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§6.
Der Hauptschnitt der Rotationsfläche parallel
zur (yz)-Ebene bei variablem Parameter k.

Ersetzen wir in der auf den Mittelpunkt transformierten
FIächengleichung

,1 ,2 ,2

\Li.) 2i 2 I 2i 2 I ° "2, 2
S k 2, 2

s k 2, 2
s k

(1 —k2)2 (1 —k2)2 1-k"'
x' durch o, so erhalten wir den Hauptschnitt der Fläche 2

Grades parallel zur (yz)-Ebene, nämlich

2, 2
S k 2, 2

s k
1 (9)

(1-k2)2 l-kJ
Die Gleichung (9) stellt eine Ellipse oder eine Hyperbel
dar, je nachdem k^l ist; dies ist die Kurve, in welcher die

durch Gleichung (1) gegebene Rotationsfläche die neue
Koordinatenebene (y'z') schneidet.

Fig. 9.

Die Halbachsen der Ellipse sind :

sk

Fig. 9 a.

und sk
c wo c <; al-ka Vl-k2

Für alle Werte von k zwischen 0 und 1 sind die zur (yz)-Ebene
parallelen Hauptschnitte der Rotationsflächen Ellipsen, deren

grosse Achse in der (xy)-Ebene und deren kleinere Achse in der
(xz)-Ebene liegt. Für k 0 werden beide Achsen einander gleich,
nämlich a c o, die Hauptschnittellipse reduziert sich auf
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einen Punkt, der im Abstand x 4- s vom Ursprung 0 auf der
(x)-Achse liegt. Bei zunehmendem k entfernt sich der Mittelpunkt

der Hauptschnittellipse auf der positiven (x)-Achse immer
weiter vom alten Ursprung 0 und für k 1 wird sein Abstand
unendlich gross. Gleichzeitig wachsen auch die Ellipsenhalbachsen

a und c an und werden zuletzt ebenfalls unendlich gross.
Für alle Parameterwerte k > 1 stellt die Gleichung (9)

g k
eine Hyperbel dar, deren reelle Halbachse a —2 undderen

sk
imaginäre Halbachse c ist. Dabei istvV-l

c > a, wenn k >• \J~2

c — a, wenn k \J~2

c -< a, wenn k <C j~2

Die Asymptotengleichungen dieser Hyperbeln sind :

z'=± — y' oder z'^ + Vk2— 1 • y'
ci

Den halben Asymptotenwinkel (p erhält man aus der Formel :

tg q> V k — 1 Für das Rotationshyperboloid k — 1 befindet
sich der zur (yz)-Ebene parallele Hauptschnitt im Abstand
x — oc vom Koordinatenursprung 0 ; die Asymptoten der
Schnitthyperbel in —oo haben die Gleichung z' 0 (doppelt), und
der halbe Asymptotenwinkel cp wird 0, d. h. die Asymptoten
fallen zusammen in die oo ferne Gerade der (xy)-Ebene, und
der Hauptschnitt selber geht in diese Gerade über. Wächst k,
so sind die Asymptoten voneinander verschieden; durchläuft k
alle Werte von 1 bis oo, so nimmt der halbe Asymptotenwinkel
if alle Werte von 0° bis 90° an, und für k — oo fallen die

Asymptoten wieder zusammen, da y' + -, — 0 wird ;

Vk2-1
die Asymptoten des Hauptschnittes des Hyperboloides k oo,
welches sich auf die (z)-Achse reduziert, werden von der (z)-Achse
selber gebildet.

Alle Mittelpunkte der Hauptschnitthyperbeln parallel zur
(yz)-Ebene der Rotationshyperboloïde befinden sich auf der

negativen (x)-Achse. Ist der Abstand der Schnitthyperbel vom
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Ursprung O x 0, so reduziert sich der Hauptschnitt auf die

(z)-Achse; dies ist der Fall, wenn k oo gross ist. Nimmt
k endliche Werte an, die aber noch grösser sind als \J~2, so ist
der halbe Asymptotenwinkel der Schnitthyperbel grösser als 45°
aber kleiner als 90°, und der Abstand der Schnitthyperbel vom

g
Ursprung O beträgt absolut genommen weniger als a0 — ^1-k

s /—
— s. Ist k y 2 so ist der Abstand x — — s und

1 — 2

der halbe Asymptotenwinkel cp — 45°, der Hauptschnitt ist also
eine gleichseitige Hyperbel. Ist 1 <C k <; \l~2, so kann der
Abstand der Schnitthyperbel von der (yz)-Ebene alle Werte von
x — s bis x — oo durchlaufen, für k l wird er unendlich

gross; der halbe Asymptotenwinkel ff wird immer kleiner, und
für k 1 ist er <p 0. Der Hauptschnitt im Abstand x — oo

reduziert sich auf die unendlich ferne Gerade der (x y)-Ebene.
Die Brennpunkte ix und f2 aller Schnittkegelschnitte parallel

zur (yz)Ebene liegen in der (xy)-Ebene. Ihre Koordinaten im
alten Koordinatensystem sind :

sj- s2k2 sk und nach

(l_k2)2 i_k2 "1-k2 §! 1-k2
Eliminiert man aus diesen beiden Ausdrücken den veränderlichen

Parameter k, so erhält man den geometrischen Ort der

Brennpunkte aller dieser Schnittkegelschnitte durch die Gleichung
x + y + s oder zerlegt

x — y s und x -4- y — s (10)
Die Gleichungen (10) stellen zwei Gerade in der (xy)-Ebene dar,
die symmetrisch zur (x)-Achse liegen, durch den Punkt F gehen
und rechtwinklig aufeinanderstellen, also mit der (x)-Achse je
einen Winkel von 45° bilden. Auf diesen beiden Geraden gt
und g2 liegen alle Brennpunkte fx und f2 der zur (y z)-Ebene
parallelen Hauptschnitte der Rotationsflächen.

Durchläuft k alle Werte von 0 bis oo, so gehen die zur
(yz)-Ebene parallelen Hauptschnitte, die durch Gleichung (9)

gegeben sind, successive in einander über und bilden eine neue
Fläche. Ihre Gleichung erhält man durch Elimination des Para-

g
meters k aus der Gleichung (9.) und dem Ausdruck a„— 2

1 — k
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welcher den Abstand der Ebene des Hauptschnittes vom Koor-
dinatenursprung 0 darstellt. Als Resultat dieser Elimination
ergibt sich die Gleichung:

s y'2 + aoz'2 + aos (s—ao) — °-
In dieser Gleichung ist s eine Konstante; a0 dagegen kann

als laufende Koordinate betrachtet werden, da es bei veränderlichem

k alle Werte der positiven und negativen (x)-Achse durchlaufen

kann, ausgenommen diejenigen der Strecke OF. Substituiert

man daher für a0 x, ersetzt ferner y' wieder durch y
und z' durch z, so wird obige Gleichung:

xz — s (x —y -4- s" x 0. (11)
Durch sie ist der Ort aller Hauptschnitte parallel der (yz)-Ebene
für sämtliche Rotationsflächen bestimmt. Sie stellt eine Fläche
3. Ordnung in den rechtwinkligen Koordinaten x, y, z dar, die

symmetrisch liegt zu der (xy)- und (xz)-Ebene. Die Diskussion
dieser Hauptschnittfläche 3. Grades erfolgt in § 12.

§7.
Die Schnitte der Rotationsflächenschar mit einer

Ebene durch die (x)-Achse.
Es werde durch die (x)-Achse unseres Koordinatensystems

(xyz) eine Ebene gelegt, welche mit der (xy)-Ebene einen
beliebigen Winkel tp bildet; wir betrachten sie als neue
Koordinatenebene (x'y') und transformieren nun die Gleichung des
betrachteten Rotationsflächensystems
(1.) (1-k2) x2-f-(l—k2)y2 + z2 — 2sx + s2=0
auf das neue Koordinatensystem (x'y'z'). Dabei gelten folgende
Transformationsformeln :

y y' cos ep — %' sin rp

z y' sin cp Ar z' cos cp

x x'
Die Gleichung (1.) geht dann über in

(1- k2)x'2 + (1-k2 cos'-V) y'2 + (1-k2 sin2 <p) z'2

-f k2 sin 2 fp .y' z' — 2s x' -f s2 0

Um die Gleichung der Schnittkurven des Rotationsflächensystems

mit der (x' y')-Ebene zu erhalten, ist in der letzten
Gleichung z' 0 zu setzen, und wir erhalten als Gleichung des

Schnittkurvensystems
(1—k2)x'2 + (l—k2 cos2 <p) y'2 — 2sx' 4- s2 0 (12)
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