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welcher den Abstand der Ebene des Hauptschnittes vom Koor-
dinatenursprung 0 darstellt. Als Resultat dieser Elimination
ergibt sich die Gleichung:

s y'2 + aoz'2 + aos (s—ao) — °-
In dieser Gleichung ist s eine Konstante; a0 dagegen kann

als laufende Koordinate betrachtet werden, da es bei veränderlichem

k alle Werte der positiven und negativen (x)-Achse durchlaufen

kann, ausgenommen diejenigen der Strecke OF. Substituiert

man daher für a0 x, ersetzt ferner y' wieder durch y
und z' durch z, so wird obige Gleichung:

xz — s (x —y -4- s" x 0. (11)
Durch sie ist der Ort aller Hauptschnitte parallel der (yz)-Ebene
für sämtliche Rotationsflächen bestimmt. Sie stellt eine Fläche
3. Ordnung in den rechtwinkligen Koordinaten x, y, z dar, die

symmetrisch liegt zu der (xy)- und (xz)-Ebene. Die Diskussion
dieser Hauptschnittfläche 3. Grades erfolgt in § 12.

§7.
Die Schnitte der Rotationsflächenschar mit einer

Ebene durch die (x)-Achse.
Es werde durch die (x)-Achse unseres Koordinatensystems

(xyz) eine Ebene gelegt, welche mit der (xy)-Ebene einen
beliebigen Winkel tp bildet; wir betrachten sie als neue
Koordinatenebene (x'y') und transformieren nun die Gleichung des
betrachteten Rotationsflächensystems
(1.) (1-k2) x2-f-(l—k2)y2 + z2 — 2sx + s2=0
auf das neue Koordinatensystem (x'y'z'). Dabei gelten folgende
Transformationsformeln :

y y' cos ep — %' sin rp

z y' sin cp Ar z' cos cp

x x'
Die Gleichung (1.) geht dann über in

(1- k2)x'2 + (1-k2 cos'-V) y'2 + (1-k2 sin2 <p) z'2

-f k2 sin 2 fp .y' z' — 2s x' -f s2 0

Um die Gleichung der Schnittkurven des Rotationsflächensystems

mit der (x' y')-Ebene zu erhalten, ist in der letzten
Gleichung z' 0 zu setzen, und wir erhalten als Gleichung des

Schnittkurvensystems
(1—k2)x'2 + (l—k2 cos2 <p) y'2 — 2sx' 4- s2 0 (12)
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Dies ist eine Gleichung zweiten Grades, jede Ebene durch
die (x)-Achse schneidet also das Rotationsflächensystem im
allgemeinen in einem Kegelschnitt.

Die Gleichung (12) enthält zwei Parameter, nämlich k und </.

Wir wollen zunächst zwei Spezialfälle betrachten, indem wir
7tvorerst <p 0 und dann tp — wählen.
Li

Für f 0 geht die Kegelschnittgleichung (12) über in

(1-k2) x'2 Ar (1-k2) y'2 - 2 sx' + s2 0
und wenn man diese Gleichung durch die Transformationsformeln

g
x' x" A- -—T2 und y' y" auf die Normalform bringt, so erhält

J. IV

man die Kreisbüschelgleichung (8) in § 5. Diese stellt den Schnitt
des Rotationsflächensystems mit der (xy)-Ebene dar (s. Fig. 7).

TT
Setzt man für <p — und wendet die vorigen Transfor-

Li

mationsformeln an, so geht die Gleichung (12) über in die Gleichung
(7) § 4, welche das Schnittkurvensystem der Rotationsflächen in
der (xz)-Ebene darstellt (Fig 5).

Wir untersuchen nun das durch Gleichung (12) dargestellte
Kegelschnittsystem für einen bestimmten, konstanten Winkel <p,

der zwischen 0° und 90° liegt; der Parameter k dagegen soll
alle Werte von Null bis oo durchlaufen.

Sollen vorerst die Asymptotenrichtungen der Kegelschnitte
bestimmt werden, so muss man die Glieder 2. Grades gleich
Null setzen, also

(1-k2) x'2 + (1-k2 cos2 cp) y'2 0 oder

y'== + V r-ir-V ' x' (a)
1—k cos <p

Die Asymptoten der Kegelschnitte sind reell, wenn Zähler
und Nenner dieser Wurzel entweder beide negativ oder beide

positiv sind. Dies ist der Fall, wenn

a) k" < 1 und k cos" tp > 1 oder

k < 1 und k > cos tp

was unmöglich ist, da immer grösser als 1 ist.
cos tp
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b) wenn k >- 1 und k cos cp <C 1 oder

k >> 1 und k < also cos w <C -r-cos cp k
Dieser letzte Fall ist möglich. Für Werte von k, die grösser

als 1 aber kleiner als sind, besitzt der durch Gleichung (12)
COS ff

dargestellte Kegelschnitt reelle Asymptoten, die von einander
verschieden sind ; er ist also eine Hyperbel.

Ist k 1, so fallen nach Gleichung (a) die beiden
Asymptotenrichtungen in der Geraden y' o zusammen. Der
Kegelschnitt ist daher in diesem Fall eine Parabel von der Gleichung
sin2 tp • y'2 — 2 s x' -f- s2 —- 0. Die (x')-Achse ist Parabelachse.

Wenn der Parameter k den Wert k annimmt, so
cos ff

geht die Kegelschnittgleichung (12) über in

1 \-\ x'2 — 2 s x' -f- s2 0.
COS tp)

Dies ist eine quadratische Gleichung in x' ; löst man sie auf, so

zerfällt sie in die beiden Geradengleichungen
s cos tp s cos tp

x, -;—: — und x ' — — 5 —
1 1 ~f- cos tp - 1 — cos rp

Für den Parameterwert k besteht also die Schnittkurve
cos rp

(12) aus zwei Parallelen zur (y')-Achse ; ihre Abstände von der-

scos</> scosr/)selben sind %'-=--—r —, bezüglich x„ — — •
1 1 Ar cos tp

z 1 — cos tp

Dieser Fall tritt dann ein, wenn die durch die (x)-Achse gelegte
Schnittebene (x'y') aus dem Rotationshyperbolo'id zwei zur (yz)-
Ebene parallele Erzeugende herausschneidet. Da diese durch die
auf der (x)-Achse liegenden Scheitel des Hyperboloides gehen,

2 s k
so muss ihr Abstand -5 sein (s. Seite 121). Es besteht da-

k2 — 1

her die Beziehung
s cos tp s cos tp 2 s k

1 -4- cos tp 1 — cos tp k — 1

Löst man diese Gleichung nach k auf, so erhält man als positive,

(einzig in Betracht fallende), Wurzel wieder k

Bern. Mitteil. 1911. Nr. 1787.
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Liegt der Wert von k nicht im Bereiche 1 < k < istö cos tp

also k < 1 oder k > so werden die Asymptotenrichtungen
cos tp-

des Kegelschnittes nach Gleichung (a) imaginär, er ist also eine

Ellipse. Fassen wir die bisherigen Ergebnisse zusammen, so folgt :

Eine durch die (x)-Achse gelegte Ebene, welche mit der
Koordinatenebene (x y) den Winkel <p einschliesst, schneidet alle

Rotationsellipsoide des durch Gleichung (1) gegebenen
Rotationsflächensystems in einer Ellipse, den parabolischen Cylinder k 1

in einer Parabel, und die Rotationshyperboloïde entweder in einer

Ellipse, oder in zwei parallelen Geraden (Erzeugende des Hyper-
>1 ist.boloïdes), oder in einer Hyperbel, je nachdem cos tp -—

Um die durch Gleichung (12) dargestellten Kegelschnitte
genauer zu untersuchen, transformieren wir die Gleichung auf

g
ihre Achsen, indem wir für x' x" -| 2

und für y' y"
1 — k

substituieren. Sie nimmt dann folgende Form an:

tS

Fig. 10

(b)2 i 2 2 i 2s°k s'k
2\2(1-k2) (l — k2) (1 — k2 cos2 tp)
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Der Mittelpunkt und die beiden in der (x)-Achse liegenden Scheitel
jedes Kegelschnittes dieses Systems fallen mit denjenigen der
entsprechenden Rotationsfläche zusammen, und die eine Achse
des Kegelschnittes liegt immer in der (x)-Achse des alten
Koordinatensystems.

Wir betrachten vorerst die Ellipsen, in welchen die
Rotationsellipsoide k < 1 von der durch die (x)-Achse gelegten
Ebene geschnitten werden. Der Abstand ihres Mittelpunktes vom

s
Koordinatenursprung wird gegeben durch a0 --. Wenn k

von Null bis 1 wächst, so nimmt er alle Werte von 4- s bis
s k

-4- oo an. Die Halbachsen der Ellipsen sind a -¦ undr 1 — k2

s k
b -==================, für k — 0 reduziert sich die Ellipse

\/(l — k2) (1 — k2 cos2 r/>)

auf einen Punkt, der mit F zusammenfällt; bei von 0 bis 1

wachsendem Parameter k nehmen beide zu von 0 bis oo, wobei
a immer grösser als b ist. Der eine Scheitel Sx bewegt sich

sbei zunehmendem k von xt' s bis x2' ¦--, der andere von

x2' -4- s bis x/ -4- oo Die lineare Excentrizität dieser

Ellipsen e — nimmt vom Werte 0 an zu
(1 — k2) \/ 1 — k2 cos2 tp

bis oo, die numerische dagegen — — — von 0
a \fl — k2 cos2 tp

bis 1.

Um die Gleichung der Parabel zu finden, in welcher der
parabolische Cylinder von der Ebene durch die (x)-Achse
geschnitten wird, setzen wir in Gleichung (12) den Parameter k 1

ein und finden y' —--%— Ix' j (c)
sin tp \ 2/

sDurch die Transformationsformeln y' y" und x' x" -4- -z
Li

geht die Gleichung (c.) in die Scheitelgleichung der Schnittparabel

über, welche heisst y" --—^- x" (d)
sin cp
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Die (x)-Achse ist Parabelachse, ihr Scheitel befindet sich im Ab-
g

stand x' — - vom Coordinatenursprung. Der Halbparameter der
Li

S
Schnittparabel ist p — --—-—. Für veränderliches tp ist er variabel

sin tp

und kann alle Werte zwischen s und x> annehmen, d. h. je nach
dem Winkel, den die Schnittebene (x' y') mit der Koordinatenebene

(x y) bildet, wird der Parameter grösser oder kleiner. Ein
Minimum wird er, wenn tp 90° ist, wenn also die Schnittebene
auf der (x y)-Ebene senkrecht steht und die Erzeugenden des

Cylinders rechtwinklig schneidet. In diesem Falle wird er — s

dem Halbparameter der Schnittparabel in der (x z)-Ebene von der
Gleichung z' 2 s x' (Siehe Gleichung [6]). Je kleiner der
Winkel tp wird, d. h. je mehr er sich vom rechten entfernt, desto

grösser wird der Parameter. Fällt die Schnittebene mit der (x y)-
Ebene zusammen, so ist tp 0, also auch sin" g>=0, und der
Halbparameter p oo ; der parabolische Cylinder wird durch
die (x y)-Ebene in der Geraden x' 0, d. h. in der (y')-Achse
und in der unendlich fernen Geraden dieser Ebene geschnitten.

Der Abstand des Brennpunktes vom Parabelscheitel f
s s

—r-ç—, kann also alle Werte zwischen — und oo annehmen. Ent-
2 sin (f 2

sprechend verändert sich auch die Lage der Leitlinie ; für tp — 90"
wird sie gebildet durch die (z)-Achse im alten Koordinatensystem
und entfernt sich für abnehmende Werte von tj bis nach — oo.

Wir diskutieren nun das durch Gleichung (12) dargestellte

Kegelschnittsystem für die Parameterwerte von k — 1 bis k ——,

wo rp einen bestimmten, konstanten Wert besitzt. In diesem Fall
ist die Schnittkurve eine Hyperbel, deren Achsengleichung nach

Gleichung (b) geschrieben werden kann :

x"2 v"2
1 (e)2,2 2,2S k S k

(k2-l)a (k2-l) (l-k2cos2T)
Der Abstand des Hyperbelmittelpunktes vom Koordinatenursprung

s
a0 2 ; für k 1 liegt der Hyperbelmittelpunkt in

k — 1
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— oo, wenn k zunimmt, so rückt er auf der negativen (x')-Achse

ins Endliche und für k =- beträgt sein Abstand vom Null-
cos rp

punkt x' — s cotg" </). Der Abstand des Hyperbelscheitels St

wird bestimmt aus \\ — ^—r-r ', nimmt k alle Werte von 1 bis
1 -j-k

an, so bewegt sich der Scheitel S, auf der (x')-Achse von
cos cp

l

x' =- -x bis x' z—; —. Der Scheitel S., liegt im Abstand
2 1 -4- cos rp i

~

x' — vom Nullpunkt; für die obigen Parameterwerte

durchläuft er den negativen Teil der (x')-Achse von x' =— oo

bis x' — —. Die reelle Halbachse der Hyperbel a
1 — cos tp

s k s k
-r, die imaginäre =b= —;fürk=lk2-l \/(k2-l) (l-k2cosV)
wird a b oo und für k — wird a -— und b oo.

cos tp gin^ (p

Für alle Hyperbeln der Schar ist b > a.

Im Grenzfall k — - — besteht die Schnitthyperbel, deren

Mittelpunkt in x' — s cotg" <p liegt, aus zwei parallelen
Geraden von den Gleichungen

s cos tp s cos tp
x ' ~— und x,' — -, T— (f)1 1 -f- cos tp

ò 1 — cos tp

Dies ergibt sich auch daraus, dass die numerische Excentrizität

der Hyperbel für k unendlich gross wird.J r cos tp
ö

Sind die Parameter k grösser als so stellt die Gleich-
cos tp

ung (12) des Schnittkurvensystems wieder eine Schar von Ellipsen
dar. Ihre Achsengleichung lautet :

x"2 v"2
2^2— \ ^2 1 (g)

s k s k

(k2_l)2 (k2-l)(k2cos2f-l)
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Variiert man k von bis oo, so geht der Ellipsenmittelpunkt

2 1
von x' — s cotg tp bis x' 0. Für k — sind die Halb-

cos tp

achsen a 2 — und b oo. Bei zunehmendem k werden die
sin tp

Achsen beide kleiner und zwar so, dass a immer kleiner ist
als b. Für k oo reduziert sich die Ellipse auf einen Punkt,
den Nullpunkt 0 des ursprünglichen Koordinatensystems. Die

Scheitel S. und S„ der Ellipse haben für k — die Abstände
1 ^ cos tp

s cos tp s cos tp -, -,x, zi—i —, bezüglich x„ — z — und nahern sich
1 1 -f- cos tp

2 1 — cos tp

bei wachsendem k immer mehr dem Nullpunkt, bis sie für
k oo mit ihm zusammenfallen.



Zusammenstellung :

Halbachsen Scheitelabstände

k s
~o=--. O sk v.

sk
X'l X'î

e
e

a
Art der Kurve

a 1-k' vV-k')(l- k2 cos* f)

0 s 0 0 s S 0 0 Punkt F

1 4" oo oo oo
s

~2~
-|- OO oo 1 Parabel

1

COS f
•—s cotg'f

s cosf
sin2 j»

oo scosp
1 -j- COS f

S COSf
oo oo 2 parallele Gerade

1 — COS <p

oo 0 0 0 0 0 0 0 Punkt 0

OS-
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