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Nun ist noch die Determinante /\ zu berechnen; nach
Gleichung (1) wird sie

L—F .D .+ 0.—s

0 -1—Kk%.09. o

L= o - 0 -1- 0
| —s - 0 .0. ¥

oder ausgerechnet
A= 1—K)P—F 11—k =—-K1-k)
Nach der Transformation hat dann die Flachenglelchung (1) die
folgende Form:
ft(x'y'z)=a, = | g vy gy 2’ 42 a, X'y 4 2a, y'7
+2&13 X’Z’ + %:

Setzt man die “Werte der Koéffizienten, sowie diejenigen fir A\
und 0 ein, so folgt:

242
'y = (1= K)x (1) y o S 0
oder x'” y'? z'?
e . 212 - 212 =1 (2)
1—Kk9)* 1—k°)? 1 -k

Der gesuchte Ort des Punktes P ist also eine Rotationsfliche
zweiter Ordnung, deren Mittelpunkt auf der (x)-Achse im Abstand

X= T2 von O liegt, und deren Rotationsachse parallel der
(z)-Achse 1st. Thre Halbachsen sind
a=h= Bk s und c= ik
1—k Vi—#
§ 2.

Die verschiedenen Flichenarten des Rotationsflichensystems,

Die auf die Achsen transformierte Fliachengleichung (2), die
den Parameter k enthilt, stellt eine Schar von unendlich vielen

Rotationsflichen 2. Grades dar. Je nachdem nun ké 1 ist, hat
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man es entweder mit einem Rotationsellipsoid, einem parabolischen
Zylinder oder mit einem einschaligen Rotationshyperboloid zu
tun. Dies soll in einem kurzen Abschnitt etwas ausgefiihrt werden.

1. Fall: k<C1.

also m<n
In diesem Fall werden samtliche Nenner der Flachengleichung
(2) immer einen positiven Wert haben, und wir schreiben die
Gleichung zur Abkiirzung in der Form:

X72 yr‘-’ Zf2
(3)
o ElZ, 2
3
¥y
Die Halbachsen desselben sind a=—bh——" k9 und ¢

&

sk
= 7———; a ist immer grosser als c¢. Die Rotationsachse der

V1i—k
Flache steht senkrecht auf der (xy)-Ebene, 1hr Mittelpunkt liegt
auf der (x)-Achse; sein Abstand vom Koordinatenursprung O

betrigt a,= i 5. Da k alle Werte zwischen 0 und 1 durch-
1—k

laufen kann, so fillt O’ je nach der Grosse des Parameters mit
irgend einem Punkte der positiven (x)-Achse zwischen | s und
oo zusammen,.

: S sk
Nun 1st 5
1—k° - 1

dinatenursprung O liegt ausserhalb der Flache. (8. Fig. 2).

12 oder a, > a, d. h. der alte Koor-
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2. Fall: k>1
also m >n
Dann nimmt die Gleichung (2) die Form an:

Xl2 yr2 Z/2
i A B = ;2‘:1 4)

a a
und stellt ein einschaliges Rotationshyperboloid dar.

1" -

Die Rotationsachse steht senkrecht auf der (xy)-Ebene.
Die (z')-Achse schneidet die Fliche nicht, die in ihr liegende

imaginiare Halbachse hat die Linge c= \/—jk—, die Linge der
k® —1

Halbachse a=b = —_—281(
K2—1
wo ¢>a wenn k> \/2
ge=g 5 k== \/g
und c<a k<\/2
Der Abstand des Mittelpunktes O’ vom Ursprung O betrigt
a,= 1j = ~k—zs_—1, er liegt auf der negativen (x)-Achse.
Ferner 1st ISkk2 Sy | 2 2 oder a>a;, d. h. der alte Koor-
dinatenursprung O liegt also innerhalb der Rotationsfliche.
(S. Fig. 3).

Bern. Mitteil. 1911. Nr. 1785,
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3. Fall: k=1

also m=n
Setzt man in der Gleichung (1) fiir k den Wert 1 ein, so
wird sie:

£ —2sx+8=0 (5)
Die Determinante J wird in diesem Falle
1-0-0
d:- O o O “ O :0
0.-0-1|

Der neue Mittelpunkt O’ liegt daher im Unendlichen, und
eine Transformation der obigen Gleichung auf den Mittelpunkt
der Fliche ist nicht moglich. Wir substituieren fir z=7,

y=y und x=x' —{—g.

Dann geht die Gleichung (5) iiber in
2/° =28 %' (6)
Dies ist nun die Scheitelgleichung eines parabolischen
Zylinders, dessen Erzeugende parallel der (y)-Achse sind. Der
Halbparameter p =s, der Abstand des Scheitels S von der Leit-

Fig. 4.

linie= - und dieser ist gleich der Entfernung des neuen Koor-
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dinatenursprunges O’ vom alten O; also ist die (z)-Achse die
Leithnie der Parabel in der (xz)-Ebene.

Ferner liegt der Scheitel S in der Mitte zwischen O und F,
also ist F zugleich der Brennpunkt der Schnittparabel mit der

i S
(xz)-Ebene. Die Ebene X=‘2‘ ist Scheiteltangentialebene des
parabolischen Cylinders. (S. Fig. 4).

§ 3. :
Der Ort der Mittelpunkte, Scheitel und Brennpunkte des

Rotationsilaichensystems bei variablem k.
Nach § 1 liegt der Mittelpunkt O’ der durch Gleichung (1)
dargestellten Flichen 2, Grades immer auf der (x)-Achse; sein

Abstand vom Nullpunkt = a,= 7 - L Setzen wir fir k nach-

emander alle zwischen 0 und co liegenden Werte ein, so éndert
sich die Lage des Mittelpunktes O’ folgenderweise:

a'O
) s
—l_— 2s
V2
1 |+oo
o0 0

Fir den Parameterwert k = 0 befindet sich der Flichen-
mittelpunkt O’ im Punkte F; bei wachsendem k bewegt er sich
auf der positiven (x)-Achse ins Unendliche, fir k = 1 geht er
im Unendlichen auf den negativen Teil der (x)-Achse uiber und
niahert sich dann bei weiter zunehmendem k wieder dem Ur-
sprung O, den er erreicht, wenn man k den Wert co gibt. Alle
Punkte der positiven und negativen (x)-Achse kénnen fir einen
bestimmten Wert von k Mittelpunkt einer Fliche der Schar
werden, ausgenommen diejenigen innerhalb der Strecke OF.

Wenn man zunichst vom Spezialfall k =1 absieht, so
stellt die Gleichung (1) fir jeden beliebigen Parameter k eine
Rotationsfliche 2. Ordnung dar, deren Rotationsachse senkrecht
auf der (xy)-Ebene steht. Die Lage ihrer Scheitel in der (x)-Achse
wird gefunden, wenn man in der Flichengleichung (1) y=z=0
setzt. Dann erhilt man die quadratische Gleichung

(1 —k*x°—2sx 4 s°==0.
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