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dinatenursprunges O' vom alten O; also ist die (z)-Achse die
Leitlinie der Parabel in der (xz)-Ebene.

Ferner liegt der Scheitel S in der Mitte zwischen 0 und F,
also ist F zugleich der Brennpunkt der Schnittparabel mit der

(xz)-Ebene. Die Ebene x - ist Scheiteltangentialebene des
Li

parabolischen Cylinders. (S. Fig. 4).

§ 3.

Der Ort der Mittelpunkte, Scheitel und Brennpunkte des

Rotationsflächensystems bei variablem k.
Nach § 1 liegt der Mittelpunkt O' der durch Gleichung (1)

dargestellten Flächen 2. Grades immer auf der (x)-Achse; sein
g

Abstand vom Nullpunkt a„ ^. Setzen wir für k nach-
1 —k2

einander alle zwischen 0 und oo liegenden Werte ein, so ändert
sich die Lage des Mittelpunktes 0' folgenderweise :

k ao

0 S

1

7?
2s

i + oo
oo 0

0 befindet sich der
Flächenmittelpunkt 0' im Punkte F; bei wachsendem k bewegt er sich
auf der positiven (x)-Achse ins Unendliche, für k 1 geht er
im Unendlichen auf den negativen Teil der (x)-Achse über und
nähert sich dann bei weiter zunehmendem k wieder dem

Ursprung O, den er erreicht, wenn man k den Wert oo gibt. Alle
Punkte der positiven und negativen (x)-Achse können für einen
bestimmten Wert von k Mittelpunkt einer Fläche der Schar
werden, ausgenommen diejenigen innerhalb der Strecke OF.

Wenn man zunächst vom Spezialfall k 1 absieht, so
stellt die Gleichung (1) für jeden beliebigen Parameter k eine
Rotationsfläche 2. Ordnung dar, deren Rotationsachse senkrecht
auf der (xy)-Ebene steht. Die Lage ihrer Scheitel in der (x)-Achse
wird gefunden, wenn man in der Flächengleichung (1) y z 0
setzt. Dann erhält man die quadratische Gleichung

(1— k2)x2— 2sx + s2 0.
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Durch Auflösen nach x ergibt sich hieraus

s s
und

1 1-fk 2 1-k
Dies sind die Abstände der Scheitel Sj und S2 vom Ursprung 0.
Variiert man k, so ändern sich die Stellungen der Scheitel nach

folgender Tabelle :

k xl x2

0 S

S

S

1 ~r oo2

oo 0 0

Für k 0 fallen die Scheitel Sx und S2 im Punkte F zusammen,
die Fläche 2. Grades reduziert sich auf den festen Punkt F.
Durchläuft k die Werte von 0 bis 1, so stellt die Flächengleichung

stets ein Rotationsellipsoid dar; bei zunehmendem Werte
von k nähert sich dessen einer Scheitel Sx dem Mittelpunkte
der Strecke OF, der andere, S2, rückt gegen den unendlich
fernen Punkt der positiven (x)-Achse. Im Spezialfall k 1 geht
die Fläche 2. Ordnung in den parabolischen Cylinder über, dessen

g
eine Scheitel im Unendlichen, der andere im Abstand x -g-
von 0 liegt. Ueberschreitet k den Wert 1, so geht der Scheitel
S2 der Rotationsfläche im Unendlichen auf den negativen Teil
der (x)-Achse über und rückt mit wachsendem k auf derselben
wieder ins Endliche, indem er sich immer mehr dem Nullpunkt
O nähert, bis er für k oo mit ihm zusammenfällt. Der Scheitel
Sx wandert in der bisherigen Richtung weiter gegen 0. Im
Intervall 1 <C k •< oo handelt es sich immer um einschalige
Rotationshyperboloide ; das Hyperboloid k oo reduziert sich
auf die ursprüngliche (z)-Achse.

Die Längen der Halbachsen der Rotationsflächen variieren
zwischen 0 (für k 0 und k — oo) und oo (für k 1).

Betrachten wir nun die in der (x)-Achse hegenden
Brennpunkte fj und f2 des Flächensystems! Nach der Gleichung (2)

betragen ihre Abstände von 0' im neuen Koordinatensystem
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Nun ist der Abstand des Punktes F vom Ursprung 0' im neuen
Koordinatensystem :

sk

1-k1-k'
Durch Vergleichung dieses Abstandes mit denjenigen der
Brennpunkte ft und f2 ist ersichtlich, dass der eine Brennpunkt fx der
Rotationsfläche in dem festen Punkte F liegt. Da F in Bezug
auf das ursprüngliche Koordinatensystem seine alte Lage stets
beibehält, so bleibt auch der Ort des einen Brennpunktes fx aller
Rotationsflächen unverändert, F ist der eine Brennpunkt aller
Rotationsflächen.

Der zweite Brennpunkt, f2, steht um

s k s s k" s (1 -f- k")
X, :

1-k2 1 — k2 ' 1-k2 1 —k2
vom Ursprung O des alten Systems ab. Bei variablem Parameter
k bewegt sich daher f2 auf der positiven (x)-Achse von F nach

-j- oo, wenn k die Werte von 0 bis 1 durchläuft ; überschreitet
k den Wert 1, so geht der zweite Brennpunkt im Unendlichen
von der positiven (x)-Achse auf die negative über, und wenn k
unendlich gross wird, so nähert er sich dem alten Nullpunkt
bis zum Abstand x., — s.

Nach obigem beträgt die lineare Exzentrizität der Rota-
sk2

tionsfläche e T. Für k 0 ist e 0. Während k bis
1-k2

1 anwächst, also für die Schar der Rotationsellipsoide, nimmt
sie zu bis oo, für die Hyperboloide wird sie wieder kleiner und
im Grenzfall k oo wird e s.

Die numerische Exzentrizität der Rotationsfläche wird
gegeben durch den Ausdruck:

e sk sk
k.

a 1 - k2 '
1 — k2

Sie ist stets gleich dem variablen Parameter k und gleich dem
konstanten Verhältnis der Abstände m und n in der Definition
der Fläche. Ihr Wert variiert zwischen 0 und oo.
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Zusammenstellung der Ergebnisse.
.—.

k
sk

a-b=l-k2
S

Abstände der Scheitel
von 0 - ^2 e

aà° 1-k2
S, s2 1-k2

0 0 S Xj S x2=s 0 k

1 oo -f- oo
s

~"2 ~r oo oo k

oo 0 0 0 0 S k

§ 4.

Schnitt des Rotationsflächensystems mit der (xz)-Ebene
des Koordinatensystems.

Die (xz)-Ebene des Koordinatensystems schneidet jede Fläche
des Rotationsflächensystems in einem Hauptschnitt. Die
Achsengleichung desselben erhält man aus der auf den Mittelpunkt
transformierten Gleichung (2), indem man in ihr • y' 0 setzt ;

sie lautet dann

s2k2
+

(1- -k2)2

s2k2

1-k2

(7)

Betrachten wir in dieser Gleichung k als variabeln Parameter,
so stellt sie die Schar von Kurven dar, in welchen die (xz)-Ebene
das Flächensystem schneidet, und zwar sind es Ellipsen, wenn
k <C 1, Hyperbeln, wenn k > 1 ist. Die eine Achse dieser
Kegelschnitte liegt in der (x)-Achse des Koordinatensystems, der eine

Brennpunkt fällt mit dem Punkte F zusammen; die zu F

gehörige Leitlinie hat die Gleichung x' =—a0 d. h. alle

diese Kegelschnitte haben die eine Leitlinie gemeinsam, sie wird
gebildet von der (z)-Achse des alten Koordinatensystems. Ueber
die Länge der Achsen und die verschiedenen Lagen der Scheitel
und Brennpunkte der in der (xz)-Ebene erzeugten Schnittkegelschnitte

gibt § 3 Aufschluss.
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