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Friedrich Meyer.

Diskussion eines Systems von Rotationsflächen

2. Grades.

§ 1.

Herleitung der Gleichung des Rotationsflächensystems.

Die Gleichung des Rotationsflächensystems, welches in der
vorliegenden Arbeit diskutiert werden soll, erhält man bei der
Lösung folgender Aufgabe: Welches ist der Ort aller Punkte
im Raum, deren Abstände von einem festen Punkte F und von
einer festen Geraden in einem gegebenen konstanten Verhältnis
stehen

Als feste Gerade wählen wir die (z)-Achse eines
räumlichen, kartesischen Koordinatensystems; die (x)-Achse legen
wir durch den gegebenen Punkt F und bezeichnen den Abstand
OF mit s. P sei einer der gesuchten Punkte; seine Koordinaten
bezeichnen wir mit xyz; für alle gesuchten Punkte P gilt

PF_ m
PQ^n_k: ; konstant.

Fig. 1.

Nun ist PF V/(x — s)2 + y2 + z2 und PQ==V/x2-f y2, ajso

PF2
_ (x — s)2 + y2 -f z2

PQ' 2 2
x +y

k oder

f(xyz):=(x-s)2 + y24-z2-k2 (x2 + y2) o

(1 -k2) x2-f-(l —k2) y2 + z2 — 2sx4-s2 (1)
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Durch diese Gleichung ist der Ort aller Punkte P(xyz) bestimmt,
welche obiger Bedingung Genüge leisten; sie ist eine Gleichung
2. Grades in den drei Variablen xyz, stellt also eine Fläche 2.

Grades dar. Für negative Werte von k bleibt die
Flächengleichung dieselbe, so dass nur positive k zwischen o und oo in
Betracht kommen. Betrachtet man k als veränderlichen Parameter,
der alle Werte von o bis oo annimmt, so erhält man eine Schar
von unendlich vielen Flächen 2. Grades, die im Folgenden untersucht

werden soll.
Die Flächengleichung (1) enthält keine Glieder in xy, xz

oder yz; es genügt daher eine Parallelverschiebung des

Koordinatensystems, um sie auf die Achsen der Fläche 2. Grades zu
transformieren. Den Mittelpunkt derselben bezeichnen wir mit
M, seine Koordinaten seien a0 b0 c0. Die Invariante ô der Gleichung
(1) wird nun:

0
1-
0

-k2 • 0 -0
• 1—k2-0

0 • 0 -1
:(l-k2)2\2

Schliessen wir den Fall k 1 aus, so ist ô von Null verschieden,
der Mittelpunkt M der Fläche liegt daher im Endlichen. Ist
dagegen k 1, so wird ô 0, der Mittelpunkt der Fläche liegt
also im Unendlichen.

Die Koordinaten a„ b0 c„ des Flächenmittelpunktes werden

nun:

a„
1

o —

(1-k2)2

b„ 1
o —

(1-k2)2

c„
1

(1-k2)1

- s • 0 • 0

0-1 -k2. 0

0- 0 • 1

1 -k2 s 0
0 • 0 •0
0 • 0 • 1

(1 -k2)2.
0 •

0 ¦

1-k2
0

0

• -1
0 0

Der Flächenmittelpunkt M liegt also immer auf der (x)-Achse
g

unseres Koordinatensystems und zwar um x — 2- vom
Ursprung O entfernt.
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Nun ist noch die Determinante /\ zu berechnen ; nach

Gleichung (1) wird sie

1 - k2 • 0 • 0 • — s
1 — k2 o • 0

A
o

0 • 1- 00

¦s • 0 -0- s2

oder ausgerechnet

A s2 (1 —k2)2- s2 (1 — k2) - s2 k2 (1 - k2)

Nach der Transformation hat dann die Flächengleichung (1) die

folgende Form:
f (x' y' z') au x'2 + a22 y'2 + a33 z'2 -f- 2 a12 x' y' -f 2 a23 y' z'

-r2a,av'/IH x'z' + A.

Setzt man die Werte der Koeffizienten, sowie diejenigen für
und ò ein, so folgt:

2-1 ../2f(x'yV) (l-kV- + (l-k')y"H
s2k2

0

oder

s2k2
4- 2 i 2

S k +
212(l_k*)' {1_k2ï;

s2k2

1-k2
(2)

Der gesuchte Ort des Punktes P ist also eine Rotationsfläche
zweiter Ordnung, deren Mittelpunkt auf der (x)-Achse im Abstand

x=~ TT von 0 liegt, und deren Rotationsachse parallel der
-L Ji

(z)-Achse ist. Ihre Halbachsen sind
sk

a —b ö und c —r.
V7:

sk

§2.
Die verschiedenen Flächenarten des Rotationsflächensystems.

Die auf die Achsen transformierte Flächengleichung (2), die
den Parameter k enthält, stellt eine Schar von unendlich vielen

Rotationsflächen 2. Grades dar. Je nachdem nun k 1 ist, hat
>
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