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Friedrich Meyer.

Diskussion eines Systems von Rotationsildchen
2. Grades.

§ 1

Herleitung der Gleichung des Rotationsflichensystems.

Die Gleichung des Rotationsflichensystems, welches in der
vorliegenden Arbeit diskutiert werden soll, erhilt man bei der
Losung folgender Aufgabe: Welches ist der Ort aller Punkte
1m Raum, deren Abstinde von einem festen Punkte F und von
einer festen Geraden in einem gegebenen konstanten Verhiltnis
stehen ?

Als feste Gerade wihlen wir die (z)-Achse eines rdum-
lichen, kartesischen Koordinatensystems; die (x)-Achse legen
wir durch den gegebenen Punkt ¥ und bezeichnen den Abstand
OF mit s. P sei emer der gesuchten Punkte; seine Koordinaten
bezeichnen wir mit xyz; fiir alle gesuchten Punkte P gilt

PF m
——k = konstant.
PQ
x
al.
Y
\‘x# :
g Fig. 1.
g,
) ‘3 H 7 > X
\\\ f//’

7
Nun ist, PF:\/(X—S2+Y2+Z2 und PQ'—':\/X2+y2, 3.180

PF* (x—s) —|—y |—z & oder
PQ* x4y

f(xy2) =(x—s)'+y +7—k X +y)=o0
A-K)xX+(1—K) y+7—-2sx+s’=0 (1)
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Durch diese Gleichung ist der Ort aller Punkte P(xyz) bestimmt,
welche obiger Bedingung Gentige leisten; sie ist eine Gleichung
2. Grades in den drei Variablen xyz, stellt also eine Fliache 2.
Grades dar. Fir negative Werte von k bleibt die Flichen-
gleichung dieselbe, so dass nur positive k zwischen o und oo in
Betracht kommen. Betrachtet man k als verinderlichen Parameter,
der alle Werte von ¢ bis oo annimmt, so erhilt man eine Schar
von unendlich vielen Flichen 2. Grades, die im Folgenden unter-
sucht werden soll.

Die Flachengleichung (1) enthalt keine Glieder in xy, xz
oder yz; es geniigt daher eine Parallelverschiebung des Koor-
dinatensystems, um sie auf die Achsen der Fliche 2. Grades zu
transformieren. Den Mittelpunkt derselben bezeichnen wir mit
M, seine Koordinaten seien a, b, ¢,. DieInvariante d der Gleichung
(1) wird nun:

1—k* 0 .0
d= 0 1—k.0 |=(1—K)
0 - 0 .1
Schliessen wir den Fall k=1 aus, so ist ¢ von Null verschieden,
der Mittelpunkt M der Fliche liegt daher im Endlichen. Ist
dagegen k=1, so wird d =0, der Mittelpunkt der Fliche liegt
also im Unendlichen.
Die Koordinaten a, b, ¢, des Flichenmittelpunktes werden

nun.
1 —s- 0 -0 5
Bz — 0.-1—k>.0 | =+ 5
(1—K) 0. 0 -1 1—k
P { 1—k* - —s-0
(1 —k%) 0 . 0.1
1 1—k)* 0 -.—1
e B S
o 0 - 0

Der Flichenmittelpunkt M liegt also immer auf der (x)-Achse

: s
unseres Koordinatensystems und zwar um x = ;- vom Ur-
sprung O entfernt. o
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Nun ist noch die Determinante /\ zu berechnen; nach
Gleichung (1) wird sie

L—F .D .+ 0.—s

0 -1—Kk%.09. o

L= o - 0 -1- 0
| —s - 0 .0. ¥

oder ausgerechnet
A= 1—K)P—F 11—k =—-K1-k)
Nach der Transformation hat dann die Flachenglelchung (1) die
folgende Form:
ft(x'y'z)=a, = | g vy gy 2’ 42 a, X'y 4 2a, y'7
+2&13 X’Z’ + %:

Setzt man die “Werte der Koéffizienten, sowie diejenigen fir A\
und 0 ein, so folgt:

242
'y = (1= K)x (1) y o S 0
oder x'” y'? z'?
e . 212 - 212 =1 (2)
1—Kk9)* 1—k°)? 1 -k

Der gesuchte Ort des Punktes P ist also eine Rotationsfliche
zweiter Ordnung, deren Mittelpunkt auf der (x)-Achse im Abstand

X= T2 von O liegt, und deren Rotationsachse parallel der
(z)-Achse 1st. Thre Halbachsen sind
a=h= Bk s und c= ik
1—k Vi—#
§ 2.

Die verschiedenen Flichenarten des Rotationsflichensystems,

Die auf die Achsen transformierte Fliachengleichung (2), die
den Parameter k enthilt, stellt eine Schar von unendlich vielen

Rotationsflichen 2. Grades dar. Je nachdem nun ké 1 ist, hat
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man es entweder mit einem Rotationsellipsoid, einem parabolischen
Zylinder oder mit einem einschaligen Rotationshyperboloid zu
tun. Dies soll in einem kurzen Abschnitt etwas ausgefiihrt werden.

1. Fall: k<C1.

also m<n
In diesem Fall werden samtliche Nenner der Flachengleichung
(2) immer einen positiven Wert haben, und wir schreiben die
Gleichung zur Abkiirzung in der Form:

X72 yr‘-’ Zf2
(3)
o ElZ, 2
3
¥y
Die Halbachsen desselben sind a=—bh——" k9 und ¢

&

sk
= 7———; a ist immer grosser als c¢. Die Rotationsachse der

V1i—k
Flache steht senkrecht auf der (xy)-Ebene, 1hr Mittelpunkt liegt
auf der (x)-Achse; sein Abstand vom Koordinatenursprung O

betrigt a,= i 5. Da k alle Werte zwischen 0 und 1 durch-
1—k

laufen kann, so fillt O’ je nach der Grosse des Parameters mit
irgend einem Punkte der positiven (x)-Achse zwischen | s und
oo zusammen,.

: S sk
Nun 1st 5
1—k° - 1

dinatenursprung O liegt ausserhalb der Flache. (8. Fig. 2).

12 oder a, > a, d. h. der alte Koor-
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2. Fall: k>1
also m >n
Dann nimmt die Gleichung (2) die Form an:

Xl2 yr2 Z/2
i A B = ;2‘:1 4)

a a
und stellt ein einschaliges Rotationshyperboloid dar.

1" -

Die Rotationsachse steht senkrecht auf der (xy)-Ebene.
Die (z')-Achse schneidet die Fliche nicht, die in ihr liegende

imaginiare Halbachse hat die Linge c= \/—jk—, die Linge der
k® —1

Halbachse a=b = —_—281(
K2—1
wo ¢>a wenn k> \/2
ge=g 5 k== \/g
und c<a k<\/2
Der Abstand des Mittelpunktes O’ vom Ursprung O betrigt
a,= 1j = ~k—zs_—1, er liegt auf der negativen (x)-Achse.
Ferner 1st ISkk2 Sy | 2 2 oder a>a;, d. h. der alte Koor-
dinatenursprung O liegt also innerhalb der Rotationsfliche.
(S. Fig. 3).

Bern. Mitteil. 1911. Nr. 1785,
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3. Fall: k=1

also m=n
Setzt man in der Gleichung (1) fiir k den Wert 1 ein, so
wird sie:

£ —2sx+8=0 (5)
Die Determinante J wird in diesem Falle
1-0-0
d:- O o O “ O :0
0.-0-1|

Der neue Mittelpunkt O’ liegt daher im Unendlichen, und
eine Transformation der obigen Gleichung auf den Mittelpunkt
der Fliche ist nicht moglich. Wir substituieren fir z=7,

y=y und x=x' —{—g.

Dann geht die Gleichung (5) iiber in
2/° =28 %' (6)
Dies ist nun die Scheitelgleichung eines parabolischen
Zylinders, dessen Erzeugende parallel der (y)-Achse sind. Der
Halbparameter p =s, der Abstand des Scheitels S von der Leit-

Fig. 4.

linie= - und dieser ist gleich der Entfernung des neuen Koor-
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dinatenursprunges O’ vom alten O; also ist die (z)-Achse die
Leithnie der Parabel in der (xz)-Ebene.

Ferner liegt der Scheitel S in der Mitte zwischen O und F,
also ist F zugleich der Brennpunkt der Schnittparabel mit der

i S
(xz)-Ebene. Die Ebene X=‘2‘ ist Scheiteltangentialebene des
parabolischen Cylinders. (S. Fig. 4).

§ 3. :
Der Ort der Mittelpunkte, Scheitel und Brennpunkte des

Rotationsilaichensystems bei variablem k.
Nach § 1 liegt der Mittelpunkt O’ der durch Gleichung (1)
dargestellten Flichen 2, Grades immer auf der (x)-Achse; sein

Abstand vom Nullpunkt = a,= 7 - L Setzen wir fir k nach-

emander alle zwischen 0 und co liegenden Werte ein, so éndert
sich die Lage des Mittelpunktes O’ folgenderweise:

a'O
) s
—l_— 2s
V2
1 |+oo
o0 0

Fir den Parameterwert k = 0 befindet sich der Flichen-
mittelpunkt O’ im Punkte F; bei wachsendem k bewegt er sich
auf der positiven (x)-Achse ins Unendliche, fir k = 1 geht er
im Unendlichen auf den negativen Teil der (x)-Achse uiber und
niahert sich dann bei weiter zunehmendem k wieder dem Ur-
sprung O, den er erreicht, wenn man k den Wert co gibt. Alle
Punkte der positiven und negativen (x)-Achse kénnen fir einen
bestimmten Wert von k Mittelpunkt einer Fliche der Schar
werden, ausgenommen diejenigen innerhalb der Strecke OF.

Wenn man zunichst vom Spezialfall k =1 absieht, so
stellt die Gleichung (1) fir jeden beliebigen Parameter k eine
Rotationsfliche 2. Ordnung dar, deren Rotationsachse senkrecht
auf der (xy)-Ebene steht. Die Lage ihrer Scheitel in der (x)-Achse
wird gefunden, wenn man in der Flichengleichung (1) y=z=0
setzt. Dann erhilt man die quadratische Gleichung

(1 —k*x°—2sx 4 s°==0.



— 124 —

Durch Auflésen nach x ergibt sich hieraus

S S
X. ——— und x2:.

14k 1—k
Dies sind die Abstinde der Scheitel S, und S, vom Ursprung O.

Variiert man k, so dndern sich die Stellungen der Scheitel nach
folgender Tabelle

-
|

Fir k=0 fallen die Scheitel S, und S, im Punkte F zusammen,
die Fliche 2. Grades reduziert sich auf den festen Punkt F.
Durchliuft k die Werte von 0 bis 1, so stellt die Flachenglei-
chung stets ein Rotationsellipsoid dar; bei zunehmendem Werte
von k nihert sich dessen einer  Scheitel S, dem Mittelpunkte
der Strecke OF, der andere, S,, riickt gegen den unendlich
fernen Punkt der positiven (x)-Achse. Im Spezialfall k =1 geht
die Fliche 2. Ordnung in den parabolischen Cylinder iiber, dessen

eine Scheitel im Unendlichen, der andere im Abstand x————s2-—

von O liegt. Ueberschreitet k den Wert 1, so geht der Scheitel
S, der Rotationsfliche im Unendlichen auf den negativen Teil
der (x)-Achse tiber und rickt mit wachsendem k auf derselben
wieder ins Endliche, indem er sich immer mehr dem Nullpunkt
O nihert, bis er fir k = oo mit ihm zusammenfillt. Der Scheitel
S, wandert in der bisherigen Richtung weiter gegen O. Im
Intervall 1< k<Coco handelt es sich immer um einschalige
Rotationshyperboloide; das Hyperboloid k = co reduziert sich
auf die urspriingliche (z)-Achse.

Die Liangen der Halbachsen der Rotationsflichen variieren
zwischen 0 (fiir k =0 und k:=o0) und o (far k =1).

Betrachten wir nun die in der (x)-Achse liegenden Brenn-
punkte f und f, des Flichensystems! Nach der Gleichung (2)
betragen ihre Abstinde von O’ im neuen Koordinatensystem
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- 'K Sk sk
x =Y g — = S — == 4
\/a C (l_kz)Z ]_'—kd —1 _k2
Nun 1st der Abstand des Punktes F vom Ursprung O’ im neuen:
Koordinatensystem :

; S s k*

X =8— 3 B)

| 1—k° 1—k°

Durch Vergleichung dieses Abstandes mit denjenigen der Brenn- -

punkte f und f, ist ersichtlich, dass der eine Brennpunkt f der

Rotationsfliche in dem festen Punkte F liegt. Da F in Bezug

auf das urspriingliche Koordinatensystem seine alte Lage stets

beibehilt, so bleibt auch der Ort des einen Brennpunktes f, aller

Rotationsflichen unveréindert, F ist der eine Brennpunkt aller
Rotationsflichen.

Der zweite Brennpunkt, f,, steht um

sk s s k® s(1-+ k%

_ e = ;
1-k 11—k ' 1-—k 1—k°
vom Ursprung O des alten Systems ab. Bei variablem Parameter
k bewegt sich daher f; auf der positiven (x)-Achse von F nach
—+ o0, wenn k die Werte von 0 bis 1 durchlauft; tberschreitet
k den Wert 1, so geht der zweite Brennpunkt im Unendlichen
von der positiven (x)-Achse auf die negative tiber, und wenn k
unendlich gross wird, so nihert er sich dem alten Nullpunkt
bis zum Abstand x, = -—s.

Nach obigem betragt die lineare Exzentrizitit der Rota-

1.2
bkkz. Fir k=0 1st e=0. Wihrend k bis

X, = 8y 1

tionsfliche e —

1 anwichst, also fir die Schar der Rotationsellipsoide, nimmt
sie zu bis oo, fiir die Hyperboloide wird sie wieder kleiner und
mm Grenzfall k = oo wird e =s.

Die numerische Exzentrizitit der Rotationsfliche wird
gegeben durch den Ausdruck:

e sk’ sk
s 5§ 5 =K.

a 1-k° 1—k
Sie ist stets gleich dem variablen Parameter k und gleich dem
konstanten Verhiltnis der Abstinde m und n in der Definition
der Flache. Ihr Wert variert zwischen 0 und oo.
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Zusammenstellung der Ergebnisse.

‘ sk ¢ | Abstande derScheitel
k la=b= e a, Y von O
S, S,
|
0 0 5 X, —8 [X,==8 0 k
S |
| l

§ 4

Schnitt des Rotationsflaichensystems mit der (xz)-Ebene
des Koordinatensystems.

Die (xz)-Ebene des Koordinatensystems schneidet jede Flache
des Rotationsflichensystems in einem Hauptschnitt. Die Achsen-
gleichung desselben erhilt man aus der auf den Mittelpunkt
transformierten Gleichung (2), indem man in ihr-y" =0 setzt;
sie lautet dann

x’2 Zr‘l _
T + 21 ==1 (7)
(1—k%)? 1—k°

Betrachten wir in dieser Gleichung k als variabeln Parameter,
so stellt sie die Schar von Kurven dar, in welchen die (xz)-Ebene
das Flachensystem schneidet, und zwar sind es Ellipsen, wenn
k <1, Hyperbeln, wenn k > 1 ist. Die eine Achse dieser Kegel-
schnitte liegt in der (x)-Achse des Koordinatensystems, der eine

Brennpunkt fillt mit dem Punkte F zusammen; die zu F ge-
2

horige Leitlinie hat die Gleichung x’ = — %—=—— a,, d. h. alle

diese Kegelschnitte haben die eine Leitlinie gemeinsam, sie wird
gebildet von der (z)-Achse des alten Koordinatensystems. Ueber
die Liange der Achsen und die verschiedenen Lagen der Scheitel
und Brennpunkte der in der (xz)-Ebene erzeugten Schnittkegel-
schnitte gibt § 3 Aufschluss.
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Der spezielle Fall k = 1 wird nach Gleichung (5.) disku-
tiert; die Schnittkurve nimmt hier die Form einer Parabel an,
deren Gleichung durch

z'® == 2 sx’ (6.)
gegeben 1ist.

Nach dem Bisherigen lisst sich nun die Schnittkurvenschar

in der (xz)-Ebene folgenderweise darstellen:

z
T A

Lt

Fig. 5.

Betrachten wir noch die in der (xz)-Ebene liegende Halb-

achse ¢ der Rotationsfliche! Fir die Ellipsoide ist ihre Lange-

6= \—/s—kz Die Koordinaten der beiden Scheitel sind daher:
1—k

sk
i (a.)
Wird der Parameter k aus diesen beiden Ausdriicken eli-
miniert, so erhilt man die Gleichung
7 —sx 4 s =0 oder Z =s(x — s) (b.)
Sie stellt eine Parabel dar als Ort der Scheitelpunkte aller
Halbachsen ¢, die in der (xz)-Ebene liegen. Die (x)-Achse ist

=R

und z = +
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Parabelachse, der Punkt F Scheitelpunkt. Setzt man fir
x == x’ } s und fir z = 7', so hat man die Scheitelgleichung
der Parabel:

gl == g% ‘
Der Halbparameter p = —;— ——-:% der Strecke OF. Der Ab-
stand des Brennpunktes vom Parabelscheitel == ~Z— :% der

Strecke OF.

N\

LAF

-

Ist k > 1, so dass die Rotationsfliche durch ein Hyperbo-

loid dargestellt wird,so misst die imaginéire Halbachse ¢ = _\/ks?k —.

Fig. 6.

Die Scheitelkoordinaten werden also

X = 2=—2L undz:i—‘_f_k—;
1—k k* — 1 V2 —1

Durch Elimination von k aus diesen zweil Ausdriicken erhilt

man die Gleichung einer linksseitigen Parabel, namlich
2 2

Z =—§ — 8X = —s(x — s)

oder, wenn man fiir z= 2" und fir x = x’ 4 s einsetzt,

2
72" = — sx/.

Der Punkt F 1st auch Parabelscheitel, der Halbparameter

== = — > Diese Parabel ist mit der obigen kongruent, sie
2

ist nur um 180° gedreht. Die (z)-Achse wird von der Kurve in
+ s geschnitten, d. h. das Hyperboloid k = oo, dessen Mittel-
punkt mit dem Nullpunkt O zusammenfillt, besitzt eine Halb-
achse ¢ = s (und a = b =0). Nur der links von der (z)-Achse
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liegende Teil dieser Parabel ist Ort von reellen Scheiteln der
imaginiren Halbachsen der Hyperboloide, da die Punkte mner-
halb der Strecke OF nie Mittelpunkt der Rotationsflichen werden
(S. Fig. 6).

§ 5.
Schnitt des Rotationsilichensystems mit der (xy)-Ebene.

Auch die (xy)-Ebene des Koordinatensystems schneidet jede
Fliche des Systems in einem Hauptschnitt. Die Achsengleichung
desselben erhalten wir direkt aus der transformierten Flichen-

gleichung (2.), indem wir in ihr z’ = o setzen; sie wird dann:
12 12
X
5 e ] 8.
sk + s’k’ 8

(1—k)* (1—k°)

a:()—"s

Setzen wir hierin far 7 5 = a, und fiir — :

_ 4,
so geht sie iber in '
X 4y = a, (a, — 9) (8s.)
Varnert man k von o bis oo, so durchliuft a, alle Werte
von — oo bis -+ oo, ausgenommen diejenigen von o bis s. Fir
alle moglichen Werte von a, wird daher die rechte Seite der
Gleichung (8,) positiv, sie stellt also immer einen Kreis dar.
Der Ort aller Punkte in der (xy)-Ebene, deren Abstinde von
zwei festen Punkten, F und O (dem Fusspunkt der z-Achse), in
einem gegebenen, konstanten Verhiiltnis stehen, ist also ein
Kreis. Fir variables k kann dessen Zentrum O’ mit allen
Punkten der positiven und negativen (x)-Achse, ausgenommen
mit" denjenigen zwischen dem Nullpunkt O und dem festen Punkt
F, zusammenfallen. Die Scheitel S, der einem positiven a_ ent-
sprechenden Schnittkreise befinden sich stets zwischen den Ab-

sté‘mden% und s ven O, die Scheitel S,” der einem negativen

Werte von a, entsprechenden Schnittkreise dagegen zwischen

dem Nullpunkt O und dem Abstand -} % Die Radien der

Kreise werden fiir a, = + oo unendlich gross; die entsprechenden
Bern. Mitteil. 1911. Nr. 1786.
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Kreisbogen, welche beide durch den Punkt x = % gehen, sind

daher Geraden von der Gleichung x = % (S. Fig. 7).

Alle Schnittkreise in der (xy)-Ebene bilden ein Kreis-
bischel 2. Ordnung mit den Grenzpunkten O und F; die

(x)-Achse bildet die Zentrale und die Gerade x = % die Chor-

dale desselben.

Fig. 7.

Die Kreise K’ mit dem Zentrum auf der positiven (x)-Achse
entsprechen dem Schnitt der (xy)-Ebene mit den Rotations-
ellipsoiden; die Kreise K'’ mit ihrem Zentrum auf der negativen
(x)-Achse sind die Schnitte der (xy)-Ebene mit den Rotations-

hyperboloiden, und die Chordale g mit der Gl. x = % ist der

Schnitt der (xy)-Ebene mit dem parabolischen Zylinder, namlich
dessen Scheitelerzeugende. Fiir
den  Parameter k = o wird a, = s und der Kreisradius r=o0
» » k=1 » a, — i o0 » » r— i o0
> » k=oco » a,=o » » r=:=0
Unter der Schar der Schnittkurven gibt es also zwei Kreise vom
Radius Null, die Grenzpunkte F' und O.
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Aus Gleichung (8,) ist ferner ersichtlich, dass entgegen-
gesetzt gleich grossen Werten von a, nicht gleich grosse Kreis-
radien entsprechen; der dem positiven a, entsprechende Radius
ist immer kleiner als der dem negativen a, entsprechende, wie
sich auch aus Fig. 7 ergibt. -

Untersuchen wir noch die Lageverinderung der in der
(xy)-Ebene liegenden Kreisscheitel N und N’! Thre Koordinaten
sind :

Durch Elimination des Parameters k aus diesen Ausdriicken
erhalten wir die Bewegungsgleichung fiir die beiden Punkte,
nimlich

2 2
| X" —y —sx=o0 (a.)

Sie stellt eine Hyperbel dar; die Koordinaten des Mittel-

punktes derselben sind & :g und 5 = o, und die auf den

Mittelpunkt transformierte Gleichung hat die Form:

2
S

x'—y* =7 (b)

P

Fig. 8.

Es ist also eine gleichseitige Hyperbel mit der Halbachse

a————Z—, und diese Kurve gibt uns den Ort aller Kreisscheitel

N und N’ in der (xy)-Ebene bei verinderlichem Parameter k.



— 132 —

§ 6.
Der Hauptschniit der Rotationsfliche parallel
zur (yz)-Ebene bei variablem Parameter k.

Ersetzen wir in der auf den Mittelpunkt transformierten
Flichengleichung

72 r2 12

2.) U T (R ST A

s’k” s’k s’k
(1—k)* (1—k)° 1—¥K
x' durch o, so erhalten wir den Hauptschnitt der Fliche 2.
Grades parallel zur (yz)-Ebene, namlich

r2 ’2
Z
A R
(1—k%? 11—k
Die Gleichung (9) stellt eine Ellipse oder eine Hyperbel

<
>

durch Gleichung (1) gegebene Rotationsfliche die neue Koordi-
natenebene (y'z’) schneidet.

DRl Yyl -\\,,

dar, je nachdem k 1 ist; dies ist die Kurve, in welcher die

Fig. 9. Fig. 9 a.
Die Halbachsen der Ellipse sind:
a=—i2 und c:“me wo ¢ < a
1—k Vi—i

Fir alle Werte von k zwischen 0 und 1 sind die zur (yz)-Ebene
parallelen Hauptschnitte der Rotationsflichen Ellipsen, deren
grosse Achse in der (xy)-Ebene und deren kleinere Achse in der
(xz)-Ebene liegt. Fiir k = 0 werden beide Achsen einander gleich,
nimlich a = c¢=o0, die Hauptschnittellipse reduziert sich auf
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einen Punkt, der im Abstand x = 4 s vom Ursprung O auf der
(x)-Achse liegt. Bei zunehmendem k entfernt sich der Mittel-
punkt der Hauptschnittellipse auf der positiven (x)-Achse immer
weiter vom alten Ursprung O und fiir k =1 wird sein Abstand
unendlich gross. Gleichzeitig wachsen auch die Ellipsenhalb-
achsen a und ¢ an und werden zuletzt ebenfalls unendlich gross.

Fir alle Parameterwerte k > 1 stellt die Gleichung (9)

eine Hyperbel dar, deren reelle Halbachse a =

sk
Vid —1
¢c>a, wenn k>/3
c==a, wenn k=\/2
¢c<a, wenn k <\/§
Die Asymptotengleichungen dieser Hyperbeln sind:

/=ty oder #=FVE—1.y

,S L undderen
k*—1

1st. Dabeil 1st

imaginire Halbachse ¢ =

Den halben Asymptotenwinkel ¢ erhilt man aus der Formel:

tgrp:\/k2 — 1. Fur das Rotationshyperboloid k = 1 befindet
sich der zur (yz)-Ebene parallele Hauptschnitt im Abstand
X = —oc vom Koordinatenursprung O; die Asymptoten der
Schnitthyperbel in — oo haben die Gleichung z’ =0 (doppelt), und
der halbe Asymptotenwinkel ¢ wird = 0, d. h. die Asymptoten
fallen zusammen in die oo ferne Gerade der (xy)-Ebene, und
der Hauptschnitt selber geht in diese Gerade iiber. Wachst k,
so sind die Asymptoten voneinander verschieden; durchliuft k
alle Werte von 1 bis oo, so nimmt der halbe Asymptotenwinkel
o alle Werte von 0° bis 90° an, und fir k=0 fallen die

Asymptoten wieder zusammen, da y' = =0 wird ;

+

TVE-1
die Asymptoten des Hauptschnittes des Hyperboloides k = oo,
welches sich auf die (z)-Achse reduziert, werden von der (z)-Achse
selber gebildet.

Alle Mittelpunkte der Hauptschnitthyperbeln parallel zur
(yz)-Ebene der Rotationshyperboloide befinden sich auf der
negativen (x)-Achse. Ist der Abstand der Schnitthyperbel vom
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Ursprung O x==0, so reduziert sich der Hauptschnitt auf die
(z)-Achse; dies ist der Fall, wenn k = oo gross ist. Nimmt
k endliche Werte an, die aber noch grosser sind als /2, so st
der halbe Asymptotenwinkel der Schnitthyperbel grosser als 45°
aber kleiner als 90° und der Abstand der Schnitthyperbel vom
Ursprung O betrigt absolut genommen weniger als a, = : Sk2
—s. Ist k=1/2, so ist der Abstand x = —s und

—_— S —_—
=r—p =
der halbe Asymptotenwinkel ¢ =45° der Hauptschmtt ist also
eine gleichseitige Hyperbel. Ist 1 <Ck<{y/2, so kann der Ab-
stand der Schnitthyperbel von der (yz)-Ebene alle Werte von

X = —§ bis x — — oo durchlaufen, fir k=1 wird er unendlich
gross; der halbe Asymptotenwinkel ¢ wird immer kleiner, und
fir k =1 ist er ¢ =0. Der Hauptschnitt im Abstand x = — o0

reduziert sich auf die unendlich ferne Gerade der (x y)-Ebene.

Die Brennpunkte f und f, aller Schnittkegelschnitte parallel
zur (yz)Ebene liegen in der (xy)-Ebene. Ihre Koordinaten im
alten Koordinatensystem sind :

: \/ s’k” s°k? - sk’ undnach e S
¥y = (1-k2)2-1—k2:I1“‘k2 §1 1K
Eliminiert man aus diesen beiden Ausdricken den verander-
lichen Parameter k, so erhiilt man den geometrischen Ort der
Brennpunkte aller dieser Schnittkegelschnitte durch die Gleichung

XFy=-++s oder zerlegt
X—y=s und x4+y=—s (10)

Die Gleichungen (10) stellen zwei Gerade in der (xy)-Ebene dar,
die symmetrisch zur (x)-Achse liegen, durch den Punkt F gehen
und rechtwinklig aufeinanderstehen, also mit der (x)-Achse je
einen Winkel von 45° bilden. Auf diesen beiden Geraden g,
und g, liegen alle Brennpunkte f und f, der zur (y z)-Ebene
parallelen Hauptschnitte der Rotationsflichen.

Durchlauft k alle Werte von 0 bis oo, so gehen die zur
(yz)-Ebene parallelen Hauptschnitte, die durch Gleichung (9)
gegeben sind, successive in einander iiber und bilden eine neue
Flache. Ihre Gleichung erhdlt man durch Elimination des Para-

D
1—K

meters k aus der Gleichung (9.) und dem Ausdruck a=
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welcher den Abstand der Ebene des Hauptschmittes vom Koor-
dinatenursprung O darstellt. Als Resultat dieser Elimination
ergibt sich die Gleichung:

sy'? + a, z2® a,s (s—a;) =0.

- In dieser Gleichung ist s eine Konstante; a, dagegen kann
als laufende Koordinate betrachtet werden, da es bei verinder-
lichem k alle Werte der positiven und negativen (x)-Achse durch-
laufen kann, ausgenommen diejenigen der Strecke OF. Substi-
tuiert man daher fir a, =x, ersetzt ferner y’ wieder durch y
und z' durch z, so wird obige Gleichung:

x2' — s (xX*—y)) 4’ x =0, (11)
Durch sie ist der Ort aller Hauptschnitte parallel der (yz)-Ebene
fir simtliche Rotationsflichen bestimmt. Sie stellt eine Fliche
3. Ordnung in den rechtwinkligen Koordinaten x, y, z dar, die
symmetrisch liegt zu der (xy)- und (xz)-Ebene. Die Diskussion
dieser Hauptschnittfliche 3. Grades erfolgt in § 12.

§ 7

Die Schnitte der Rotationsilichenschar mit einer
Ebene durch die (x)-Achse.

Es werde durch die (x)-Achse unseres Koordinatensystems
(xyz) eine Ebene gelegt, welche mit der (xy)-Ebene einen be-
liebigen Winkel ¢ bildet; wir betrachten sie als neue Koordi-
natenebene (x'y’) und transformieren nun die Gleichung des be-
trachteten Rotationsflichensystems
(1) (1—k%) x*4+(1—K)y’ 42 —2sx 4 §"=0
auf das neue Koordinatensystem (x’y’z’). Dabei gelten folgende
Transformationsformeln:

y=7y cos¢gp —2z sing
z=17y sin g -4z’ cos ¢
X o X

Die Gleichung (1.) geht dann iiber in

1— k) x"”° 4 (1—K° cos’¢) y'* + (1—k* sin® ¢) 2
4+ kK sin2¢.y' 2 —2sx’ f°==

Um die Gleichung der Schnittkurven des Rotationsflichen-
systems mit der (x'y’)-Ebene zu erhalten, ist in der letzten
Gleichung z' =0 zu setzen, und wir erhalten als Gleichung des
Schnittkurvensystems

(1—k*) x" 24 (1—Kk° cos® ¢) y'* — 2s%’ 4 =0 (12)
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Dies ist eine Gleichung zweiten Grades, jede Ebene durch
die (x)-Achse schneidet also das Rotationsflichensystem im all-
gemeinen in einem Kegelschnitt,

Die Gleichung (12) enthilt zwei Parameter, namlich k und ¢.
Wir wollen zunichst zwei Spezialfille betrachten, indem wir

vorerst ¢ = 0 und dann ¢ = %r wihlen.

Fir ¢ = 0 geht die Kegelschnittgleichung (12) tber in
1—k) x4 (1-k)y® —2sx’ =0
und wenn man diese Gleichung durch die Transformationsformeln
I 1t _”_.E._
x'=x""+ R
man die Kreisbiischelgleichung (8) in § 5. Diese stellt den Schnitt
des Rotationsflichensystems mit der (xy)-Ebene dar (s. Fig. 7).

und y' = y’’ auf die Normalform bringt, so erhélt

Setzt man fir ¢ = Z;— und wendet die vorigen Transfor-

mationsformeln an, so geht die Gleichung (12) iiber in die Gleichung
(7) § 4, welche das Schnittkurvensystem der Rotationsflichen in
der (xz)-Ebene darstellt (Fig 5).

Wir untersuchen nun das durch Gleichung (12) dargestellte
Kegelschnittsystem fiir einen bestimmten, konstanten Winkel ¢,
der zwischen 0° und 90° liegt; der Parameter k dagegen soll
alle Werte von Null bis oo durchlaufen.

Sollen vorerst die Asymptotenrichtungen der Kegelschnitte
bestimmt werden, so muss man die Glieder 2. Grades gleich
Null setzen, also

(1—k%) x4+ (1—Kk’cos” ¢) y° =0 oder

- k*—1
g + \/- z == X, a
d ¥V 1—Kcos’ ¢ @)

Die Asymptoten der Kegelschnitte sind reell, wenn Zihler
und Nenner dieser Wurzel entweder beide negativ oder beide
positiv sind. Dies ist der Fall, wenn

a) k® <1 und k° cos” ¢ > 1 oder
1
cos ¢

k <1 und k>

was unmdoglich ist, da immer grosser als 1 1st.
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b) wenn k> 1 und k® cos”p << 1 oder

1 1 1
cosqg also cos ¢ <C &
Dieser letzte Fall ist moglich. Fuar Werte von k, die grisser

sind, besitzt der durch Gleichung (12)

k >1und k<

als 1 aber klemner als

08 (
dargestellte Kegelschnitt reelle Asymptoten, die von einander
verschieden sind; er ist also eine Hyperbel.

Ist k =1, so fallen nach Gleichung (a) die beiden Asymp-
totenrichtungen in der Geraden y’ = o zusammen. Der Kegei-
schnitt ist daher in diesem Fall eine Parabel von der Gleichung
sin ¢ - y?—2sx 48 ==0. Die (x')-Achse ist Parabelachse.

Wenn der Parameter k den Wert k= 1
Ccos ¢

geht die Kegelschnittgleichung (12) tiber in
(lw—- 12 )X’2~23X’+82:0.
cos” ¢
Dies 1st eine quadratische Gleichung in x’; 16st man sie auf, so
zerfillt sie in die beiden Geradengleichungen

annimmt, so

,  8cCosg ,__ 8cOSQ
T 1 feosq HOE By e oS ¢
Fir den Parameterwert k —= coirp besteht also die Schnittkurve
(12) aus zwei Parallelen zur (y')-Achse; 1hre Abstinde von der-
: ) Scosy - p___ SCosSq
selben sind x ' = T oot beziiglich x, T —os o

Dieser Fall tritt dann ein, wenn die durch die (x)-Achse gelegte
Schnittebene (x’y’) aus dem Rotationshyperboloid zwei zur (y z)-
Ebene parallele Erzeugende herausschneidet. Da diese durch die
auf der (x)-Achse liegenden Scheitel des Hyperboloides gehen,

so muss 1hr Abstand = kgi% sein (s, Seite 121). KEs besteht da-

her die Beziehung
S COS ¢ S COS @ 28k

1-4coseg 1—cos<p_k2———1
Lost man diese Gleichung nach k auf, so erhilt man als positive,

(einzig in Betracht fallende), Wurzel wieder k = Ec—)z—(,o

Bern. Mitteil., 1911. Nr. 1787.
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1

, 1st
COS ¥

Liegt der Wert von k nicht im Bereiche 1 <k <C

also k<1 oder k> Eols_ff’ so werden die Asymptotenrichtungen

des Kegelschnittes nach Gleichung (a) imaginar, er ist also eine
Ellipse. Fassen wir die bisherigen Ergebnisse zusammen, so folgt:
Eine durch die (x)-Achse gelegte Ebene, welche mit der Koor-
dinatenebene (x y) den Winkel ¢ einschliesst, schneidet alle Ro-
tationsellipsoide des durch Gleichung (1) gegebenen Rotations-
flichensystems in einer Ellipse, den paralolischen Cylinder k =1
in einer Parabel, und die Rotationshyperboloide entweder in einer
Ellipse, oder in zwei parallelen Geraden (Erzeugende des Hyper-

boloides), oder in einer Hyperbel, je nachdem cos (f%i 1st.

Um die durch Gleichung (12) dargestellten Kegelschnitte
genauer zu untersuchen, transformieren wir die Gleichung auf

ihre Achsen, indem wir fir x’' = x"’ —|—-1— S % und far y' =y"’

substituicren. Sie nimmt dann folgende Form an:

_

N

Fig. 10.
Xl 2 —I_ yr;'d
32 k2 S2 k2

(1— K% (1—k) (1—k* cos’ ¢)

|
p—

(b)
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Der Mittelpunkt und die beiden in der (x)-Achse liegenden Scheitel
jedes Kegelschnittes dieses Systems fallen mit denjenigen der
entsprechenden Rotationsfliche zusammen, und die eine Achse
des Kegelschnittes liegt immer in der (x)-Achse des alten Koor-
dinatensystems.

Wir betrachten vorerst die Ellipsen, in welchen die Ro-
tationsellipsoide k << 1 von der durch die (x)-Achse gelegten
Ebene geschnitten werden. Der Abstand ihres Mittelpunktes vom

Koordinatenursprung wird gegeben durch a, = 3 i = Wenn k

—_—

von Null bis 1 wichst, so nimmt er alle Werte von -+ s bis
sk

T und

-+ oo an. Die Halbachsen der Ellipsen sind a =

b= 5K _, fiir k = O reduziert sich die Ellipse

V(1 —%°) (1 — K cos’ ¢)
auf emen Punkt, der mit F zusammenfillt; ber von 0 bis 1
wachsendem Parameter k nehmen beide zu von 0 bis oo, wobel
a immer grosser als b ist. Der eine Scheitel S, bewegt sich
bei zunehmendem k von x,’=s bis XZ':—;—, der andere von
X, =4 s bis x,/) =} oo. Die lineare Excentrizitit dieser

s k sin ¢
1—Kk)V1—K cos’g

Ellipsen e = nimmt vom Werte 0 an zu

: : . e k sin
bis oo, die numerische dagegen — —=— ¢ von 0

a"_\/1 — k% cos’ ¢

bis 1.
Um die Gleichung der Parabel zu finden, in welcher der
parabolische Cylinder von der Ebene durch die (x)-Achse ge-

schnitten wird, setzen wir in Gleichung (12) den Parameter k =1
ein und finden y"* = .228— (x’ #E) (c)
sin” ¢ 2

Durch die Transformationsformeln y’ =y’ und x’ = x’ +%

geht die Gleichung (c.) in die Scheitelgleichung der Schnittparabel

iiber, welche heisst y'"* = .—22-8- X (d)
sin” ¢
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Die (x)-Achse ist Parabelachse, ihr Scheitel befindet sich im Ab-

stand x’ :% vom Coordinatenursprung. Der Halbparameter der

Schnittparabel ist p = —
sin” ¢
und kann alle Werte zwischen s und >o annehmen, d. h. je nach
dem Winkel, den die Schnittebene (x’ y’) mit der Koordinaten-
ebene (x y) bildet, wird der Parameter griosser oder kleiner. Ein
Minimum wird er, wenn ¢ = 90° ist, wenn also die Schnittebene
auf der (xy)-Ebene senkrecht steht und die Erzeugenden des
Cylinders rechtwinklig schneidet. In diesem Falle wird er =s =
dem Halbparameter der Schnittparabel in der (x z)-Ebene von der
Gleichung 2z’ = 2 s x’ (Siehe Gleichung [6]). Je kleiner der
Winkel ¢ wird, d. h. je mehr er sich vom rechten entfernt, desto
grosser wird der Parameter. Fillt die Schnittebene mit der (x y)-
Ebene zusammen, so ist ¢ =0, also auch sin’ ¢ =0, und der
Halbparameter p = oo; der parabolische Cylinder wird durch
die (x y)-Ebene in der Geraden x’ =0, d. h. in der (y')-Achse
und in der unendlich fernen Geraden dieser Ebene geschnitten.
Der Abstand des Brennpunktes vom Parabelscheitel = f =

. Fiar veranderliches ¢ 1st er variabel

_s_2 kann also alle Werte szschen — und so annehmen. Ent-

2 sin® ¢ 2
sprechend verdndert sich auch die Lage der Leitlinie; far ¢ = 90°
wird sie gebildet durch die (z)-Achse im alten Koordinatensystem

und entfernt sich fir abnehmende Werte von ¢ bis nach — oo,
Wir diskutieren nun das durch Gleichung (12) dargestellte
Kegelschnittsystem fiir die Parameterwerte von k =1bisk = cols -

wo ¢ einen bestimmten, konstanten Wert besitzt. In diesem Fall
ist die Schnittkurve eine Hyperbel, deren Achsengleichung nach
(leichung (b) geschrieben werden kann:

XH-? V”2
S o o == ] e
s? k* s* k* ©)
(k2 — 1)} (k* —1) (1 — Xk cos® )
Der Abstand des Hyperbelmittelpunktes vom Koordinatenursprung
= gy = — - : fir k =1 liegt der Hyperbelmittelpunkt in

k®—1
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— oo, wenn k zunimmt, so riickt er auf der negativen (x')-Achse
ins Endliche und fiir k :—%‘P betrigt sein Abstand vom Null-
punkt X’ = — s cotg’¢. Der Abstand des Hyperbelscheitels S,

wird bestimmt aus x'1 s nimmt k alle Werte von 1 bis

S -
14k’
(—:6":—(;_) an, so bewegt sich der Scheitel S, auf der (x)-Achse von

)8 4., SCOSQ ; T ;
X' =3 bis x’' = L oos 3 Der Scheitel S, liegt im Abstand
X'=— k—_-s_mi vom Nullpunkt; fur die obigen Parameterwerte
durchliuft er den negativen Teil der (x')-Achse von x' = — oo
bis x' = — —> > _ Dje reelle Halbachse der Hyperbel = a =
1—coseg
%k———, die imaginire = b = — sk Rirk=1
k" —1 V(k* —1) (1—k®cos’ ¢)
wird a=Db = oo und fir k L wird a :29—8—3 und b = oo,
COoS ¢ s’ @

Fir alle Hyperbeln der Schar ist b > a.
Im Grenzfall k:c-»(é—sp- besteht die Schnitthyperbel, deren

Mittelpunkt in x' = — scotg” ¢ liegt, aus zwei parallelen Ge-
raden von den Gleichungen
,__ Scosg r__ __ _Scos¢g
X' = 1W+ ey und X, 1—cos ¢ (t)

Dies ergibt sich auch daraus, dass die numerische Excentrizitit

der Hyperbel fir k = L unendlich gross wird.
COS ¢

Sind die Parameter k grosser als Eé?’ so stellt die Gleich-

ung (12) des Schnittkurvensystems wieder eine Schar von Ellipsen
dar. Ihre Achsengleichung lautet:

12 112

5= -}- —=1
SZ k-— + S2 k2 B (g)

B e I (k> — 1) (k* cos® ¢ — 1)
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Variiert man k von ai—; bis oo, so geht der Ellipsenmittelpunkt

von x' = —s cotg’ ¢ bis x’ =0, Fir k = L sind die Halb-
cos ¢

YOS Y amid b = oo. Bel zunehmendem k werden die

achsen a = —
sin” ¢

Achsen beide kleiner und zwar so, dass a 1mmer kleiner ist

als b, Fir k = oo reduziert sich die Ellipse auf einen Punkt,

den Nullpunkt O des urspringlichen Koordinatensystems. Die
Scheitel S, und S, der Ellipse haben fir k = al—?) die Abstéinde

, _ SCOSQ S COS @

L 7" 14 coso "~ 1—cosg¢
bei wachsendem k immer mehr dem Nullpunkt, bis sie fir
k == co mit ihm zusammenfallen. |

und nahern sich

X , beziiglich x,” =



Zusammenstellung:

Halbachsen Scheitelabstinde
ko |a0= : sk = sk Art der Kurve
1 — k2 A= = b — X,] X'z
1—k \/(1 —k?) (1—Kk? cos?¢)

9 o 0 0 5 8 Punkt F

1 e e oo % + oo Parabel

1 2 scose SCOS ¢ S €os ¢ ‘
P scotg’e sin’ ¢ oo 1T cosp| T—cosp 2 parallele Gerade
o° g 0 ¢ 0 0 Punkt O

— §¥1
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§ 8.

Die Rotationshyperboloide, erzeugt durch projektivische
Ebenenbiischel.

Die Gleichung der einschaligen Hyperboloide des Rotations-
flichensystems kann nach Gleichung (1) auch in folgender Form
geschrieben werden:

K—1)x"4+ K —1)y —2"2sx —§°==0 (a)
In dieser Gleichung kann der Parameter k alle Werte von k =1
bis k = oo annehmen. Nun kann man sich jedes einschalige
Hyperboloid entstanden denken aus zwei projektivischen Ebenen-
biischeln von den Gleichungen
E+21E,=0 und E,+21E =0

Wenn in diesen zwei Gleichungen der Parameter 1 alle Werte von
— oo bis -} oo durchlauft, so erzeugen die aufeinander folgenden
Schnittlinien je zweler entsprechender Ebenen der beiden Biischel
ein Hyperboloid, dessen Gleichung lautet: E, E, — E, E, = 0.
Wir suchen daher die Gleichung (a.) auf diese Form zu bringen.
Ersetzt man in 1hr

K —1)x*4+2sx—s’durch [(k + 1) x—s]- [(k — 1) x s] und
— [z — (K — 1) y°] durch — [z + \/F—_l y]-[z— \/l{T_——l . v]
so geht sie dber in
[(k+1)x—s] - [(k—1)x+s] -
—[atVE —1oy] 2V —1.y[=0 (13,
und dies ist der Form nach die Gleichung des Hyperboloides als
Erzeugnis je zweler projektivischer Ebenenbiischel.

Die Gleichung des einen Ebenenbiischels lautet
E+AE,=(k+Dx—s+Ailz4+VE—1.-y]=0
und diejenige des zu ihm projektivischen Ebenenbiischels:
E,4+AE =z2—VE—1.y+2[k—1x+s]=0

Das erste Ebenenbiuischel hat die beiden Grundebenen:

und E2:z=—\/k—2;_1-y

s
Btx=g17
Die Grundebene E, liegt parallel zur Koordinatenebene (y z) im

S
Abstand X:k—l- i

Fiir alle k zwischen k=1 bis k = oo vari-
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iert dieser Abstand von x=-——% bis x = 0. Die Grundebene E,

steht senkrecht auf der (y z)-Ebene des Koordinatensystems und
geht durch die (x)-Achse desselben, sie geht durch den II., III,
V. und VIIL Oktanten. Die Scheitelkante S, des ersten Ebenen-
biischels, also die Schnittgerade der beiden Grundebenen E und
E,, geht folglich durch den II. und V. Oktanten, liegt parallel
zur (y z)-Ebene und schneidet die (x)-Achse des Koordinaten-
systems im Abstand X=E—-j_-1~ zwischen x =0 und x:-%. Fir
das Hyperboloid k = 1 liegt die Scheitelkante S, in der (x y)-

Ebene und hat die Gleichung Xm%. Bei wachsendem k nihert

sich der Schnittpunkt auf der (x-)Achse dem Nullpunkt, und der
mit der (xy)-Ebene gebildete Winkel wird immer grosser, fiir
k = oo fillt die Scheitelkante S, mit der (z)-Achse zusammen.
Das zweite Ebenenbiischel hat die beiden Grundebenen:
E, tz=\k*—1.y und E :x:—E-i—l
Die Grundebene E, steht senkrecht auf der (y z)-Ebene des
Koordmatensystems und enthilt die (x)-Achse desselben; sie
geht durch die Oktanten I, TV, VI, VII. Die Grundebene E 1st
parallel der (y z)-Ebene des Koordinatensystems und hat vom
Nullpunkt den Abstand x = — E:Sﬁfi;
Flichen der Schar kann derselbe also varilieren zwischen x = — oo
und x =0. Die Scheitelkante S, des zweiten Ebenenbiischels ist
also parallel zur (y z)-Ebene, Schneidet den negativen Teil der
(x)-Achse im Abstand x = — E—_—_—l und geht durch den IV. und
VII. Oktanten. Fiir das Hyperboloid k = oo fillt die Scheitel-
kante S, des zweiten Biischels mit der (z)-Achse, also auch mit
der Scheitelkante S, des ersten Biischels, zusammen. Lassen wir
den Parameter k successive kleinere Werte annehmen, so wird
der Winkel, den die Scheitelkante S, mit der (x y)-Ebene bildet,
immmer kleiner, und ihr Schnittpunkt mit der negativen (x)-Achse
entfernt sich immer weiter vom Nullpunkt. Fir das Rotations-
hyperboloid k=1 liegt die Scheitelkante S, des zweiten pro-
jektivischen Ebenenbiischels in der (x y)-Ebene im Unendlichen.
Bern. Mitteil. 1911, Nr. 1788.

fir die verschiedenen
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Diese zwei projektivischen Ebenenbiischel E, 4 2 E, = 0 und
E, - 1E, =0 erzeugen auf jedem Hyperboloid vom Parameter k
eine Schar von Geraden oder Erzeugenden. Nach der Gleichung
(13) kann man sich aber das Rotationshyperboloid noch aus
zwel andern projektivischen Ebenenbiischeln entstanden denken,
nimlich aus folgenden:

E/ +AE =k+1)x—s+i[z—Vk¥—1-y]=0 und

E, +1B =z4+\VE®—1-y4+A[(k—1)x +s]=0
Das Ebenenbiischel E' 4 4 E,” =0 hat die beiden Grundebenen
r e S . 1.2 4
E, .x—-m_—I und E, cz=\Vk—1.y

Die Grundebene E ' ist identisch mit der Grundebene E, der
ersten zwei projektivischen Ebenenbiischel, E,” dagegen liegt in
Bezug auf die (x z)-Ebene des Koordinatensystems symmetrisch zur
Ebene E,. Die Scheitelkante S’ dieses Ebenenbiischels, also die
Schnittgerade der Grundebenen E' und E,’, liegt daher parallel
zur (y z)-Ebene, schneidet die (x)-Achse im Abstand X=E—j_—1
also zwischen x =0 und x=%, und geht durch den I. und
VI. Oktanten. Fiir das Hyperboloid k =1 liegt die Scheitelkante
S,’ in der (x y)-Ebene und hat die Gleichung x—:%, sie 1st also
identisch mit der Scheitelkante S, des ersten Bischels. Bei
wachsendem k nidhert sich der Schnittpunkt auf der (x)-Achse
dem Nullpunkt, und der mit der (x y)-Ebene gebildete Winkel
wird immer grosser, und zwar so, dass die Scheitelkante S’ in
Bezug auf die (x z)- oder (x y)-Ebene symmetrisch liegt zur ent-
sprechenden Scheitelkante S ; fir k = oo fallt S," mit der (z)-
Achse, also auch wieder mit S, zusammen.

Das Ebenenbiischel E,” -1 E,” =0 hat die beiden Grund-
ebenen Ea’:z=—\/k2~—1 -y und E4’:x:““k—"j_1
E, ist identisch mit E,, und E; liegt in Bezug aut die (xz)-
oder (x y)-Ebene des Koordinatensystems symmetrisch zu E,. Daher
wird fiir jedes bestimmte Hyperboloid die Scheitelkante S,” dieses
Ebenenbiischels, das zu E' |4 E,” = 0 projektivisch ist, zu der
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entsprechenden Scheitelkante S, des Ebenenbiischels E, +1E, =0
in Bezug auf die (x z)-Ebene symmetrisch liegen. Fiir k—=oo fillt
S,” mit S, in der (z)-Achse zusammen, fir k =1 wird sowohl S,
als auch S,” von der unendlich fernen Geraden der (x y)-Ebene
gebildet.

Die vier Scheitelkanten S, S,, S," und S,’ der 4 Ebenen-
biischel, von denen je zwei zueinander projektivisch sind, haben
fir jedes Rotationshyperboloid eine ganz bestimmte, feste Lage.
Wenn aber der Parameter k alle Werte von k=1 bhis k = o0
durchliuft, so dndert sich successive auch die Lage dieser Scheitel-
kanten, und jede derselben erzeugt dabei eine developpable Fliiche.
Die Gleichung derselben wird gefunden, indem man aus den
beiden Grundebenen des entsprechenden Biischels den Parameter
k eliminiert. Nun fiihrt aber diese Elimination bei jedem dieser
vier Ebenenbiischel zu derselben Gleichung; man erhilt nimlich

X2+ 2sxy —s y =0 oder

7 —sy (s—2x)=0 (14)
Dies 1st die Gleichung einer Fliche 4. Grades in den Coordinaten
x yz. Variiert also der Parameter k von k=1 bis k=00, so0
erzeugen die Scheitelkanten S, S,, S," und S,” der vier Ebenen-
biischel alle dieselbe developpable Fliche 4. Grades, welche durch
Gleichung (14) bestimmt ist. Den Verlauf dieser Fliche kennen
wir bereits aus ihrer Entstehungsweise. Da die Koordinaten y
und z nur quadratisch in der Flichengleichung (14) vorkommen,
so liegt die Fliche wirklich symmetrisch in Bezug auf die beiden
Koordinatenebenen (xy) und (x z). Untersucht man die Schnitt-
kurven der Fliche 4. Grades mit den Koordinatenebenen, so zeigt
es sich, dass sowohl die (x)-Achse als auch die (z)-Achse Doppel-
geraden der Fliche sind. Ferner wird die (x y)-Ebene von ihr

in den beiden zur (y)-Achse Parallelen x =% und X = — oo ge-

schnitten. Eine zur (y z)-Ebene parallele Schnittebene im Ab-
stand x = ¢ vom Ursprung erzeugt als Schnittkurve zwei in
der (x)-Achse sich schneidende Geraden von den Gleichungen

z:i%\/;*(s—2c)-y. Fir ¢ = — oo, sowie auch fﬁrc=—f—§S

fallen die beiden Geraden je in der (x y)-Ebene zusammen, das
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eine Mal in der unendlich fernen Geraden dieser Ebene, das
andere Mal in der Geraden x=%. Fir ¢ = 0 fallen beide Ge-

raden zusammen mit der (z)-Achse des Koordinatensystems. Wenn

e>> ist, so wird die Schnittkurve imaginir, die Fliche 4. Grades

2

liegt also ihrer ganzen Ausdehnung nach links von der Ebene

x::%. In Bezug auf die Entstehungsweise der Fliche konnen

wir nach dem Fritheren noch schliessen, dass der im 1. und
VI. Oktanten liegende Teil derselben durch die Scheitelkante
S," erzeugt wird, der im II. und V. durch S, der im IV. und
VII. durch S, und der im III. und VIII. Oktanten liegende Teil
durch die Scheitelkante S,’.

§ 9.

Kreispunkte der Flachenschar,

Die Achsengleichung der centrischen Flichen 2. Grades hat
allgemein die Form:

2 2 2
X

z
gty ta=t

Das Vorzeichen von b? und ¢? ist dabei noch unbestimmt ge-
lassen. — Fiir jede Fliche, deren Gleichung diese Form hat, ist
es moglich, zwel Systeme paralleler Schnittebenen so zu be-
stimmen, dass alle Schmttkurven Kreise sind. Die #ussersien
Ebenen der beiden Systeme sind Tangentialebenen der Fliche;
sie schneiden diese in einem unendlich kleinen Kreise, in ihrem
Beriihrungspunkte, und ein solcher Punkt heisst Kreispunkt
oder Umbilikus. Jede centrische Fliche besitzt also im allge-
meinen 4 reelle Kreispunkte; sie liegen in der (x z)-Ebene und
haben die Koordinaten:

2 5 3 2
a—b b — ¢
Xx=1\/—5 5 und z=-+c — >
a°—e¢ a“—c¢

Unsere auf die Achsen transformierte Flichengleichung heisst
nun:




12 +2 7/2

X y -
@ et e !
1—xpP -k 1—K
Da a =D ist, so werden die Koordinaten der Kreispunkte:
k
X' =+0 und z' =+ > =
V1—k

Je zwel der Krelspunkte der durch Gleichung (2) dargestellten
Rotationsellipsoide und -Hyperboloide fallen demnach in einen
einzigen zusammen, so dass im ganzen nur zwel iibrig bleiben;
sie liegen symmetrisch zur (x y)-Ebene und haben im alten System

die Koordinaten:
S S k

X=30=1—__—k2 und Z:iv—~~-—-—--—1-__k2
Fir jedes Rotationsellipsoid fallen die Kreispunkte zusammen
mit den Endpunkten der Rotationsachse 2¢ und bei variablem
Parameter k bewegen sie sich nach der in § 4 aufgestellten
Parabelgleichung (b.). Fur die Rotationshyperboloide wird die
Ordinate der Kreispunkte
+ sk n sk . sk
“VI—K iy -1 T
d. h. es gibt auf den Rotationshyperboloiden keine Kreispunkte.
Das System paralleler Schnittebenen, welches in der Fliache
Kreise ausschneidet, 1st parallel der (x y)-Ebene und setzt sich
nach beiden Richtungen bis ins Unendliche fort.

z= == Imaginar,

§ 10,
Polarebenen in Bezug auf das Rotationsflichensystem (1).

Soll die Polarebene eines beliebigen festen Punktes P (x, y,z))
in Bezug auf eine Fliche 2. Grades bestimmt werden, so wird deren
Gleichung zunichst mit w homogen gemacht Glelchung (1) geht
alsoiber in (1 —K) x4+ (1 —K)y 47 —2sxw4s"w' =0,
wo w die Bedeutung 1 hat. Die Gleichung der Polarebene wird
dann nach der Formel bestimmt:

d f o f

. of
8X Ty aYo

of
+-Z“ﬁ)—+-Wﬂ;:0
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Es ist nun % =2(1—K) X, = & 8%,

0 .
df 9
— =21 —k’)
Yo Yo
a—f-=2z

d
d

Also wird die Gleichung der Polarebene des Punktes P, (x, y, %),
wenn w,==w = 1 gesetzt wird:
(A —K)x, —s] x+ A —K)y,y+zz—s (x,—85)=0 oder
(I-kz)[x0x+y0y]—sx+z0z——s(xo—s)z() (15)
Als Pol wihler wir vorerst einen beliebigen Punkt P, (x,, 0,0)
der (x)-Achse. Wir haben also in der Gleichung (15) fiir y,=12z,=0
zu setzen, und sie geht dann tber in

(X —9)

il —E)x,—s

Wir sehen hieraus, dass allgemein die Polarebene eines Punktes
der (x)-Achse in Bezug auf jede beliebige Fliche des Systems zu
der (y z)-Ebene des Koordinatensystems parallel 1st. Wahlt man
speziell den festen Punkt F (s,0,0) als Pol und erinnert sich
daran, dass nach § 4 die (z)-Achse die Leitlinie, d. h. die Polare
i Bezug auf den einen Brennpunkt F aller Schnittkegelschnitte
in der (x z)-Ebene darstellt, so folgt, dass alle Polarebenen des
Punktes F mit der (y z)-Ebene zusammenfallen; denn sie miissen
die (z)-Achse enthalten und zugleich zur (x)-Achse senkrecht
stehen. Setzt man in der Polarebenengleichung (15) fir x;=s,
y,=12,=0, so geht sie wirklich fir jedes beliebige k iiber in
x =0, die Gleichung der (y z)-Ebene.

Fir den Pol P (0,0, 0), also den Ursprung des Koordinaten-
systems, wird die Polarebenengleichung x =s. Auch die Polar-
ebene des Nullpunktes ist also fir alle Flachen der Schar dieselbe;
sie ist parallel zu der (y z)-Ebene und geht durch den Punkt F.

Wir wihlen nun einen beliebigen aber festen Punkt
P (x,¥,%,) und betrachten seine Polarebenen in Bezug auf alle
Rotationsflichen des ganzen Systems. Dann spielt in der Polar-
ebenengleichung (15) die Grosse (1 —k’) die Rolle eines ver-
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dnderlichen Parameters, der alle Werte von 1 bis — oo annehmen
kann, und die Gleichung (15) stellt daher bei verinderlichem k ein
Ebenenbiischel dar. Die Gleichungen seiner Grundebenen sind:
E=x-x1+Yy,-y=0 und
E,=s-x—z,-2+5s(x,—s)=0
Die Grundebene K, steht senkrecht auf der (x y)-Ebene

und geht durch die (z)-Achse. Ihre Spurgerade in der (xy)-

x
Ebene hat die Gleichung y = — TO x; sie ist die Polarebene des
L .

Punktes P in Bezug auf die Fliche k = oo des Systems, welche
die (z)-Achse ist. Die Grundebene E, des Biischels steht senk-
recht auf der (x z)-Ebene; 1hre Spurgerade hat die Gleichung

= — x+ (x —s); sie ist die Polarebene des Punktes P in
Z

Bezug auf d1e Fliche k =1 des Systems, welches ein paraboli-
scher Cylinder ist.
Die Achsenabschnitte der Grundebene E, sind x =s —x,

und z = ZS- (x, — s). Die Scheitelkante des Biischels, durch welche
0

alle Polarebenen des Punktes P (x,y,z) in Bezug auf alle
Rotationsflichen des Systems hindurch gehen, hat die Doppel-
gleichung:
z,
x=—&)y——z——x + s

Diese Gerade geht durch d1e (z)-Achse und zwar im Abstand
= zi (%X, —s). Ihr Durchstosspunkt mit der (x y)-Ebene hat die
0

X,
Koordinaten x=s—x, und y = §9 (X —8)
0

Haben wir zwei verschiedene Pole P, (x,y, z) und P, (x,y,2,),
so werden die Polarebenengleichungen des Rotationsflichen-
systems in Bezug auf P, und P, nach Gleichung (15):

1—%)[x,x +y,y] —sx+tzz—s(x,—s)=0 und (a)
(1-%)[x,x+y,y] —sx+zz—s(x,—s)=0 (b)
Betrachtet man wieder die Grosse (1 — k°) als variablen Para-

meter, so lassen sich die beiden letzten Gleichungen abgekiirzt
in der Form schreiben
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(1—k)E, | E,=0 und (c)
(1—X%X)E,+ E,=0 (d)

Dabei stellen E, und E, die Grundebenengleichungen des Ebenen-
biischels fiir den Pol P,, E; und E, diejenigen fiir den Pol I,
dar, welche die oben angegebene Bedeutung als Polarebenen
der Grenzflichen k = oo und k =1 haben. Weil der Parameter
(1—k* in den Gleichungen (¢) und (d) der beiden Ebenen-
biischel dieselben Werte durchliuft, so stellen diese Gleichungen
zwel projektivische Ebenenbiischel dar. Jedem Parameter-
wert entspricht in jedem Biischel eine bestimmte Ebene; zwei
solche Ebenen heissen entsprechende Ebenen. Je zwei ent-
sprechende Ebenen schneiden sich in einer Geraden, und die
Gesamtheit aller dieser Schnittgeraden bildet in ihrer Aufein-
anderfolge eine Limienfliiche oder windschiefe Regelfliche. Man er-
hiit thre Gleichung, wenn man aus den beiden Bischelgleichungen
den veriinderlichen Parameter (1 — k°) eliminiert. Es folgt dann
als Eliminationsgleichung:

E,E,—E E,=0 oder
S(XI—X:,) x? _’”S(yl *Y‘g) X y—|~(X2Z1—Xl ZL’)XZ + (YQ =Y Zz)yz
+ (X, —x)xX+s[s(Yo—¥) + (XY, —X¥)] y=0 (16)
Da diese Linienfliche vom zweiten Grade ist, so stellt die
Gleichung (16) entweder ein einschaliges Hyperboloid oder ein
hyperbolisches Paraboloid dar. Um dies zu entscheiden, muss

die Determinante 6 der allgememen Flichengleichung 2. Grades
berechnet werden. Fiir die Gleichung (16) wird sie:

S 1
8 (R, x2) '3 ¥, — yz) ‘g (X2 z, — X, 22)

S 1
d= Q(Y1_"Y2)' 0 'Q(Y2Z1_Y1zz)

1 1
E(ngl‘_xlzz)'g()’-zzt_ Yi%) -0

oder ausgerechnet :

S
0= (Y2 Z—Yy, Z2) [_é (Y1_Y2) (Xz 2, — Xlz‘z) _

S
1 (X1 — X)) (¥ %, — Y, Zz)]
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Wenn der Determinantenwert & von Null verschieden ist, so
stellt die Gleichung (16) eine centrische Flache 2. Grades dar,
also ein emschaliges Hyperboloid. Verschwindet dagegen der
Wert von 4§, so riickt der Mittelpunkt der Fliche ins Unendliche;
sie stellt dann im allgemeinen ein Paraboloid dar, kann aber in
speziellen Fillen auch in zwei Ebenen zerfallen. Fir das Ver-
schwinden der Determinante § gibt es folgende mogliche Fille:

z
a) y,%, —Y,%,=0 oder i - Dies ist der Fall, wenn

Yo %

die Verbindungsgerade der beiden Pole P, und P, die (x)-Achse
schneidet. Die Flichengleichung (13) geht dann iber 1in:

§(X — X)X +s(y, —y,)xy+ (%2 —x,2)x2+
s> (xz—xl)x -+ s [s (yz—yl)-]—(x2y1 — X, yz)]y-:O
Dies ist die Gleichung eines hyperbolischen Paraboloides.
b) y,=1y, und x,=x,. Wenn diese Bedingungen gleichzeitig
erfiillt sind, so liegen die beiden Pole P, und P, auf einer Parallelen

zur (z)-Achse. Setzt man in der Gleichung (16) y, =y, und
X, =X,, so zerfillt sie in die beiden Ebenengleichungen:

z=0 und x -x+4y,-y=0
Die eine Ebene wird gebildet von der (x y)-Ebene des Koordinaten-
systems und die andere steht auf ihr senkrecht; sie geht durch

die (z)-Achse und erzeugt eine Spurgerade von der Gleichung

X1
S e X
¥ v,

c) x L= X, und z ==z, Die Pole P, und P, missen in dem
Fall auf einer Palallelen zar (y)- Achse hegen Die Fliachen-
gleichung (16) zerfillt dann in:

y:O und SX—}-ZL.Z‘{_S?_%SXl:O
Dies sind die Gleichungen zweier Ebenen; die erste fallt zu-

sammen mit der (xz)-Ebene des Koordinatensystems, die zweite
steht dazu senkrecht und erzeugt die Achsenabschnitte:

s(s—l—ﬁ)

Z

X==—(s+x) und z=-—

Die beiden projektivischen Polarebenenbiischel zweier Pole
P, und P, in Bezug auf das Rotationsflichensystem erzeugen
Bern. Mitteil. 1911. Nr. 1789.
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also ein hyperbolisches Paraboloid, wenn die Verbindungsgerade
P, P, die (x)-Achse schneidet, zwei Ebenen, wenn sie entweder
zur (z)- oder zur (y)-Achse parallel ist, in allen andern Fillen
dagegen ein einschaliges Hyperboloid.

§ 11.

Ort der Schnittpunkte von drei sich rechtwinklig
schneidenden Tangentialebenen fiir die verschiedenen Fldchen
des Rotationsflichensystems.

Die Achsengleichung einer beliebigen centrischen Fliche
5 .3 &
2. Grades hat allgemein die Form };—24—%—'{—5—2:: 1. Nun ist der

Ort aller Punkte 1im Raum, von denen aus drei zueinander senk-
recht stehende Tangentialebenen an eine solche Fliche gelegt
werden konnen, eine mit der Fliche concentrische Kugel vom

Radius R = \/a® + b® -+ ¢* Da die Halbachsen unserer Rotations-

fliche a=b = _8% 5 und c—u—wﬂ_, sind, so ist der Radius

1—k \V1—

der Kugel von obiger Beschaffenheit
2 ¢ k? sk’ sk 3
\/1--k2 T roeViE @

Wir kénnen aus diesem Wert fiir R bereits schliessen, dass nur
fur diejenigen Flichen des Rotationsflachensystems eine Kugel von
der oben erwithnten Eigenschaft besteht, fiir welche k <C\/8 ist,
also tiir alle Rotationsellipsoide und fir die Rotationshyperboloide
k <<V/3. Fiir jede dieser Flichen lisst sich die Gleichung einer
Kugel bestimmen, deren sdmtliche Flachenpunkte Schnittpunkte
von je drei senkrecht aufeinander stehenden Tangentialebenen
an die betreffende Fliache sind; diese Kugelgleichung lautet

Nyt SE (g g2 17

Hyi =y (8 —%7) (17)
Um diese Gleichung auf das alte Coordinatensystem zu beziehen,
haben wir in ihr x' =x — 1—i = y' =y und z’ = z zu setzen;

die Gleichung (17) geht dann iber in
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" . " 2 4__ 2 1
Ploysk) =x'— 22 x4y a2 (k(lf’;‘z)f ):(1073)

Es soll nun die Enveloppe aller Kugeln bestimmt werden, die
den unendlich vielen Flichen des Rotationsflichensystems ent-
sprechen. Dies geschieht durch Elimination des Parameters k
aus der Gleichung (17a) und der folgenden;

)

Egzz(s—Zx)kd’—}—élxkz—mes:O
Wir bestimmen aus der letzten Gleichung die Wurzeln k*; die
eine wird kf =1, die andere kz = gi t—: Nur die letzte liefert
ein brauchbares Resultat. Setzt man ihren Wert in Gleichung
(17a) ein, so geht sie tiber in

2x’ 4y 47 — sx—{—-gsz:O
Dies ist die Gleichung eines imaginiren Rotationsellipsoides.
Wir finden also das Resultat, dass die durch Gleichung (17 a)

gegebene Schar von Kugelflichen keine Enveloppe besitzt.
Der Mittelpunkt des obigen imaginiren Ellipsoides liegt

auf der (x)-Achse im Abstand x = —]——Z vom Nullpunkt. Seine

Halbachse a hat die Linge a = L) sie liegt in der (z)-Achse und

4¢
ist Rotationsachse des Ellipsoides. Die beiden andern Halbachsen
3s '
V8 |
Die Mittelpunkte der Kugeln von der oben verlangten Be-

schaffenheit fallen immer mit denjenigen der entsprechenden
Rotationsflichen zusammen; sie liegen also auf der (x)-Achse

sind b=c¢c¢ =

im Abstand x = 1—5? vom Coordinatenursprung. Nun hat ein

Hauptschnitt der durch Gleichung (17) dargestellten Kugel parallel
zur (y z)-Ebene des Coordinatensystems folgende Kreisgleichung:

2 2 s’ k? ( 2)

Tt d =5 (8—k
y©+ 1 — ) (b)
Wenn wir nacheinander immer andere Rotationsflichen des Systems
ins Auge fassen, so #ndert sich der Radius dieses Kreises, und
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sein Mittelpunkt riickt auf der (x)-Achse des Coordinatensystems
vorwirts. Die aufeinander folgenden Kreise erzeugen so wieder
eine Fliche, deren Gleichung sich durch Elimination des Para-
meters k aus der Kreisgleichung (b ) und der Gleichung der Schnitt-

S ;
ebene x == —— ergibt.
11—
Sie wird, bezogen auf das urspriingliche Koordinatensystem:
2%’ —y' —7 —sx—5 =0 (18)

Dies ist die Gleichung einer Fliche 2. Grades; durch die Sub-

stitution x =x" + 781, y=1y" und z=1z' erhilt man die Achsen-

gleichung
L S (Z’Z —1
gsg 9 is“’
16 8 8

Die obige Hauptschnittfliche ist also ein zweischaliges Rotations-
hyperboloid. Die reelle Achse desselben liegt in der (x)-Achse
des Coordinatensystems, sie ist Rotationsachse. Der Flichen-

mittelpunkt O” hat die Koordination x = %’ y=1z=0, die reelle

Halbachse a:gs. Der eine Schnittpunkt des Rotationshyper-

boloides mit der (x)-Achse befindet sich daher im Punkte F (s,0,0)

derselben, der andere 1m Abstand x = —; vom alten Nullpunkt

O. Die Schnittkurve des zweischaligen Hyperboloides mit der
(x y)-Ebene 1st eine Hypelbel; die Asymptoten derselben haben

— (x —Z) Der Winkel ¢, den die Asymptoten mit der

die Gleichungen y' = + —— x’, oder 1m alten Koordinatensystem

y==
\/ 4
(x)-Achse emnschliessen, ist bestimmt durch tg ¢ = ——, eristalso

V8
grosser als 45°

Die Hauptschmttfliche (18) wird von der (x z)-Ebene eben-
falls in einer Hyperbel geschnitten; diese ist kongruent zu der
Schnitthyperbel in der (x y)-Ebene.
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Aus der Beschaffenheit der Fliche dieses zweischaligen
Rotationshyperboloides sehen wir, dass die Centra der Kugel-
flichen mit allen Punkten der positiven und negativen (x)-Achse
zusammenfallen konnen, ausgenommen mit denjenigen der Strecke

von X =—% bis x = -+ s. Demnach existiert fiir alle Flichen

des Rotationsflichensystems, deren Mittelpunkte entweder auf der
positiven (x)-Achse zwischen x = 4+ s und x = | o¢, oder auf
s
5
eine Kugel, welche der oben geforderten Bedingung Geniige
leistet. Fir diejenigen einschaligen Rotationshyperboloide des

der negativen (x-)Achse zwischen x = — oo und x = —  liegt,

Flichensystems, deren Mittelpunkte zwischen x = — % und x=0

liegen, ist k >V/3, und fiir sie lisst sich keine solche Kugel-
flache finden.

Wir betrachten nun das Schnittkurvensystem, das durch
die unendlich vielen, durch Gleichung (17) bestimmten Kugel-
flichen in der (x y)-Ebene des alten Koordinatensystems erzeugt
wird, wenn der variable Parameter k alle Werte von k=0 his
k =1\/3 durchliuft. Jede Kugel erzeugt als Schnittkurve einen
Kreis, dessen Centrum auf der (x)-Achse liegt; seine Gleichung

212
lautet x'* 4 y'* = (—13—1%{7)5 (8 —k°). Wenn der Parameter k
alle Werte von k=0 bis k=1 annimmt, so durchliuft der
Kreismittelpunkt die positive (x)-Achse von x =s bis x == 4 oo,
und fir die Parameterwerte von k=1 bis k =\/3 riickt das

Kreiscentrum auf der negativen (x)-Achse von x= —oc bis
X = — % Die Abstinde x, und x, der auf der (x)-Achse liegenden

Kreisscheitel S, und S2 sind :

X, = ; j R _S_kkg \/8_ — k% beziiglich
S sk PE—
X, = 3—k
. 1-E+1—EV
Ueber die Verinderung ihrer ILage bei verinderlichem Para-
meter gibt folgende Tabelle Aufschluss:

1




Fir die Rotationsfliche k =0 reduziert sich der Schnittkreis,
also auch die entsprechende Kugelfliche, auf den Punkt F (s, 0, 0).
Wenn k von O bis 1 wiichst, so riicken die beiden Kreisscheitel
ins Unendliche, S, in negativer, S, in positiver Richtung. Alle
Rotationsflichen o <C k <{ 1 werden somit von der entsprechenden
Kugelfliche vollstindig eingeschlossen. Wenn k den Wert 1 iiber-
schreitet, so dndert sich die Bewegungsrichtung der beiden Kreis-
scheitel, sie ricken wieder ins Endliche, und fir k =\/3 fallen

sie im Punkte P ( 3 0, 0) zusammen. Auch fir das Hyper-

boloid k =/3 reduziert sich der Kreis, folglich auch die ent-
sprechende Kugelfliche, auf einen Punkt der (x)-Achse.

§ 12.
Diskussion der Hauptschnittfliche 3. Grades.

Bei der Besprechung der Hauptschmtte des Rotations-
ﬂ:‘ichensystems parallel zur (yz)-Ebene wurde gezeigt, dass sie
in ibrer Aufeinanderfolge eine Fliche 3. Grades erzeugen, deren
Gleichung nach § 6 lautet:

xz—s(x —yz)—l—szx:O (11)
Im Folgenden soll nun diese Hauptschnittfliche diskutiert werden.

Um zunichst ihren Asymptoten- oder Richtungskegel zu
bestimmen, machen wir Glelchung (11) mlt w homogen; sie geht
dann iiber in x 2" — sx’w 4 s v’ w 4+ s w*=0. Da die unendlich
ferne Ebene die Gleichung w = 0 hat, so findet man den Schnitt
der Hauptschnittfliche mit ihr, indem man in der homogenen
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Flachengleichung w =0 setzt ; so erhilt man einen Kegel 3. Grades
von der Gleichung x z* =0, welcher in die (y z)- und die doppelt
gelegte (x y)-Ebene zerfallt, und der die unendlich ferne Ebene
in derselben Kurve schneidet, wie die Hauptschnittfliche, namlich
in der unendlich fernen Geraden der (yz)-Ebene und in der
doppelt gelegten unendlich fernen Geraden der (x y)-Ebene.

Ferner untersuchen wir die Schnittkurven der Hauptschnitt-
fliche mit den Coordinatenebenen (xy) und (xz). Setzen wir in
Gleichung (11) z=0, so geht sie tber in

X2-—y2-——SX=0 (a)
Diese Gleichung (a) stellt eine gleichseitige Hyperbel dar, als
Schnitt der Fliche 3. Ordnung mit der (x y)-Ebene; zum voll-
stindigen Schnitt gehort noch die unendlich ferne Gerade der
(x y)-Ebene. Die obige Hyperbelgleichung ist identisch mit Gleich-
ung (a) in § 5; die (x)-Achse ist die eine Achse der Hyperbel;

ihr Mittelpunkt hat die Coordinaten x =% und y =o0; die Halb-

achse 1st % (Fig. 8).

Um die Schnittkurve der Hauptschnittfliche mit der (x z)-
Ebene zu finden, setzen wir in Gleichung (11) y=0 und finden
dann:

by | 1) x=0, die (z)-Achse, und
(b) 2
2) z"=s(x—s)

Die letzte Gleichung stellt eine rechts von der (z)-Achse liegende
Parabel dar und ist identisch mit Gleichung (b) in § 4. (Siehe
auch Figur 6). Diese Parabel ist die Kurve, in welcher der den
Rotationsflichen k <1, (also den Ellipsoiden), entsprechende Teil
der Fliche 3. Ordnung die (x z)-Ebene schneidet. Ihre Achse ist
~ die (x)-Achse; der Scheitel liegt im Punkte F und der Halb-
parameter =%. Fir den Teil der Hauptschnittfliche 3. Grades,
welcher den Hauptschnitten der Rotationshyperboloide (k > 1)
entspricht, erhalten wir als Schnittkurve in der (x z)-Ebene die
(z)-Achse, auf welche sich das Rotationshyperboloid fir k = oo
reduziert. Die (z)Achse liegt also ihver ganzen Ausdehnung nach

auf der Flache 3. Grades.
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Da in der Flichengleichung (11) das konstante Glied fehlt,
so geht die Flache durch den Nullpunkt und die Gleichung der
Tangentialebene in 1hm wird gegeben durch die gleich Null
gesetzten Glieder ersten Grades; sie lautet: x =0. Die (yz)-
Ebene ist also Tangentialebene im Nullpunkt O,
sie berihrt die Flache lings der ganzen (z)-Achse.

Auch der Punkt F liegt auf der Hauptschnittfliche, denn
seine Coordinaten x == + s und y ==z ==0 geniigen der Gleichung
(11). Die Tangentialebene im Punkte F' bestimmt man nach der
Gleichung:

x=—x)f+@F—v)hk F(z—2)f=0

wo X, y,# die Coordinaten des Punktes F sind, also x, == -|-s
und y, =z =0, und wo
df 5
£, = Eraan
of
f,=~—=0
2= 5y,
of :
f3 == ‘g"z— =0 1st.

t
Als Gleichung der Tangentialebene der Hauptschnittfliiche

im Punkte F findet man so die Gleichung

—(x—s)s’=0 oder x=s.
Sie stellt eine Ebene parallel zur (y z)-Ebene im Abstand x = -} s
dar. Der Punkt F ist Scheitel des rechts der (y z)-Ebene liegenden
paraboloidischen Teils der Hauptschnittfliche.

Im weitern untersuchen wir die Schnitte der Hauptschnitt-
fliche 3. Ordnung mit Ebenen parallel zu den zwei Koordinaten-
ebenen (xy) und (xz). Setzt man in der Flichengleichung (11)
7= c¢ = konstant, so erhilt man die Schnittkurven parallel zur
(x y)-Ebene, niamlich

(c) sy —sx 4 (4s)x=0
Dicse Gleichung stellt einen Kegelschnitt dar, dessen Asymptoten
y = 1 x sind, also eine gleichseitige Hyperbel Ihre Normal-
formgleichung findet man durch die Substitution y =y’ und
&+ &

x==x" 4 P in Gleichung (c); dann erhalt man nimlich:

/2 2\ 2
2 g2 ¢ s
@ i yi=(TE)
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Die Hyperbelachse liegt in der (x z)-Ebene parallel zur (x)-Achse,
im Abstand ¢ von derselben. Féllt die Schnittebene mit der
(x y)-Ebene zusammen, so ist ¢ ==0 und die Gleichung (¢) wird
identisch mit der Gleichung (a), d. h. sie stellt den Schnitt der
Hauptschnittfliche mit der (x y)-Ebene dar. Fiir bestimmte positive
oder negative Werte von ¢ betriigt der Abstand des Hyperbel-
R: + &2
2s

mittelpunktes von der (z)-Achse x = : er 1st also stets

positiv und kann alle Werte von % bis 4 co annehmen. Da die
¢? 4 ¢ :
Achsen der Hyperbel a=b=— 53 sind, so liegt der eine

Scheitel stets auf der (z)-Achse, der andere im Abstand x' =

2, 2
¢ "S— ® von der (z)-Achse auf der (x')-Achse. Zu jedem Schnitt

parallel zur (x y)-Ebene gehort ferner die unendlich ferne Gerade
der betreffenden Schnittebene.
Setzt man in der Gleichung der Hauptschnittfliche z = 2/,
x =X und y =c = konstant, so bekommt man die Kurven-
gleichung fir die Schmtte parallel zur (x z)-Ebene, nédmlich
(e) X'z —sx?+x +s =0
Diese Gleichung 3. Grades in x’ und z’ stellt eine Kurve dar,
die symmetrisch zur (x')-Achse liegt, weil die Variable z’ nur in
der 2. Potenz darin enthalten ist. Fiir ¢ =0 geht die Gleichung
(¢) in die zwei Gleichungen (b) tiber, welche die Schnittkurve
der Hauptschnittfliche mit der (x z)-Ebene darstellen. Fir jeden
andern beliebigen positiven oder negativen Wert von c¢ stellt
die Gleichung (e) eine Kurve 3. Grades dar, deren Asymptoten-
richtungen man erhédlt, wenn die Glieder héchsten Grades
gleich Null gesetzt werden, also x’ z’> =0 oder
x’=0 und z'=0 doppelt.

Die drei Asymptotenrichtungen sind reell; die eine wird gegeben
durch die Richtung der (z')-Achse, die beiden andern zusammen-
fallenden durch die Richtung der (x')-Achse. Die unendlich ferne
Gerade der (x’ z')-Ebene schneidet also die Kurve in einem ein-
fachen und zwei zusammenfallenden Punkten. Um den letztern
Schnittpunkt der Kurve mit der unendlich fernen Geraden zu

Bern. Mitteil. 1911, Nr. 1790.
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untersuchen, projizieren wir ihn durch die Transformationsformeln
17

X = < und z’ = % i den Nullpunkt. Setzt man diese Werte
in der Kurvengleichung (e) ein, so wird sie:

' # % g gt I | g e
Diese Gleichung stellt eine Kurve 3. Ordnung dar, die durch den
neuen, dem unendlich fernen Punkt der (x’)-Achse entsprechenden,
Nullpunkt geht. Die Tangente in ihm hat die Gleichung x"" =
%:O, also x" = oo. Der unendlich ferne Punkt der (x’)-Achse
1st daher ein einfacher Kurvenpunkt, in welchem die unendlich
ferne Gerade der (x'z')-Ebene die Kurve beriihrt.

Um den unendlich fernen Punkt der (z')-Achse zu unter

suchen, projiziert man 1hn durch die Transformationsformeln
rr .
z’:il,f, und x’:% n den Nullpunkt. Die Kurvengleichung
geht dann tber in
x' SX”z 7! _}_ 82 x'’ ZH2 + S 62 ZII3 -

Die transformierte Gleichung beginnt mit Gliedern 1. Grades,
der unendlich ferne Punkt der (z’)-Achse ist daher ein einfacher
Kurvenpunkt. Die Tangente in ihm hat die Gleichung x"" = 0
oder zuricktransformiert x" = 0. Die (z')-Achse ist also Asymp-
tote der Kurve. Setzt man in der transformierten Gleichung
x"" =0, so findet man die Schnittpunkte der (z')-Achse mit der
Kurve, nimlich z/"* == 0, also 2’/ == 0 dreifach, oder zuriicktrans-
formiert z’ = oo dreifach; d. h. die (z")-Achse schneidet die Kurve
im unendlich fernen Punkt in drei zusammenfallenden Punkten,
sie 1st daher Wendeasymptote der Kurve.

Um die Schnittpunkte der Kurve 3. Grades mit der (x")-Achse
zu beftimmen, schreiben wir ihre Gleichung (e) in der Form

z’:\/x—s, (x? —sx' — &)

Fir die zu bestimmenden Schnittpunkte ist z’ = 0 also

\/i, (x?—sx’' —¢)=0 oder

X

S 9 9 . F . .
)?(x’ —sx' —¢)=0. Diese Gleichung hat die drei Wurzeln
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’

xl_—:.oo

» S+\/—S,—2+402
X', = 5

, :s—-\/s2—|—4cT
X', = 5

Dies sind die Abscissen, in welchen die Kurve die (x')-Achse
schneidet; x’, ist immer positiv, x’, dagegen stets negativ. Die
Ordinaten mit den Abscissen x’,, x’, und x’, sind Tangenten an

die Kurve.
Die Kurve 3. Grades besteht aus zwei unendlichen Aesten;

der paare parabolische Zug hat seinen Scheitel in

s+Vs? 14 ¢
2

X’:

und erstreckt sich in der Richtung der positiven (x)-Achse bis
ins Unendliche; die unendlich ferne Gerade der (x’z’)-Ebene
ist Tangente an diesen Zug. Der unpaare Zug schneidet die

(z')-Achse in

X ===

r #—S+\/Sz+4c2
5

Die Gerade

' — 0 + \/Sg _l— 4 02
X = g
ist Tangente 1m Schmttpunkte mit der (x')-Achse, und die (z)-
Achse ist Wendeasymptote der Kurve; diese besitzt ferner zwel
Wendepunkte im Endlichen, die symmetrisch zur (x’)-Achse liegen.

Ihre Abscissen werden gefunden, indem man aus der Kurven-
2 7

d x"?
die Wurzeln dieser Gleichung aufsucht.

Aus Gleichung (e) folgt:

bestimmt, diesen Wert gleich Null setzt und

gleichung (e)
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, 3 e T O 2
—2s¢e" x’ (sx’—sc x’ ——s)——2—<scx’ +s)

d?z 1
29 = y
dx (sx’—sczx' —52)2
2
Dieser Ausdruck fiir PR kann nur gleich Null sein, wenn der
X

Zihler dieses Bruches verschwindet, also wenn
4 % _ 42 2 4 .
xX*+6c x" —4sc’x’ —3¢ =0 ist.

Die Kurve, in der die Hauptschnittfliche durch Ebenen
parallel zur (xz)-Ebene geschnitten wird.

J |
1
1
i)

/; ’
Fo
f’f

Fig. 11.

Wird diese Gleichung aufgelost, z. B. nach der Methode von
Ferrari, so findet man, dass sie zwei konjugiert komplexe und
zwel reelle Wurzeln besitzt. Von den letzteren hat die eine einen
positiven Wert; die andere dagegen, welche den beiden im End-
‘lichen liegenden Wendepunkten der Kurve dritten Grades ent-
spricht, ist negativ, nimlich



3
wo q=2¢ 4 \/64 ¢’ + 16 s c* bedeutet.

Durch diesen Wert von x’ ist die Abscisse der beiden zur
(x')-Achse symmetrisch liegenden Wendepunkte des unpaaren
Zuges der Kurve 3. Grades bestimmt,

Gehen wir nun uber zur Untersuchung der Flichenpunkte
der Hauptschnittfliche 3. Grades! Ihre Gleichung kann, wenn

sie nach z aufgelost wird, auch in folgender Form geschrieben

werden:
2

'
z:F(xy):(sx——s%——sz)2 )
Lasst sich die Gleichung einer Fliche in diese Form bringen,
so gilt als Kritertum der Flachenpunkte allgemein der Ausdruck

F, F,— Fl.f. Setzt man hierin die Koordinaten des zu unter-
suchenden Flachenpunktes ein, so ist er entweder elliptisch,

parabolisch oder hyperbolisch, je nachdem F,, F,, —F} % 0 ist.
Wir berechnen daher zunichst F,, F,, und F,. Nach Gleichung
(f) folgt:

2

s-{-sy—2
1 X
Fl:ﬂé.' 2 S\'/2
(sx—-sz——s‘)
X -
2 g 2 2 2 2 1y
AP T R Y. S A
lz(bx Sx s) sx3+2(1+x.3)(sx S5 s)
F11:_§' - 2
sx—sy——s2
: X
2 2 2\ 2
y s 1 y
Oder Fn—_———s XT; I'P(l +—_2)
Y
X




S szy2
. . s 52 y2 Yy
Aus F, bestimmen wir F, =~ 4+ ~ (1 |- ) —5
x“z 2 X/ xz
9 S‘2 yZ q3 y? y2 S4 yg y?‘ 9 -
F =x4z2 +X3z4 (1+;2> +Z FF (1+;§—2>
2 3 2 3.4 2 o\ 2
2y 48 1 Y sy ;8 ¥ y
B b (1 ) e )

Wir bilden nun die Differenz
0 S3 1 y2 2 - S3 y4 S3 y2 y?
FiyFp—Fp =" (1 +;) 'Ju‘x—ag—ﬂ(l + —z)

s
F11'F22_F122:4 q(x4_2X2y2+y4>

E : ,\2
F11‘F22_F122:4_5—Z4<X '_Y) (8)

Je nachdem die Koordinaten x, y, z irgend eines Flichenpunktes
P, (%, y,2), in diesen Ausdruck-eingesetzt, diesem einen positiven
oder negativen Wert geben, ist er entweder elliptisch oder hyper-
bolisch. Wird der Ausdruck gleich Null, oder, was gleichbedeutend
1st, unendlich gross, so ist der Punkt parabolisch.

Das Vorzeichen des obigen Ausdrucks (g) wird nun einzig be-
stimmt durch das Vorzeichen von x; fiir jedes positive x ist auch
F,-F,— Flgg — positiv. Da nun alle Punkte des rechts von der
(v z)-Ebene liegenden Teils der Hauptschnittfliche eine positive
Koordinate x haben, so sind alle diese Punkte elliptische Flichen-
punkte, und die beiden Inflexionstangenten in jedem derselben
sind imaginir. Wir wollen speziell die Gleichung der Inflexions-
tangenten in dem auf der positiven (x)-Achse liegenden Flichen-
punkte F bestimmen. Zu diesem Zwecke eliminieren wir aus der
Tangentialebenengleichung x = s dieses Punktes und aus der
Flachengleichung (11) die Variable x und finden so die beiden
Gleichungen z = +1y. Dies sind die Strahlen absoluter Richtung
einer Ellipse mit gleichen Halbachsen, also eines Kreises, der
Flichenpunkt I ist daher speziell ein Kreispunkt, Nabelpunkt
oder Umbilikus der Hauptschnittfliche.
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Wir wissen ferner, dass simtliche Punkte der (z)-Achse des
Koordinatensystems zugleich Flichenpunkte sind. Da sie alle die
Koordinate x = 0 haben, so geht fiir sie die Gleichung (g) tiber in
F F, —F,=oc, d h alle Punkte der (z)-Achse sind para-
bolische Punkte der Hauptschnittfliche 3. Grades. Da nun in
Jedem parabolischen Flichenpunkt die beiden Inflexionstangenten
zusammen fallen. und da ferner jeder Punkt der (z)-Achse, als
Punkt der Hauptschnittfliiche betrachtet, dieselbe Tangentialebene
besitzt, nimlich die (y z)-Ebene des Koordinatensystems, so fallen
alle Tangenten in diesen Flichenpunkten in eine einzige zusammen.
Ihre Gleichung ergibt sich aus der Fliachengleichung (11), wenn
man 1in thr x = 0 setzt, nimlich y = 0 doppelt. Alle Inflexions-
tangenten in den auf der (z)-Achse liegenden Flichenpunkten
fallen also zusammen in die (z)-Achse des Koordinatensystems.

Fiir alle Flichenpunkte, die links von der Koordinaten-
chene (yz) liegen, hat die Koordinate x einen negativen Wert,
daher auch der Ausdruck (g). Folglich sind alle Punkte des
links von der (y z)-Ebene liegenden Teils der Hauptschnittfliche
hyperbolische Punkte, und in jedem derselben sind zwei reelle
Inflexionstangenten maglich.

Sowohl fir x = - oo als auch fir x=— o0 wird F | F,,
— Fuj = 0. Im Unendlichen sind daher alle Flichenpunkte para-
bolisch.  Wenn man im Unendlichen von dem rechts von der (y z)-
Ebene liegenden Teil der Fliche auf den hinks von dieser Kbene
liegenden Teil tbergeht, so geht der elliptische Charakter der
Flichenpunkte iiber in den parabolischen und dann in den
hyperbolischen.

Gestiitzt auf die Untersuchungen dieses Paragraphs konnen
wir uns iiber die Gestalt der durch Gleichung (11) dargestellten
Hauptschnittfliche folgendes Bild machen: sie besteht aus zwei
Teilen, einem hyperholoidischen links und einem paraboloidischen
rechts der (v z)-Ebene. Die (z)-Achse liegt ganz auf dem hyper-
boloidischen Teil, und dieser erstreckt sich von ihr aus in der
negativen (x)-Richtung bis ins Unendliche und schneidet die un-
endlich ferne Ebene in der Richtung der (yz)-Ebene in einer
einfachen und in der Richtung der (x y)-Ebene in einer doppelt
gelegten Geraden. Der paraboloidische Teil der Fliche erstreckt
sich vom Scheitel F aus, welcher ein Kreispunkt ist, in positiver
(x)-Richtung bis nach - oo und schneidet die unendlich ferne
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Ebene ebenfalls in jener doppelt gelegten Geraden der (x y)-Ebene. -
Man kann sich vorstellen, dass die beiden Flichenstiicke im
Unendlichen sich in der unendlich fernen Doppelgeraden der
(x y)-Ebene aneinander schliessen und so eine zusammenhingende
Fliche bilden, die drei Gerade enthilt, nimlich die (z)-Achse, die
unendlich ferne Gerade der (y z)-Ebene und die unendlich ferne
Gerade der (x y)-Ebene als Doppelgerade.

§ 13.
Ueber Polarflaichen der Hauptschnittfliche 3. Grades.

Die Hauptschnittfliche 3. Grades hat die Gleichung
X2 —sx’+ sy +8x=0 (11)
oder homogen gemacht:
f(xyzw)=x72 —sxXwsywtsxw=0
Nun hat die erste Polarfliche in Bezug auf einen festen Pol
P’ (x’,y’,z") die Gleichung:
' 0 of , of

of of
ot Bl ' p 5L or
Af*xax_l—yﬁy_}-z 6z+w GW_O

Nach der homogenen Flichengleichung ergeben sich fir die
partiellen Differentialquotienten folgende Werte:
of

o 2_ 2
—a——};-—z 2SX+S

%=—sx2—|—sy2~|—252x

Daher wird die Gleichung der quadratischen Polarfliche der
Hauptschnittfliche 3. Grades, bezogen auf einen festen Pol
P (x,¥,7):

s(xX’—y)—x'-2"—27 -xz2—2s(s—x')x—2sy . y—s'x'=0 (19)
Wir nehmen nun an, der Pol P’ (x/, y/, z’) sei nicht fest, sondern
er nehme successive andere Lagen an; er durchlaufe z. B. die
ganze (x)-Achse des Koordinatensystems. In diesem Falle haben
wir in der Gleichung der quadratischen Polarfliche (19) fiir
y' =2’ =0 zu setzen, und fir x’ substituieren wir einen ver-
anderlichen Parameter n, der alle Werte von — oo bis 4 oo an-

nehmen soll. Dann geht die Gleichung (19) iiber in
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$X° — Syz——nzg———Zszx;} 2ns-x—ns =0 (20)
Bei variablem Parameter n stellt diese Gleichung eine Schar von
unendlich vielen Flichen 2. Grades dar. Alle diese Fliachen bilden
in ihrer Gesamtheit die Schar von unendlich vielen quadratischen
Polarflichen, bezogen auf die sémtlichen Punkte der (x)-Achse
als Pole. '

Da die Gleichung (20) keine Glieder in xy, xz oder yz ent-
hilt, so geniigt eine Parallelverschiebung des Koordinatensystems,
um die Flachengleichung auf die Achsengleichung zu transformieren.
Wir haben zu diesem Zwecke in Gleichung (20) fir y=y', z=12’

und fir x=x' -+ s — n zu substituieren; sie geht dann tber in

2 2 2
x’ yr nz

n’ 4 ns +s° n’4ns4+s s@tnsH &)
Die Mittelpunkte M samtlicher Flichen der durch Gleichung (20)
gegebenen Polarflichenschar liegen demnach auf der (x)-Achse
und zwar im Abstand x ==s —n vom Koordinatenursprung. '

Wir nehmen nun zunichst an, der Pol P’ durchlaufe den
positiven Teil der (x)-Achse, so dass der Parameter n alle
Werte annimmt zwischen n = -} co und n=0. Dann sind in
der Gleichung (20a) alle Nenner positiv, und die quadratische
Polarfliche des Punktes P’ ist ein zweischaliges Hyperboloid,
von den Halbachsen :

a=b=¢\/n"+ns-+} s und c==\/§~(n2—{—ns+sz)
Seine Scheitel liegen auf der (x)-Achse im Abstand
x' == Vo®4+ns + s vom Mittelpunkt M. (S. Fig. 12).

%
4

T

) Fig.12.
Bern. Mitteil. 1911, Nr. 1791.
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Um die Polarfliche des unendlich fernen Punktes der
(x)-Achse zu bestimmen, dividieren wir die Gleichung (20) durch
n und setzen dann fiir n=o0; sie wird dann

i —28x 4§ = (a)
Dies ist die Gleichung eines parabolischen Cylinders; sie ist
identisch mit Gleichung (b) in § 2. Wir finden somit, dass die
Rotationsfliche k =1 unseres Rotationsflichensystems zugleich
quadratische Polarfliche der durch Gleichung (11) gegebenen
Hauptschnittfliche 3. Grades ist, bezogen auf den unendlich fernen
Punkt der (x)-Achse als Pol P’. (S. auch Fig. 4).

Der Pol P’ riicke nun auf der positiven (x)-Achse ins
Endliche, der Parameter n werde also immer kleiner! Dann
werden alle Halbachsen des zweischaligen Hyperboloides (20a)
zuniichst abnehmen; wandert der Pol P’ bis in den Nullpunkt,
wird also n immer kleiner und zuletzt gleich Null, so reduziert
sich die Linge der Halbachsen a und b auf a="h=s. Der
Mittelpunkt M des Hyperboloides riickt gleichzeitig auf der
negativen (x)-Achse ins Endliche, und fiir n = 0 befindet er sich
auf der positiven (x)-Achse im Abstand x ==s. Die Halbachse ¢
nun erreicht schon vorher ein gewisses Minimum ihrer Liinge,
nimlich dann, wenn i(n + s+ E) —]1 — i, =0 wird, also

dn n n°
wenn n==\/s ist, oder wenn der Pol P’ im Punkte x ==\/s liegt.
Wird n noch kleiner, so nimmt die Linge der Halbachse ¢ rasch
wieder zu und far n=0 ist sie unendlich gross.

Die quadratische Polarfliche in Bezug auf den Nullpunkt
des alten Koordinatensystems ist also ein zweischaliges Rotations-
hyperboloid, dessen eine imaginire Halbachse unendlich lang ist;
diese Flache wird daher vorteilhafter aufgefasst als hyperbolischer
Cylinder, dessen Gleichung wir direkt aus der Polarflichen-
gleichung (20) finden, wenn man ihr n =0 setzt:

X —y —2sx=0 (b)
Dies 1st die Gleichung der Kurve, in welcher der gleichseitige
hyperbolische Cylinder die (x y)-Ebene schneidet. Es ist die
Gleichung einer gleichseitigen Hyperbel von der Halbachse s.
Der Mittelpunkt dieser Schnittkurve liegt im Abstand x = s vom
Koordinatenursprung O, also im Flachenpunkte F. Die Asymptoten-
gleichungen sind y =+ (x —s). Die Erzeugenden des hyper-
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bolischen Cylinders stehen auf der (x y)-Ebene senkrecht; die
(z)-Achse ist auch Cylindererzeugende, also hat die Polarfliche
die (z)-Achse mit der Hauptschnittfliche gemein, Dieses Resultat
entspricht dem aligemein giltigen Satze, dass, wenn der Pol auf
der Fliche selbst liegt, dann die samtlichen Polarflichen die
Tangentialebene in ithm berithren. (S. Fig. 13).

7

N
S
7

N e - o - -

Fig. 13.

Der Pol P’ gehe nun im Koordinatenursprung auf den
negativen Teil der (x)-Achse iiber; dann miissen wir in der
Polarflichengleichung n durch — n ersetzen und n wieder alle
Werte von 0 bis oo annehmen lassen, wenn der Pol P’ bis ins
Unendliche riickt. Die Gleichung (20a) geht nun dber in

'2 r2 L2
x S + nz 5 —1 (20b)

n°—ns+4s n—nsts sm—ns+ts

Der Ausdruck (n>—ns 4s°) im Nenner dieser Gleichung hat
immer einen positiven Wert, denn die Wurzeln der Gleichung
n° —ns 4 s°=0 sind komplex; der Parameter n kann aber nur
reelle Werte annehmen, also kann kein Wert von n der Gleichung
n’—-ns4&=0 geniigen. Der Ausdruck n*—ns 4 s’ nimmt
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daher stetig vom Werte s” bis oo zu, und die Gleichung (20b)
r2 1?2 2

hat immer den allgemeinen Typus }5—2 —3;)—2 ié—z 1. Dies ist
a C

die Gleichung eines einschaligen Hyperboloides, dessen imaginire

v

\

Fig. 14.

Achse in der (y')-Achse liegt. Fig. 14. Wenn also der auf der
(x)-Achse gelegene Pol P’ vom Nullpunkt aus in negativer Richtung
weiter riickt, so geht der durch Gleichung (b) bestimmte hyper-
bolische Cylinder in ein einschaliges Hyperboloid iiber. Jener
lasst sich auch als Grenzfall eines zweischaligen und eines ein-
schaligen Hyperboloides betrachten, namlich als ein solches,
dessen eine Achse, ¢, unendlich gross wird, wihrend die beiden
andern einander gleich, a=b =5, sind. Nimmt der Parameter
n zu, so wird die Halbachse ¢ des Hyperboloides kleiner,
sie nimmt endliche Werte an. Ein Minimum wird sie, wenn

\ 2

d (n —s+ S—) =1— 8—2 = 0 1st, also wenn der Parameter
dn n n

n=-=s ist, d. h. firr den Punkt x = —s als Pol; ihre Linge ist
dann ¢=s. Wird |n|>s, so wichst die Halbachse ¢ wieder,
und fir n = oo, wenn sich also der Pol P’ in x = — oo befindet,
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ist ¢ wieder unendlich gross. Die beiden Halbachsen a und b
~ haben fir n=0 den Wert a=b =s; wenn der Parameter n
bis ins Unendliche wichst, so nimmt ihre Linge stetig zu und
wird fir n = oo ebenfalls unendlich gross. Der Mittelpunkt der
quadratischen Polarfliche befindet sich fiir n =0 auf der posi-
tiven (x)-Achse im Abstand x = -} s. Bei zunehmendem n riickt
er in positiver Richtung weiter, und fiir n = oo befindet er sich
im Unendlichen. Die quadratische Polarfliche des unendlich fernen
. Punktes der negativen (x)-Achse ist demnach ein einschaliges
Hyperboloid, dessen Halbachsen unendlich lang sind und dessen
Mittelpunkt sich im Abstand x == - oo befindet. Die (x)-Achse
schneidet daher das Hyperboloid im Endlichen nur einmal. Der im
Endlichen liegendeTeil desselben lisstsich als parabolischer Cylinder
auffassen, welcher identisch ist mit demjenigen von der Gleichung (a).

Die Zusammenfassung der letzten Resultate ergibt folgendes:
betrachtet man simtliche Punkte der (x)-Achse von -} ov bis — oo
successive als Pole in Bezug auf die Hauptschnittfliche 3. Grades,
so erhilt man eine Schar von unendlich vielen quadratischen Polar-
flichen. Die Polarfliche des unendlich fernen Punktes der posi-
tiven (x)-Achse ist ein parabolischer Cylinder, dessen Erzeugende
auf der (xz)-Ebene senkrecht stehen und dessen Scheitel vom
Koordinatenursprung den Abstand x =% besitzt. Riickt der Pol
ins Endliche, so geht dieser Cylinder in ein zweischaliges Hyper-

boloid tuber. Wihrend der Pol die ganze positive (x)-Achse

durchlduft, riickt der eine Scheitel desselben von x-————% nach

x=2s, der andere von x = — oo durch die ganze negative
(x)-Achse nach dem Koordinatenursprung. Fillt der Pol mit
dem Nullpunkt der (x)-Achse zusammen, so geht das zweischalige
Hyperboloid in einen hyperbolischen Cylinder iber, dessen Er-
zeugende senkrecht auf der (x y)-Ebene stehen und dessen Scheitel
die Abstinde x =2 s und x == 0 besitzen. Wenn der Pol P’ die
ganze positive (x)-Achse durchliuft, so durchwandert der Mittel-
punkt der entsprechenden Polarflichen die ganze negative (x)-
Achse in positiver Richtung von x = — oo bis x == - s. Sobald
nun der Pol P’ auf die negative (x)-Achse iibergeht, wird die
quadratische Polarfliche ein einschaliges Hyperboloid, dessen



— 174 —

imaginire Achse in der (x y)-Ebene parallel zur (y)-Achse liegt.
Durchlauft der Pol die ganze negative (x)-Achse von x ==0 bis
X = — oo, 80 riickt der Mittelpunkt der Polarfliche im bisherigen
Sinne weiter von x = } s bis x =} oo. Die Schnittpunkte des
einschaligen Hyperboloides mit der (x)-Achse riicken von x =+-2s

bis X = oo, beziiglich von x =0 bis x:% Die quadratische

Polarfiiche der Hauptschnittfliche in Bezug auf den unendlich
fernen Punkt der negativen (x)-Achse als Pol 1st dann wieder
der parabolische Cylinder, mit dem die Entwicklung der Flichen-
schar beginnt. Ueber die gesamte Lageverinderung des Mittel-
punktes und der Achsenabschnitte in der (x)-Achse gibt folgende
Tabelle Aufschluss:

i n Mittelpunkt
f
—i— 0l X = — 00
0 =S8
— O = + o0

Wir gehen nun dber zur Untersuchung der quadratischen
Polarflichen der Hauptschnittfliche 3. Grades fiir den Fall, dass
der Pol P’ (x" y’ z’) die (z)-Achse des Koordinatensystems durch-
lauft. Wir setzen daher in der allgemeinen Gleichung (19) der
ersten Polarfliche fir x" =y’ =0 und 2z’ =n, wo n wieder
variabler Parameter ist und alle Werte von — oo bis -} oo an-
nehmen kann; sie geht dann iiber in

sx’-sy —2nxz—28x =0 (21)

Diese Gleichung stellt unendlich viele Flichen dar; jede Fliche
der Schar geht durch den Nullpunkt des Koordinatensystems
und enthilt die (z)-Achse desselben als Erzeugende, denn die
Koordinaten x =0 und y==0 leisten der Gleichung (21) fir
jeden Wert von z Geniige. Da nun nach § 12 jeder Punkt der
(z)-Achse auf der Hauptschnittfliche 3. Grades liegt und zudem
ein parabolischer Flichenpunkt ist, so miissen nach der Theorie
der Polarflichen alle Flichen des obigen Biischels Kegel
2. Grades sein. (S. Fig. 15).



I
Fig. 15.

Ihre Scheitelgleichung finden wir, wenn in Gleichung (21)

2

fir x=x", y=y" und fir z=12 ——Sl—l substituiert wird. Sie
gcht dann iiber in
sx’—sy”’—2nx 2 =0 (21a)
Zur Bestimmung der Schnittkurven dieser Kegelschar mit der
(x y)-Ebene des urspriinglichen Koordinatensystems setzen wir
in Gleichung (21) fir z=0 und finden so die Gleichung
xX’—y —2sx=0; sie stellt eine gleichseitige Hyperbel dar,
welche identisch 1st mit der Schnittkurve des vorhin besprochenen
hyperbolischen Cylinders mit der (x y)-Ebene; sie bleibt fiir alle
Flichen der Schar dieselbe. Also schneidet jeder Kegel zweiten
Grades, der durch die in x" y’ 2z’ homogene Gleichung (21a) dar-
gestellt wird, die (x y)-Ebene in der niamlichen gleichseitigen
Hyperbel; 1hr Mittelpunkt liegt im Abstand x =s auf der (x)-
Achse, 1hre Halbachse = s; der eine Scheitel fillt mit dem
Koordinatenursprung zusammen, der andere liegt im Abstand
x =2s. Der Kegelscheitel S liegt auf der (z)-Achse und hat
2

vom alten Nullpunkt den Abstand z’ = — % Dem Pol P’ (z = n)

auf der (z)-Achse entspricht der Scheitel S seines Polarkegels
2
Z o= ——%; da 7.2 = —s" == konstant und negativ ist, so bilden
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die Punktepaare (P’,S) auf der (z)-Achse eine elliptische Punkt-
involution vom Mittelpunkt O. Fiir n =s wird z—=s und z’ = —s,
welche beiden Punkte P und S symmetrisch zu O liegen.

Fir alle Werte von n zwischen 0 und - oo bewegt sich
der Kegelschnitt S von z= — oo bis z =0, fiir diejenigen von
0 bis — oo dagegen von z=: | o bis z=0. Wenn der Pol P’
im Endlichen von der positiven (z)-Achse auf die negative iiber-
geht, also den Koordinatenursprung passiert, so riickt der Kegel-
scheitel S 1m Unendlichen von der negativen (z)-Achse auf die
positive. Fiir den Polabstand z =+ o< ist der Koordinatenursprung
Kegelscheitel; alle Erzeugenden durch denselben schneiden aber
die (x y)-Ebene zugleich noch in einem Punkte der Schnitthyperbel
(b), sie liegen also alle in der (x y)-Ebene des alten Koordinaten-
systems, und diese ist die erste Polarfliche der Hauptschnitt-
fliche 8. Grades in Bezug auf den unendlich fernen Punkt der
(z)-Achse als Pol; die quadratische Polarfliche hat sich also auf
eine Ebene reduziert. Wihlt man dagegen den Koordinaten-
ursprung als Pol, so dass der Kegelscheitel im Abstand z = o<
liegt, so sind alle Erzeugende einander parallel und senkrecht zur
(x y)-Ebene, d. h. der Kegel 2. Grades ist identisch mit dem durch
Gleichung (b) bestimmten hyperbolischen Cylinder. (Fig. 13).

Wir lassen nun den Pol P’ (x'y’z') die (y)Achse des
Koordinatensystems durchlaufen und bestimmen die Schar von
quadratischen Polarflichen, die den Punkten derselben entspricht.
Es ist daher in der allgemeinen Gleichung (19) der quadratischen
Polarfliche x’ =1z’ =0 und y’ gleich einem variabeln Parameter
n zu setzen und wir erhalten die Gleichung:

x2——y2-—2sx—2ny=0 (22)
Da n alle Werte von -} o© bis — oo annehmen kann, so stellt
diese Gleichung, im Raume gedeutet, eine Schar von gleich-
seitigen hyperbolischen Cylindern dar, deren Erzeugende auf der
(x y)-Ebene senkrecht stehen. Die Koordinaten x =0 und y =0
geniigen der Gleichung (22) fir jedes z, also ist die (z)-Achse des
Koordinatensystems fiir jede Fliache der Schar eine Erzeugende
derselben. Simtliche Cylinderflichen der Schar schneiden die
(x y)-Ebene in einer gleichseitigen Hyperbel von der Gleichung
(22); die Mittelpunkte dieser Schnitthyperbeln liegen alle auf
einer durch den Punkt F gehenden Geraden, die parallel ist zur
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(y)-Achse, denn ihre Koordinaten sind y = —n und x =s==
konstant, und durch die Substitution x=x'-+s und y=y —n
geht die Hyperbelgleichung (22) in die Achsengleichung iiber,
welche lautet:

2 2
x’ yr g
$—n? £—n®
] 2 2 (22a)
oder, wenn s <n ist y X
2 3 s =1
nn—s° n—s

O ST
RS

=%
~.

3
I - L
—r - 3 X!

\‘j\
N
=
Z Y= -——=-=
/

Fig. 16.

Ueber die Aenderungen der Lage der Hyperbelmittelpunkte O’
und die Linge der Halbachse bei variablem Parameter n gibt

folgende Tabelle Aufschluss:

Bern. Mitteil. 1911. Nr, 1792



Zunichst zeigt sich wieder, dass die quadratische Polarfiiiche in
Bezug auf den Koordinatenursprung als Pol ein hyperbolischer
Cylinder 1st, der in Fig. 13 dargestellt und bereits besprochen
wurde. Riickt nun der Pol P’ auf der (y)-Achse vom Nullpunkt
aus In positiver Richtung vorwirts, so wandert der Mittelpunkt
O’ der Schnitthyperbel auf der Geraden x =s in negativer (y)-
Richtung weiter, und zugleich nimmt die Linge der Halbachsen
a=>b vom Anfangswerte s an ab. Wenn sich der auf der (y)-
Achse liegende Pol im Abstand y == +-s befindet, so sind die
Halbachsen der Schnitthyperbel a =b =0 und der hyperbolische
Cylinder reduziert sich auf zwei sich rechtwinklig schneidende
Ebenen, die beide auf der (x y)-Ebene senkrecht stehen, wihrend
sie. nit den beiden andern Koordinatenebenen je Winkel von
45° bilden. Der Durchstosspunkt ihrer Schnittgeraden mit der
(x y)-Ebene hat die Koordinaten x =s und y = — s.

v

-

>

h
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~
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Fig. 17.

Geht der Pol im bisherigen Sinne weiter und durchliuft
er die (y)-Achse von y= s bis y= 4 oo, so ist der Para-
meter n>s, und wir haben als Gleichung der gleichseitigen
Schnitthyperbel die zweite Gleichung (22a) zu betrachien. Es
zeigt sich, dass aus den zwei sich rechtwinklig schneidenden
Geraden, in welchen die soeben besprochenen Ebenen die
(x y)-Ebene schneiden, nun eine solche gleichseitige Hyperbel
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entsteht, deren reelle Achse in die (y)-Richtung und deren
imaginire Achse in die (x)-Richtung fallt, wahrend fir 0<<n <s
die Verhiltnisse entgegengesetzte waren. Der Mittelpunkt der
Schnitthyperbel, also auch die Achse des entsprechenden hyper-
bolischen Cylinders, rickt bei wachsendem n auf der Geraden
x=s5 in der eingeschlagenen Richtung immer weiter, so dass er
sich immer gleich weit hinter der (x z)-Ebene befindet, wie der
Pol P’ vor derselben; ist der Abstand des Pols y = -}- o¢, so ist
derjenige der Cylinderachse y = — oo. Die Liinge der Hyperbel-
halbachsen a="b nimmt vom Werte Null an stetig zu und fiir
n=oc werden sie unendlich gross. Fiir grosse Werte des
Parameters n ist der Abstand des Hyperbelmittelpunktes von der
(x)-Achse des Koordinatensystems verhdltnismissig nur wenig
grosser als die Lange der Hyperbelachse; die Scheitelerzeugende
der einen Schale des hyperbolischen Cylinders entfernt sich da-
her nur wenig von der (x)-Achse, so dass die (z)-Achse des
Koordinatensystems immer Cylindererzeugende ist. Befindet sich

Fig. 18.

der Pol P’ im Abstand y == oo, so ist sowohl der Abstand
des Hyperbelmittelpunktes als auch die Linge der Halbachse
unendlich gross, und die im Endlichen liegende Schale des
hyperbolischen Cylinders geht in eine Ebene, die (x z)-Ebene
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des Koordinatensystems, iiber; diese ist also 1. Polarfliche in
Bezug auf den unendlich fernen Punkt der (y)-Achse. Dasselbe
Resultat erhidlt man auch, wenn man die Gleichung (22) durch
n dividiert und dann fiir n = oo einsetzt; sie geht dann uber
m y =20, die Gleichung der (x z)-Ebene.

Lassen wir den Pol P’ (x’y’z’) statt der positiven die
negative (y)-Achse durchlaufen, so erhalten wir die nimliche
Schar von quadratischen Polarfiichen, nur mit dem Unterschiede,
dass der Mittelpunkt ihrer Schnitthyperbel die Gerade x =s in
positiver (y)-Richtung von y =0 an durchliuft.

Durchlauft der Pol P’ alle Punkte der (x y)-Ebene, so ist
in der Polarflichengleichung (19) z’ =0 zu setzen; x’ und y’
konnen jeden beliebigen Wert zwischen — o© und -}-o< an-
nehmen. Setzt man daher far x’ den Parameter n und fir y’
den Parameter m, so erhilt man als Gleichung der quadratischen
Polarflichen in Bezug auf alle Punkte der (x y)-Ebene

sx’—8y —nzZ —28x42nsx —2msy-—-ns’ =0
Fir variable Parameter n und m stellt diese Gleichung ein Netz
von Flichen 2. Grades dar. Analog liessen sich die Gleichungen
zweler weiterer Netze von Flachen aufstellen, wenn man den
Pol P’ die (x z)-, beziglich die (y z)-Ebene, durchlaufen lisst.

Wir gehen nun iiber zur Bestimmung der zweiten Polar-
flache der Hauptschmttfliche 3. Grades, bezogen auf einen festen
Pol P’ (x' y' 2"); sie ist eine Fliche 1. Grades, also eine ¥bene.
Wiéhlen wir den Pol P’ im Nullpunkt, so liegt er auf der
Hauptschnittfliche und die Polarebene fillt mit der Tangential-
ebene in ihm zusammen; sie hat die Gleichung x =0. Aus dem
gleichen Grunde hat der Flichenpunkt F im Abstand x =s vom
Nullpunkt die Polarebene x =s.

Allgemein hat die zweite Polarfliche einer Fliache folgende
Gleichung:

AN f=0 oder
32 o f o2 f o f
/2 ror
2x" 7 —— 19 -
2+ 8y+ 0x 0z He Gxé’w
00" f 6’ t o f g 6°F
! T 2 ! ! 2 IWI . ! -
RRAFRS yz&yaz+ Y 6y8w+zazz
2 2
poww TE gt
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Nach der homogenen Flichengleichung
f(xyzw)=x72 —sx’wHsywtsxw' =0 wird nun

3—f:zz—ZSXW—I—-sZW2 ﬁ=2syw
Jd X ,
_6£=2xz -a—f—_———sx2—|-sy2—|—282xw
dz ow
und hieraus

2 32 2
a_f2:_2$ —fznzzs af =O
0 X dy dw oz

i S A
axay_ Bxay—

2 2 2

0 0

__a_fv_=22 s _=28y f2=282X
0x 0z oyow ow

2 2
ot =—2sx } 25 6£=2X
0xow oz

Demnach wird die Gleichung der Polarebene des Punktes
P A=y a ) |

(*+2°—28x)x+2sy' y+2x 2" z+s(y" —x?+2sx')=0 (23)
Nun soll der Pol P’ die (x)-Achse durchlaufen, x’ also alle

Werte von — oo bis 4 o© annehmen; wir ersetzen daher x’ durch

den variabeln Parameter n und y' =z’ durch 0. Dann geht die

Polarebenengleichung (23) iiber in

n°—2sn

s—2n

Diese Gleichung stellt eine Schar von unendlich vielen Polar-

ebenen dar, den unendlich vielen Punkten der (x)-Achse ent-

sprechend; sie sind alle parallel zur (y z)-Ebene, und ihr Abstand

von derselben kann alle Werte von — o© bis -} o© annehmen.

Durchliauft der Pol P’ die (y)-Achse, so ist fir x" =2z"=0
und y'=n zu setzen. Die Polarebenengleichung geht dann
iber in

X .=

S X +2ny+n2=: 1
Betrachtet man in dieser Gleichung n als variabeln Parameter,
so stellt sie eine Schar von unendlich vielen den Punkten der
(y)-Achse entsprechenden Polarebenen dar, die alle auf der
(x y)-Ebene senkrecht stehen. In ihrer Gesamtheit hiillen sie
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einen Cylinder ein, dessen Erzeugende senkrecht auf der (xy)-
Ebene stehen und dessen Gleichung man erhilt durch Bestimmung
der Enveloppe aller Geraden, die bei variablem n durch die
Gleichung s x 4 2ny 4 n° =0 gegeben sind.

Fig. 19.

Eliminiert man aus den beiden Gleichungen F (x yn)=
sx+2ny+n’==0 und %:y-{—n:O den Parameter n, so
erhiilt man als Gleichung der Enveloppe die Parabelgleichung
vy’ =sx. Der umhiillte Cylinder ist also ein parabolischer. Seine
Achse wird gebildet durch die positive (x)-Achse; die Scheitel-
erzeugende fillt: zusammen mit der (z)-Achse des Koordinaten-
systems. Der Halbparameter der Schnittparabel in der (xy)-
Ebene istgzg (S. Fig. 19).

Schhiesslich durchlaufe der Pol P’ noch die (z)-Achse; wir
haben dann in der Polarebenengleichung x’ =y’ =0 und 2z’ =n
zu setzen und sie geht iber in: _

$x4n'x=0 oder x=0
d. h. simtliche Polarebenen der Hauptschnittfliche, bezogen auf
einen beliehigen Punkt der (z)-Achse, fallen zusammen und zwar
in der (yz)-Ebene des Koordinatensystems. Dieses Resultat lasst
sich auch daraus schliessen, dass die (z)-Achse selber in der
Hauptschnittfliche liegt und die (y z)-Ebene in jedem Punkte
der (z)-Achse Tangentialebene der Hauptschnittfliche ist.
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§ 14.
Die Hessiana der Hauptschnittfliche 3. Grades.

Unter der Hessiana oder Kernfliche einer gegebenen Fliche
versteht man den geometrischen Ort aller Punkte im Raum,
deren quadratische Polarfliche ein Kegel ist, oder, was dasselbe
ist, den geometrischen Ort der Doppelpunkte ihrer ersten Polar-
flichen. Fiir unsere Hauptschnittfiiche 3. Grades ist nun die
quadratische Polarfliiche identisch mit der ersten Polarfliche,
und nach § 13 konnen wir bereits schliessen, dass die Hessiana
der Hauptschnittfliche sowohl die (z)-Achse als auch die (y)-Achse
des Koordinatensystems enthalten wird; denn die quadratischen
Polarflichen in Bezug auf die Punkte der (z)-Achse sind ja
Kegel, deren Scheitel auf der (z)-Achse selber liegen, und die-
Jenigen in Bezug auf die Punkte der (y)-Achse sind hyperbolische
Cylinder oder Kegel, deren Scheitel im Unendlichen liegen.

Die Hessiana oder Kernfliche hat allgemein folgende

Gleichung:
f

14

f

13

22f
£y, £y £ £

31 732 "33 34

f f,f.1

42 43 Tas
wo die fiy die zweiten Ableitungen der homogenen Flichen-
gleichung f (x y z w) = 0 bedeuten und Seite 181 bereits berechnet
sind. Setzen wir die dort gefundenen Werte in obiger Deter-
minante ein, so geht sie iiber in:

L E
gf

1

&8
B

H= =0

—2s . 0 .2z . —2sx+42§°
. 0 - 28 - 0 - 2sy .
H= 2z . 0 . 2x . 0 =il
—28x+42¢ - 28y - 0 - 2s'x
oder, wenn man sie in ihre Unterdeterminanten zerlegt,
2s + 0 - 2sy 0 - 25 - 28y

H=—2s| 0 -.2x. 0 |+2z
2sy - 0 - 25°x

2z -0 -0
—2sx 425 .25y-25°x
0 - 28 - 0
+ (2sx —2§° 2z - 0 -2x
—2sx428.2s5y- 0

=0
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oder ausgerechnet

H=y72 —sx®*fsxy —sxZ+x"—"x=0 (24
Die durch diese Gleichung dargestellte Fliche 4. Grades ist die
Hessiana der Hauptschnittfliche 8. Grades. Da die Koordinaten
y und z nur quadratisch in obiger Gleichung enthalten sind,
so liegt die Hessiana sowohl zur (x z)-Ebene als auch zur (xy)-
Ebene symmetrisch. Weil ferner einerseits die Koordinaten
x =y =0, andererseits auch x =z =0, der Gleichung (24) far
jedes z, bezuglich y, geniigen, so enthilt wirklich die Fliache die
(z)- und die (y)-Achse des Koordinatensystems.

Um die Gleichung des Asymptotenkegels der Hesse’schen
Flache zu finden, machen wir die Gleichung (24) mit w homogen
und setzen nachher w=0; dann geht sie iiber in y’z° =0;
diese Gleichung stellt einen Kegel 4. Grades dar, welcher die
unendlich ferne Ebene in derselben Kurve schneidet, wie die
Hessiana, ndmlich in der doppelt gelegten unendlich fernen
Geraden der .(x z)-Ebene und in der doppelt gelegten unendlich
ternen Geraden der.(x y)-Ebene.

Wir bestimmen ferner die Schnittkurve der Hessiana mit
der (xy)-Ebene des Koordinatensystems. Nach Gleichung (24)
wird deren Gleichung:

X’ —xy’ —sx' s x=0

Ste zerfallt in zwel, ndmlich in _

(a) x=0 [(y)= Achse]

(b) und x*—y’—sx Fs°=0 [Hyperbel]
Die Hesse’sche Fliche schneidet also die (x y)-Ebene in der
unendlich fernen Geraden, der (y)-Achse des Koordinatensystems
~und in einer gleichseitigen Hyperbel. Der Mittelpunkt derselben
s
2
geht daher durch die Substitution x =x’ —f—% und y =y’ tber in

hat die Koordinaten x = 5 und y ==0; die Hyperbelgleichung (b)

die Achsengleichung
3
yi—x?=1s (©)

Die Halbachse der Hyperbel ist a — % \/3, also kleiner als s aber

grosser als —;— Die reelle Hyperbelachse liegt in der Richtung
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der (y)-Achse. Die Achsenabschnitte der Hyperbel auf der (y)-
Achse sind nach Gleichung (b) y=+s. (S. Fig. 20).
In der (xz)}-Ebene des Koordinatensystems erzeugt die
Hessiana eine Schnittkurve von folgender Gleichung:
x?’-{—xzz—sxz—{-szx:(]
Diese zerfillt in =1 (d)
und x2+zzmsx+32=0 (e)
Die Gleichung (d) stellt die (z)-Achse des Koordinatensystems

NIPZ
AT\

g
Fig. 20-

dar, die Gleichung (e) dagegen einen imaginiren Kreis, dessen
Centrum auf der (x)-Achse im Abstand x :% vom Koordinaten-
ursprung liegt und dessen imaginirer Radius absolut gleich lang
ist wie die Halbachse der obigen Schnitthyperbel in der (xy)-
Ebene. Der reelle Schnitt der Hessiana mit der (x z)-Ebene be-
steht also aus zwel Geraden, der (z)-Achse des Koordinaten-
systems und der unendlich fernen Geraden.

Wenn wir auch noch die Schnittkurve der Hesse’schen
Fliche mit der (y z)-Ebene bestimmen, so finden wir die Gleichung
y=0 und z =0, je doppelt. Also sind die Koordinatenachsen
z und y Doppelgeraden der Hessiana.

Um den Schnitt der Hesse’schen Flache mit der Haupt-
schnittfliche 3. Grades zu bestimmen, eliminieren wir aus den
Gleichungen (11) und (24) die Koordinate y, und wir erhalten
so die Gleichung des auf die (x z)-Ebene projizierenden Cylinders
der Schnittlinie, namlich x =0 und z’ = — §°. Die erste dieser

Bern. Mitteil. 1911. Nr. 1793.
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Gleichungen stellt die (y z)-Ebene dar, die andere zwei zu der
(x y)-Ebene parallele, imaginire Ebenen, welche also keine reellen
Schnittkurven liefern. Da nun die Schnittlinie der (y z)-Ebene mit
der Fliche 3. Grades aus der doppelt gelegten (z)-Achse besteht,
so finden wir, dass sich die Hessiana und die Hauptschnittfliche
in einer Doppelgeraden, der (z)-Achse des Koordinatensystems,
schneiden, und dies ist der Ort der parabolischen Punkte der
Hauptschnittfliache.
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