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Friedrich Meyer.

Diskussion eines Systems von Rotationsflächen

2. Grades.

§ 1.

Herleitung der Gleichung des Rotationsflächensystems.

Die Gleichung des Rotationsflächensystems, welches in der
vorliegenden Arbeit diskutiert werden soll, erhält man bei der
Lösung folgender Aufgabe: Welches ist der Ort aller Punkte
im Raum, deren Abstände von einem festen Punkte F und von
einer festen Geraden in einem gegebenen konstanten Verhältnis
stehen

Als feste Gerade wählen wir die (z)-Achse eines
räumlichen, kartesischen Koordinatensystems; die (x)-Achse legen
wir durch den gegebenen Punkt F und bezeichnen den Abstand
OF mit s. P sei einer der gesuchten Punkte; seine Koordinaten
bezeichnen wir mit xyz; für alle gesuchten Punkte P gilt

PF_ m
PQ^n_k: ; konstant.

Fig. 1.

Nun ist PF V/(x — s)2 + y2 + z2 und PQ==V/x2-f y2, ajso

PF2
_ (x — s)2 + y2 -f z2

PQ' 2 2
x +y

k oder

f(xyz):=(x-s)2 + y24-z2-k2 (x2 + y2) o

(1 -k2) x2-f-(l —k2) y2 + z2 — 2sx4-s2 (1)
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Durch diese Gleichung ist der Ort aller Punkte P(xyz) bestimmt,
welche obiger Bedingung Genüge leisten; sie ist eine Gleichung
2. Grades in den drei Variablen xyz, stellt also eine Fläche 2.

Grades dar. Für negative Werte von k bleibt die
Flächengleichung dieselbe, so dass nur positive k zwischen o und oo in
Betracht kommen. Betrachtet man k als veränderlichen Parameter,
der alle Werte von o bis oo annimmt, so erhält man eine Schar
von unendlich vielen Flächen 2. Grades, die im Folgenden untersucht

werden soll.
Die Flächengleichung (1) enthält keine Glieder in xy, xz

oder yz; es genügt daher eine Parallelverschiebung des

Koordinatensystems, um sie auf die Achsen der Fläche 2. Grades zu
transformieren. Den Mittelpunkt derselben bezeichnen wir mit
M, seine Koordinaten seien a0 b0 c0. Die Invariante ô der Gleichung
(1) wird nun:

0
1-
0

-k2 • 0 -0
• 1—k2-0

0 • 0 -1
:(l-k2)2\2

Schliessen wir den Fall k 1 aus, so ist ô von Null verschieden,
der Mittelpunkt M der Fläche liegt daher im Endlichen. Ist
dagegen k 1, so wird ô 0, der Mittelpunkt der Fläche liegt
also im Unendlichen.

Die Koordinaten a„ b0 c„ des Flächenmittelpunktes werden

nun:

a„
1

o —

(1-k2)2

b„ 1
o —

(1-k2)2

c„
1

(1-k2)1

- s • 0 • 0

0-1 -k2. 0

0- 0 • 1

1 -k2 s 0
0 • 0 •0
0 • 0 • 1

(1 -k2)2.
0 •

0 ¦

1-k2
0

0

• -1
0 0

Der Flächenmittelpunkt M liegt also immer auf der (x)-Achse
g

unseres Koordinatensystems und zwar um x — 2- vom
Ursprung O entfernt.
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Nun ist noch die Determinante /\ zu berechnen ; nach

Gleichung (1) wird sie

1 - k2 • 0 • 0 • — s
1 — k2 o • 0

A
o

0 • 1- 00

¦s • 0 -0- s2

oder ausgerechnet

A s2 (1 —k2)2- s2 (1 — k2) - s2 k2 (1 - k2)

Nach der Transformation hat dann die Flächengleichung (1) die

folgende Form:
f (x' y' z') au x'2 + a22 y'2 + a33 z'2 -f- 2 a12 x' y' -f 2 a23 y' z'

-r2a,av'/IH x'z' + A.

Setzt man die Werte der Koeffizienten, sowie diejenigen für
und ò ein, so folgt:

2-1 ../2f(x'yV) (l-kV- + (l-k')y"H
s2k2

0

oder

s2k2
4- 2 i 2

S k +
212(l_k*)' {1_k2ï;

s2k2

1-k2
(2)

Der gesuchte Ort des Punktes P ist also eine Rotationsfläche
zweiter Ordnung, deren Mittelpunkt auf der (x)-Achse im Abstand

x=~ TT von 0 liegt, und deren Rotationsachse parallel der
-L Ji

(z)-Achse ist. Ihre Halbachsen sind
sk

a —b ö und c —r.
V7:

sk

§2.
Die verschiedenen Flächenarten des Rotationsflächensystems.

Die auf die Achsen transformierte Flächengleichung (2), die
den Parameter k enthält, stellt eine Schar von unendlich vielen

Rotationsflächen 2. Grades dar. Je nachdem nun k 1 ist, hat
>
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man es entweder mit einem Rotationsellipsoid, einem parabolischen
Zylinder oder mit einem einschaligen Rotationshyperboloïd zu
tun. Dies soll in einem kurzen Abschnitt etwas ausgeführt werden.

1. Fall: k<l.
also m «< n

In diesem Fall werden sämtliche Nenner der Flächengleichung
(2) immer einen positiven Wert haben, und wir schreiben die
Gleichung zur Abkürzung in der Form:

/2 /2 2

— + ^- + — 1
2 ' 2 I 1

a a c

Dies ist die Gleichung eines Rotationsellipso'ides.

l3j

ik^J.

A

Fig. 2.

Die Halbachsen desselben sind a

sk

s k
und c1-k'

=-; a ist immer grösser als c. Die Rotationsachse der
V l - kz

Fläche steht senkrecht auf der (x y)-Ebene, ihr Mittelpunkt liegt
auf der (x)-Achse; sein Abstand vom Koordinatenursprung 0

beträgt aQ — — Da k alle Werte zwischen 0 und 1 durch-
1 —k

laufen kann, so fällt 0' je nach der Grösse des Parameters mit
irgend einem Punkte der positiven (x)-Achse zwischen -f- s und
oo zusammen.

sk
Nun ist -> — oder a0 >> a, d. h. der alte Koor-

l_k-" i_k'
dinatenursprung 0 liegt ausserhalb der Fläche. (S. Fig. 2).
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2. Fall: k>l

also m >• n
Dann nimmt die Gleichung (2) die Form an:

2 ' 2
a a

,'2
(4)

und stellt ein einschaliges Rotationshyperboloïd dar.

\= -=£

..VI ->

Fig. 3.

Die Rotationsachse steht senkrecht auf der (xy)-Ebene.
Die (z')-Achse schneidet die Fläche nicht, die in ihr liegende

sk
imaginäre Halbachse hat die Länge c — -f z die Länge der

Halbachse a —b
sk

vV

k2-i
wo c > a wenn k >• V 2

c a „ k V/2

und c<a „ k<V/2
Der Abstand des Mittelpunktes 0' vom Ursprung 0 beträgt

u 1-k
Ferner ist

2 er liegt auf der negativen (x)-Achse.
k — 1

s k s
— >• --j oder a *> a0, d. h. der alte Koor-

1 —kz' l-kz
dinatenursprung O liegt also innerhalb der Rotationsfläche.
(S. Fig. 3).

Bern. Mitteil. 1911. Nr. 1785.
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1 0 • 0
0 0 -0
0 0 • 1

3. Fall: k l
also m n

Setzt man in der Gleichung (1) für k den Wert 1 ein, so

wird sie:
z2-2sx + s2 0 (5)

Die Determinante d wird in diesem Falle

:0

Der neue Mittelpunkt O' liegt daher im Unendlichen, und
eine Transformation der obigen Gleichung auf den Mittelpunkt
der Fläche ist nicht möglich. Wir substituieren für z z',

g

y —y' und x x'-f--.
u

Dann geht die Gleichung (5) über in

z'2=2sx' (6)
Dies ist nun die Scheitelgleichung eines parabolischen

Zylinders, dessen Erzeugende parallel der (y)-Achse sind. Der

Halbparameter p s, der Abstand des Scheitels S von der Leit-

' «r

T 1

Fig. 4.

linie — und dieser ist gleich der Entfernung des neuen Koor-
2i
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dinatenursprunges O' vom alten O; also ist die (z)-Achse die
Leitlinie der Parabel in der (xz)-Ebene.

Ferner liegt der Scheitel S in der Mitte zwischen 0 und F,
also ist F zugleich der Brennpunkt der Schnittparabel mit der

(xz)-Ebene. Die Ebene x - ist Scheiteltangentialebene des
Li

parabolischen Cylinders. (S. Fig. 4).

§ 3.

Der Ort der Mittelpunkte, Scheitel und Brennpunkte des

Rotationsflächensystems bei variablem k.
Nach § 1 liegt der Mittelpunkt O' der durch Gleichung (1)

dargestellten Flächen 2. Grades immer auf der (x)-Achse; sein
g

Abstand vom Nullpunkt a„ ^. Setzen wir für k nach-
1 —k2

einander alle zwischen 0 und oo liegenden Werte ein, so ändert
sich die Lage des Mittelpunktes 0' folgenderweise :

k ao

0 S

1

7?
2s

i + oo
oo 0

0 befindet sich der
Flächenmittelpunkt 0' im Punkte F; bei wachsendem k bewegt er sich
auf der positiven (x)-Achse ins Unendliche, für k 1 geht er
im Unendlichen auf den negativen Teil der (x)-Achse über und
nähert sich dann bei weiter zunehmendem k wieder dem

Ursprung O, den er erreicht, wenn man k den Wert oo gibt. Alle
Punkte der positiven und negativen (x)-Achse können für einen
bestimmten Wert von k Mittelpunkt einer Fläche der Schar
werden, ausgenommen diejenigen innerhalb der Strecke OF.

Wenn man zunächst vom Spezialfall k 1 absieht, so
stellt die Gleichung (1) für jeden beliebigen Parameter k eine
Rotationsfläche 2. Ordnung dar, deren Rotationsachse senkrecht
auf der (xy)-Ebene steht. Die Lage ihrer Scheitel in der (x)-Achse
wird gefunden, wenn man in der Flächengleichung (1) y z 0
setzt. Dann erhält man die quadratische Gleichung

(1— k2)x2— 2sx + s2 0.
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Durch Auflösen nach x ergibt sich hieraus

s s
und

1 1-fk 2 1-k
Dies sind die Abstände der Scheitel Sj und S2 vom Ursprung 0.
Variiert man k, so ändern sich die Stellungen der Scheitel nach

folgender Tabelle :

k xl x2

0 S

S

S

1 ~r oo2

oo 0 0

Für k 0 fallen die Scheitel Sx und S2 im Punkte F zusammen,
die Fläche 2. Grades reduziert sich auf den festen Punkt F.
Durchläuft k die Werte von 0 bis 1, so stellt die Flächengleichung

stets ein Rotationsellipsoid dar; bei zunehmendem Werte
von k nähert sich dessen einer Scheitel Sx dem Mittelpunkte
der Strecke OF, der andere, S2, rückt gegen den unendlich
fernen Punkt der positiven (x)-Achse. Im Spezialfall k 1 geht
die Fläche 2. Ordnung in den parabolischen Cylinder über, dessen

g
eine Scheitel im Unendlichen, der andere im Abstand x -g-
von 0 liegt. Ueberschreitet k den Wert 1, so geht der Scheitel
S2 der Rotationsfläche im Unendlichen auf den negativen Teil
der (x)-Achse über und rückt mit wachsendem k auf derselben
wieder ins Endliche, indem er sich immer mehr dem Nullpunkt
O nähert, bis er für k oo mit ihm zusammenfällt. Der Scheitel
Sx wandert in der bisherigen Richtung weiter gegen 0. Im
Intervall 1 <C k •< oo handelt es sich immer um einschalige
Rotationshyperboloide ; das Hyperboloid k oo reduziert sich
auf die ursprüngliche (z)-Achse.

Die Längen der Halbachsen der Rotationsflächen variieren
zwischen 0 (für k 0 und k — oo) und oo (für k 1).

Betrachten wir nun die in der (x)-Achse hegenden
Brennpunkte fj und f2 des Flächensystems! Nach der Gleichung (2)

betragen ihre Abstände von 0' im neuen Koordinatensystem
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i'=VV-c2 \/X' V »z- ol \ s-r, t +sk" s k
_

s k
2^2 — -, 71 — '— Ï 7J(l—k'y i — k" ~i-r

Nun ist der Abstand des Punktes F vom Ursprung 0' im neuen
Koordinatensystem :

sk

1-k1-k'
Durch Vergleichung dieses Abstandes mit denjenigen der
Brennpunkte ft und f2 ist ersichtlich, dass der eine Brennpunkt fx der
Rotationsfläche in dem festen Punkte F liegt. Da F in Bezug
auf das ursprüngliche Koordinatensystem seine alte Lage stets
beibehält, so bleibt auch der Ort des einen Brennpunktes fx aller
Rotationsflächen unverändert, F ist der eine Brennpunkt aller
Rotationsflächen.

Der zweite Brennpunkt, f2, steht um

s k s s k" s (1 -f- k")
X, :

1-k2 1 — k2 ' 1-k2 1 —k2
vom Ursprung O des alten Systems ab. Bei variablem Parameter
k bewegt sich daher f2 auf der positiven (x)-Achse von F nach

-j- oo, wenn k die Werte von 0 bis 1 durchläuft ; überschreitet
k den Wert 1, so geht der zweite Brennpunkt im Unendlichen
von der positiven (x)-Achse auf die negative über, und wenn k
unendlich gross wird, so nähert er sich dem alten Nullpunkt
bis zum Abstand x., — s.

Nach obigem beträgt die lineare Exzentrizität der Rota-
sk2

tionsfläche e T. Für k 0 ist e 0. Während k bis
1-k2

1 anwächst, also für die Schar der Rotationsellipsoide, nimmt
sie zu bis oo, für die Hyperboloide wird sie wieder kleiner und
im Grenzfall k oo wird e s.

Die numerische Exzentrizität der Rotationsfläche wird
gegeben durch den Ausdruck:

e sk sk
k.

a 1 - k2 '
1 — k2

Sie ist stets gleich dem variablen Parameter k und gleich dem
konstanten Verhältnis der Abstände m und n in der Definition
der Fläche. Ihr Wert variiert zwischen 0 und oo.
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Zusammenstellung der Ergebnisse.
.—.

k
sk

a-b=l-k2
S

Abstände der Scheitel
von 0 - ^2 e

aà° 1-k2
S, s2 1-k2

0 0 S Xj S x2=s 0 k

1 oo -f- oo
s

~"2 ~r oo oo k

oo 0 0 0 0 S k

§ 4.

Schnitt des Rotationsflächensystems mit der (xz)-Ebene
des Koordinatensystems.

Die (xz)-Ebene des Koordinatensystems schneidet jede Fläche
des Rotationsflächensystems in einem Hauptschnitt. Die
Achsengleichung desselben erhält man aus der auf den Mittelpunkt
transformierten Gleichung (2), indem man in ihr • y' 0 setzt ;

sie lautet dann

s2k2
+

(1- -k2)2

s2k2

1-k2

(7)

Betrachten wir in dieser Gleichung k als variabeln Parameter,
so stellt sie die Schar von Kurven dar, in welchen die (xz)-Ebene
das Flächensystem schneidet, und zwar sind es Ellipsen, wenn
k <C 1, Hyperbeln, wenn k > 1 ist. Die eine Achse dieser
Kegelschnitte liegt in der (x)-Achse des Koordinatensystems, der eine

Brennpunkt fällt mit dem Punkte F zusammen; die zu F

gehörige Leitlinie hat die Gleichung x' =—a0 d. h. alle

diese Kegelschnitte haben die eine Leitlinie gemeinsam, sie wird
gebildet von der (z)-Achse des alten Koordinatensystems. Ueber
die Länge der Achsen und die verschiedenen Lagen der Scheitel
und Brennpunkte der in der (xz)-Ebene erzeugten Schnittkegelschnitte

gibt § 3 Aufschluss.
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Der spezielle Fall k — 1 wird nach Gleichung (5.) diskutiert;

die Schnittkurve nimmt hier die Form einer Parabel an,
deren Gleichung durch

z'2 2 sx' (6.)

gegeben ist.
Nach dem Bisherigen lässt sich nun die Schnittkurvenschar

in der (xz)-Ebene folgenderweise darstellen:

t a

t ii^

Fig. 5.

Betrachten wir noch die in der (xz)-Ebene liegende Halbachse

c der Rotationsfläche Für die Ellipsoïde ist ihre Länge¬
st

c Die Koordinaten der beiden Scheitel sind daher:
V7! k'

x an 5° 1 — k2
und + sk

V/1 —k2
(a.)

Wird der Parameter k aus diesen beiden Ausdrücken
eliminiert, so erhält man die Gleichung

z — sx -j- s =o oder z s (x — s) (b.)

Sie stellt eine Parabel dar als Ort der Scheitelpunkte aller
Halbachsen c, die in der (xz)-Ebene liegen. Die (x)-Achse ist
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Parabelachse, der Punkt F Scheitelpunkt. Setzt man für
x — x' -4- s und für z z', so hat man die Scheitelgleichung
der Parabel:

z'" — sx'.
s 1

Der Halbparameter p — — der Strecke OF. Der Ab-

s 1
stand des Brennpunktes vom Parabelscheitel — — — der

Strecke OF.

Fig. 6.

Ist k >¦ 1, so dass die Rotationsfläche durch ein Hyperbo-
sk

loi'd dargestellt wird, so misst die imaginäre Halbachse c •

Die Scheitelkoordinaten werden also

s s

VV-l"

x 2 k'-l und z
sk

y/k2 — 1

Durch Elimination von k aus diesen zwei Ausdrücken erhält
man die Gleichung einer linksseitigen Parabel, nämlich

2 2 / -,
Z S — SX — S (X — S)

oder, wenn man für z z' und für x x' -4- s einsetzt,
Z'2 =-_ _ SX'.

Der Punkt F ist auch Parabelscheitel, der Halbparameter
s

p Diese Parabel ist mit der obigen kongruent, sie

ist nur um 180° gedreht. Die (z)-Achse wird von der Kurve in
+ s geschnitten, d. h. das Hyperboloid k oo, dessen Mittelpunkt

mit dem Nullpunkt 0 zusammenfällt, besitzt eine Halbachse

c s (und a b o). Nur der links von der (z)-Achse
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liegende Teil dieser Parabel ist Ort von reellen Scheiteln der
imaginären Halbachsen der Hyperboloide, da die Punkte innerhalb

der Strecke OF nie Mittelpunkt der Rotationsflächen werden
(S. Fig. 6).

§5.
Schnitt des Rotationsflächensystems mit der (xy)-Ebene.

Auch die (xy)-Ebene des Koordinatensystems schneidet jede
Fläche des Systems in einem Hauptschnitt. Die Achsengleichung
desselben erhalten wir direkt aus der transformierten
Flächengleichung (2.), indem wir in ihr z' o setzen; sie wird dann:

/2 ,2

+ tä— =1 (8-)2,2 I 2,2s k s k
(1—k2)2 (1-k2)2

Setzen wir hierin für 2 a0 und für k —
1 — k a0

so geht sie über in
x'2 + y'2 a„ (a„ - s) (8a.)

Variiert man k von o bis oo, so durchläuft a0 alle Werte
von — oo bis -f- oo, ausgenommen diejenigen von o bis s. Für
alle möglichen Werte von a0 wird daher die rechte Seite der
Gleichung (8a) positiv, sie stellt also immer einen Kreis dar.
Der Ort aller Punkte in der (xy)-Ebene, deren Abstände von
zwei festen Punkten, F und 0 (dem Fusspunkt der z-Achse), in
einem gegebenen, konstanten Verhältnis stehen, ist also ein
Kreis. Für variables k kann dessen Zentrum 0' mit allen
Punkten der positiven und negativen (x)-Achse, ausgenommen
mit denjenigen zwischen dem Nullpunkt 0 und dem festen Punkt
F, zusammenfallen. Die Scheitel S1 der einem positiven a0

entsprechenden Schnittkreise befinden sich stets zwischen den Ab-
sständen — und s von 0, die Scheitel S/ der einem negativen

Werte von a0 entsprechenden Schnittkreise dagegen zwischen

dem Nullpunkt 0 und dem Abstand A Die Radien der
2

Kreise werden für a0 + oo unendlich gross; die entsprechenden
Bern. Mitteil. 1911. Kr. 1786
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Kreisbogen, welche beide durch den Punkt x — gehen, sind
Li

daher Geraden von der Gleichung x
s

(S. Fig. 7).

Alle Schnittkreise in der (xy)-Ebene bilden ein Kreis-
büschel 2. Ordnung mit den Grenzpunkten 0 und F ; die

s
(x)-Achse bildet die Zentrale und die Gerade x — die Chor-

2
dale desselben.

\

/
Fig. 7.

Die Kreise K' mit dem Zentrum auf der positiven (x)-Achse
entsprechen dem Schnitt der (xy)-Ebene mit den
Rotationsellipsoiden; die Kreise K" mit ihrem Zentrum auf der negativen
(x)-Achse sind die Schnitte der (xy)-Ebene mit den Rotations-

s
hyperboloïden, und die Chordale g mit der Gl. x — ist der

Li

Schnitt der (xy)-Ebene mit dem parabolischen Zylinder, nämlich
dessen Scheitelerzeugende. Für
den ' Parameter k o wird a0 — s und der Kreisradius r o

» » k l»a0=: + oo> » r +;oo
» » k oo»a0 o » » r=-o

Unter der Schar der Schnittkurven gibt es also zwei Kreise vom
Radius Null, die Grenzpunkte F und 0.
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Aus Gleichung (8a) ist ferner ersichtlich, dass entgegengesetzt

gleich grossen Werten von a0 nicht gleich grosse
Kreisradien entsprechen; der dem positiven a0 entsprechende Radius
ist immer kleiner als der dem negativen a0 entsprechende, wie
sich auch aus Fig. 7 ergibt.

Untersuchen wir noch die Lageveränderung der in der

(xy)-Ebene liegenden Kreisscheitel N und N'! Ihre Koordinaten
sind:

s sk
x — a0 — 5 und y + ~

1 — k2 J -1-k2
Durch Elimination des Parameters k aus diesen Ausdrücken

erhalten wir die Bewegungsgleichung für die beiden Punkte,
nämlich

2 2 /„ ->

x — y — sx o (a.)

Sie stellt eine Hyperbel dar; die Koordinaten des Mittel-
s

punktes derselben sind | — und tj o, und die auf den
Li

Mittelpunkt transformierte Gleichung hat die Form:

,2 ,2x' — y'
s

T (b.)

Fig. 8.

Es ist also eine gleichseitige Hyperbel mit der Halbachse
g

a 3= —, und diese Kurve gibt uns den Ort aller Kreisscheitel
Li

N und N' in der (xy)-Ebene bei veränderlichem Parameter k.
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§6.
Der Hauptschnitt der Rotationsfläche parallel
zur (yz)-Ebene bei variablem Parameter k.

Ersetzen wir in der auf den Mittelpunkt transformierten
FIächengleichung

,1 ,2 ,2

\Li.) 2i 2 I 2i 2 I ° "2, 2
S k 2, 2

s k 2, 2
s k

(1 —k2)2 (1 —k2)2 1-k"'
x' durch o, so erhalten wir den Hauptschnitt der Fläche 2

Grades parallel zur (yz)-Ebene, nämlich

2, 2
S k 2, 2

s k
1 (9)

(1-k2)2 l-kJ
Die Gleichung (9) stellt eine Ellipse oder eine Hyperbel
dar, je nachdem k^l ist; dies ist die Kurve, in welcher die

durch Gleichung (1) gegebene Rotationsfläche die neue
Koordinatenebene (y'z') schneidet.

Fig. 9.

Die Halbachsen der Ellipse sind :

sk

Fig. 9 a.

und sk
c wo c <; al-ka Vl-k2

Für alle Werte von k zwischen 0 und 1 sind die zur (yz)-Ebene
parallelen Hauptschnitte der Rotationsflächen Ellipsen, deren

grosse Achse in der (xy)-Ebene und deren kleinere Achse in der
(xz)-Ebene liegt. Für k 0 werden beide Achsen einander gleich,
nämlich a c o, die Hauptschnittellipse reduziert sich auf
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einen Punkt, der im Abstand x 4- s vom Ursprung 0 auf der
(x)-Achse liegt. Bei zunehmendem k entfernt sich der Mittelpunkt

der Hauptschnittellipse auf der positiven (x)-Achse immer
weiter vom alten Ursprung 0 und für k 1 wird sein Abstand
unendlich gross. Gleichzeitig wachsen auch die Ellipsenhalbachsen

a und c an und werden zuletzt ebenfalls unendlich gross.
Für alle Parameterwerte k > 1 stellt die Gleichung (9)

g k
eine Hyperbel dar, deren reelle Halbachse a —2 undderen

sk
imaginäre Halbachse c ist. Dabei istvV-l

c > a, wenn k >• \J~2

c — a, wenn k \J~2

c -< a, wenn k <C j~2

Die Asymptotengleichungen dieser Hyperbeln sind :

z'=± — y' oder z'^ + Vk2— 1 • y'
ci

Den halben Asymptotenwinkel (p erhält man aus der Formel :

tg q> V k — 1 Für das Rotationshyperboloid k — 1 befindet
sich der zur (yz)-Ebene parallele Hauptschnitt im Abstand
x — oc vom Koordinatenursprung 0 ; die Asymptoten der
Schnitthyperbel in —oo haben die Gleichung z' 0 (doppelt), und
der halbe Asymptotenwinkel cp wird 0, d. h. die Asymptoten
fallen zusammen in die oo ferne Gerade der (xy)-Ebene, und
der Hauptschnitt selber geht in diese Gerade über. Wächst k,
so sind die Asymptoten voneinander verschieden; durchläuft k
alle Werte von 1 bis oo, so nimmt der halbe Asymptotenwinkel
if alle Werte von 0° bis 90° an, und für k — oo fallen die

Asymptoten wieder zusammen, da y' + -, — 0 wird ;

Vk2-1
die Asymptoten des Hauptschnittes des Hyperboloides k oo,
welches sich auf die (z)-Achse reduziert, werden von der (z)-Achse
selber gebildet.

Alle Mittelpunkte der Hauptschnitthyperbeln parallel zur
(yz)-Ebene der Rotationshyperboloïde befinden sich auf der

negativen (x)-Achse. Ist der Abstand der Schnitthyperbel vom
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Ursprung O x 0, so reduziert sich der Hauptschnitt auf die

(z)-Achse; dies ist der Fall, wenn k oo gross ist. Nimmt
k endliche Werte an, die aber noch grösser sind als \J~2, so ist
der halbe Asymptotenwinkel der Schnitthyperbel grösser als 45°
aber kleiner als 90°, und der Abstand der Schnitthyperbel vom

g
Ursprung O beträgt absolut genommen weniger als a0 — ^1-k

s /—
— s. Ist k y 2 so ist der Abstand x — — s und

1 — 2

der halbe Asymptotenwinkel cp — 45°, der Hauptschnitt ist also
eine gleichseitige Hyperbel. Ist 1 <C k <; \l~2, so kann der
Abstand der Schnitthyperbel von der (yz)-Ebene alle Werte von
x — s bis x — oo durchlaufen, für k l wird er unendlich

gross; der halbe Asymptotenwinkel ff wird immer kleiner, und
für k 1 ist er <p 0. Der Hauptschnitt im Abstand x — oo

reduziert sich auf die unendlich ferne Gerade der (x y)-Ebene.
Die Brennpunkte ix und f2 aller Schnittkegelschnitte parallel

zur (yz)Ebene liegen in der (xy)-Ebene. Ihre Koordinaten im
alten Koordinatensystem sind :

sj- s2k2 sk und nach

(l_k2)2 i_k2 "1-k2 §! 1-k2
Eliminiert man aus diesen beiden Ausdrücken den veränderlichen

Parameter k, so erhält man den geometrischen Ort der

Brennpunkte aller dieser Schnittkegelschnitte durch die Gleichung
x + y + s oder zerlegt

x — y s und x -4- y — s (10)
Die Gleichungen (10) stellen zwei Gerade in der (xy)-Ebene dar,
die symmetrisch zur (x)-Achse liegen, durch den Punkt F gehen
und rechtwinklig aufeinanderstellen, also mit der (x)-Achse je
einen Winkel von 45° bilden. Auf diesen beiden Geraden gt
und g2 liegen alle Brennpunkte fx und f2 der zur (y z)-Ebene
parallelen Hauptschnitte der Rotationsflächen.

Durchläuft k alle Werte von 0 bis oo, so gehen die zur
(yz)-Ebene parallelen Hauptschnitte, die durch Gleichung (9)

gegeben sind, successive in einander über und bilden eine neue
Fläche. Ihre Gleichung erhält man durch Elimination des Para-

g
meters k aus der Gleichung (9.) und dem Ausdruck a„— 2

1 — k
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welcher den Abstand der Ebene des Hauptschnittes vom Koor-
dinatenursprung 0 darstellt. Als Resultat dieser Elimination
ergibt sich die Gleichung:

s y'2 + aoz'2 + aos (s—ao) — °-
In dieser Gleichung ist s eine Konstante; a0 dagegen kann

als laufende Koordinate betrachtet werden, da es bei veränderlichem

k alle Werte der positiven und negativen (x)-Achse durchlaufen

kann, ausgenommen diejenigen der Strecke OF. Substituiert

man daher für a0 x, ersetzt ferner y' wieder durch y
und z' durch z, so wird obige Gleichung:

xz — s (x —y -4- s" x 0. (11)
Durch sie ist der Ort aller Hauptschnitte parallel der (yz)-Ebene
für sämtliche Rotationsflächen bestimmt. Sie stellt eine Fläche
3. Ordnung in den rechtwinkligen Koordinaten x, y, z dar, die

symmetrisch liegt zu der (xy)- und (xz)-Ebene. Die Diskussion
dieser Hauptschnittfläche 3. Grades erfolgt in § 12.

§7.
Die Schnitte der Rotationsflächenschar mit einer

Ebene durch die (x)-Achse.
Es werde durch die (x)-Achse unseres Koordinatensystems

(xyz) eine Ebene gelegt, welche mit der (xy)-Ebene einen
beliebigen Winkel tp bildet; wir betrachten sie als neue
Koordinatenebene (x'y') und transformieren nun die Gleichung des
betrachteten Rotationsflächensystems
(1.) (1-k2) x2-f-(l—k2)y2 + z2 — 2sx + s2=0
auf das neue Koordinatensystem (x'y'z'). Dabei gelten folgende
Transformationsformeln :

y y' cos ep — %' sin rp

z y' sin cp Ar z' cos cp

x x'
Die Gleichung (1.) geht dann über in

(1- k2)x'2 + (1-k2 cos'-V) y'2 + (1-k2 sin2 <p) z'2

-f k2 sin 2 fp .y' z' — 2s x' -f s2 0

Um die Gleichung der Schnittkurven des Rotationsflächensystems

mit der (x' y')-Ebene zu erhalten, ist in der letzten
Gleichung z' 0 zu setzen, und wir erhalten als Gleichung des

Schnittkurvensystems
(1—k2)x'2 + (l—k2 cos2 <p) y'2 — 2sx' 4- s2 0 (12)
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Dies ist eine Gleichung zweiten Grades, jede Ebene durch
die (x)-Achse schneidet also das Rotationsflächensystem im
allgemeinen in einem Kegelschnitt.

Die Gleichung (12) enthält zwei Parameter, nämlich k und </.

Wir wollen zunächst zwei Spezialfälle betrachten, indem wir
7tvorerst <p 0 und dann tp — wählen.
Li

Für f 0 geht die Kegelschnittgleichung (12) über in

(1-k2) x'2 Ar (1-k2) y'2 - 2 sx' + s2 0
und wenn man diese Gleichung durch die Transformationsformeln

g
x' x" A- -—T2 und y' y" auf die Normalform bringt, so erhält

J. IV

man die Kreisbüschelgleichung (8) in § 5. Diese stellt den Schnitt
des Rotationsflächensystems mit der (xy)-Ebene dar (s. Fig. 7).

TT
Setzt man für <p — und wendet die vorigen Transfor-

Li

mationsformeln an, so geht die Gleichung (12) über in die Gleichung
(7) § 4, welche das Schnittkurvensystem der Rotationsflächen in
der (xz)-Ebene darstellt (Fig 5).

Wir untersuchen nun das durch Gleichung (12) dargestellte
Kegelschnittsystem für einen bestimmten, konstanten Winkel <p,

der zwischen 0° und 90° liegt; der Parameter k dagegen soll
alle Werte von Null bis oo durchlaufen.

Sollen vorerst die Asymptotenrichtungen der Kegelschnitte
bestimmt werden, so muss man die Glieder 2. Grades gleich
Null setzen, also

(1-k2) x'2 + (1-k2 cos2 cp) y'2 0 oder

y'== + V r-ir-V ' x' (a)
1—k cos <p

Die Asymptoten der Kegelschnitte sind reell, wenn Zähler
und Nenner dieser Wurzel entweder beide negativ oder beide

positiv sind. Dies ist der Fall, wenn

a) k" < 1 und k cos" tp > 1 oder

k < 1 und k > cos tp

was unmöglich ist, da immer grösser als 1 ist.
cos tp
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b) wenn k >- 1 und k cos cp <C 1 oder

k >> 1 und k < also cos w <C -r-cos cp k
Dieser letzte Fall ist möglich. Für Werte von k, die grösser

als 1 aber kleiner als sind, besitzt der durch Gleichung (12)
COS ff

dargestellte Kegelschnitt reelle Asymptoten, die von einander
verschieden sind ; er ist also eine Hyperbel.

Ist k 1, so fallen nach Gleichung (a) die beiden
Asymptotenrichtungen in der Geraden y' o zusammen. Der
Kegelschnitt ist daher in diesem Fall eine Parabel von der Gleichung
sin2 tp • y'2 — 2 s x' -f- s2 —- 0. Die (x')-Achse ist Parabelachse.

Wenn der Parameter k den Wert k annimmt, so
cos ff

geht die Kegelschnittgleichung (12) über in

1 \-\ x'2 — 2 s x' -f- s2 0.
COS tp)

Dies ist eine quadratische Gleichung in x' ; löst man sie auf, so

zerfällt sie in die beiden Geradengleichungen
s cos tp s cos tp

x, -;—: — und x ' — — 5 —
1 1 ~f- cos tp - 1 — cos rp

Für den Parameterwert k besteht also die Schnittkurve
cos rp

(12) aus zwei Parallelen zur (y')-Achse ; ihre Abstände von der-

scos</> scosr/)selben sind %'-=--—r —, bezüglich x„ — — •
1 1 Ar cos tp

z 1 — cos tp

Dieser Fall tritt dann ein, wenn die durch die (x)-Achse gelegte
Schnittebene (x'y') aus dem Rotationshyperbolo'id zwei zur (yz)-
Ebene parallele Erzeugende herausschneidet. Da diese durch die
auf der (x)-Achse liegenden Scheitel des Hyperboloides gehen,

2 s k
so muss ihr Abstand -5 sein (s. Seite 121). Es besteht da-

k2 — 1

her die Beziehung
s cos tp s cos tp 2 s k

1 -4- cos tp 1 — cos tp k — 1

Löst man diese Gleichung nach k auf, so erhält man als positive,

(einzig in Betracht fallende), Wurzel wieder k

Bern. Mitteil. 1911. Nr. 1787.
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Liegt der Wert von k nicht im Bereiche 1 < k < istö cos tp

also k < 1 oder k > so werden die Asymptotenrichtungen
cos tp-

des Kegelschnittes nach Gleichung (a) imaginär, er ist also eine

Ellipse. Fassen wir die bisherigen Ergebnisse zusammen, so folgt :

Eine durch die (x)-Achse gelegte Ebene, welche mit der
Koordinatenebene (x y) den Winkel <p einschliesst, schneidet alle

Rotationsellipsoide des durch Gleichung (1) gegebenen
Rotationsflächensystems in einer Ellipse, den parabolischen Cylinder k 1

in einer Parabel, und die Rotationshyperboloïde entweder in einer

Ellipse, oder in zwei parallelen Geraden (Erzeugende des Hyper-
>1 ist.boloïdes), oder in einer Hyperbel, je nachdem cos tp -—

Um die durch Gleichung (12) dargestellten Kegelschnitte
genauer zu untersuchen, transformieren wir die Gleichung auf

g
ihre Achsen, indem wir für x' x" -| 2

und für y' y"
1 — k

substituieren. Sie nimmt dann folgende Form an:

tS

Fig. 10

(b)2 i 2 2 i 2s°k s'k
2\2(1-k2) (l — k2) (1 — k2 cos2 tp)
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Der Mittelpunkt und die beiden in der (x)-Achse liegenden Scheitel
jedes Kegelschnittes dieses Systems fallen mit denjenigen der
entsprechenden Rotationsfläche zusammen, und die eine Achse
des Kegelschnittes liegt immer in der (x)-Achse des alten
Koordinatensystems.

Wir betrachten vorerst die Ellipsen, in welchen die
Rotationsellipsoide k < 1 von der durch die (x)-Achse gelegten
Ebene geschnitten werden. Der Abstand ihres Mittelpunktes vom

s
Koordinatenursprung wird gegeben durch a0 --. Wenn k

von Null bis 1 wächst, so nimmt er alle Werte von 4- s bis
s k

-4- oo an. Die Halbachsen der Ellipsen sind a -¦ undr 1 — k2

s k
b -==================, für k — 0 reduziert sich die Ellipse

\/(l — k2) (1 — k2 cos2 r/>)

auf einen Punkt, der mit F zusammenfällt; bei von 0 bis 1

wachsendem Parameter k nehmen beide zu von 0 bis oo, wobei
a immer grösser als b ist. Der eine Scheitel Sx bewegt sich

sbei zunehmendem k von xt' s bis x2' ¦--, der andere von

x2' -4- s bis x/ -4- oo Die lineare Excentrizität dieser

Ellipsen e — nimmt vom Werte 0 an zu
(1 — k2) \/ 1 — k2 cos2 tp

bis oo, die numerische dagegen — — — von 0
a \fl — k2 cos2 tp

bis 1.

Um die Gleichung der Parabel zu finden, in welcher der
parabolische Cylinder von der Ebene durch die (x)-Achse
geschnitten wird, setzen wir in Gleichung (12) den Parameter k 1

ein und finden y' —--%— Ix' j (c)
sin tp \ 2/

sDurch die Transformationsformeln y' y" und x' x" -4- -z
Li

geht die Gleichung (c.) in die Scheitelgleichung der Schnittparabel

über, welche heisst y" --—^- x" (d)
sin cp
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Die (x)-Achse ist Parabelachse, ihr Scheitel befindet sich im Ab-
g

stand x' — - vom Coordinatenursprung. Der Halbparameter der
Li

S
Schnittparabel ist p — --—-—. Für veränderliches tp ist er variabel

sin tp

und kann alle Werte zwischen s und x> annehmen, d. h. je nach
dem Winkel, den die Schnittebene (x' y') mit der Koordinatenebene

(x y) bildet, wird der Parameter grösser oder kleiner. Ein
Minimum wird er, wenn tp 90° ist, wenn also die Schnittebene
auf der (x y)-Ebene senkrecht steht und die Erzeugenden des

Cylinders rechtwinklig schneidet. In diesem Falle wird er — s

dem Halbparameter der Schnittparabel in der (x z)-Ebene von der
Gleichung z' 2 s x' (Siehe Gleichung [6]). Je kleiner der
Winkel tp wird, d. h. je mehr er sich vom rechten entfernt, desto

grösser wird der Parameter. Fällt die Schnittebene mit der (x y)-
Ebene zusammen, so ist tp 0, also auch sin" g>=0, und der
Halbparameter p oo ; der parabolische Cylinder wird durch
die (x y)-Ebene in der Geraden x' 0, d. h. in der (y')-Achse
und in der unendlich fernen Geraden dieser Ebene geschnitten.

Der Abstand des Brennpunktes vom Parabelscheitel f
s s

—r-ç—, kann also alle Werte zwischen — und oo annehmen. Ent-
2 sin (f 2

sprechend verändert sich auch die Lage der Leitlinie ; für tp — 90"
wird sie gebildet durch die (z)-Achse im alten Koordinatensystem
und entfernt sich für abnehmende Werte von tj bis nach — oo.

Wir diskutieren nun das durch Gleichung (12) dargestellte

Kegelschnittsystem für die Parameterwerte von k — 1 bis k ——,

wo rp einen bestimmten, konstanten Wert besitzt. In diesem Fall
ist die Schnittkurve eine Hyperbel, deren Achsengleichung nach

Gleichung (b) geschrieben werden kann :

x"2 v"2
1 (e)2,2 2,2S k S k

(k2-l)a (k2-l) (l-k2cos2T)
Der Abstand des Hyperbelmittelpunktes vom Koordinatenursprung

s
a0 2 ; für k 1 liegt der Hyperbelmittelpunkt in

k — 1
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— oo, wenn k zunimmt, so rückt er auf der negativen (x')-Achse

ins Endliche und für k =- beträgt sein Abstand vom Null-
cos rp

punkt x' — s cotg" </). Der Abstand des Hyperbelscheitels St

wird bestimmt aus \\ — ^—r-r ', nimmt k alle Werte von 1 bis
1 -j-k

an, so bewegt sich der Scheitel S, auf der (x')-Achse von
cos cp

l

x' =- -x bis x' z—; —. Der Scheitel S., liegt im Abstand
2 1 -4- cos rp i

~

x' — vom Nullpunkt; für die obigen Parameterwerte

durchläuft er den negativen Teil der (x')-Achse von x' =— oo

bis x' — —. Die reelle Halbachse der Hyperbel a
1 — cos tp

s k s k
-r, die imaginäre =b= —;fürk=lk2-l \/(k2-l) (l-k2cosV)
wird a b oo und für k — wird a -— und b oo.

cos tp gin^ (p

Für alle Hyperbeln der Schar ist b > a.

Im Grenzfall k — - — besteht die Schnitthyperbel, deren

Mittelpunkt in x' — s cotg" <p liegt, aus zwei parallelen
Geraden von den Gleichungen

s cos tp s cos tp
x ' ~— und x,' — -, T— (f)1 1 -f- cos tp

ò 1 — cos tp

Dies ergibt sich auch daraus, dass die numerische Excentrizität

der Hyperbel für k unendlich gross wird.J r cos tp
ö

Sind die Parameter k grösser als so stellt die Gleich-
cos tp

ung (12) des Schnittkurvensystems wieder eine Schar von Ellipsen
dar. Ihre Achsengleichung lautet :

x"2 v"2
2^2— \ ^2 1 (g)

s k s k

(k2_l)2 (k2-l)(k2cos2f-l)
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Variiert man k von bis oo, so geht der Ellipsenmittelpunkt

2 1
von x' — s cotg tp bis x' 0. Für k — sind die Halb-

cos tp

achsen a 2 — und b oo. Bei zunehmendem k werden die
sin tp

Achsen beide kleiner und zwar so, dass a immer kleiner ist
als b. Für k oo reduziert sich die Ellipse auf einen Punkt,
den Nullpunkt 0 des ursprünglichen Koordinatensystems. Die

Scheitel S. und S„ der Ellipse haben für k — die Abstände
1 ^ cos tp

s cos tp s cos tp -, -,x, zi—i —, bezüglich x„ — z — und nahern sich
1 1 -f- cos tp

2 1 — cos tp

bei wachsendem k immer mehr dem Nullpunkt, bis sie für
k oo mit ihm zusammenfallen.



Zusammenstellung :

Halbachsen Scheitelabstände

k s
~o=--. O sk v.

sk
X'l X'î

e
e

a
Art der Kurve

a 1-k' vV-k')(l- k2 cos* f)

0 s 0 0 s S 0 0 Punkt F

1 4" oo oo oo
s

~2~
-|- OO oo 1 Parabel

1

COS f
•—s cotg'f

s cosf
sin2 j»

oo scosp
1 -j- COS f

S COSf
oo oo 2 parallele Gerade

1 — COS <p

oo 0 0 0 0 0 0 0 Punkt 0

OS-
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§8.
Die Rotationshyperboloide, erzeugt durch projektivische

Ebenenbüschel.

Die Gleichung der einschaligen Hyperboloide des
Rotationsflächensystems kann nach Gleichung (1) auch in folgender Form
geschrieben werden:

(k2 — 1) x2 4-(k2 — l) y2 - z2 Ar 2 sx - s2 0 (a)
In dieser Gleichung kann der Parameter k alle Werte von k — 1

bis k — oo annehmen. Nun kann man sich jedes einschalige
Hyperboloid entstanden denken aus zwei projektivischen Ebenen-
büscheln von den Gleichungen

E^ AEa 0 und E3 + AE4 0

Wenn in diesen zwei Gleichungen der Parameter l alle Werte von
— oo bis -f- oo durchläuft, so erzeugen die aufeinander folgenden
Schnittlinien je zweier entsprechender Ebenen der beiden Büschel
ein Hyperboloid, dessen Gleichung lautet : E: E4 — E2 E3 0.

Wir suchen daher die Gleichung (a.) auf diese Form zu bringen.
Ersetzt man in ihr
(k2 — l) x2 + 2 s x — s2 durch [(k + 1) x — s] • [(k — 1) x -f s] und

— [z2 — (k2 - 1) y2] durch — [z f0?^ì ¦ y] - [z — \fiF--~l ¦ y]

so geht sie über in

[(k-U)x-s] • [(k-l)x+s]
-[z + v/k2-l-y].[z-\/k2-l.y] 0 (13),

und dies ist der Form nach die Gleichung des Hyperboloides als

Erzeugnis je zweier projektivischer Ebenenbüschel.

Die Gleichung des einen Ebenenbüschels lautet

Et4-ÀE2= (k-M)x - s + A [z + V'k^l • y] =0
und diejenige des zu ihm projektivischen Ebenenbüschels:

E3 + ÄE4 z- \f\^l ¦ y 4-1 [(k — 1) x -f s] 0

Das erste Ebenenbüschel hat die beiden Grundebenen:

E1:x=jr-5— und E2:z -V/k2^-T-y

Die Grundebene Ex liegt parallel zur Koordinatenebene (y z) im

Abstand x .—--.-. Für alle k zwischen k 1 bis k oo vari-
k-f- 1
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siert dieser Abstand von x -- bis x 0. Die Grundebene E2

steht senkrecht auf der (y z)-Ebene des Koordinatensystems und
geht durch die (x)-Achse desselben, sie geht durch den IL, III,
V. und VIII. Oktanten. Die Scheitelkante Sj des ersten
Ebenenbüschels, also die Schnittgerade der beiden Grundebenen Et und
E2, geht folglich durch den IL und V. Oktanten, liegt parallel
zur (y z)-Ebene und schneidet die (x)-Achse des Koordinaten-

S S
systems im Abstand x =——- zwischen x 0 und x --. FürJ k Ar 1 2

das Hyperboloid k 1 liegt die Scheitelkante Sx in der (x y)-

Ebene und hat die Gleichung x -=. Bei wachsendem k nähert

sich der Schnittpunkt auf der (x-)Achse dem Nullpunkt, und der
mit der (xy)-Ebene gebildete Winkel wird immer grösser, für
k — oo fällt die Scheitelkante Sx mit der (z)-Achse zusammen.

Das zweite Ebenenbüschel hat die beiden Grundebenen:

_ s
E3 : z -= \fk2 — 1 • y und E4

Die Grundebene E3 steht senkrecht auf der (y z)-Ebene des

Koordinatensystems und enthält die (x)-Achse desselben; sie

geht durch die Oktanten I, IV, VI, VII. Die Grundebene E4 ist
parallel der (y z)-Ebene des Koordinatensystems und hat vom

a
Nullpunkt den Abstand x — — =- =- ; für die verschiedenen

Flächen der Schar kann derselbe also variieren zwischen x — — oo
und x 0. Die Scheitelkante S2 des zweiten Ebenenbüschels ist
also parallel zur (y z)-Ebene, schneidet den negativen Teil der

S
(x)-Achse im Abstand x — r t und geht durch den IV. und

VII. Oktanten. Für das Hyperboloid k oo fällt die Scheitelkante

S2 des zweiten Büschels mit der (z)-Achse, also auch "mit
der Scheitelkante SL des ersten Büschels, zusammen. Lassen wir
den Parameter k successive kleinere Werte annehmen, so wird
der Winkel, den die Scheitelkante S2 mit der (x y)-Ebene bildet,
immer kleiner, und ihr Schnittpunkt mit der negativen (x)-Achse
entfernt sich immer weiter vom Nullpunkt. Für das Rotations-
hyperboloïd k 1 liegt die Scheitelkante S2 des zweiten
projektivischen Ebenenbüschels in der (x y)-Ebene im Unendlichen.

Bern. Mitteil. 1911. Kr. 1788
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Diese zwei projektivischen Ebenenbüschel El Ar X E2 0 und
E3 -f- X E4 0 erzeugen auf jedem Hyperboloid vom Parameter k
eine Schar von Geraden oder Erzeugenden. Nach der Gleichung
(13) kann man sich aber das Rotationshyperbolo'id noch aus
zwei andern projektivischen Ebenenbüscheln entstanden denken,
nämlich aus folgenden:

E/4-AE2' (k + l)x — s + X [z— \/k2-l.y] 0 und

Eg' + AE/^z + v'F^Î-y-M [(k-l)x + s] 0

Das Ebenenbüschel E/ -4- A E2' 0 hat die beiden Grundebenen

E/ : x m und E2' : z 0?—Ï • y

Die Grundebene E/ ist identisch mit der Grundebene Ex der
ersten zwei projektivischen Ebenenbüschel, E2' dagegen liegt in
Bezug auf die (x z)-Ebene des Koordinatensystems symmetrisch zur
Ebene E2. Die Scheitelkante S1' dieses Ebenenbüschels, also die

Schnittgerade der Grundebenen E/ und E2', liegt daher parallel
S

zur (y z)-Ebene, schneidet die (x)-Achse im Abstand x 1

S
also zwischen x 0 und x z-, und geht durch den I. und

Li

VI. Oktanten. Für das Hyperboloid k 1 liegt die Scheitelkante
S

S1' in der (x y)-Ebene und hat die Gleichung x z-, sie ist also

identisch mit der Scheitelkante S1 des ersten Büschels. Bei
wachsendem k nähert sich der Schnittpunkt auf der (x)-Achse
dem Nullpunkt, und der mit der (x y)-Ebene gebildete Winkel
wird immer grösser, und zwar so, dass die Scheitelkante Sx' in

Bezug auf die (x z)- oder (x y)-Ebene symmetrisch liegt zur
entsprechenden Scheitelkante S1 ; für k oo fällt S/ mit der (z)-
Achise, also auch wieder mit Sx zusammen.

Das Ebenenbüschel E3' 4- X E4' 0 hat die beiden

Grundebenen E3' : z — yV — 1 • y und E/ : x — -—--

E4' ist identisch mit E4, und E3' liegt in Bezug auf die (x z)-

oder (x y)-Ebene des Koordinatensystems symmetrisch zu E3. Daher
wird für jedes bestimmte Hyperboloid die Scheitelkante S2' dieses

Ebenenbüschels, das zu E/ -4-1E2' 0 projektivisch ist, zu der
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entsprechenden Scheitelkante S2 des Ebenenbüschels Eg -4- XEi 0
in Bezug auf die (x z)-Ebene symmetrisch liegen. Für k=oo fällt
S2' mit S2 in der (z)-Achse zusammen, für k 1 wird sowohl S2

als auch S2' von der unendlich fernen Geraden der (xy)-Ebene
gebildet.

Die vier Scheitelkanten S1, S2, Sx' und S2' der 4 Ebenenbüschel,

von denen je zwei zueinander projektivisch sind, haben
für jedes Rotationshyperboloïd eine ganz bestimmte, feste Lage.
Wenn aber der Parameter k alle Werte von k 1 bis k oo

durchläuft, so ändert sich successive auch die Lage dieser Scheitelkanten,

und jede derselben erzeugt dabei eine developpable Fläche.
Die Gleichung derselben wird gefunden, indem man aus den
beiden Grundebenen des entsprechenden Büschels den Parameter
k eliminiert. Nun führt aber diese Elimination bei jedem dieser
vier Ebenenbüschel zu derselben Gleichung ; man erhält nämlich

xz -f- 2 s x y —s y 0 oder

x2z2_sy2 (s-2x)=0 (14)

Dies ist die Gleichung einer Fläche 4. Grades in den Coordinaten
x y z. Variiert also der Parameter k von k 1 bis k oo, so

erzeugen die Scheitelkanten S1( S2, S1' und S2' der vier Ebenenbüschel

alle dieselbe developpable Fläche 4. Grades, welche durch
Gleichung (14) bestimmt ist. Den Verlauf dieser Fläche kennen
wir bereits aus ihrer Entstehungsweise. Da die Koordinaten y
und z nur quadratisch in der Flächengleichung (14) vorkommen,
so liegt die Fläche wirklich symmetrisch in Bezug auf die beiden
Koordinatenebenen (x y) und (x z). Untersucht man die Schnittkurven

der Fläche 4. Grades mit den Koordinatenebenen, so zeigt
es sich, dass sowohl die (x)-Achse als auch die (z)-Achse
Doppelgeraden der Fläche sind. Ferner wird die (x y)-Ebene von ihr

sin den beiden zur (y)-Achse Parallelen x — -- und x — — oo ge-
Li

schnitten. Eine zur (y z)-Ebene parallele Schnittebene im
Abstand x c vom Ursprung erzeugt als Schnittkurve zwei in
der (x)-Achse sich schneidende Geraden von den Gleichungen

z + — \/s (s — 2 c) • y. Für c — oo, sowie auch für c -\-z-
C £-

fallen die beiden Geraden je in der (x y)-Ebene zusammen, das
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eine Mal in der unendlich fernen Geraden dieser Ebene, das

s
andere Mal in der Geraden x ^. Für c 0 fallen beide Ge-

Li

raden zusammen mit der (z)-Achse des Koordinatensystems. Wenn
s

c >> z- ist, so wird die Schnittkurve imaginär, die Fläche 4. Grades

liegt also ihrer ganzen Ausdehnung nach links von der Ebene
g

x z-. In Bezug auf die Entstehungsweise der Fläche können

wir nach dem Früheren noch schliessen, dass der im I. und
VI. Oktanten liegende Teil derselben durch die Scheitelkante
S1' erzeugt wird, der im II. und V. durch S,, der im IV. und
VII. durch S2 und der im III. und VIII. Oktanten liegende Teil
durch die Scheitelkante S2'.

§9.
Kreispunkte der Flächenschar.

Die Achsengleichung der centrischen Flächen 2. Grades hat
allgemein die Form:

2 2 2

iL _i_ JL + _L=i
a2 + b2 + c2

Das Vorzeichen von b2 und c2 ist dabei noch unbestimmt
gelassen. — Für jede Fläche, deren Gleichung diese Form hat, ist
es möglich, zwei Systeme paralleler Schnittebenen so zu
bestimmen, dass alle Schnittkurven Kreise sind. Die äusserst en
Ebenen der beiden Systeme sind Tangentialebenen der Fläche;
sie schneiden diese in einem unendlich kleinen Kreise, in ihrem
Berührungspunkte, und ein solcher Punkt heisst Kreispunkt
oder Umbilikus. Jede centrische Fläche besitzt also im
allgemeinen 4 reelle Kreispunkte ; sie liegen in der (x z)-Ebene und
haben die Koordinaten:

/2 ,2 / i :

±V^ r und Z ±CV-Va — c Va
2 2

C

2
C

Unsere auf die Achsen transformierte Flächengleichung heisst
nun:
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x'2 y'2
(2-) 2V2 + '2T2 +s2k2 ' s2k2 '

s2k2

(l_k2)2 (i_k2)2 !_k2
Da a b ist, so werden die Koordinaten der Kreispunkte :

x' + 0 und z'=+-=L=- l/l _ k2

Je zwei der Kreispunkte der durch Gleichung (2) dargestellten
Rotationsellipsoide und -Hyperboloide fallen demnach in einen
einzigen zusammen, so dass im ganzen nur zwei übrig bleiben;
sie liegen symmetrisch zur (x y)-Ebene und haben im alten System
die Koordinaten:

s sk
x a„ 0 und z + 00 1-k2 -y/1-k2

Für jedes Rotationsellipsoid fallen die Kreispunkte zusammen
mit den Endpunkten der Rotationsachse 2 c und bei variablem
Parameter k bewegen sie sich nach der in § 4 aufgestellten
Parabelgleichung (b.). Für die Rotationshyperboloïde wird die
Ordinate der Kreispunkte

sk sk _ sk
z + 9 + „ — -f i „ imaginär,- ^1 _ k2 - i v/k2 - 1 ^ \Jk2 - 1

8

d. h. es gibt auf den Rotationshyperboloïden keine Kreispunkte.
Das System paralleler Schnittebenen, welches in der Fläche
Kreise ausschneidet, ist parallel der (x y)-Ebene und setzt sich
nach beiden Richtungen bis ins Unendliche fort.

§ 10.

Polarebenen in Bezug auf das Rotationsflächensystem (1).

Soll die Polarebene eines beliebigen festen Punktes P0(x0y0z0)
in Bezug auf eine Fläche 2. Grades bestimmt werden, so wird deren

Gleichung zunächst mit w homogen gemacht ; Gleichung (1) geht
also über in (l — k2)x2 + (l — k2) y2 f z2 — 2sx w + s2 w2 0,

wo w die Bedeutung 1 hat. Die Gleichung der Polarebene wird
dann nach der Formel bestimmt:

Of dt of, Of
+ y ^r +z TT" + w ^r °

d*o dYo dzo ôwo
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Es ist nun -^- =2 (l — k2) x0 — 2 s w0

2(l-k2)y0

:2z0

Ôf
ôx0
dt
Sïo
et
sh
dt

Sw0
: — 2 s x0 -f 2 s2 w0

Also wird die Gleichung der Polarebene des Punktes P0 (x0 y0 z0)i

wenn w0 w 1 gesetzt wird :

[d-k2)x0-s] x+(l-k2)y0y + z0z-s(x0-s) 0 oder

(1 — k2) [x0 x -4- y0 y] - s x + z0 z — s (x0 — s) 0 (15)
Als Pol wählen wir vorerst einen beliebigen Punkt P0 (x0, 0, 0)
der (x)-Achse. Wir haben also in der Gleichung (15) für y0 z0 0

zu setzen, und sie geht dann über in

s(x0-s)
x

(1 - k2) x0 - s

Wir sehen hieraus, dass allgemein die Polarebene eines Punktes
der (x)-Achse in Bezug auf jede beliebige Fläche des Systems zu
der (y z)-Ebene des Koordinatensystems parallel ist. Wählt man
speziell den festen Punkt F (s, 0,0) als Pol und erinnert sich

daran, dass nach § 4 die (z)-Achse die Leitlinie, d. h. die Polare
in Bezug auf den einen Brennpunkt F aller Schnittkegelschnitte
in der (x z)-Ebene darstellt, so folgt, dass alle Polarebenen des

Punktes F mit der (y z)-Ebene zusammenfallen ; denn sie müssen
die (z)-Achse enthalten und zugleich zur (x)-Achse senkrecht
stehen. Setzt man in der Polareben engleichung (15) für x0 —s,
y0 — z0 0, so geht sie wirklich für jedes beliebige k über in
x — 0, die Gleichung der (y z)-Ebene.

Für den Pol P0 (0, 0, 0), also den Ursprung des Koordinatensystems,

wird die Polarebenengleichung x s. Auch die Polarebene

des Nullpunktes ist also für alle Flächen der Schar dieselbe ;

sie ist parallel zu der (y z)-Ebene und geht durch den Punkt F.
Wir wählen nun einen beliebigen aber festen Punkt

P (x0 y0 z0) und betrachten seine Polarebenen in Bezug auf alle
Rotationsflächen des ganzen Systems. Dann spielt in der
Polarebenengleichung (15) die Grösse (1 — k die Rolle eines ver-
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änderlichen Parameters, der alle Werte von 1 bis — oo annehmen

kann, und die Gleichung (15) stellt daher bei veränderlichem k ein
Ebenenbüschel dar. Die Gleichungen seiner Grundebenen sind :

Ex x0 • x + y0 • y 0 und
E2 s • x — z0 • z -f s (x0 — s) 0

Die Grundebene Ex steht senkrecht auf der (xy)-Ebene
und geht durch die (z)-Achse. Ihre Spurgerade in der (x y)-

x0
Ebene hat die Gleichung y x; sie ist die Polarebene des

yo

Punktes P in Bezug auf die Fläche k oo des Systems, welche
die (z)-Achse ist. Die Grundebene E2 des Büschels steht
senkrecht auf der (x z)-Ebene ; ihre Spurgerade hat die Gleichung

S S
z - x -)— (x0 — s) ; sie ist die Polarebene des Punktes P in

zo zo

Bezug auf die Fläche k 1 des Systems, welches ein parabolischer

Cylinder ist.
Die Achsenabschnitte der Grundebene E2 sind x s — x0

g
und z - (x0 — s). Die Scheitelkante des Büschels, durch welche

zo

alle Polarebenen des Punktes P (x0 y0 z0) in Bezug auf alle
Rotationsflächen des Systems hindurch gehen, hat die
Doppelgleichung :

y0 zo
x y= — z — xn-f-sx/ s « ^

Diese Gerade geht durch die (z)-Achse und zwar im Abstand
S

z — — (x0 — s). Ihr Durchstosspunkt mit der (x y)-Ebene hat die
zo

x0
Koordinaten x s — x0 und y — (x0 — s)

yo

Haben wir zwei verschiedene Pole P1 (xx yx zx) und P2 (x2 y2 z2)1

so werden die Polarebenengleichungen des Rotationsflächensystems

in Bezug auf Px und P2 nach Gleichung (15) :

(1 — k2) [xt x Ar yy
y] —- s x -f- z1 z — s (xx — s) 0 und (a)

(1 - k2) [x2 x -f- y2 y] - s x -f z2 z — s (x2 — s) 0 (b)

Betrachtet man wieder die Grösse (l — k2) als variablen
Parameter, so lassen sich die beiden letzten Gleichungen abgekürzt
in der Form schreiben
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(1 — k2) Ex 4- E2 0 und (c)

(l-k2)E3+E4 0 (d)

Dabei stellen Ex und E2 die Grundebenengleichungen des
Ebenenbüschels für den Pol Pt, E3 und E4 diejenigen für den Pol P2

dar, welche die oben angegebene Bedeutung als Polarebenen
der Grenzflächen k oo und k 1 haben. Weil der Parameter
(1 — k in den Gleichungen (c) und (d) der beiden Ebenenbüschel

dieselben Werte durchläuft, so stellen diese Gleichungen
zwei projektivische Ebenenbüschel dar. Jedem Parameterwert

entspricht in jedem Büschel eine bestimmte Ebene; zwei
solche Ebenen heissen entsprechende Ebenen. Je zwei
entsprechende Ebenen schneiden sich in einer Geraden, und die
Gesamtheit aller dieser Schnittgeraden bildet in ihrer
Aufeinanderfolge eine Linienfläche oder windschiefe Regelfläche. Man
erhält ihre Gleichung, wenn man aus den beiden Büschelgleichungen
den veränderlichen Parameter (l — k eliminiert. Es folgt dann
als Eliminationsgleichung:

E2 E3 — E: E4 — 0 oder
s (xx - x2) x2 -f- s (y, - y2) x y + (x2 zx - x1 z2) x z f (y2 zx - yx z2) y z

+ s2 (x2 — xi)x +s [s (y2 — yi) H- (x2 yi — xi y2)î y=° (16)

Da diese Linienfläche vom zweiten Grade ist, so stellt die

Gleichung (16) entweder ein einschaliges Hyperboloid oder ein

hyperbolisches Paraboloid dar. Um dies zu entscheiden, muss
die Determinante ô der allgemeinen Flächengleichung 2. Grades
berechnet werden. Für die Gleichung (16) wird sie :

<5

s(xi— x2) • ö O'i ~ ^)

2(yi-y2)
1,
ö(X2Zl-X

2 (X2 Zl Xl Z2J

(y2zi yiz2)

(y2zi-yiz2)
oder ausgerechnet :

0 (y2 zi - yi z2) | (yi—y2) (x2 zi - xiz2)'

t2)(y2 •yr
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a) y2 zx — yt z2 0 oder — —. Dies ist der Fall, wenn
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Wenn der Determinantenwert ò von Null verschieden ist, so
stellt die Gleichung (16) eine centrisene Fläche 2. Grades dar,
also ein einschaliges Hyperboloid. Verschwindet dagegen der
Wert von ò, so rückt der Mittelpunkt der Fläche ins Unendliche ;

sie stellt dann im allgemeinen ein Paraboloid dar, kann aber in
speziellen Fällen auch in zwei Ebenen zerfallen. Für das
Verschwinden der Determinante ô gibt es folgende mögliche Fälle:

yl z.

Z2

die Verbindungsgerade der beiden Pole Pt und P2 die (x)-Achse
schneidet. Die Flächengleichung (13) geht dann über in :

s (Xl — x2) x2 + s (y: — y2) x y 4- (x2 Zj - x, z2) x z 4-
s2 (x2 — xi)x -h s [s (y2 — Yi) + (x2 y1 — xx y2)] y 0

Dies ist die Gleichung eines hyperbolischen Parabolo'ides.

b) yj y2 und xt x2. Wenn diese Bedingungen gleichzeitig
erfüllt sind, so liegen die beiden Pole Pj und P2 auf einer Parallelen
zur (z)-Achse. Setzt man in der Gleichung (16) yt y2 und

xt x2, so zerfällt sie in die beiden Ebenengleichungen :

z 0 und xx • x 4- y, • y 0

Die eine Ebene wird gebildet von der (xy)-Ebene des Koordinatensystems

und die andere steht auf ihr senkrecht; sie geht durch
die (z)-Achse und erzeugt eine Spurgerade von der Gleichung

xi
y x

yi
c) x1 x2 und zx -- z2. Die Pole Pt und P2 müssen in dem

Fall auf einer Parallelen zur (y)-Achse liegen. Die
Flächengleichung (16) zerfällt dann in :

y 0 und sx-fz^z 4- s2 4- s x1 0

Dies sind die Gleichungen zweier Ebenen; die erste fällt
zusammen mit der (x z)-Ebene des Koordinatensystems, die zweite
steht dazu senkrecht und erzeugt die Achsenabschnitte:

s (s Ar Xj)
x =- — ('s 4/ Xj) und z

Die beiden projektivischen Polarebenenbüschel zweier Pole
Px und P2 in Bezug auf das Rotationsflächensystem erzeugen

Bern. Mitteil. 1911. Nr. 1789.
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also ein hyperbolisches Paraboloid, wenn die Verbindungsgerade
Pj P2 die (x)-Achse schneidet, zwei Ebenen, wenn sie entweder
zur (z)- oder zur (y)-Achse parallel ist, in allen andern Fällen
dagegen ein einschaliges Hyperboloid.

§U.
Ort der Schnittpunkte von drei sich rechtwinklig

schneidenden Tangentialebenen für die verschiedenen Flächen
des Rotationsflächensystems.

Die Achsengleichung einer beliebigen centrischen Fläche
2 2 2

2. Grades hat allgemein die Form —2 4- ^ -4- —- =- 1. Nun ist derabcOrt aller Punkte im Raum, von denen aus drei zueinander
senkrecht stehende Tangentialebenen an eine solche Fläche gelegt
werden können, eine mit der Fläche concentrische Kugel vom
Radius R — v/a2 -f- D2 -f- c2. Da die Halbachsen unserer Rotations-

s k s k
fläche a b r, und c — — sind, so ist der Radius

1-k2 y/i-k2
der Kugel von obiger Beschaffenheit

~2s2k2 s2k2 sk~ Li ä IL S K & K / ,2 -,R V / 7 -Äs H 9 2 V 3 — k (a)V (1 - k2)2 1-k2 1 - k2

Wir können aus diesem Wert für R bereits schliessen, dass nur
für diejenigen Flächen des Rotationsflächensystems eine Kugel von
der oben erwähnten Eigenschaft besteht, für welche k -< \J 3 ist,
also für alle Rotationsellipsoide und für die Rotationshyperbolo'ide
k •< \J3. Für jede dieser Flächen lässt sich die Gleichung einer
Kugel bestimmen, deren sämtliche Flächenpunkte Schnittpunkte
von je drei senkrecht aufeinander stehenden Tangentialebenen
an die betreffende Fläche sind; diese Kugelgleichung lautet

x '2
s2k2

-f y'2 + z'2-(T^2y2(3-k2) (17)

Um diese Gleichung auf das alte Coordinatensystem zu beziehen,
shaben wir in ihr x' — x -, y' y und z' z zu setzen;1-k

die Gleichung (17) geht dann über in
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W n 2 Z8 .2 2 S \K — d K -f- L „F (x y z k) x — -g x 4- y -f z -J 7- 02s ,2,2, s2 (k4 - 3 k2 + 1)

l_k2 r-3 t -r (i_k*f (17a)
Es soll nun die Enveloppe aller Kugeln bestimmt werden, die
den unendlich vielen Flächen des Rotationsflächensystems
entsprechen. Dies geschieht durch Elimination des Parameters k

aus der Gleichung (17a) und der folgenden;

|f (s - 2 x) k4 4- 4 x k2 — 2 x — s 0
0 k

Wir bestimmen aus der letzten Gleichung die Wurzeln k"; die

eine wird k2 — 1, die andere k2 »———. Nur die letzte liefert
1 2 2x — s

ein brauchbares Resultat. Setzt man ihren Wert in Gleichung
(17 a) ein, so geht sie über in

2 x2 + y2 -f z2 - s x -4- | s2 0

Dies ist die Gleichung eines imaginären Rotationsellipsoïdes.
Wir finden also das Resultat, dass die durch Gleichung (17 a)

gegebene Schar von Kugelflächen keine Enveloppe besitzt.
Der Mittelpunkt des obigen imaginären Ellipsoïdes liegt

sauf der (x)-Achse im Abstand x -f- -7 vom Nullpunkt. Seine

3
Halbachse a hat die Länge a -—, sie liegt in der (z)-Achse und

ist Rotationsachse des Ellipsoïdes. Die beiden andern Halbachsen

sind b c —-=.

Die Mittelpunkte der Kugeln von der oben verlangten
Beschaffenheit fallen immer mit denjenigen der entsprechenden
Rotationsflächen zusammen; sie liegen also auf der (x)-Achse

sim Abstand x vom Coordinatenursprung. Nun hat ein

Hauptschnitt der durch Gleichung (17) dargestellten Kugel parallel
zur (y z)-Ebene des Coordinatensystems folgende Kreisgleichung :

Wenn wir nacheinander immer andere Rotationsflächen des Systems
ins Auge fassen, so ändert sich der Radius dieses Kreises, und



— 156 —

sein Mittelpunkt rückt auf der (x)-Achse des Coordinatensystems
vorwärts. Die aufeinander folgenden Kreise erzeugen so wieder
eine Fläche, deren Gleichung sich durch Elimination des
Parameters k aus der Kreisgleichung (b und der Gleichung der Schnittebene

x — 5 ergibt.1-k2
Sie wird, bezogen auf das ursprüngliche Koordinatensystem:

2 x2 — y2 — z2 — s x — s2 0 (18)

Dies ist die Gleichung einer Fläche 2. Grades; durch die

Substitution s

gleichung

sstitution x x' + -r» y y' und z — z' erhält man die Achsen-

x v z
_

9_ 2 9^ 2 9_ :

16
S

8
S

8
S

Die obige Hauptschnittfläche ist also ein zweischaliges
Rotationshyperboloid. Die reelle Achse desselben liegt in der (x)-Achse
des Coordinatensystems, sie ist Rotationsachse. Der Flächen-

s
mittelpunkt 0' hat die Koordination x -j, y z 0, die reelle

3
Halbachse a -- s. Der eine Schnittpunkt des Rotationshyper-

boloïdes mit der (x)-Achse befindet sich daher im Punkte F(s, 0,0)
s

derselben, der andere im Abstand x — z- vom alten Nullpunkt
Li

O. Die Schnittkurve des zweischaligen Hyperboloides mit der
(x y)-Ebene ist eine Hyperbel ; die Asymptoten derselben haben

4
die Gleichungen y' + -px', °der im alten Koordinatensystem

4 s\
y + — (x — -r\. Der Winkel tp, den die Asymptoten mit der

4
(x)-Achse einschliessen, ist bestimmt durch tg tp -p-, er ist also

V8
grösser als 45°.

Die Hauptschnittfläche (18) wird von der (x z)-Ebene ebenfalls

in einer Hyperbel geschnitten; diese ist kongruent zu der
Schnitthyperbel in der (x y)-Ebene.
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Aus der Beschaffenheit der Fläche dieses zweischaligen

Rotationshyperboloides sehen wir, dass die Centra der
Kugelflächen mit allen Punkten der positiven und negativen (x)-Achse
zusammenfallen können, ausgenommen mit denjenigen der Strecke

g
von x — z- bis x -f- s. Demnach existiert für alle Flächen

Li

des Rotationsflächensystems, deren Mittelpunkte entweder auf der
positiven (x)-Achse zwischen x 4- s und x {- oo, oder auf

s
der negativen (x-)Achse zwischen x= - oo und x — -z- liegt,

Li

eine Kugel, welche der oben geforderten Bedingung Genüge
leistet. Für diejenigen einschaligen Rotationshyperboloïde des

g
Flächensystems, deren Mittelpunkte zwischen x — z- und x 0

Li

liegen, ist k > \j 3, und für sie lässt sich keine solche Kugelfläche

finden.

Wir betrachten nun das Schnittkurvensystem, das durch
die unendlich vielen, durch Gleichung (17) bestimmten
Kugelflächen in der (x y)-Ebene des alten Koordinatensystems erzeugt
wird, wenn der variable Parameter k alle Werte von k o bis
k \/3 durchläuft. Jede Kugel erzeugt als Schnittkurve einen

Kreis, dessen Centrum auf der (x)-Achse liegt; seine Gleichung
2 i 2

lautet x'2 4- y'2 -, ^> (3 — k2). Wenn der Parameter kJ
(1 — k2)2

alle Werte von k 0 bis k — 1 annimmt, so durchläuft der
Kreismittelpunkt die positive (x)-Achse von x s bis x ••= -4- oo,
und für die Parameterwerte von k 1 bis k —y3 rückt das
Kreiscentrum auf der negativen (x)-Achse von x — oo bis

s
x — zx. Die Abstände x1 und x2 der auf der (x)-Achse liegenden

Li

Kreisscheitel Sx und S2 sind :

x, —
s s k /„ ,2

11 k2 1-k2
sk

y3 — k bezüglich

+ " 01-*.2

1 - k2 1 — k2

Ueber die Veränderung ihrer Lage bei veränderlichem
Parameter gibt folgende Tabelle Aufschluss:



- 158 —

k Si s2
n

0 xx s x2 s

1 Xj — oo X2 —oo

\/3
S

xi=- 2

S

x2-^—2

Für die Rotationsfläche k 0 reduziert sich der Schnittkreis,
also auch die entsprechende Kugelfläche, auf den Punkt F (s, 0, 0).

Wenn k von 0 bis 1 wächst, so rücken die beiden Kreisscheitel
ins Unendliche, Sx in negativer, S2 in positiver Richtung. Alle
Rotationsflächen o ¦< k -< 1 werden somit von der entsprechenden
Kugelfläche vollständig eingeschlossen. Wenn k den Wert 1

überschreitet, so ändert sich die Bewegungsrichtung der beiden
Kreisscheitel, sie rücken wieder ins Endliche, und für k v/3 fallen

sie im Punkte P / — z-, 0, 0 zusammen. Auch für das Hyperboloid

k 1^3 reduziert sich der Kreis, folglich auch die
entsprechende Kugelfläche, auf einen Punkt der (x)-Achse.

§12.
Diskussion der Hauptschnittfläche 3. Grades.

Bei der Besprechung der Hauptschnitte des
Rotationsflächensystems parallel zur (yz)-Ebene wurde gezeigt, dass sie

in ihrer Aufeinanderfolge eine Fläche 3. Grades erzeugen, deren
Gleichung nach § 6 lautet:

x z2 — s (x2 - y2) A- s2 x 0 (11)
Im Folgenden soll nun diese Hauptschnittfläche diskutiert werden.

Um zunächst ihren Asymptoten- oder Richtungskegel zu
bestimmen, machen wir Gleichung (11) mit w homogen ; sie geht
dann über in x z2 — s x2 w Ar s y2 w -j- s2 w2 0. Da die unendlich
ferne Ebene die Gleichung w 0 hat, so findet man den Schnitt
der Hauptschnittfläche mit ihr, indem man in der homogenen
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Flächengleichung w 0 setzt ; so erhält man einen Kegel 3. Grades
von der Gleichung x z 0, welcher in die (y z)- und die doppelt
gelegte (x y)-Ebene zerfällt, und der die unendlich ferne Ebene
in derselben Kurve schneidet, wie die Hauptschnittfläche, nämlich
in der unendlich fernen Geraden der (y z)-Ebene und in der
doppelt gelegten unendlich fernen Geraden der (x y)-Ebene.

Ferner untersuchen wir die Schnittkurven der Hauptschnittfläche

mit den Coordinatenebenen (x y) und (x z). Setzen wir in
Gleichung (11) z 0, so geht sie über in

x — y — sx 0 (a)

Diese Gleichung (a) stellt eine gleichseitige Hyperbel dar, als
Schnitt der Fläche 3. Ordnung mit der (x y)-Ebene ; zum
vollständigen Schnitt gehört noch die unendlich ferne Gerade der
(x y)-Ebene. Die obige Hyperbelgleichung ist identisch mit Gleichung

(a) in § 5; die (x)-Achse ist die eine Achse der Hyperbel;
sihr Mittelpunkt hat die Coordinaten x z- und y o ; die Halb-
Li

g
achse ist z- (Fig. 8).

Li

Um die Schnittkurve der Hauptschnittfläche mit der (x z)-

Ebene zu finden, setzen wir in Gleichung (11) y 0 und finden
dann :

/^\ | 1) x 0, die (z)-Achse, und
' (2) z2 s(x — s)

Die letzte Gleichung stellt eine rechts von der (z)-Achse liegende
Parabel dar und ist identisch mit Gleichung (b) in § 4. (Siehe
auch Figur 6). Diese Parabel ist die Kurve, in welcher der den
Rotationsflächen k -< 1, (also den Ellipsoïden), entsprechende Teil
der Fläche 3. Ordnung die (x z)-Ebene schneidet. Ihre Achse ist
die (x)-Achse; der Scheitel liegt im Punkte F und der Halb-

g
parameter --. Für den Teil der Hauptschnittfläche 3. Grades,

Li

welcher den Hauptschnitten der Rotationshyperboloïde (k > 1)

entspricht, erhalten wir als Schnittkurve in der (x z)-Ebene die
(z)-Achse, auf welche sich das Rotationshyperboloïd für k — oo

reduziert. Die (z)Achse liegt also ihrer ganzen Ausdehnung nach

auf der Fläche 3. Grades.
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Da in der Flächengleichung (11) das konstante Glied fehlt,
so geht die Fläche durch den Nullpunkt und die Gleichung der
Tangentialebene in ihm wird gegeben durch die gleich Null
gesetzten Glieder ersten Grades ; sie lautet : x — 0. D i e (y z)-

Ebene ist also Tangentialebene im Nullpunkt 0,
sie berührt die Fläche längs der ganzen (z)-Achse.

Auch der Punkt F liegt auf der Hauptschnittfläche, denn
seine Coordinaten x -— -f- s und y — z — 0 genügen der Gleichung
(11). Die Tangentialebene im Punkte F bestimmt man nach der
Gleichung :

(x-x1)f1 + (y-y1)f2f(z-z2)f3 0

wo xlyl'/il die Coordinaten des Punktes F sind, also xt — |- s

und yt zt 0, und wo

f
d f 2

L-=dt "
2 -Ti

t„ ~r (J ISt.
6 o zt

Als Gleichung der Tangentialebene der Hauptschnittfläche
im Punkte F findet man so die Gleichung

¦— (x — s) s2 0 oder x s.

Sie stellt eine Ebene parallel zur (y z)-Ebene im Abstand x -4- s

dar. Der Punkt F ist Scheitel des rechts der (y z)-Ebene liegenden
parabolo'idischen Teils der Hauptschnittfläche.

Im weitern untersuchen wir die Schnitte der Hauptschnittfläche

3. Ordnung mit Ebenen parallel zu den zwei Koordinatenebenen

(x y) und (x z). Setzt man in der Flächengleichung (11)

z c konstant, so erhält man die Schnittkurven parallel zur
(x y)-Ebene, nämlich

(c) s y2 — s x2 + (c2 -|- s2) x 0

Diese Gleichung stellt einen Kegelschnitt dar, dessen Asymptoten
y + xsind, also eine gleichseitige Hyperbel. Ihre
Normalformgleichung findet man durch die Substitution y y' und

2 I 2
C ~~r— S

x ¦-- x' -| jy—- in Gleichung (c) ; dann erhält man nämlich :

Li S

/ 2 i 2\ 2

(d) *'2-y'Hc-ts
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Die Hyperbelachse liegt in der (x z)-Ebene parallel zur (x)-Achse,
im Abstand c von derselben. Fällt die Schnittebene mit der
(x y)-Ebene zusammen, so ist c — 0 und die Gleichung (c) wird
identisch mit der Gleichung (a), d. h. sie stellt den Schnitt der
Hauptschnittfläche mit der (x y)-Ebene dar. Für bestimmte positive
oder negative Werte von c beträgt der Abstand des Hyperbel-

2 2
C ~t~ S

mittelpunktes von der (z)-Achse x —z- ; er ist also stets

s
positiv und kann alle Werte von z- bis 4- oo annehmen. Da die

2 | 2
f. _J g

Achsen der Hyperbel a b —~— sind, so liegt der eine
Li S

Scheitel stets auf der (z)-Achse, der andere im Abstand x'
2 2

C I S
¦ von der (z)-Achse auf der (x')-Achse. Zu jedem Schnitt

parallel zur (x y)-Ebene gehört ferner die unendlich ferne Gerade
der betreffenden Schnittebene.

Setzt man in der Gleichung der Hauptschnittfläche z z',
x x' und y c konstant, so bekommt man die
Kurvengleichung für die Schnitte parallel zur (x z)-Ebene, nämlich

(e) x' z'2 — s x'2 -f s2 x' -f s c2 0

Diese Gleichung 3. Grades in x' und z' stellt eine Kurve dar,
die symmetrisch zur (x')-Achse liegt, weil die Variable z' nur in
der 2. Potenz darin enthalten ist. Für c 0 geht die Gleichung
(e) in die zwei Gleichungen (b) über, welche die Schnittkurve
der Hauptschnittfläche mit der (x z)-Ebene darstellen. Für jeden
andern beliebigen positiven oder negativen Wert von c stellt
die Gleichung (e) eine Kurve 3. Grades dar, deren Asymptotenrichtungen

man erhält, wenn die Glieder höchsten Grades

gleich Null gesetzt werden, also x' z' =0 oder
x' 0 und z' 0 doppelt.

Die drei Asymptotenrichtungen sind reell; die eine wird gegeben
durch die Richtung der (z')-Achse, die beiden andern zusammenfallenden

durch die Richtung der (x')-Achse. Die unendlich ferne
Gerade der (x' z')-Ebene schneidet also die Kurve in einem
einfachen und zwei zusammenfallenden Punkten. Um den letztern
Schnittpunkt der Kurve mit der unendlich fernen Geraden zu

Bern. Mitteil. 1911. Nr. 1790.
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untersuchen, projizieren wir ihn durch die Transformationsformeln
1 z"x' — und z' ~77 in den Nullpunkt. Setzt man diese Werte

in der Kurvengleichung (e) ein, so wird sie :

//2 / / 1 2 //2i 2 / f'ò r\z —sx + s x 4- s c x =0
Diese Gleichung stellt eine Kurve 3. Ordnung dar, die durch den

neuen, dem unendlich fernen Punkt der (x'j-Achse entsprechenden,
Nullpunkt geht. Die Tangente in ihm hat die Gleichung x" —

—7 0, also x' 00. Der unendlich ferne Punkt der (x')-Achse

ist daher ein einfacher Kurvenpunkt, in welchem die unendlich
ferne Gerade der (x' z')-Ebene die Kurve berührt.

Um den unendlich fernen Punkt der (z')-Achse zu unter
suchen, projiziert man ihn durch die Transformationsformelnlx"z' —r, und x' -77 n den Nullpunkt. Die Kurvengleichung

geht dann über in
// / / 2 / / 1 2 / / / / 2 1 2/;3 c\x — s x z -Ar s x z -Ar s c z 0

Die transformierte Gleichung beginnt mit Gliedern 1. Grades,
der unendlich ferne Punkt der (z')-Achse ist daher ein einfacher
Kurvenpunkt. Die Tangente in ihm hat die Gleichung x" 0

oder zurücktransformiert x' =0. Die (z')-Achse ist also Asymptote

der Kurve. Setzt man in der transformierten Gleichung
x" — 0, so findet man die Schnittpunkte der (z')-Achse mit der
Kurve, nämlich z" =0, also z" — 0 dreifach, oder zurücktrans"
formiert z' 00 dreifach; d. h. die (z')-Achse schneidet die Kurve
im unendlich fernen Punkt in drei zusammenfallenden Punkten,
sie ist daher Wendeasymptote der Kurve.

Um die Schnittpunkte der Kurve 3. Grades mit der (x'j-Achse
zu bestimmen, schreiben wir ihre Gleichung (e) in der Form

V? ' /2 2\
X — SX cj

Für die zu bestimmenden Schnittpunkte ist z' 0 also

s/ì- (x'2 — sx' — c 0 oder

—;,(x'"—sx'—c") 0. Diese Gleichung hat die drei Wurzeln
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x'l=: OO

v' — s4-\/s2-f4c2
X 2 — 2

x' —A 3

s — V/s2 + 4c2
o

Dies sind die Abscissen, in welchen die Kurve die (x')-Achse
schneidet; x'2 ist immer positiv, x'3 dagegen stets negativ. Die
Ordinaten mit den Abscissen x'v x'2 und x'3 sind Tangenten an
die Kurve.

Die Kurve 3. Grades besteht aus zwei unendlichen Aesten ;

der paare parabolische Zug hat seinen Scheitel in

-s + y/s2
'

1 A 24-4c
2

-s + v/s2 + 4c2

s-f-yV-Mc2
X ~ 2

und erstreckt sich in der Richtung der positiven (x')-Achse bis
ins Unendliche; die unendlich ferne Gerade der (x'z')-Ebene
ist Tangente an diesen Zug. Der unpaare Zug schneidet die

(z')-Achse in

Die Gerade

2

ist Tangente im Schnittpunkte mit der (x')-Achse, und die (z')-
Achse ist Wendeasymptote der Kurve ; diese besitzt ferner zwei

Wendepunkte im Endlichen, die symmetrisch zur (x')-Achse liegen.
Ihre Abscissen werden gefunden, indem man aus der Kurven-

d2z'
gleichung (e) ~ bestimmt, diesen Wert gleich Null setzt und

d x'
die Wurzeln dieser Gleichung aufsucht.

Aus Gleichung (e) folgt:

z I S x — sex — s I

-2
dz' 1 sc2x' -f-s
dx' 2 / o

-1 o\V»
(sx'-scV

"
—s2V
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—3

j2 t -i —2 s c" x' I s x'—sc^x' —s^l—^Isc'x' 4- si
-1 \ 1 / -2 \ 2

a _/ -2\ 1/_ 2,

dx ,2
"

2 rx «v»
sx — sex — s

dV
Dieser Ausdruck für 2

kann nur gleich Null sein, wenn der
dx'

Zähler dieses Bruches verschwindet, also wenn
x'4 -f 6 c2 x'2 - 4 s c2 x' — 3 c4 0 ist.

Dio Kurve, in der die Hauptschnittfläche durch Ebenen

parallel zur (xz)-Ebene geschnitten wird.

-¦Y*r>.i".

Fig. 11.

Wird diese Gleichung aufgelöst, z. B. nach der Methode von
Ferrari, so findet man, dass sie zwei konjugiert komplexe und
zwei reelle Wurzeln besitzt. Von den letzteren hat die eine einen
positiven Wert; die andere dagegen, welche den beiden im
Endlichen liegenden Wendepunkten der Kurve dritten Grades
entspricht, ist negativ, nämlich
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i'-1 J a - -J a 2 _i_
8sc2

V/q — 6 c2

wo q 2 c2 -4- v/6 4 c6 -f 16 s2 c4 bedeutet.

Durch diesen Wert von x' ist die Abscisse der beiden zur
(x')-Achse symmetrisch liegenden Wendepunkte des unpaaren
Zuges der Kurve 3. Grades bestimmt.

Gehen wir nun über zur Untersuchung der Flächenpunkte
der Hauptschnittfläche 3. Grades! Ihre Gleichung kann, wenn
sie nach z aufgelöst wird, auch in folgender Form geschrieben
werden :

z F(xy) (sx-s^-s2) "
(f)

Lässt sich die Gleichung einer Fläche in diese Form bringen,
so gilt als Kriterium der Flächenpunkte allgemein der Ausdruck

Fu F22 — F12 Setzt man hierin die Koordinaten des zu
untersuchenden Flächenpunktes ein, so ist er entweder elliptisch,

parabolisch oder hyperbolisch, je nachdem Fu F22 — F122 0 ist.

Wir berechnen daher zunächst Fn, F2,> und F12. Nach Gleichung
(f) folgt:

F,=
1 x

1 2 / y2 ,\7.
S X — s s'

X

F„
i2(sx-sL_sfsL;+|(1+L)(sx_sy__,)

11 9 2ó y 2
SX S- S

X
2 2 -, / 2\2

y s W+S)oder F., — s11 xaz - z

s|
Ferner ist F2 — ^ r--

(sx-s^-s2)
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2 2

j n s s yund Fffl= 2J3
x z x z

2 / 2\ y
Aus F. bestimmen wir F12 -J- -j— (l |- -,-„ —3x z 2 \ x / x z

2 2 32/ 2\ 4 2/ 2\2 '

2 3 -i / 2\2 3-1 4 2 /

xz 4 x z \ x/ xz 4 x z \ X

Wir bilden nun die Differenz
3 i / 2\2 34 32/ 2\

4xz\ x / xz x z \ x /

Fll.Fa-F1J' ^(x'-2xVa + y')
3 / \2

F .F F 2_ S /a 2\ f.
11 22 12 4x5z4V y/ Vi(g)

Je nachdem die Koordinaten xx yx zv irgend eines Flächenpunktes
Pj (xx yx Zj), in diesen Ausdruck • eingesetzt, diesem einen positiven
oder negativen Wert geben, ist er entweder elliptisch oder
hyperbolisch. Wird der Ausdruck gleich Null, oder, was gleichbedeutend
ist, unendlich gross, so ist der Punkt parabolisch.

Das Vorzeichen des obigen Ausdrucks (g) wird nun einzig
bestimmt durch das Vorzeichen von x ; für jedes positive x ist auch

Fu • F22 — F12" positiv. Da nun alle Punkte des rechts von der
(y z)-Ebene liegenden Teils der Hauptschnittfläche eine positive
Koordinate x haben, so sind alle diese Punkte elliptische Flächen-

punkte, und die beiden Inflexionstangenten in jedem derselben
sind imaginär. Wir wollen speziell die Gleichung der Inflexionstangenten

in dem auf der positiven (x)-Achse liegenden Flächenpunkte

F bestimmen. Zu diesem Zwecke eliminieren wir aus der

Tangentialebenengleichung x s dieses Punktes und aus der

Flächengleichung (11) die Variable x und finden so die beiden
Gleichungen z + i y- Dies sind die Strahlen absoluter Richtung
einer Ellipse mit gleichen Halbachsen, also eines Kreises, der
Flächenpunkt F ist daher speziell ein Kreispunkt, Nabelpunkt
oder Umbilikus der Hauptschnittfläche.
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Wir wissen ferner, dass sämtliche Punkte der (z)-Achse des

Koordinatensystems zugleich Flächenpunkte sind. Da sie alle die
Koordinate x 0 haben, so geht für sie die Gleichung (g) über in

Fu F22 — Fr," oo, d. h. alle Punkte der (z)-Achse sind
parabolische Punkte der Hauptschnittfläche 3. Grades. Da nun in
jedem parabolischen Flächenpunkt die beiden Inflexionstangenten
zusammen fallen, und da feiner jeder Punkt der (z)-Achse, als
Punkt der Hauptschnittfläche betrachtet, dieselbe Tangentialebene
besitzt, nämlich die (y z)-Ebene des Koordinatensystems, so fallen
alle Tangenten in diesen Flächenpunkten in eine einzige zusammen.
Ihre Gleichung ergibt sich aus der Flächengleichung (11), wenn
man in ihr x — 0 setzt, nämlich y — 0 doppelt. Alle Inflexionstangenten

in den auf der (z)-Achse liegenden Flächenpunkten
fallen also zusammen in die (z)-Achse des Koordinatensystems.

Für alle Flächenpunkte, die links von der Koordinatenebene

(y z) liegen, hat die Koordinate x einen negativen Wert,
daher auch der Ausdruck (g). Folglich sind alle Punkte des

links von der (y z)-Ebene liegenden Teils der Hauptschnittfläche
hyperbolische Punkte, und in jedem derselben sind zwei reelle
Inflexionstangenten möglich.

Sowohl für x — 4- oo als auch für x — — oo wird Fu F22

— Fj.,"' — 0. Im Unendlichen sind daher alle Flächenpunkte
parabolisch. Wenn man im Unendlichen von dem rechts von der (yz)-
Ebene liegenden Teil der Fläche auf den links von dieser Ebene
liegenden Teil übergeht, so geht der elliptische Charakter der

Flächenpunkte über in den parabolischen und dann in den

hyperbolischen.
Gestützt auf die Untersuchungen dieses Paragraphs können

wir uns über die Gestalt der durch Gleichung (11) dargestellten
Hauptschnittfläche folgendes Bild machen: sie besteht aus zwei

Teilen, einem hyperboloïdischen links und einem paraboloïdischen
rechts der (y z)-Ebene. Die (z)-Achse liegt ganz auf dem
hyperboloïdischen Teil, und dieser erstreckt sich von ihr aus in der
negativen |x)-Richtung bis ins Unendliche und schneidet die
unendlich ferne Ebene in der Richtung der (y z)-Ebene in einer
einfachen und in der Richtung der (x y)-Ebene in einer doppelt
gelegten Geraden. Der paraboloïdische Teil der Fläche erstreckt
sich vom Scheitel F aus, welcher ein Kreispunkt ist, in positiver
(x)-Richtung bis nach -J- oo und schneidet die unendlich ferne
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Ebene ebenfalls in jener doppelt gelegten Geraden der (x y)-Ebene.
Man kann sich vorstellen, dass die beiden Flächenstücke im
Unendlichen sich in der unendlich fernen Doppelgeraden der
(x y)-Ebene aneinander schliessen und so eine zusammenhängende
Fläche bilden, die drei Gerade enthält, nämlich die (z)-Achse, die
unendlich ferne Gerade der (y z)-Ebene und die unendlich ferne
Gerade der (x y)-Ebene als Doppelgerade.

§13.
Ueber Polarflächen der Hauptschnittfläche 3. Grades.

Die Hauptschnittfläche 3. Grades hat die Gleichung
xz2-sx2-f- sy2-f-s2x 0 (11)

oder homogen gemacht:

f(xyzw) xz — sx w -4- s y w -f- s" x w" 0
Nun hat die erste Polarfläche in Bezug auf einen festen Pol
P'(x',y',z') die Gleichung:

Af xä \~T a h - ä—h W ä— 0'— d x d j dz 3w
Nach der homogenen Flächengleichung ergeben sich für die

partiellen Differentialquotienten folgende Werte:
dt 2 o I 2

-=— z —2sx 4-s
OX

-5— 2sydy J

|i 2x,
d z

dt 2 1 2 t o 2
-— — sx 4-sy -f-2s xd-w J

Daher wird die Gleichung der quadratischen Polarfläche der
Hauptschnittfläche 3. Grades, bezogen auf einen festen Pol
P'(x',y',z'):
s(x2-y2)-x'.z2-2z'-xz-2s(s-x')x-2sy'-y-s2x'=0 (19)
Wir nehmen nun an, der Pol P' (x', y', z') sei nicht fest, sondern
er nehme successive andere Lagen an; er durchlaufe z. B. die

ganze (x)-Achse des Koordinatensystems. In diesem Falle haben
wir in der Gleichung der quadratischen Polarfläche (19) für
y' z' 0 zu setzen, und für x' substituieren wir einen
veränderlichen Parameter n, der alle Werte von — 00 bis -4- 00
annehmen soll. Dann geht die Gleichung (19) über in
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sx'_sy^_ ~_z — 2sx-4 2ns-x — ns =0 (20)
Bei variablem Parameter n stellt diese Gleichung eine Schar von
unendlich vielen Flächen 2. Grades dar. Alle diese Flächen bilden
in ihrer Gesamtheit die Schar von unendlich vielen quadratischen
Polarflächen, bezogen auf die sämtlichen Punkte der (x)-Achse
als Pole.

Da die Gleichung (20) keine Glieder in xy, xz oder yz
enthält, so genügt eine Parallelverschiebung des Koordinatensystems,
um die Flächengleichung auf die Achsengleichung zu transformieren.
Wir haben zu diesem Zwecke in Gleichung (20) für y y', z —z'
und für x x' -f- s — n zu substituieren ; sie geht dann über in

nz r2

n2 -f n s -f s2 -s r- r-\A_- ^
1 (20a)

n -j-ns-f-s s (n -f- n s -\- s J

Die Mittelpunkte M sämtlicher Flächen der durch Gleichung (20)
gegebenen Polarflächenschar liegen demnach auf der (x)-Achse
und zwar im Abstand x — s — n vom Koordinatenursprung.

Wir nehmen nun zunächst an, der Pol P' durchlaufe den
positiven Teil der (x)-Achse, so dass der Parameter n alle
Werte annimmt zwischen n — -f- oo und n — 0. Dann sind in
der Gleichung (20a) alle Nenner positiv, und die quadratische
Polarfläche des Punktes P' ist ein zweischaliges Hyperboloid,
von den Halbachsen :

a — b V / n2 -f- n s -4- s2 und c — 1 /- (n2 -\r n s -{- s2)

Seine Scheitel liegen auf der (x)-Achse im Abstand
x' + \/n2 4- n s 4- s2 vom Mittelpunkt M. (S. Fig. 12).

Bern. Mitteü. 1911.
Fig.12.

Nr. 1791.
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Um die Polarfläche des unendlich fernen Punktes der
(x)-Achse zu bestimmen, dividieren wir die Gleichung (20) durch
n und setzen dann für n oo ; sie wird dann

z3-2sx4-s2 0 (a)
Dies ist die Gleichung eines parabolischen Cylinders ; sie ist
identisch mit Gleichung (5) in § 2. Wir finden somit, dass die
Rotationsfläche k 1 unseres Rotationsflächensystems zugleich
quadratische Polarfläche der durch Gleichung (11) gegebenen
Hauptschnittfläche 3. Grades ist, bezogen auf den unendlich fernen
Punkt der (x)-Achse als Pol P'. (S. auch Fig. 4).

Der Pol P' rücke nun auf der positiven (x)-Achse ins
Endliche, der Parameter n werde also immer kleiner! Dann
weiden alle Halbachsen des zweischaligen Hyperboloides (20a)
zunächst abnehmen; wandert der Pol P' bis in den Nullpunkt,
wird also n immer kleiner und zuletzt gleich Null, so reduziert
sich die Länge der Halbachsen a und b auf a b s. Der
Mittelpunkt M des Hyperboloides rückt gleichzeitig auf der
negativen (x)-Achse ins Endliche, und für n 0 befindet er sich
auf der positiven (x)-Achse im Abstand x — s. Die Halbachse c

nun erreicht schon vorher ein gewisses Minimum ihrer Länge,
d / s\ snämlich dann, wenn n -f- s -|—( 1 5 0 wird, also

d n V n / n"

wenn n —- y s ist, oder wenn der Pol P' im Punkte x y s liegt.
Wird n noch kleiner, so nimmt die Länge der Halbachse c rasch
wieder zu und für n 0 ist sie unendlich gross.

Die quadratische Polarfläche in Bezug auf den Nullpunkt
des alten Koordinatensystems ist also ein zweischaliges Rotations-
hyperboloïd, dessen eine imaginäre Halbachse unendlich lang ist;
diese Fläche wird daher vorteilhafter aufgefasst als hyperbolischer
Cylinder, dessen Gleichung wir direkt aus der Polarflächen-
gleichung (20) finden, wenn man ihr n 0 setzt:

x2 — y2 — 2 s x 0 (b)

Dies ist die Gleichung der Kurve, in welcher der gleichseitige
hyperbolische Cylinder die (x y)-Ebene schneidet. Es ist die

Gleichung einer gleichseitigen Hyperbel von der Halbachse s.

Der Mittelpunkt dieser Schnittkurve liegt im Abstand x — s vom
Koordinatenursprung O, also im Flächenpunkte F. Die Asymptotengleichungen

sind y + (x — s). Die Erzeugenden des hyper-
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bolischen Cylinders stehen auf der (x y)-Ebene senkrecht; die

(z)-Achse ist auch Cylindererzeugende, also hat die Polarfläche
die (z)-Achse mit der Hauptschnittfläche gemein. Dieses Resultat
entspricht dem allgemein gültigen Satze, dass, wenn der Pol auf
der Fläche selbst liegt, dann die sämtlichen Polarflächen die

Tangentialebene in ihm berühren. (S. Fig. 13).

6 0-

» M

Fig. 13.

Der Pol P' gehe nun im Koordinatenursprung auf den

negativen Teil der (x)-Achse über; dann müssen wir in der

Polarflächengleichung n durch — n ersetzen und n wieder alle
Werte von 0 bis oo annehmen lassen, wenn der Pol P' bis ins
Unendliche rückt. Die Gleichung (20a) geht nun über in

n z

n — ns4-s" n — n s 4- s
1 (20b)

s (n — ns-f s")

Der Ausdruck (n" — n s -j~ s") im Nenner dieser Gleichung hat
immer einen positiven Wert, denn die Wurzeln der Gleichung
n" — n s 4- s =0 sind komplex; der Parameter n kann aber nur
reelle Werte annehmen, also kann kein Wert von n der Gleichung
n2 — n s 4- s" 0 genügen. Der Ausdruck n2 — n s -f- s nimmt
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daher stetig vom Werte s2 bis oo zu, und die Gleichung (20b)
/2 ,2 ,2

X V zhat immer den allgemeinen Typus -2 —~^-\ 2~==^- Resist
a" b c

die Gleichung eines einschaligen Hyperboloides, dessen imaginäre

Fig. 14.

Achse in der (y')-Achse liegt. Fig. 14. Wenn also der auf der
(x)-Achse gelegene Pol P' vom Nullpunkt aus in negativer Richtung
weiter rückt, so geht der durch Gleichung (b) bestimmte
hyperbolische Cylinder in ein einschaliges Hyperboloid über. Jener
lässt sich auch als Grenzfall eines zweischaligen und eines
einschaligen Hyperboloides betrachten, nämlich als ein solches,
dessen eine Achse, c, unendlich gross wird, während die beiden
andern einander gleich, a b — s, sind. Nimmt der Parameter
n zu, so wird die Halbachse c des Hyperboloides kleiner,
sie nimmt endliche Werte an

ó_

dn \ n/ n
n s ist, d. h. für den Punkt x — s als Pol ; ihre Länge ist
dann c s. Wird | n | > s, so wächst die Halbachse c wieder,
und für n oo, wenn sich also der Pol P' in x — oo befindet,

2\ 2

s + ^) l-^0
Ein Minimum wird sie, wenn

ist, also wenn der Parameter



- 173 —

ist c wieder unendlich gross. Die beiden Halbachsen a und b
haben für n 0 den Wert a b s ; wenn der Parameter n
bis ins Unendliche wächst, so nimmt ihre Länge stetig zu und
wird für n oo ebenfalls unendlich gross. Der Mittelpunkt der
quadratischen Polarfläche befindet sich für n 0 auf der
positiven (x)-Achse im Abstand x 4- s. Bei zunehmendem n rückt
er in positiver Richtung weiter, und für n oo befindet er sich
im Unendlichen. Die quadratische Polarfläche des unendlich fernen
Punktes der negativen (x)-Achse ist demnach ein einschaliges
Hyperboloid, dessen Halbachsen unendlich lang sind und dessen

Mittelpunkt sich im Abstand x -f- oo befindet. Die (x)-Achse
schneidet daher das Hyperboloid im Endlichen nur einmal. Der im
Endlichen liegen deTeil desselben lässt sich als parabolischer Cylinder
auffassen, welcher identisch ist mit demjenigen von der Gleichung (a).

Die Zusammenfassung der letzten Resultate ergibt folgendes :

betrachtet man sämtliche Punkte der (x)-Achse von 4- oo bis — oo
successive als Pole in Bezug auf die Hauptschnittfläche 3. Grades,
so erhält man eine Schar von unendlich vielen quadratischen
Polarflächen. Die Polarfläche des unendlich fernen Punktes der
positiven (x)-Achse ist ein parabolischer Cylinder, dessen Erzeugende
auf der (x z)-Ebene senkrecht stehen und dessen Scheitel vom

s
Koordinatenursprung den Abstand x -- besitzt. Rückt der Pol

Li

ins Endliche, so geht dieser Cylinder in ein zweischaliges Hyperboloid

über. Während der Pol die ganze positive (x)-Achse

durchläuft, rückt der eine Scheitel desselben von x -- nach

x 2 s, der andere von x — oo durch die ganze negative
(x)-Achse nach dem Koordinatenursprung. Fällt der Pol mit
dem Nullpunkt der (x)-Achse zusammen, so geht das zweischalige
Hyperboloid in einen hyperbolischen Cylinder über, dessen

Erzeugende senkrecht auf der (x y)-Ebene stehen und dessen Scheitel
die Abstände x 2s und x — 0 besitzen. Wenn der Pol P' die

ganze positive (x)-Achse durchläuft, so durchwaüdert der Mittelpunkt

der entsprechenden Polarflächen die ganze negative (x)-
Achse in positiver Richtung von x — oo bis x -f- s. Sobald
nun der Pol P' auf die negative (x)-Achse übergeht, wird die
quadratische Polarfläche ein einschaliges Hyperboloid, dessen
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imaginäre Achse in der (x y)-Ebene parallel zur (y)-Achse liegt.
Durchläuft der Pol die ganze negative (x)-Achse von x 0 bis

x — oo, so rückt der Mittelpunkt der Polarfläche im bisherigen
Sinne weiter von x 4- s bis x -4- oo. Die Schnittpunkte des

einschaligen Hyperboloides mit der (x)-Achse rücken von x -j- 2 s

bis x oo, bezüglich von x 0 bis x —. Die quadratische
Li

Polarfläche der Hauptschnittfläche in Bezug auf den unendlich
fernen Punkt der negativen (x)-Achse als Pol ist dann wieder
der parabolische Cylinder, mit dem die Entwicklung der Flächenschar

beginnt. Ueber die gesamte Lageveränderung des

Mittelpunktes und der Achsenabschnitte in der (x)-Achse gibt folgende
Tabelle Aufschluss:

n
Mittelpunkt Scheitel

Si s2

-f- oo X — oo
s

Xi=2 X2=— oo

0 S 2s 0

— oo Ar °° 4— oo ^2
Wir gehen nun über zur Untersuchung der quadratischen

Polarflächen der Hauptschnittfläche 3. Grades für den Fall, dass

der Pol P' (x' y' z') die (z)-Achse des Koordinatensystems durchläuft.

Wir setzen daher in der allgemeinen Gleichung (19) der
ersten Polarfläche für x' y' 0 und z' n, wo n wieder
variabler Parameter ist und alle Werte von — oo bis 4- oo
annehmen kann; sie geht dann über in

s x2 -- s y2 — 2 n x z — 2 s2 x 0 (21)

Diese Gleichung stellt unendlich viele Flächen dar; jede Fläche
der Schar geht durch den Nullpunkt des Koordinatensystems
und enthält die (z)-Achse desselben als Erzeugende, denn die
Koordinaten x — 0 und y 0 leisten der Gleichung (21) für
jeden Wert von z Genüge. Da nun nach § 12 jeder Punkt der
(z)-Achse auf der Hauptschnittfläche 3. Grades liegt und zudem
ein parabolischer Flächenpunkt ist, so müssen nach der Theorie
der Polarflächen alle Flächen des obigen Büschels Kegel
2. Grades sein. (S. Fig. 15).
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Fig. 15.

Ihre Scheitelgleichung finden wir, wenn in Gleichung (21)
2

S"
für x x', y y' und für z z'

geht dann über in

substituiert wird. Sie

s x T/2sy'" —2nx'z' 0 (21a)
Zur Bestimmung der Schnittkurven dieser Kegelschar mit der
(x y)-Ebene des ursprünglichen Koordinatensystems setzen wir
in Gleichung (21) für z 0 und finden so die Gleichung
x" — y" — 2sx 0; sie stellt eine gleichseitige Hyperbel dar,
welche identisch ist mit der Schnittkurve des vorhin besprochenen
hyperbolischen Cylinders mit der (x y)-Ebene ; sie bleibt für alle
Flächen der Schar dieselbe. Also schneidet jeder Kegel zweiten
Grades, der durch die in x' y' z' homogene Gleichung (21 a)
dargestellt wird, die (x y)-Ebene in der nämlichen gleichseitigen
Hyperbel; ihr Mittelpunkt liegt im Abstand x s auf der (x)-
Achse, ihre Halbachse s ; der eine Scheitel fällt mit dem

Koordinatenursprung zusammen, der andere liegt im Abstand
x 2 s. Der Kegelscheitel S liegt auf der (z)-Achse und hat

2
g

vom alten Nullpunkt den Abstand z' Dem Pol P' (z n)

auf der (z)-Achse entspricht der Scheitel S seines Polarkegels

z ; da z ¦ z
n

konstant und negativ ist, so bilden
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die Punktepaare (P', S) auf der (z)-Achse eine elliptische
Punktinvolution vom Mittelpunkt 0. Für n s wird z s und z' — s,
welche beiden Punkte P und S symmetrisch zu 0 liegen.

Für alle Werte von n zwischen 0 und -)- oo bewegt sich
der Kegelschnitt S von z =¦ — oo bis z 0, für diejenigen von
0 bis — oo dagegen von z —- -4- oo bis z — 0. Wenn der Pol P'
im Endlichen von der positiven (z)-Achse auf die negative übergeht,

also den Koordinatenursprung passiert, so rückt der
Kegelscheitel S im Unendlichen von der negativen (z)-Achse auf die

positive. Für den Polabstand z + oo ist der Koordinatenursprung
Kegelscheitel; alle Erzeugenden durch denselben schneiden aber
die (x y)-Ebene zugleich noch in einem Punkte der Schnitthyperbel
(b), sie liegen also alle in der (x y)-Ebene des alten Koordinatensystems,

und diese ist die erste Polarfläche der Hauptschnittfläche

3. Grades in Bezug auf den unendlich fernen Punkt der
(z)-Achse als Pol ; die quadratische Polarfläche hat sich also auf
eine Ebene reduziert. Wählt man dagegen den Koordinatenursprung

als Pol, so dass der Kegelscheitel im Abstand z oo

liegt, so sind alle Erzeugende einander parallel und senkrecht zur
(x y)-Ebene, d. h. der Kegel 2. Grades ist identisch mit dem durch
Gleichung (b) bestimmten hyperbolischen Cylinder. (Fig. 13).

Wir lassen nun den Pol P' (x' y' z') die (y)-Achse des

Koordinatensystems durchlaufen und bestimmen die Schar von
quadratischen Polarflächen, die den Punkten derselben entspricht.
Es ist daher in der allgemeinen Gleichung (19) der quadratischen
Polarfläche x' — z' 0 und y' gleich einem variabeln Parameter
n zu setzen und wir erhalten die Gleichung:

x2 — y2 — 2sx — 2ny 0 (22)

Da n alle Werte von -4- oo bis — oo annehmen kann, so stellt
diese Gleichung, im Räume gedeutet, eine Schar von
gleichseitigen hyperbolischen Cylindern dar, deren Erzeugende auf der

(x y)-Ebene senkrecht stehen. Die Koordinaten x 0 und y — 0

genügen der Gleichung (22) für jedes z, also ist die (z)-Achse des

Koordinatensystems für jede Fläche der Schar eine Erzeugende
derselben. Sämtliche Cylinderflächen der Schar schneiden die

(x y)-Ebene in einer gleichseitigen Hyperbel von der Gleichung
(22); die Mittelpunkte dieser Schnitthyperbeln liegen alle auf
einer durch den Punkt F gehenden Geraden, die parallel ist zur
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(y)-Achse, denn ihre Koordinaten sind y — n und x s

konstant, und durch die Substitution x x' -f- s und y y' — n
geht die Hyperbelgleichung (22) in die Achsengleichung über,
welche lautet:

r<2 .'2

2 2 2 2
s — n s — n

1

oder, wenn s <<n ist y'2 ,'2
2 2 2 2

n — s n — s
1

(22 a)

Fig. 16.

Ueber die Aenderungen der Lage der Hyperbelmittelpunkte 0'
und die Länge der Halbachse bei variablem Parameter n gibt
folgende Tabelle Aufschluss:

n X — S y — n a ^b-vV-s2

-J-00 S — oc oo

+ s S — s 0

0 S 0 s

— s S + s 0

— oo S -4- oo oo

Bern. Mitteil. 1911. Nr. 1792.
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Zunächst zeigt sich wieder, dass die quadratische Polarfläche in
Bezug auf den Koordinatenursprung als Pol ein hyperbolischer
Cylinder ist, der in Fig. 13 dargestellt und bereits besprochen
wurde. Rückt nun der Pol P' auf der (y)-Achse vom Nullpunkt
aus in positiver Richtung vorwärts, so wandert der Mittelpunkt
0' der Schnitthyperbel auf der Geraden x s in negativer (y)-
Richtung weiter, und zugleich nimmt die Länge der Halbachsen
a — b vom Anfangswerte s an ab. Wenn sich der auf der (y)-
Achse liegende Pol im Abstand y 4- s befindet, so sind die
Halbachsen der Schnitthyperbel a b—0 und der hyperbolische
Cylinder reduziert sich auf zwei sich rechtwinklig schneidende
Ebenen, die beide auf der (x y)-Ebene senkrecht stehen, während
sie mit den beiden andern Koordinatenebenen je Winkel von
45° bilden. Der Durchstosspunkt ihrer Schnittgeraden mit der
(x y)-Ebene hat die Koordinaten x s und y - s.

Fig. 17.

Geht der Pol im bisherigen Sinne weiter und durchläuft
er die (y)-Achse von y -4- s bis y — 4- oo, so ist der
Parameter n > s, und wir haben als Gleichung der gleichseitigen
Schnitthyperbel die zweite Gleichung (22 a) zu betrachten. Es
zeigt sich, dass aus den zwei sich rechtwinklig schneidenden
Geraden, in welchen die soeben besprochenen Ebenen die
(x y)-Ebene schneiden, nun eine solche gleichseitige Hyperbel
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entsteht, deren reelle Achse in die (y)-Richtung und deren
imaginäre Achse in die (x)-Richtung fällt, während für 0 < n < s
die Verhältnisse entgegengesetzte waren. Der Mittelpunkt der
Schnitthyperbel, also auch die Achse des entsprechenden
hyperbolischen Cylinders, rückt bei wachsendem n auf der Geraden
x s in der eingeschlagenen Richtung immer weiter, so dass er
sich immer gleich weit hinter der (x z)-Ebene befindet, wie der
Pol P' vor derselben; ist der Abstand des Pols y — 4^ oo; So ist
derjenige der Cylinderachse y — oo. Die Länge der Hyperbel-
halbachsen a b nimmt vom Werte Null an stetig zu und für
n oo werden sie unendlich gross. Für grosse Werte des
Parameters n ist der Abstand des Hyperbelmittelpunktes von der
(x)-Achse des Koordinatensystems verhältnismässig nur wenig
grösser als die Länge der Hyperbelachse ; die Scheitelerzeugende
der einen Schale des hyperbolischen Cylinders entfernt sich
daher nur wenig von der (x)-Achse, so dass die (z)-Achse des

Koordinatensystems immer Cylindererzeugende ist. Befindet sich

,''-...L.*- >'

"<\

Fig. 18.

der Pol P' im Abstand y — -f- oo, so ist sowohl der Abstand
des Hyperbelmittelpunktes als auch die Länge der Halbachse
unendlich gross, und die im Endlichen liegende Schale des

hyperbolischen Cylinders geht in eine Ebene, die (x z)-Ebene
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des Koordinatensystems, über; diese ist also 1. Polarfläche in
Bezug auf den unendlich fernen Punkt der (y)-Achse. Dasselbe
Resultat erhält man auch, wenn man die Gleichung (22) durch
n dividiert und dann für n oo einsetzt ; sie geht dann über
in y 0, die Gleichung der (x z)-Ebene.

Lassen wir den Pol P' (x' y' z') statt der positiven die

negative (y)-Achse durchlaufen, so erhalten wir die nämliche
Schar von quadratischen Polarflächen, nur mit dem Unterschiede,
dass der Mittelpunkt ihrer Schnitthyperbel die Gerade x s in
positiver (y)-Richtung von y 0 an durchläuft.

Durchläuft der Pol P' alle Punkte der (x y)-Ebene, so ist
in der Polarflächengleichung (19) z' — 0 zu setzen; x' und y'
können jeden beliebigen Wert zwischen — oo und -f- oo
annehmen. Setzt man daher für x' den Parameter n und für y'
den Parameter m, so erhält man als Gleichung der quadratischen
Polarflächen in Bezug auf alle Punkte der (x y)-Ebene

2 p p p 9

sx —sy —nz —2s x -f- 2 n s x — 2ms y -—--n s =0
Für variable Parameter n und m stellt diese Gleichung ein Netz
von Flächen 2. Grades dar. Analog Hessen sich die Gleichungen
zweier weiterer Netze von Flächen aufstellen, wenn man den
Pol P' die (x z)-, bezüglich die (y z)-Ebene, durchlaufen lässt.

Wir gehen nun über zur Bestimmung der zweiten Polarfläche

der Hauptschnittfläche 3. Grades, bezogen auf einen festen

PolP'(x'y'z'); sie ist eine Fläche 1. Grades, also eine Sbene.
Wählen wir den Pol P' im Nullpunkt, so liegt er auf der
Hauptschnittfläche und die Polarebene fällt mit der Tangentialebene

in ihm zusammen ; sie hat die Gleichung x 0. Aus dem

gleichen Grunde hat der Flächenpunkt F im Abstand x s vom
Nullpunkt die Polarebene x s.

Allgemein hat die zweite Polarfläche einer Fläche folgende
Gleichung :

A2f 0 oder

/2 d2t n d2t „ e2t d2t
xM—24-2x'y' —f-2x'z'—-- + 2 x' w

dx ' J
<9 x <3 y

' dxdz ' dxdv?
i /2

à2 f i o ' i à2t d2i ,-d2i+ y ^~2+2y z - - +2y wV~s—L'z t~*oy oyoz cycw dz

+ 2z'w'-^f-|-w'2^i
d w 8 z ôw"
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Nach der homogenen Flächengleichung

f(xyzw) xz2 — sx2w4-sy2w4-s2xwJ 0 wird nun
dt 2 0 2 2 dt 0— z — 2sxw-(-sw — 2syw

d x d y

— 2xz — =— sx -4-sy -f-2s xw
dz d w

und hieraus
d2f „ d2t „ d2f

—2s — 2s — 0

0

<9x d j d w d z

d2l d2t

d x dy dxdy
d2î ô2t d'i -

— 2z ==2sy ô 2 s x
d x d z d y d v? 5w"

d2t „ „ 2 d2i
— 2SX + 2S" r, 2x

d xd W (5 z"

Demnach wird die Gleichung der Polarebene des Punktes

P'(x'y'z'):
(s2 + z'2-2sx')x + 2sy'y+2x'z'-z4-s(y'2-x'2-f-2sx') 0 (23)

Nun soll der Pol P' die (x)-Achse durchlaufen, x' also alle
Werte von — oo bis -4- oo annehmen ; wir ersetzen daher x' durch
den variabeln Parameter n und y' z' durch 0. Dann geht die

Polarebenengleichung (23) über in
2 on — 2 s n
s —2n

Diese Gleichung stellt eine Schar von unendlich vielen
Polarebenen dar, den unendlich vielen Punkten der (x)-Achse
entsprechend ; sie sind alle parallel zur (y z)-Ebene, und ihr Abstand
von derselben kann alle Werte von — oo bis -f- °° annehmen.

Durchläuft der Pol P' die (y)-Achse, so ist für x' z' 0
und y' n zu setzen. Die Polarebenengleichung geht dann
über in

sx-f 2ny-fn =0.
Betrachtet man in dieser Gleichung n als variabeln Parameter,
so stellt sie eine Schar von unendlich vielen den Punkten der
(y)-Achse entsprechenden Polarebenen dar, die alle auf der

(x y)-Ebene senkrecht stehen. In ihrer Gesamtheit hüllen sie
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einen Cylinder ein, dessen Erzeugende senkrecht auf der (x y)-
Ebene stehen und dessen Gleichung man erhält durch Bestimmung
der Enveloppe aller Geraden, die bei variablem n durch die

Gleichung sx-f-2ny4-n =0 gegeben sind.

Fig. 19.

Eliminiert man aus den beiden Gleichungen F (x y n)
- tp

sx f 2ny4-n —0 und --— y Ar n 0 den Parameter n, so

erhält man als Gleichung der Enveloppe die Parabelgleichung
y2 s x. Der umhüllte Cylinder ist also ein parabolischer. Seine
Achse wird gebildet durch die positive (x)-Achse; die
Scheitelerzeugende fällt zusammen mit der (z)-Achse des Koordinatensystems.

Der Halbparameter der Schnittparabel in der (x y)-

Ebene ist| -| (S. Fig. 19).

Schliesslich durchlaufe der Pol P' noch die (z)-Achse; wir
haben dann in der Polarebenengleichung x' y' =0 und z' n
zu setzen und sie geht über in:

s" x -j- n x 0 oder x 0
d. h. sämtliche Polarebenen der Hauptschnittfläche, bezogen auf
einen beliebigen Punkt der (z)-Achse, fallen zusammen und zwar
in der (y z)-Ebene des Koordinatensystems. Dieses Resultat lässt
sich auch daraus schliessen, dass die (zl-Achse selber in der
Hauptschnittfläche liegt und die (y z)-Ebene in jedem Punkte
der (z)-Achse Tangentialebene der Hauptschnittfläche ist.
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§14-
Die Hessiana der Hauptschnittfläche 3. Grades.

Unter der Hessiana oder Kernfläche einer gegebenen Fläche
versteht man den geometrischen Ort aller Punkte im Raum,
deren quadratische Polarfläche ein Kegel ist, oder, was dasselbe

ist, den geometrischen Ort der Doppelpunkte ihrer ersten
Polarflächen. Für unsere Hauptschnittfläche 3. Grades ist nun die

quadratische Polarfläche identisch mit der ersten Polarfläche,
und nach § 13 können wir bereits schliessen, dass die Hessiana
der Hauptschnittfläche sowohl die (z)-Achse als auch die (y)-Achse
des Koordinatensystems enthalten wird; denn die quadratischen
Polarflächen in Bezug auf die Punkte der (z)-Achse sind ja
Kegel, deren Scheitel auf der (z)-Achse selber liegen, und
diejenigen in Bezug auf die Punkte der (y)-Achse sind hyperbolische
Cylinder oder Kegel, deren Scheitel im Unendlichen liegen.

Die Hessiana oder Kernfläche hat allgemein folgende
Gleichung :

H

f f f f*11 *12 *13 hi
t î f **21 x22 x23 *24fo

f f f fx31 x32 Ha A34

f f f f*41 *42 x43 x44

0

wo die fik die zweiten Ableitungen der homogenen
Flächengleichung f (x y z w) 0 bedeuten und Seite 181 bereits berechnet
sind. Setzen wir die dort gefundenen Werte in obiger
Determinante ein, so geht sie über in:
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oder, wenn man sie in ihre Unterdeterminanten zerlegt,
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oder ausgerechnet

H y z" — s x -f sxy — sxz -f- s x — s' x 0 (24)
Die durch diese Gleichung dargestellte Fläche 4. Grades ist die
Hessiana der Hauptschnittfläche 3. Grades. Da die Koordinaten
y und z nur quadratisch in obiger Gleichung enthalten sind,
so liegt die Hessiana sowohl zur (x z)-Ebene als auch zur (x y)-
Ebene symmetrisch. Weil ferner einerseits die Koordinaten
x y 0, andererseits auch x z 0, der Gleichung (24) für
jedes z, bezüglich y, genügen, so enthält wirklich die Fläche die
(z)- und die (y)-Achse des Koordinatensystems.

Um die Gleichung des Asymptotenkegels der Hesse'sehen
Fläche zu finden, machen wir die Gleichung (24) mit w homogen
und setzen nachher w 0; dann geht sie über in y2z2 0;
diese Gleichung stellt einen Kegel 4. Grades dar, welcher die
unendlich ferne Ebene in derselben Kurve schneidet, wie die
Hessiana, nämlich in der doppelt gelegten unendlich fernen
Geraden der (x z)-Ebene und in der doppelt gelegten unendlich
fernen Geraden der ,(xy)-Ebene.

Wir bestimmen ferner die Schnittkurve der Hessiana mit
der (x y)-Ebene des Koordinatensystems. Nach Gleichung (24)
wird deren Gleichung:

3 2 2 i 2 /~\x — xy — sx -}-s x 0

Sie zerfällt in zwei, nämlich in
(a) x 0 [(y) Achse]
(b) und x2 — y2 — sx4-s2 0 [Hyperbel]

Die Hesse'sche Fläche schneidet also die (x y)-Ebene in der
unendlich fernen Geraden, der (y)-Achse des Koordinatensystems
und in einer gleichseitigen Hyperbel. Der Mittelpunkt derselben

shat die Koordinaten x -- und y — 0 ; die Hyperbelgleichung (b)

S
geht daher durch die Substitution x —x' -f- -? und y — y' über in

Li

die Achsengleichung
/2 ,2 3 2

y —x =4S (c)

Die Halbachse der Hyperbel ist a -- \/3, also kleiner als s aber

g
grösser als z~. Die reelle Hyperbelachse liegt in der Richtung
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der (y)-Achse. Die Achsenabschnitte der Hyperbel auf der (y)-
Achse sind nach Gleichung (b) y + s. (S. Fig. 20).

In der (x z)-Ebene des Koordinatensystems erzeugt die

Hessiana eine Schnittkurve von folgender Gleichung:
3 i 2 2 i 2 AX f xz —sx -f-s x 0

Diese zerfällt in x 0 (d)

und x2 4- z2 - s x + s2 0 (e)

Die Gleichung (d) stellt die (z)-Achse des Koordinatensystems

Fig. 20-

dar, die Gleichung (e) dagegen einen imaginären Kreis, dessen

sCentrum auf der (x)-Achse im Abstand x -- vom Koordinaten-
u

Ursprung liegt und dessen imaginärer Radius absolut gleich lang
ist wie die Halbachse der obigen Schnitthyperbel in der (x y)-
Ebene. Der reelle Schnitt der Hessiana mit der (x z)-Ebene
besteht also aus zwei Geraden, der (z)-Achse des Koordinatensystems

und der unendlich fernen Geraden.
Wenn wir auch noch die Schnittkurve der Hesse'schen

Fläche mit der (y z)-Ebene bestimmen, so finden wir die Gleichung

y 0 und z 0, je doppelt. Also sind die Koordinatenachsen
z und y Doppelgeraden der Hessiana.

Um den Schnitt der Hesse'schen Fläche mit der
Hauptschnittfläche 3. Grades zu bestimmen, eliminieren wir aus den

Gleichungen (11) und (24) die Koordinate y, und wir erhalten
so die Gleichung des .auf die (x z)-Ebene projizierenden Cylinders
der Schnittlinie, nämlich x 0 und z2 — s2. Die erste dieser

Bern. Mitteü. 1911. Nr. 1793.
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Gleichungen stellt die (y z)-Ebene dar, die andere zwei zu der

(x y)-Ebene parallele, imaginäre Ebenen, welche also keine reellen
Schnittkurven liefern. Da nun die Schnittlinie der (y z)-Ebene mit
der Fläche 3. Grades aus der doppelt gelegten (z)-Achse besteht,
so finden wir, dass sich die Hessiana und die Hauptschnittfläche
in einer Doppelgeraden, der (z)-Achse des Koordinatensystems,
schneiden, und dies ist der Ort der parabolischen Punkte der

Hauptschnittfläche.
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