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Friedrich Meyer.

Diskussion eines Systems von Rotationsildchen
2. Grades.

§ 1

Herleitung der Gleichung des Rotationsflichensystems.

Die Gleichung des Rotationsflichensystems, welches in der
vorliegenden Arbeit diskutiert werden soll, erhilt man bei der
Losung folgender Aufgabe: Welches ist der Ort aller Punkte
1m Raum, deren Abstinde von einem festen Punkte F und von
einer festen Geraden in einem gegebenen konstanten Verhiltnis
stehen ?

Als feste Gerade wihlen wir die (z)-Achse eines rdum-
lichen, kartesischen Koordinatensystems; die (x)-Achse legen
wir durch den gegebenen Punkt ¥ und bezeichnen den Abstand
OF mit s. P sei emer der gesuchten Punkte; seine Koordinaten
bezeichnen wir mit xyz; fiir alle gesuchten Punkte P gilt
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Nun ist, PF:\/(X—S2+Y2+Z2 und PQ'—':\/X2+y2, 3.180

PF* (x—s) —|—y |—z & oder
PQ* x4y

f(xy2) =(x—s)'+y +7—k X +y)=o0
A-K)xX+(1—K) y+7—-2sx+s’=0 (1)
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Durch diese Gleichung ist der Ort aller Punkte P(xyz) bestimmt,
welche obiger Bedingung Gentige leisten; sie ist eine Gleichung
2. Grades in den drei Variablen xyz, stellt also eine Fliache 2.
Grades dar. Fir negative Werte von k bleibt die Flichen-
gleichung dieselbe, so dass nur positive k zwischen o und oo in
Betracht kommen. Betrachtet man k als verinderlichen Parameter,
der alle Werte von ¢ bis oo annimmt, so erhilt man eine Schar
von unendlich vielen Flichen 2. Grades, die im Folgenden unter-
sucht werden soll.

Die Flachengleichung (1) enthalt keine Glieder in xy, xz
oder yz; es geniigt daher eine Parallelverschiebung des Koor-
dinatensystems, um sie auf die Achsen der Fliche 2. Grades zu
transformieren. Den Mittelpunkt derselben bezeichnen wir mit
M, seine Koordinaten seien a, b, ¢,. DieInvariante d der Gleichung
(1) wird nun:

1—k* 0 .0
d= 0 1—k.0 |=(1—K)
0 - 0 .1
Schliessen wir den Fall k=1 aus, so ist ¢ von Null verschieden,
der Mittelpunkt M der Fliche liegt daher im Endlichen. Ist
dagegen k=1, so wird d =0, der Mittelpunkt der Fliche liegt
also im Unendlichen.
Die Koordinaten a, b, ¢, des Flichenmittelpunktes werden

nun.
1 —s- 0 -0 5
Bz — 0.-1—k>.0 | =+ 5
(1—K) 0. 0 -1 1—k
P { 1—k* - —s-0
(1 —k%) 0 . 0.1
1 1—k)* 0 -.—1
e B S
o 0 - 0

Der Flichenmittelpunkt M liegt also immer auf der (x)-Achse

: s
unseres Koordinatensystems und zwar um x = ;- vom Ur-
sprung O entfernt. o
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Nun ist noch die Determinante /\ zu berechnen; nach
Gleichung (1) wird sie

L—F .D .+ 0.—s

0 -1—Kk%.09. o

L= o - 0 -1- 0
| —s - 0 .0. ¥

oder ausgerechnet
A= 1—K)P—F 11—k =—-K1-k)
Nach der Transformation hat dann die Flachenglelchung (1) die
folgende Form:
ft(x'y'z)=a, = | g vy gy 2’ 42 a, X'y 4 2a, y'7
+2&13 X’Z’ + %:

Setzt man die “Werte der Koéffizienten, sowie diejenigen fir A\
und 0 ein, so folgt:

242
'y = (1= K)x (1) y o S 0
oder x'” y'? z'?
e . 212 - 212 =1 (2)
1—Kk9)* 1—k°)? 1 -k

Der gesuchte Ort des Punktes P ist also eine Rotationsfliche
zweiter Ordnung, deren Mittelpunkt auf der (x)-Achse im Abstand

X= T2 von O liegt, und deren Rotationsachse parallel der
(z)-Achse 1st. Thre Halbachsen sind
a=h= Bk s und c= ik
1—k Vi—#
§ 2.

Die verschiedenen Flichenarten des Rotationsflichensystems,

Die auf die Achsen transformierte Fliachengleichung (2), die
den Parameter k enthilt, stellt eine Schar von unendlich vielen

Rotationsflichen 2. Grades dar. Je nachdem nun ké 1 ist, hat
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