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§ 6.
Der Hauptschniit der Rotationsfliche parallel
zur (yz)-Ebene bei variablem Parameter k.

Ersetzen wir in der auf den Mittelpunkt transformierten
Flichengleichung

72 r2 12
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s’k” s’k s’k
(1—k)* (1—k)° 1—¥K
x' durch o, so erhalten wir den Hauptschnitt der Fliche 2.
Grades parallel zur (yz)-Ebene, namlich
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Die Gleichung (9) stellt eine Ellipse oder eine Hyperbel

<
>

durch Gleichung (1) gegebene Rotationsfliche die neue Koordi-
natenebene (y'z’) schneidet.

DRl Yyl -\\,,

dar, je nachdem k 1 ist; dies ist die Kurve, in welcher die

Fig. 9. Fig. 9 a.
Die Halbachsen der Ellipse sind:
a=—i2 und c:“me wo ¢ < a
1—k Vi—i

Fir alle Werte von k zwischen 0 und 1 sind die zur (yz)-Ebene
parallelen Hauptschnitte der Rotationsflichen Ellipsen, deren
grosse Achse in der (xy)-Ebene und deren kleinere Achse in der
(xz)-Ebene liegt. Fiir k = 0 werden beide Achsen einander gleich,
nimlich a = c¢=o0, die Hauptschnittellipse reduziert sich auf
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einen Punkt, der im Abstand x = 4 s vom Ursprung O auf der
(x)-Achse liegt. Bei zunehmendem k entfernt sich der Mittel-
punkt der Hauptschnittellipse auf der positiven (x)-Achse immer
weiter vom alten Ursprung O und fiir k =1 wird sein Abstand
unendlich gross. Gleichzeitig wachsen auch die Ellipsenhalb-
achsen a und ¢ an und werden zuletzt ebenfalls unendlich gross.

Fir alle Parameterwerte k > 1 stellt die Gleichung (9)

eine Hyperbel dar, deren reelle Halbachse a =

sk
Vid —1
¢c>a, wenn k>/3
c==a, wenn k=\/2
¢c<a, wenn k <\/§
Die Asymptotengleichungen dieser Hyperbeln sind:

/=ty oder #=FVE—1.y

,S L undderen
k*—1

1st. Dabeil 1st

imaginire Halbachse ¢ =

Den halben Asymptotenwinkel ¢ erhilt man aus der Formel:

tgrp:\/k2 — 1. Fur das Rotationshyperboloid k = 1 befindet
sich der zur (yz)-Ebene parallele Hauptschnitt im Abstand
X = —oc vom Koordinatenursprung O; die Asymptoten der
Schnitthyperbel in — oo haben die Gleichung z’ =0 (doppelt), und
der halbe Asymptotenwinkel ¢ wird = 0, d. h. die Asymptoten
fallen zusammen in die oo ferne Gerade der (xy)-Ebene, und
der Hauptschnitt selber geht in diese Gerade iiber. Wachst k,
so sind die Asymptoten voneinander verschieden; durchliuft k
alle Werte von 1 bis oo, so nimmt der halbe Asymptotenwinkel
o alle Werte von 0° bis 90° an, und fir k=0 fallen die

Asymptoten wieder zusammen, da y' = =0 wird ;

+

TVE-1
die Asymptoten des Hauptschnittes des Hyperboloides k = oo,
welches sich auf die (z)-Achse reduziert, werden von der (z)-Achse
selber gebildet.

Alle Mittelpunkte der Hauptschnitthyperbeln parallel zur
(yz)-Ebene der Rotationshyperboloide befinden sich auf der
negativen (x)-Achse. Ist der Abstand der Schnitthyperbel vom
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Ursprung O x==0, so reduziert sich der Hauptschnitt auf die
(z)-Achse; dies ist der Fall, wenn k = oo gross ist. Nimmt
k endliche Werte an, die aber noch grosser sind als /2, so st
der halbe Asymptotenwinkel der Schnitthyperbel grosser als 45°
aber kleiner als 90° und der Abstand der Schnitthyperbel vom
Ursprung O betrigt absolut genommen weniger als a, = : Sk2
—s. Ist k=1/2, so ist der Abstand x = —s und

—_— S —_—
=r—p =
der halbe Asymptotenwinkel ¢ =45° der Hauptschmtt ist also
eine gleichseitige Hyperbel. Ist 1 <Ck<{y/2, so kann der Ab-
stand der Schnitthyperbel von der (yz)-Ebene alle Werte von

X = —§ bis x — — oo durchlaufen, fir k=1 wird er unendlich
gross; der halbe Asymptotenwinkel ¢ wird immer kleiner, und
fir k =1 ist er ¢ =0. Der Hauptschnitt im Abstand x = — o0

reduziert sich auf die unendlich ferne Gerade der (x y)-Ebene.

Die Brennpunkte f und f, aller Schnittkegelschnitte parallel
zur (yz)Ebene liegen in der (xy)-Ebene. Ihre Koordinaten im
alten Koordinatensystem sind :

: \/ s’k” s°k? - sk’ undnach e S
¥y = (1-k2)2-1—k2:I1“‘k2 §1 1K
Eliminiert man aus diesen beiden Ausdricken den verander-
lichen Parameter k, so erhiilt man den geometrischen Ort der
Brennpunkte aller dieser Schnittkegelschnitte durch die Gleichung

XFy=-++s oder zerlegt
X—y=s und x4+y=—s (10)

Die Gleichungen (10) stellen zwei Gerade in der (xy)-Ebene dar,
die symmetrisch zur (x)-Achse liegen, durch den Punkt F gehen
und rechtwinklig aufeinanderstehen, also mit der (x)-Achse je
einen Winkel von 45° bilden. Auf diesen beiden Geraden g,
und g, liegen alle Brennpunkte f und f, der zur (y z)-Ebene
parallelen Hauptschnitte der Rotationsflichen.

Durchlauft k alle Werte von 0 bis oo, so gehen die zur
(yz)-Ebene parallelen Hauptschnitte, die durch Gleichung (9)
gegeben sind, successive in einander iiber und bilden eine neue
Flache. Ihre Gleichung erhdlt man durch Elimination des Para-

D
1—K

meters k aus der Gleichung (9.) und dem Ausdruck a=
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welcher den Abstand der Ebene des Hauptschmittes vom Koor-
dinatenursprung O darstellt. Als Resultat dieser Elimination
ergibt sich die Gleichung:

sy'? + a, z2® a,s (s—a;) =0.

- In dieser Gleichung ist s eine Konstante; a, dagegen kann
als laufende Koordinate betrachtet werden, da es bei verinder-
lichem k alle Werte der positiven und negativen (x)-Achse durch-
laufen kann, ausgenommen diejenigen der Strecke OF. Substi-
tuiert man daher fir a, =x, ersetzt ferner y’ wieder durch y
und z' durch z, so wird obige Gleichung:

x2' — s (xX*—y)) 4’ x =0, (11)
Durch sie ist der Ort aller Hauptschnitte parallel der (yz)-Ebene
fir simtliche Rotationsflichen bestimmt. Sie stellt eine Fliche
3. Ordnung in den rechtwinkligen Koordinaten x, y, z dar, die
symmetrisch liegt zu der (xy)- und (xz)-Ebene. Die Diskussion
dieser Hauptschnittfliche 3. Grades erfolgt in § 12.

§ 7

Die Schnitte der Rotationsilichenschar mit einer
Ebene durch die (x)-Achse.

Es werde durch die (x)-Achse unseres Koordinatensystems
(xyz) eine Ebene gelegt, welche mit der (xy)-Ebene einen be-
liebigen Winkel ¢ bildet; wir betrachten sie als neue Koordi-
natenebene (x'y’) und transformieren nun die Gleichung des be-
trachteten Rotationsflichensystems
(1) (1—k%) x*4+(1—K)y’ 42 —2sx 4 §"=0
auf das neue Koordinatensystem (x’y’z’). Dabei gelten folgende
Transformationsformeln:

y=7y cos¢gp —2z sing
z=17y sin g -4z’ cos ¢
X o X

Die Gleichung (1.) geht dann iiber in

1— k) x"”° 4 (1—K° cos’¢) y'* + (1—k* sin® ¢) 2
4+ kK sin2¢.y' 2 —2sx’ f°==

Um die Gleichung der Schnittkurven des Rotationsflichen-
systems mit der (x'y’)-Ebene zu erhalten, ist in der letzten
Gleichung z' =0 zu setzen, und wir erhalten als Gleichung des
Schnittkurvensystems

(1—k*) x" 24 (1—Kk° cos® ¢) y'* — 2s%’ 4 =0 (12)
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