr Scheitel befindet sich im Ab-

stand x’ :% vom Coordinatenursprung. Der Halbparameter der

Schnittparabel ist p = —
sin” ¢
und kann alle Werte zwischen s und >o annehmen, d. h. je nach
dem Winkel, den die Schnittebene (x’ y’) mit der Koordinaten-
ebene (x y) bildet, wird der Parameter griosser oder kleiner. Ein
Minimum wird er, wenn ¢ = 90° ist, wenn also die Schnittebene
auf der (xy)-Ebene senkrecht steht und die Erzeugenden des
Cylinders rechtwinklig schneidet. In diesem Falle wird er =s =
dem Halbparameter der Schnittparabel in der (x z)-Ebene von der
Gleichung 2z’ = 2 s x’ (Siehe Gleichung [6]). Je kleiner der
Winkel ¢ wird, d. h. je mehr er sich vom rechten entfernt, desto
grosser wird der Parameter. Fillt die Schnittebene mit der (x y)-
Ebene zusammen, so ist ¢ =0, also auch sin’ ¢ =0, und der
Halbparameter p = oo; der parabolische Cylinder wird durch
die (x y)-Ebene in der Geraden x’ =0, d. h. in der (y')-Achse
und in der unendlich fernen Geraden dieser Ebene geschnitten.
Der Abstand des Brennpunktes vom Parabelscheitel = f =

. Fiar veranderliches ¢ 1st er variabel

_s_2 kann also alle Werte szschen — und so annehmen. Ent-

2 sin® ¢ 2
sprechend verdndert sich auch die Lage der Leitlinie; far ¢ = 90°
wird sie gebildet durch die (z)-Achse im alten Koordinatensystem

und entfernt sich fir abnehmende Werte von ¢ bis nach — oo,
Wir diskutieren nun das durch Gleichung (12) dargestellte
Kegelschnittsystem fiir die Parameterwerte von k =1bisk = cols -

wo ¢ einen bestimmten, konstanten Wert besitzt. In diesem Fall
ist die Schnittkurve eine Hyperbel, deren Achsengleichung nach
(leichung (b) geschrieben werden kann:

XH-? V”2
S o o == ] e
s? k* s* k* ©)
(k2 — 1)} (k* —1) (1 — Xk cos® )
Der Abstand des Hyperbelmittelpunktes vom Koordinatenursprung
= gy = — - : fir k =1 liegt der Hyperbelmittelpunkt in

k®—1



— 141 -

— oo, wenn k zunimmt, so riickt er auf der negativen (x')-Achse
ins Endliche und fiir k :—%‘P betrigt sein Abstand vom Null-
punkt X’ = — s cotg’¢. Der Abstand des Hyperbelscheitels S,

wird bestimmt aus x'1 s nimmt k alle Werte von 1 bis

S -
14k’
(—:6":—(;_) an, so bewegt sich der Scheitel S, auf der (x)-Achse von

)8 4., SCOSQ ; T ;
X' =3 bis x’' = L oos 3 Der Scheitel S, liegt im Abstand
X'=— k—_-s_mi vom Nullpunkt; fur die obigen Parameterwerte
durchliuft er den negativen Teil der (x')-Achse von x' = — oo
bis x' = — —> > _ Dje reelle Halbachse der Hyperbel = a =
1—coseg
%k———, die imaginire = b = — sk Rirk=1
k" —1 V(k* —1) (1—k®cos’ ¢)
wird a=Db = oo und fir k L wird a :29—8—3 und b = oo,
COoS ¢ s’ @

Fir alle Hyperbeln der Schar ist b > a.
Im Grenzfall k:c-»(é—sp- besteht die Schnitthyperbel, deren

Mittelpunkt in x' = — scotg” ¢ liegt, aus zwei parallelen Ge-
raden von den Gleichungen
,__ Scosg r__ __ _Scos¢g
X' = 1W+ ey und X, 1—cos ¢ (t)

Dies ergibt sich auch daraus, dass die numerische Excentrizitit

der Hyperbel fir k = L unendlich gross wird.
COS ¢

Sind die Parameter k grosser als Eé?’ so stellt die Gleich-

ung (12) des Schnittkurvensystems wieder eine Schar von Ellipsen
dar. Ihre Achsengleichung lautet:

12 112

5= -}- —=1
SZ k-— + S2 k2 B (g)

B e I (k> — 1) (k* cos® ¢ — 1)




— 142 —

Variiert man k von ai—; bis oo, so geht der Ellipsenmittelpunkt

von x' = —s cotg’ ¢ bis x’ =0, Fir k = L sind die Halb-
cos ¢

YOS Y amid b = oo. Bel zunehmendem k werden die

achsen a = —
sin” ¢

Achsen beide kleiner und zwar so, dass a 1mmer kleiner ist

als b, Fir k = oo reduziert sich die Ellipse auf einen Punkt,

den Nullpunkt O des urspringlichen Koordinatensystems. Die
Scheitel S, und S, der Ellipse haben fir k = al—?) die Abstéinde

, _ SCOSQ S COS @

L 7" 14 coso "~ 1—cosg¢
bei wachsendem k immer mehr dem Nullpunkt, bis sie fir
k == co mit ihm zusammenfallen. |

und nahern sich

X , beziiglich x,” =



Zusammenstellung:

Halbachsen Scheitelabstinde
ko |a0= : sk = sk Art der Kurve
1 — k2 A= = b — X,] X'z
1—k \/(1 —k?) (1—Kk? cos?¢)

9 o 0 0 5 8 Punkt F

1 e e oo % + oo Parabel

1 2 scose SCOS ¢ S €os ¢ ‘
P scotg’e sin’ ¢ oo 1T cosp| T—cosp 2 parallele Gerade
o° g 0 ¢ 0 0 Punkt O

— §¥1
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