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dinatenursprunges O’ vom alten O; also ist die (z)-Achse die
Leithnie der Parabel in der (xz)-Ebene.

Ferner liegt der Scheitel S in der Mitte zwischen O und F,
also ist F zugleich der Brennpunkt der Schnittparabel mit der

i S
(xz)-Ebene. Die Ebene X=‘2‘ ist Scheiteltangentialebene des
parabolischen Cylinders. (S. Fig. 4).

§ 3. :
Der Ort der Mittelpunkte, Scheitel und Brennpunkte des

Rotationsilaichensystems bei variablem k.
Nach § 1 liegt der Mittelpunkt O’ der durch Gleichung (1)
dargestellten Flichen 2, Grades immer auf der (x)-Achse; sein

Abstand vom Nullpunkt = a,= 7 - L Setzen wir fir k nach-

emander alle zwischen 0 und co liegenden Werte ein, so éndert
sich die Lage des Mittelpunktes O’ folgenderweise:
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Fir den Parameterwert k = 0 befindet sich der Flichen-
mittelpunkt O’ im Punkte F; bei wachsendem k bewegt er sich
auf der positiven (x)-Achse ins Unendliche, fir k = 1 geht er
im Unendlichen auf den negativen Teil der (x)-Achse uiber und
niahert sich dann bei weiter zunehmendem k wieder dem Ur-
sprung O, den er erreicht, wenn man k den Wert co gibt. Alle
Punkte der positiven und negativen (x)-Achse kénnen fir einen
bestimmten Wert von k Mittelpunkt einer Fliche der Schar
werden, ausgenommen diejenigen innerhalb der Strecke OF.

Wenn man zunichst vom Spezialfall k =1 absieht, so
stellt die Gleichung (1) fir jeden beliebigen Parameter k eine
Rotationsfliche 2. Ordnung dar, deren Rotationsachse senkrecht
auf der (xy)-Ebene steht. Die Lage ihrer Scheitel in der (x)-Achse
wird gefunden, wenn man in der Flichengleichung (1) y=z=0
setzt. Dann erhilt man die quadratische Gleichung

(1 —k*x°—2sx 4 s°==0.
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Durch Auflésen nach x ergibt sich hieraus

S S
X. ——— und x2:.

14k 1—k
Dies sind die Abstinde der Scheitel S, und S, vom Ursprung O.

Variiert man k, so dndern sich die Stellungen der Scheitel nach
folgender Tabelle

-
|

Fir k=0 fallen die Scheitel S, und S, im Punkte F zusammen,
die Fliche 2. Grades reduziert sich auf den festen Punkt F.
Durchliuft k die Werte von 0 bis 1, so stellt die Flachenglei-
chung stets ein Rotationsellipsoid dar; bei zunehmendem Werte
von k nihert sich dessen einer  Scheitel S, dem Mittelpunkte
der Strecke OF, der andere, S,, riickt gegen den unendlich
fernen Punkt der positiven (x)-Achse. Im Spezialfall k =1 geht
die Fliche 2. Ordnung in den parabolischen Cylinder iiber, dessen

eine Scheitel im Unendlichen, der andere im Abstand x————s2-—

von O liegt. Ueberschreitet k den Wert 1, so geht der Scheitel
S, der Rotationsfliche im Unendlichen auf den negativen Teil
der (x)-Achse tiber und rickt mit wachsendem k auf derselben
wieder ins Endliche, indem er sich immer mehr dem Nullpunkt
O nihert, bis er fir k = oo mit ihm zusammenfillt. Der Scheitel
S, wandert in der bisherigen Richtung weiter gegen O. Im
Intervall 1< k<Coco handelt es sich immer um einschalige
Rotationshyperboloide; das Hyperboloid k = co reduziert sich
auf die urspriingliche (z)-Achse.

Die Liangen der Halbachsen der Rotationsflichen variieren
zwischen 0 (fiir k =0 und k:=o0) und o (far k =1).

Betrachten wir nun die in der (x)-Achse liegenden Brenn-
punkte f und f, des Flichensystems! Nach der Gleichung (2)
betragen ihre Abstinde von O’ im neuen Koordinatensystem
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Nun 1st der Abstand des Punktes F vom Ursprung O’ im neuen:
Koordinatensystem :

; S s k*

X =8— 3 B)

| 1—k° 1—k°

Durch Vergleichung dieses Abstandes mit denjenigen der Brenn- -

punkte f und f, ist ersichtlich, dass der eine Brennpunkt f der

Rotationsfliche in dem festen Punkte F liegt. Da F in Bezug

auf das urspriingliche Koordinatensystem seine alte Lage stets

beibehilt, so bleibt auch der Ort des einen Brennpunktes f, aller

Rotationsflichen unveréindert, F ist der eine Brennpunkt aller
Rotationsflichen.

Der zweite Brennpunkt, f,, steht um

sk s s k® s(1-+ k%

_ e = ;
1-k 11—k ' 1-—k 1—k°
vom Ursprung O des alten Systems ab. Bei variablem Parameter
k bewegt sich daher f; auf der positiven (x)-Achse von F nach
—+ o0, wenn k die Werte von 0 bis 1 durchlauft; tberschreitet
k den Wert 1, so geht der zweite Brennpunkt im Unendlichen
von der positiven (x)-Achse auf die negative tiber, und wenn k
unendlich gross wird, so nihert er sich dem alten Nullpunkt
bis zum Abstand x, = -—s.

Nach obigem betragt die lineare Exzentrizitit der Rota-

1.2
bkkz. Fir k=0 1st e=0. Wihrend k bis

X, = 8y 1

tionsfliche e —

1 anwichst, also fir die Schar der Rotationsellipsoide, nimmt
sie zu bis oo, fiir die Hyperboloide wird sie wieder kleiner und
mm Grenzfall k = oo wird e =s.

Die numerische Exzentrizitit der Rotationsfliche wird
gegeben durch den Ausdruck:

e sk’ sk
s 5§ 5 =K.

a 1-k° 1—k
Sie ist stets gleich dem variablen Parameter k und gleich dem
konstanten Verhiltnis der Abstinde m und n in der Definition
der Flache. Ihr Wert variert zwischen 0 und oo.




— 126 —

Zusammenstellung der Ergebnisse.

‘ sk ¢ | Abstande derScheitel
k la=b= e a, Y von O
S, S,
|
0 0 5 X, —8 [X,==8 0 k
S |
| l

§ 4

Schnitt des Rotationsflaichensystems mit der (xz)-Ebene
des Koordinatensystems.

Die (xz)-Ebene des Koordinatensystems schneidet jede Flache
des Rotationsflichensystems in einem Hauptschnitt. Die Achsen-
gleichung desselben erhilt man aus der auf den Mittelpunkt
transformierten Gleichung (2), indem man in ihr-y" =0 setzt;
sie lautet dann

x’2 Zr‘l _
T + 21 ==1 (7)
(1—k%)? 1—k°

Betrachten wir in dieser Gleichung k als variabeln Parameter,
so stellt sie die Schar von Kurven dar, in welchen die (xz)-Ebene
das Flachensystem schneidet, und zwar sind es Ellipsen, wenn
k <1, Hyperbeln, wenn k > 1 ist. Die eine Achse dieser Kegel-
schnitte liegt in der (x)-Achse des Koordinatensystems, der eine

Brennpunkt fillt mit dem Punkte F zusammen; die zu F ge-
2

horige Leitlinie hat die Gleichung x’ = — %—=—— a,, d. h. alle

diese Kegelschnitte haben die eine Leitlinie gemeinsam, sie wird
gebildet von der (z)-Achse des alten Koordinatensystems. Ueber
die Liange der Achsen und die verschiedenen Lagen der Scheitel
und Brennpunkte der in der (xz)-Ebene erzeugten Schnittkegel-
schnitte gibt § 3 Aufschluss.
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