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Nun ist noch die Determinante /\ zu berechnen ; nach

Gleichung (1) wird sie

1 - k2 • 0 • 0 • — s
1 — k2 o • 0

A
o

0 • 1- 00

¦s • 0 -0- s2

oder ausgerechnet

A s2 (1 —k2)2- s2 (1 — k2) - s2 k2 (1 - k2)

Nach der Transformation hat dann die Flächengleichung (1) die

folgende Form:
f (x' y' z') au x'2 + a22 y'2 + a33 z'2 -f- 2 a12 x' y' -f 2 a23 y' z'

-r2a,av'/IH x'z' + A.

Setzt man die Werte der Koeffizienten, sowie diejenigen für
und ò ein, so folgt:

2-1 ../2f(x'yV) (l-kV- + (l-k')y"H
s2k2

0

oder

s2k2
4- 2 i 2

S k +
212(l_k*)' {1_k2ï;

s2k2

1-k2
(2)

Der gesuchte Ort des Punktes P ist also eine Rotationsfläche
zweiter Ordnung, deren Mittelpunkt auf der (x)-Achse im Abstand

x=~ TT von 0 liegt, und deren Rotationsachse parallel der
-L Ji

(z)-Achse ist. Ihre Halbachsen sind
sk

a —b ö und c —r.
V7:

sk

§2.
Die verschiedenen Flächenarten des Rotationsflächensystems.

Die auf die Achsen transformierte Flächengleichung (2), die
den Parameter k enthält, stellt eine Schar von unendlich vielen

Rotationsflächen 2. Grades dar. Je nachdem nun k 1 ist, hat
>
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man es entweder mit einem Rotationsellipsoid, einem parabolischen
Zylinder oder mit einem einschaligen Rotationshyperboloïd zu
tun. Dies soll in einem kurzen Abschnitt etwas ausgeführt werden.

1. Fall: k<l.
also m «< n

In diesem Fall werden sämtliche Nenner der Flächengleichung
(2) immer einen positiven Wert haben, und wir schreiben die
Gleichung zur Abkürzung in der Form:

/2 /2 2

— + ^- + — 1
2 ' 2 I 1

a a c

Dies ist die Gleichung eines Rotationsellipso'ides.

l3j

ik^J.

A

Fig. 2.

Die Halbachsen desselben sind a

sk

s k
und c1-k'

=-; a ist immer grösser als c. Die Rotationsachse der
V l - kz

Fläche steht senkrecht auf der (x y)-Ebene, ihr Mittelpunkt liegt
auf der (x)-Achse; sein Abstand vom Koordinatenursprung 0

beträgt aQ — — Da k alle Werte zwischen 0 und 1 durch-
1 —k

laufen kann, so fällt 0' je nach der Grösse des Parameters mit
irgend einem Punkte der positiven (x)-Achse zwischen -f- s und
oo zusammen.

sk
Nun ist -> — oder a0 >> a, d. h. der alte Koor-

l_k-" i_k'
dinatenursprung 0 liegt ausserhalb der Fläche. (S. Fig. 2).
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2. Fall: k>l

also m >• n
Dann nimmt die Gleichung (2) die Form an:

2 ' 2
a a

,'2
(4)

und stellt ein einschaliges Rotationshyperboloïd dar.

\= -=£

..VI ->

Fig. 3.

Die Rotationsachse steht senkrecht auf der (xy)-Ebene.
Die (z')-Achse schneidet die Fläche nicht, die in ihr liegende

sk
imaginäre Halbachse hat die Länge c — -f z die Länge der

Halbachse a —b
sk

vV

k2-i
wo c > a wenn k >• V 2

c a „ k V/2

und c<a „ k<V/2
Der Abstand des Mittelpunktes 0' vom Ursprung 0 beträgt

u 1-k
Ferner ist

2 er liegt auf der negativen (x)-Achse.
k — 1

s k s
— >• --j oder a *> a0, d. h. der alte Koor-

1 —kz' l-kz
dinatenursprung O liegt also innerhalb der Rotationsfläche.
(S. Fig. 3).

Bern. Mitteil. 1911. Nr. 1785.
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1 0 • 0
0 0 -0
0 0 • 1

3. Fall: k l
also m n

Setzt man in der Gleichung (1) für k den Wert 1 ein, so

wird sie:
z2-2sx + s2 0 (5)

Die Determinante d wird in diesem Falle

:0

Der neue Mittelpunkt O' liegt daher im Unendlichen, und
eine Transformation der obigen Gleichung auf den Mittelpunkt
der Fläche ist nicht möglich. Wir substituieren für z z',

g

y —y' und x x'-f--.
u

Dann geht die Gleichung (5) über in

z'2=2sx' (6)
Dies ist nun die Scheitelgleichung eines parabolischen

Zylinders, dessen Erzeugende parallel der (y)-Achse sind. Der

Halbparameter p s, der Abstand des Scheitels S von der Leit-

' «r

T 1

Fig. 4.

linie — und dieser ist gleich der Entfernung des neuen Koor-
2i
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dinatenursprunges O' vom alten O; also ist die (z)-Achse die
Leitlinie der Parabel in der (xz)-Ebene.

Ferner liegt der Scheitel S in der Mitte zwischen 0 und F,
also ist F zugleich der Brennpunkt der Schnittparabel mit der

(xz)-Ebene. Die Ebene x - ist Scheiteltangentialebene des
Li

parabolischen Cylinders. (S. Fig. 4).

§ 3.

Der Ort der Mittelpunkte, Scheitel und Brennpunkte des

Rotationsflächensystems bei variablem k.
Nach § 1 liegt der Mittelpunkt O' der durch Gleichung (1)

dargestellten Flächen 2. Grades immer auf der (x)-Achse; sein
g

Abstand vom Nullpunkt a„ ^. Setzen wir für k nach-
1 —k2

einander alle zwischen 0 und oo liegenden Werte ein, so ändert
sich die Lage des Mittelpunktes 0' folgenderweise :

k ao

0 S

1

7?
2s

i + oo
oo 0

0 befindet sich der
Flächenmittelpunkt 0' im Punkte F; bei wachsendem k bewegt er sich
auf der positiven (x)-Achse ins Unendliche, für k 1 geht er
im Unendlichen auf den negativen Teil der (x)-Achse über und
nähert sich dann bei weiter zunehmendem k wieder dem

Ursprung O, den er erreicht, wenn man k den Wert oo gibt. Alle
Punkte der positiven und negativen (x)-Achse können für einen
bestimmten Wert von k Mittelpunkt einer Fläche der Schar
werden, ausgenommen diejenigen innerhalb der Strecke OF.

Wenn man zunächst vom Spezialfall k 1 absieht, so
stellt die Gleichung (1) für jeden beliebigen Parameter k eine
Rotationsfläche 2. Ordnung dar, deren Rotationsachse senkrecht
auf der (xy)-Ebene steht. Die Lage ihrer Scheitel in der (x)-Achse
wird gefunden, wenn man in der Flächengleichung (1) y z 0
setzt. Dann erhält man die quadratische Gleichung

(1— k2)x2— 2sx + s2 0.
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