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H. Flükiger.

Die Flächenteilung des Dreiecks
mit Hilfe der Hyperbel.

(Mit drei Tafeln.)

I. Teilung des Dreiecks mit Benutzung der Hyperbel.

§ 1. Die Halbierungslinien des Dreiecks als Tangenten
an Hyperbelbogen.

Durch jeden Punkt X einer Seite des Dreiecks ABC der Fig. 1

kann eine Gerade g so gelegt werden, dass sie die Fläche des Dreiecks

halbiert. Lässt man den Punkt X mit der Ecke B zusammenfallen,

so geht die Halbierungsgerade als Mittellinie durch die Mitte
Mb der gegenüberliegenden Seite b. Bewegt sich X auf der Seite
c von B bis nach Mo, so rückt der Schnittpunkt X' der Geraden
mit b von Mb nach C. Die eine Hälfte des gegebenen Dreiecks
bildet dabei fortwährend wieder ein Dreieck XAX'. Dessen
Winkel a bleibt konstant, und die Seite XX', die Halbierungsgerade

g, gleitet auf den Schenkeln dieses Winkels. Bewegt
sich aber eine Gerade so, dass sie von einem konstanten
Winkel ein Dreieck von festem Inhalt abschneidet, so umhüllt
sie eine Hyperbel. Alle Halbierungsgeraden des Dreiecks ABC,
die die Seite c zwischen B und Mc und die Seite b zwischen
Mb und C schneiden, sind also Tangenten einer Hyperbel. Die
verlängerten Seiten c und b sind deren Asymptoten; A ist der
Mittelpunkt, a der Asymptotenwinkel und die Halbierungslinie
h„ des Winkels a die Hauptachse. Diese Hyperbel werde mit
H„ bezeichnet. In gleicher Weise sind die Halbierungslinien,
die die Dreieckseiten zwischen Mc und A einerseits und C und

Ma andererseits schneiden, Tangenten einer Hyperbel H^ mit c

und a als Asymptoten, B als Mittelpunkt, ß als Asymptotenwinkel

und der Halbierenden h* des Winkels ß als reeller Achse.

Die Halbierungsgeraden, die mit den Dreieckseiten zwischen A
und Mb und zwischen Ma und B zum Schnitte kommen, berühren
die Hyperbel Hy, zu der b und a die Asymptoten sind und C der

Mittelpunkt, y der Asymptotenwinkel und by die Hauptachse ist.
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Jede dieser Hyperbeln hat mit den beiden andern je eine

Asymptote gemein. Die Mittellinie, die von der Mitte der
gemeinschaftlichen Asymptote zweier Hyperbeln ausgeht, scheidet
die Halbierungsgeraden von einander, von denen die beiden

Hyperbeln berührt werden. Sie ist gemeinschaftliche Tangente
der beiden Kurven. Ihre Mitte ist nach den Eigenschaften der
Hyperbeltangente Berührungspunkt. Sie muss also in diesem
Punkte beide Hyperbeln zugleich berühren, und daher müssen
die Mittelpunkte der Mittellinien Berührungspunkte der Hyperbeln

sein.
Die Hyperbeln berühren sich ausserdem in den unendlich

fernen Punkten der gemeinschaftlichen Asymptoten und gehen
somit eine doppelte Berührung ein. Die Berührungssehnen sind
den Dreieckseiten parallel und bestimmen die Seiten des ersten
Komplementärdreiecks M M. Mr abcDa die Mittellinien die Halbierungsgeraden, die an die

Hyperbeln tangieren, abschliessen, so sind ihre Mitten die letzten
Hyperbelpunkte, die durch den Schnitt zweier unendlich benachbarten

Halbierungsgeraden erzeugt werden. Die Halbierungsgeraden

eines Dreiecks umhüllen also Hyperbelbogen, die die

Mittelpunkte der Mittellinien miteinander verbinden. Umgekehrt
stellt jede Tangente dieser Hyperbelbogen eine Halbierungslinie
des Dreiecks dar.

§ 2. Beliebige Teilungsgeraden als Hyperbeltangenten.

Eine Gerade g der Fig. 2 schneide die Seiten c und b des

gegegebenen Dreiecks ABC von der Fläche F in X und X'. Sie be¬

nistimme mit c und b ein Dreieck XAX', dessen Inhalt • F sei. Der' n
übrige Teil des Dreiecks ABC, das Viereck XX'CB, messe also

noch F. Es sei — zunächst kleiner als -^- • In der Figur
n n 2

3
ist der Wert ^-

Die Gerade g nehme nun nacheinander alle Lagen an, in
denen sie das Dreieck im gegebenen Verhältnis teilt. X falle
zunächst auf die Ecke B. Dann muss X' in einem Punkte D'
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auf b liegen, der von A um • b absteht, weil die Fläche des
n

bc • sin et
Dreiecks ABC gleich - ist und das durch g abgeschnittene

Li

Dreieck — • 5 betragen soll. Der Punkt X bewege sich
n o

dann nach A hin, X' also gegen C zu. Wenn X in E angelangt

ist, wo AE — — • c, so befindet sich X' in C. Die Gerade hat
n

inzwischen vom konstanten Winkel a ein Dreieck von festem
Inhalt abgeschnitten. Sie war somit Tangente an die Hyperbel
Hk deren Asymptoten c und b sind, und deren Mittelpunkt in
A liegt.

Wenn sich X weiter nach A hin bewegt, so wird statt b
die Seite a von g geschnitten. Das abgetrennte Stück des Dreiecks

mit der Fläche — • F wird so zum Viereck XACX'. Der übrige
n

Teil ist das Dreieck X'BX. Seine Fläche ist "~m
• F. DieGe-

n
rade berührt, bis X mit A und X' mit G' zusammenfällt, wo

CG' =— • a, eine Hyperbel mit den Asymptoten c und a und

dem Mittelpunkt B. Diese Hyperbel soll das Zeichen H'^
erhalten.

Liegt X auf b zwischen A und D, wenn wieder CD — — b,
n

und X' auf a zwischen G' und B, so umhüllt g die Hyperbel
H„, die b und a zu Asymptoten und C zum Mittelpunkt hat.
Gehen X und X' auf den Dreieckseiten weiter, so werden
nacheinander noch die Hyperbeln H'„, H# und H'„ tangiert.

Während die Halbierungslinien drei Hyperbeln berühren,
erzeugen die Geraden, die ein Dreieck in zwei ungleich grosse
Teile zerlegen, sechs Hyperbeln als Enveloppen. Die Tangenten
der drei Hyperbeln H? schneiden vom Asymptotenwinkel eine

Dreiecksfläche von — • F, die der drei Hyperbeln H'p ein Dreieck

von der Grösse F ab.
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Je eine Hyperbel Hf und H'p sind ähnlich, ähnlich gelegen
und konzentrisch, also koaxial. Sie berühren einander in den
unendlich fernen Punkten.

Mit den beiden Hyperbeln H'', mit denen sie nicht koaxial
ist, hat jede Hyperbel H? eine Tangente und eine Asymptote
gemein. Die Berührungssehnen bestimmen, wie bei der
Halbierung des Dreiecks, die Seiten des ersten Komplementärdreiecks
M M.M.abc

Die Hyperbeln H? haben unter sich gemeinschaftliche
Asymptoten und also im Unendlichen Berührungspunkte. Innerhalb

des Dreiecks dagegen müssen sie sich schneiden. Zum
Beweise betrachte man Hy und Hf(. H muss die Gerade BD

berühren. Da CD — b und nach Voraussetzung— <r --, so
n n 2

ist CD<^CMb. Die Hyperbel H muss somit nach C hin über
die Mittellinie BMb hinaus vorrücken. Die Hyperbel HK berührt
die Gerade BD', und da AD'< AMb so muss sie nach A hin die
Mittellinie BMb überschreiten. Die beiden Hyperbeln müssen
also übereinander greifen und demnach sich schneiden.

Die Hyperbeln H'„ haben ebenfalls gemeinschaftliche
Asymptoten. Sie berühren sich ausser in den unendlich fernen Punkten
nicht und können sich auch nicht schneiden.

Wie bei der Halbierung des Dreiecks sind die auf den
Seiten des ersten Komplementärdreiecks liegenden Berührungspunkte

der Hyperbeln die letzten Kurvenpunkte, die durch den
Schnitt zweier aufeinanderfolgenden Teilungsgeraden erzeugt
werden. Weil jede Gerade, die das Dreieck ABC im gegebenen
Verhältnis teilt, die zwischen diesen Punkten konstruierten
Hyperbelbogen berührt, so muss umgekehrt jede Tangente dieser

Bogen das Dreieck im voraus bestimmten Verhältnis teilen.

Je kleiner das Verhältnis — wird, um so mehr rücken die
n

mkoaxialen Hyperbeln auseinander. Für — =0 muss das Dreieck

zwischen den Tangenten und Asymptoten der Hyperbeln H?
verschwinden, und die Hyperbeln gehen in die Asymptoten über.
Die Hyperbeln H'^, dagegen müssen die Dreieckseiten von aussen

Bern. Mitteil. 1910 Nr. 1742.
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berühren, da die Fläche zwischen ihren Tangenten und Asymptoten
dem gegebenen Dreieck gleich sein muss.

Nähert sich— dem Werte -^-, so rücken ie zwei koaxiale
n 2 ü

Hyperbeln zusammen. Bei — — ~H~ vereinigen sie sich, und es

entsteht die in § 1 besprochene Figur.

Hat— einen Wert zwischen -^- und 1, so ist das Dreieck
n 2

zwischen den Asymptoten und den Tangenten der Hyperbeln H?
grösser als das an den Hyperbeln H'p. Die Hyperbeln Hp

m 1

treten im Vergleich mit dem Falle — < -^- an die Stelle der
n 2

Hyperbeln H'p, und umgekehrt.

Ist — — 1, so berühren die Hyperbeln H„, die Dreieckseiten,

und die Hyperbeln H'? sind mit den Asymptoten identisch.

Ist endlich — > 1, so liegen die Hyperbeln Hp ganz ausserhalb

des Dreiecks ABC, und die koaxialen Hyperbeln sind
imaginär.

Nimmt man der Reihe nach m 1, 2, 3 u. s. w. bis -jj-. wenn

n gerade, und —¦=—, wenn n ungerade ist, und konstruiert die
Li

entsprechenden Hyperbelbogen, so zerlegen deren Tangenten aus

jedem Punkte, der auf den Seiten des Dreiecks oder ausserhalb

liegt, das Dreieck in n gleiche Teile.

§ 3. Konstruktion der Hyperbeln.

Für die Konstruktion der Hyperbeln erhält man zu den
bekannten Asymptoten eine erste Tangente, indem man eine

m n — mDreieckseite im Verhältnis von — : m : (n — m) teilt
n n

und den Teilungspunkt mit der gegenüberliegenden Ecke des

Dreiecks verbindet. Ihr Mittelpunkt gibt einen ersten Hyperbelpunkt.

Weitere Elemente findet man nach verschiedenen
Verfahren in beliebiger Zahl.
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Unter der Voraussetzung, dass m — 2 und n — 7 sei, ist
in Fig. 3 die Gerade CD als erste Tangente der Hyperbel H„
konstruiert worden.

Zieht man als spezielle Tangente der Hyperbel H„ die
Gerade EG parallel zur Dreieckseite BC, so besteht infolge der
Ähnlichkeit der Dreiecke AEG und ABC die Proportion :

AE2: AB2= — -F:F
n

Also ist AE AB V / — oder, AB n gesetzt, AE \J mn. Für

m 2 und n 7 erhält man für AE den Ausdruck ^14, der
sich konstruieren lässt als Hypotenuse in einem rechtwinkligen
Dreieck mit den Katheten 3 und y 5.

Will man die Tangente KL senkrecht zu AB konstruieren,
so hat man, wenn K der Fusspunkt der Tangente, J der Fuss-

punkt des von C auf AB gefällten Perpendikels und AD AB

ist, die Beziehung : AK2 A J • AD.
Es verhält sich nämlich infolge der Ähnlichkeit :

A AKL : A AJC AK2 : AJ2.

Da Dreiecke von gleicher Höhe sich wie ihre Grundlinien
verhalten, gilt die Proportion

AADC:AAJC AD:AJ.
Nun sollen die Dreiecke AKL und ADC gleichflächig sein, und
daher folgt

AK2:AJ2 AD:AJ
und AK2 AJ-AD.

Um die Scheiteltangenten zu bestimmen, kann das von einer
Tangente und den Asymptoten gebildete Dreieck mit Beibehaltung
des Asymptotenwinkels gleichschenklig gemacht werden. Die Basis
wird dann zur Scheiteltangente, und die Schenkel kommen
der linearen Exzentrizität der Hyperbel gleich. Nun ist die
lineare Exzentrizität das geometrische Mittel zwischen den

Abschnitten, die eine Tangente auf den Asymptoten erzeugt. Nimmt
man bei der Hyperbel Hf( den einen Asymptotenabschnitt gleich b,

so wird der andere gleich c, und für die lineare Exzentri-
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zität oder einen Schenkel des gesuchten Dreiecks erhält man

den Ausdruck c — \ / — • bc. Werden die Seiten des gegebenen

Dreiecks, die die Asymptoten einer Hyperbel darsteUen, allgemein

mit s und s' bezeichnet, so erhält man für die Hyperbeln H? :

/ m

Für die Hyperbeln HL folgt :

/n — m
c -V-5—"•

§ 4. Die Gleichungen der Hyperbeln.
Nimmt man die Asymptoten einer Hyperbel zu Achsen eines

schiefwinkligen Koordinatensystems, so gilt für jeden Hyperbel-
c2

punkt die Beziehung: xy =y Setzt man für c den in § 3

gefundenen Wert ein, so erhält man die Asymptotengleichungen
der Hyperbeln in der Form

HL

m ss
xy 7"J n 4

n — m ss'
^ y —-J n 4

Für die Halbachsen a und b der Hyperbeln Hf ergeben
sich bei Benutzung des vorigen Wertes für c die Ausdrücke

a=co5lVf-ss'
m

ss

Somit lautet die Achsengleichung der Hyperbeln

EL: ^- ^ 1 0.
/ 2 V • 2 9

m ss cos -^- m ss sin -—¦

Entsprechend erhält man die Gleichung

HL: ^ ^2 1 0.

(n — m) ss' cos -j~ (n — m) ss'sin ~
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Ist speziell « 90°, so wird

a« b« 4y^-2bc,
und man bekommt

H„ :

Ist b c s, so ist

2nx2
__

2ny2
mbc mbc

„2 2

2 a a

na 4.2« 4
cos y —2— ;sin y ~

und die Gleichung H„ geht über in
a 2 24nx 4ny _ ± Q

-2 2^, „2m (4s — a ma
Sind b und c Katheten k eines rechtwinklig gleichschenkligen

Dreiecks, so folgt für Hß :

2nx2 2ny2
1 2 ,2 x ""

mk mk
Im gleichseitigen Dreieck ist für jede Hyperbel Hp

n„„ / m s ln m
a=cos30».sy/^= -5-^8^-
f • n™ / m s / mb Sin30°-8V n "2 VT

Die Hyperbeln erhalten demnach die Gleichung

Analog folgt

Hf: -£4—^--1 0.
9 3ms2 ms2

A 2 i 24nx 4nyH' • ^^ ^=J 1=0p' 3(n —m)s2 (n —m)s2

Es sollen die Gleichungen der Hyperbeln noch auf

rechtwinklige Koordinatensysteme bezogen werden, deren
eine Achse auf eine Dreieckseite, die für die betreffenden
Hyperbeln Asymptote ist, fällt. Für H„ und H'„ sei in Fig. 3
die Richtung AB die positive X-Achse und die Senkrechte in A
die positive Y-Achse. Transformiert man die Asymptotengleichungen,

denen das schiefwinklige Achsensystem BAC zu Grunde
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Hegt, auf das neue rechtwinklige System X'AY', so gelten die
Formeln

v'
x x' — y • cotg « ; y ¦= -^—J ° ' J sin a

Durch Einsetzen dieser Werte für x und y in die Gleichung HK :

m be
xy — rJ n 4

ergibt sich

x'y' y' cosa m be -
sin« gin2« n

' 4 "
Es sei nun p die Abszisse und q die Ordinate der Ecke C des

gegebenen Dreiecks ABC in Bezug auf X'AY'. Dann ist sin« ^

und cos a -f- • Setzt man diese Werte in der letzten Glei-
b

chung ein, so geht sie über in

bx'y' bpy'2 m be

q ~~q1 n" 4 —

oder 4npy —4nqxy-j-mcq =0.
Die Gleichung der Hyperbel H'„ unterscheidet sich von der
Gleichung der Hyperbel H„ nur im konstanten Gliede. Transformiert
heisst sie daher:

4npy — 4 n q x y -f (n — m)cq =0.
Nimmt man zu den Hyperbeln H^ und HL die Richtung BA als

positive X-Achse und die Senkrechte in B als positive Y-Achse
und zu den Hyperbeln Hy und HL, wenn r wie in Fig. 3 ein

stumpfer Winkel ist, die Seite b in der Richtung AC als positive
X-Achse und die Senkrechte in C in der Richtung gegen das Dreieck
zu als positive Y-Achse, und werden die Koordinaten der nicht auf
den Achsen liegenden Ecke des Dreiecks jeweilen wieder mit p
und q bezeichnet, so lauten die Transformationsformeln für diese

Hyperbeln gleich wie für H„ und H'„. Setzt man noch die
Länge der als Achse benutzten Seite gleich s, so kann man
daher die Gleichungen in allgemeiner Form schreiben

Hj> : 4npy" — 4nqxy-|-msq =0.
HL; 4npy2—4nqxy-f (n — m) sq2 0.
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§ 5. Die Schnitte der Hyperbeln mit Transversalen
des Dreiecks.

An die Hyperbeln H„ und H^ der Fig. 4 seien die Tangenten
DD' und EE' so konstruiert, dass sie auf der Dreieckseite c
die gleichen Abschnitte AD und BE bestimmen. Es haben dann
die Dreiecke ADD' und BEE' die gleiche Grösse und gleiche
Basis, und somit ist auch ihre Höhe gleich. Die Berührungspunkte

P und Q der Tangenten liegen in der Mitte zwischen
D und D' und E und E', also in der halben Höhe der Dreiecke,
und ihre Verbindungslinie ist folglich zur Basisgeraden c parallel.
Schneidet diese Parallele zu c die Seite b in J und die Seite a

in K, so ist PJ QK als Hälfte der Dreiecksbasis AD oder

BE, und daher ist auch PK QJ. Wenn M den Schnittpunkt
der Parallelen zu c mit der Mittellinie CMc bezeichnet, so ist
noch MP MQ. Die Parallele zu c wird also von den beiden

Hyperbeln und den nicht parallelen Dreieckseiten so geteilt,
dass zwischen ihnen bezw. gleiche Abschnitte entstehen, oder
dass die Schnittpunkte mit der Hyperbel symmetrisch zum
Schnittpunkt mit der die Seite c halbierenden Mittellinie sind.
Da man die gleichen Abschnitte AD und BE auf c beliebig gross
wählen kann, so gilt dies für jede Parallele zu c. Was für die

Hyperbeln H„ und H^ gezeigt worden ist, lässt sich ebenso für
H'n und HL beweisen.

Schneidet die zu c parallele Gerade die noch übrigen
Hyperbeln Hy und H'yin L und N und L' und N', so folgt aus
dem Satze, dass die beiderseitigen Abschnitte einer Sekante
zwischen der Hyperbel und den Asymptoten gleich lang sind,
dass auch diese Punkte symmetrisch zum Schnittpunkt M mit
der Mittellinie CMc liegen.

Die gleichen Verhältnisse, wie für die Parallelen zur Dreieckseite

c, bieten sich auch für jede Gerade, die zu den Seiten a
oder b parallel ist. Es folgt also, dass auf jeder Parallelen zu
einer Dreieckseite die Hyperbeln an den beiden nicht parallelen
Seiten gleiche Abschnitte erzeugen, oder dass sämtliche Hyperbeln
in der Richtung jeder Dreieckseite symmetrisch angeordnet sind
in Bezug auf die Mittellinie, die die Seite halbiert.
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Aus dieser Beziehung ergibt sich sofort, dass die Punkte,

in denen die Hyperbeln H„ sich schneiden, auf die Mittellinien
des Dreiecks fallen, und dass die Schnittpunkte der Hyperbeln
mit den Dreieckseiten auf Parallelen zu den Dreieckseiten sind.
Im weitern folgt aus ihr, dass die Hyperbeln die Geraden, wie g1
und g2 oder a und b, die in der Richtung einer Seite symmetrisch
liegen zu der die Seite halbierenden Mittellinie, proportional
teilen.

Die Beziehung kann auch benutzt werden zur Konstruktion
der Hyperbeln.

§ 6. Die Schnitte der Hyperbeln mit den Dreieckseiten.

Zur Bestimmung der Schnittpunkte der Hyperbeln H„ und
H'K mit der Dreieckseite a sei in Fig. 5 AB die positive X-Achse,
AC die positive Y-Achse. Nach § 4 hat dann H„ die Gleichung:

m be
x-y n

'
4

"

Die Gleichung der Dreieckseite a heisst:

1- + -L.
c ^ b - 1 0.

Eliminiert man aus diesen zwei Gleichungen nacheinander y und

x, so folgt
c c. / n —m

X^2-±2-y-n—
b b /n —m^Y^y—n— •

Die Schnittpunkte P1 und P2 der Hyperbel H« haben also die

schiefwinkligen Koordinaten

cP • x —rr xi 2

P3: ^|(1 +V/^); j^-y/^} (1)

Sind Rj^ und R2 die Fusspunkte der Ordinaten y1 und y2 so
bestehen infolge der Ähnlichkeit der Dreiecke R1BP1, R2BP2 und
ABC die Proportionen :

BP,: a yi:b,
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und BP2 : a y2 : b.
Somit ist

BP1 !'< ¦ ¦ /n-m

BP» =1(1
Die Hyperbel H'ß hat, auf die Asymptoten bezogen, die Gleichung:

n—m be
xy a~ •J n 4

Die Kombination mit der Gleichung der Seite a ergibt:
c c >/¥
b b / m

Die schiefwinkHgen Koordinaten der Schnittpunkte P\ und P'2
haben somit die Werte:

P' • x —r r ¦ xi 2 -Vf); '.-K'Wj)

«"".-tC'-n/t

(2)

Wie vorhin findet man:

Da die Hyperbeln alle Dreieckseiten proportional teilen, so
bekommt man bei entsprechender Wahl der Achsen für die
Koordinaten der Schnittpunkte der übrigen Hyperbeln mit den Seiten
b und c, sowie für die Abstände der Schnittpunkte von den
Ecken des Dreiecks analoge Ausdrücke.

Bezeichnet allgemein s eine Seite des Dreiecks und d bezw.
d' die Entfernung der Schnittpunkte von einer der Ecken, die
die Seite abschliessen, so ist:

S _!_
S / n m

2±Y\ n~ (3)

s sd' ¥-2 v?
Bern. Mitteil. 1910. Nr. 1743.
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Zieht man nun, Fig. 5, paraUel zu der Seite, die von zwei
koaxialen Hyperbeln H? und H'? geschnitten wird, die Tangenten
an diese Hyperbeln und bestimmt nach § 3 den Abstand ihrer
Schnittpunkte mit den zwei andern Seiten vom Mittelpunkt der
Hyperbeln, so findet man, für die nicht parallelen Seiten allgemein

s gesetzt:

-vT
y - / n - - m

n
Die Entfernung von den beiden andern Ecken des Dreiecks
beträgt :

' m-Vir
n — m

e' s — s i

Die den beiden Ecken zunächst liegenden Schnittpunkte der
Seiten mit den übrigen Hyperbeln sind nach den Formeln (3)
entfernt um

s s / n — m
2~ 2~V5
s s /md=¥-Wt

Die Schnittpunkte der Hyperbeln H? und HL mit den Dreieckseiten

stehen also von der nähern, auf der gleichen Seite liegenden
Ecke des Dreiecks halb soweit ab, wie die Schnittpunkte der
zu den andern Seiten parallelen Tangenten der Hyperbeln H'?
und H~.

Aus dieser Beziehung und den übrigen schon erwähnten
Eigenschaften der Figur, wie auch aus den Formeln (3) für den
Abstand d der Schnittpunkte der Hyperbeln mit den Dreieckseiten

von den Ecken des Dreiecks ergibt sich sofort; dass die
gegenseitige Entfernung der Schnittpunkte einer Hyperbel Hf den

Betrag r — 1' s V / erreicht. Zieht man durch die Schnittpunkte

einer dieser Hyperbeln mit der betreffenden Dreieckseite
Geraden parallel zu den andern Seiten, so entsteht somit ein
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Dreieck, das dem gegebenen von der Fläche F ähnlich ist, und

das den Inhalt • F besitzt. Eine Tangente der Hyperbel

bildet mit den Asymptoten ein Dreieck von der Grösse — • F.

Als Summe der beiden Dreiecke ergibt sich somit diti ganze
Dreiecksfläche F.

Die Strecke r' 1 zwischen den beiden Schnittpunkten

einer Hyperbel H'p misst sv/—. Sie ist also gleich der Seite

meines zu ABC ähnlichen Dreiecks vom Inhalt F. Es ergänzen

sich somit auch hier das Dreieck zwischen einer Tangente und den

Asymptoten, da dessen Fläche • F ist, und das Dreieck, das

man erhält, wenn man durch die Schnittpunkte der Hyperbel
mit der Dreieckseite Parallele zu den übrigen Seiten legt, zur
ganzen Dreiecksfläche F, oder es ist das mit Benutzung der
Hyperbelschnittpunkte als Ecken konstruierte, zu ABC ähnliche
Dreieck der Differenz zwischen dem gegebenen und dem durch
eine Tangente vom Asymptotenwinkel abgeschnittenen Dreiecke
gleich.

Wie die Summe der beiden Dreiecke, die durch eine

Tangente und die Asymptoten einer Hyperbel H? und H'f gebildet
werden, der Fläche des gegebenen Dreiecks gleichkommt, so sind
nach obigem auch die zwei Dreiecke, die die Schnittpunkte einer
Hyperbel H„ und H' als Ecken besitzen und ABC ähnlich sind,

•zusammen gleich der ganzen Dreiecksfläche F.

Mit Hilfe der Schnittpunkte der Hyperbeln mit den Dreieckseiten

lassen sich leicht auch Bruchteile der Flächen F und
n

¦ F finden, wie an einigen Beispielen gezeigt werden soll.
n

Zieht man in Fig. 5 die Verbindungsgerade der Schnittpunkte

Qj und Rl auf b und c, so entsteht das Dreieck AQXRX,
dessen Grösse sich mit Rücksicht auf (3) berechnet auf

.AQ^i^l +^).^!-^)] sm«

1 be/.. n —m
"2 * T '
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oder AAQ.R, =4-- —-F.^11 4 n

Den gleichen Inhalt besitzt, wie sofort ersichtlich ist, jedes Dreieck,
das durch Verbindung zweier durch die Hyperbeln Hp erzeugten
Schnittpunkte, die nicht auf einer Parallelen zu einer Seite des

Dreiecks ABC liegen, gebildet wird. Weil Pt Qx RXA, so hat
auch das Dreieck P1Q1R1 die gleiche Grösse. Es wird erhalten,
indem man zum Punkte Px die beiden Schnittpunkte, die sich
mit ihm auf Parallelen zu den gegebenen Dreieckseiten befinden,
als Ecken wählt.

Mit diesen Dreiecken sind weiter inhaltsgleich das Dreieck
BP1Q1, das Dreieck R2P1T'2, wo T'2 den Schnittpunkt von c

mit der zu a parallelen Tangente der Hyperbel H'ß bezeichnet,
sowie das Dreieck R2Q1T'2 und sämtliche Dreiecke, die analog
konstruiert werden.

Die Fläche des Dreiecks BP^'g beträgt, da BT'2 2 • BR2,

-= F. Den gleichen Inhalt besitzen das Dreieck BQ1T'2,

das Parallelogramm BP1Q,R2, das Parallelogramm PjQjXj^X,,
wobei PjX2 und QjXx zwei beliebige Parallele durch Px und Qj
sind und Xx und X^ ihre Schnitte mit c bedeuten, sowie jedes
entsprechend gebildete Dreieck oder Parallelogramm.

Die Punkte B, P1? Qx und T'2 bestimmen ein Trapez mit

dem Inhalt -; F.
4 n

Als Fläche des Dreiecks AP9PX findet man, wenn der
Berechnung die auf das schiefwinklige Achsensystem BAC bezogenen •

Koordinaten der Ecken zu Grunde gelegt werden:

oder

a a -r» n 1 be /n —m /n —m „AAt>2P1=2--T-4V-n— m* \J-r- 'F-

Es ist demnach dies Dreieck dem geometrischen Mittel zwischen

der ganzen Dreiecksfläche F und F gleich.

Verbindet man die Punkte Px und P2 mit Mc oder Mb oder
einem Punkt der VerbindungsHnie von McMb, so erhält man ein
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Dreieck mit der gleichen Basis und der halben Höhe des vorigen

Dreiecks. Seine Fläche misst also -^- V / F.
2 y n

Werden die Schnittpunkte der Dreieckseiten mit den

Hyperbeln H'^, in gleicher Weise benutzt, wie die mit den

Hyperbeln H^,, so ist, um die Grösse analoger Flächenstücke

zu erhalten, in den obigen Ausdrücken für den Inhalt — durch

und umgekehrt zu ersetzen.

§ 7. Flächeninhalt der Hyperbeln.

Auf jeder zu einer Dreieckseite parallelen Geraden werden
nach § 5, an den beiden nicht parallelen Seiten durch die

Hyperbeln entsprechend gleiche Abschnitte erzeugt. Diese
Beziehung lässt die Folgerung zu, dass die Hyperbeln Hf, wie auch
alle Hyperbeln H'?, mit den Dreieckseiten gleiche Flächen ein-
schliessen müssen. Da die Schnitte je zweier Hyperbeln H? oder

H'? mit den Dreieckseiten auf Parallelen zur nicht geschnittenen
Seite liegen, so lassen sich nämlich die entsprechenden Flächen,
die von den beiden Hyperbeln und den Dreieckseiten bestimmt
werden, durch Parallele zur nicht geschnittenen Seite in eine
gleiche Anzahl Trapeze zerlegen. Ein Trapez der einen Fläche
stimmt nach der oben angeführten Beziehung in den beiden
parallelen Seiten mit einem Trapez der andern Fläche überein.
Weil nach Konstruktion auch die Höhen gleich sind, so
bekommen also die zwei Trapeze, sobald ihren parallelen Seiten
ein unendlich kleiner Abstand gegeben wird, auch die nämliche
Grösse, und eine Summierung der Trapeze muss demnach für
die bezüglichen Flächen den gleichen Wert bringen.

Die absolute Grösse eines durch eine Dreieckseite
abgeschnittenen Hyperbelsegments kann dadurch festgestellt werden,
dass von dem Dreieck, das der Mittelpunkt der Hyperbel und
die Schnittpunkte mit der Seite bilden, der durch die selben
Punkte bestimmte Hyperbelsektor subtrahiert wird (Fig. 6).
Die Fläche des Dreiecks beläuft sich nach § 6 bei einer Hyperbel

Hf auf v / F und bei einer Hyperbel HL auf V / — • F.
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Der Hyperbelsektor ist nach einem Lehrsatze über die Hyperbel
gleich dem halben Rechteck aus den halben Achsen multipliziert

mit der Differenz der Logarithmen der Projektionen der
Radien auf die eine Asymptote in der Richtung der andern.
Es werde nach diesem Satze zuerst der Sektor einer Hyperbel H„
bestimmt. Für das halbe Rechteck aus den halben Achsen hat
man dann, da seine Fläche die Hälfte des Dreiecks ist, das eine
Tangente mit den Asymptoten bildet, zu setzen :

ab _
1 m F~2~-T""n"

Die erforderlichen Projektionen der Radien sind die auf die
Asymptoten bezogenen Abszissen oder Ordinaten der Schnittpunkte
der Hyperbel und haben die Werte

¦ i s / / n — ra
•' 2~l1±

Die Differenz der Logarithmen beträgt also

r r ' t 2 \1+V n (yn+yn-m)Log v\ — Log r'2 Log —} y— '- Log ^ x—

s / / n - m \ i»
2"'

/n—m \

Der Inhalt des Hyperbelsektors ist somit

J rn T (\/n + V/n—m)2"| Fm T \

2n m

und die gesuchte Grösse des Segments wird

S=rv/lET_m. (yT f \/T^nT)21 F
LV n 2n ° m J

Analog ergibt sich als Fläche zwischen einer Hyperbel H'p und
der von ihr geschnittenen Dreieckseite

S'=v/ïî—a=E-Log(v/"" + ^l-F.
V n 2n n —m J

Da die gefundenen Ausdrücke bloss von den Verhältniszahlen
für die Teilung des Dreiecks abhängig sind, so tritt auch aus
ihnen sofort die oben bewiesene Gleichheit der entsprechenden
Hyperbelflächen hervor.
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Für — -9- °der m -^ erhält man, wie § 2 es verlangt,

S S', und für — 1 oder m n ; S 0 und S' F.
n

Nach den Eigenschaften koaxialer Hyperbeln schneiden
ferner die Tangenten der Hyperbeln H'? von den koaxialen
Hyperbeln H„ Segmente von konstantem Inhalt ab. Wie leicht
zu erkennen ist, stimmen auch diese Segmente der drei Hyperbeln
H~ der Fläche nach miteinander überein; denn legt man in
Fig. 4 an die zwei beliebig gewählten Hyperbeln H'K und HL
die Tangenten parallel zu den von ihnen geschnittenen Seiten
a und c, so sind infolge der symmetrischen Anordnung der
Hyperbeln die Abstände der Tangenten von den parallelen Seiten,
in der Richtung der nicht parallelen dritten Seite b gemessen,
einander gleich, und die Schnitte W und Z, W und Z' der
Tangenten mit den koaxialen Hyperbeln liegen auf Parallelen
zur Seite b. Demzufolge lassen sich die beiden Segmente wie
die frühern durch Parallele zu dieser Seite in die gleiche Zahl
Trapeze von entsprechend gleichem Inhalt zerlegen, und hieraus
resultiert die in Frage stehende gleiche Grösse.

Unter sich inhaltsgleich sind ferner, Fig. 6, die drei Flächenstücke

DKLJ, ELJK und GJKL, die von je zwei Hyperbeln
umschlossen werden, weil sie aus einem gemeinschaftlichen Stück
KLJ bestehen und die übrigen Teile durch Parallele zu den
Dreieckseiten in eine gleiche Zahl flächengleicher Trapeze zerlegt
werden können. Um einen Ausdruck für ihren Inhalt zu
bekommen, soll die Hälfte der Fläche GJKL, nämlich GJK, als
Differenz zwischen dem Dreieck AKG und dem durch die
gleichen Punkte bezeichneten Sektor der Hyperbel H„ betrachtet
werden. Die Koordinaten der Punkte K und G bestimmen sich

aus der Asymptotengleichung der Hyperbel

m be
y n 4

und der ebenfalls auf die Asymptoten der Hyperbel bezogenen
Gleichung der Mittellinie CMc

c b
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Man findet:

—2m
i

2în

Aus den schiefwinkligen Koordinaten der Ecken berechnet,
ergibt sich somit

.__ Ipsc/L /n-2m\2 bc/L /n—2m\2]

oder

(W^AAKG (^--v/ 2m
>-F.

Sektor AKG ^- • F • (Log xt - Log x2

Weiter ist

G 02n
fm T V/n^-4-y'n-2m 1 „L^'LOgVn^E^JF
[2n ë 2m J

Das halbe Zweieck GJK hat also die Grösse

Z_fl /T^2m~ m (v/n~+v/n-2m )2]
2-|yV"~n 2VL°g 2~ni J ' F'

und als ganze Fläche GJKL wird erhalten

Z - LßEEK _ Jü. Log
(VT+ V/T=2nT)2l R

LV n n 2m J

Bei der Halbierung des Dreiecks berühren sich, wie anfangs
auseinandergesetzt worden ist, die beiden Hyperbelbogen in der
Mitte der Mittellinie CMc, und die eingeschlossene Fläche fäUt
weg. Dies wird durch die Rechnung bestätigt, indem für m 1

und n 2 der gefundene Ausdruck verschwindet. Ist — > -„-,

also 2m >n, so wird der Ausdruck v/ negativ. Die

Wurzel ist imaginär, d. h. die zwei Hyperbeln schneiden oder
berühren sich nicht, was auch schon früher bemerkt worden ist.

Zum Schluss soll noch die Fläche JKL, die v on Bogen der
drei Hyperbeln H., begrenzt wird, ermittelt werden. Man fasse
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sie zu diesem Zwecke als Summe des Dreiecks JKL und der
drei den Seiten anliegenden Segmente auf. Die Koordinaten
des Punktes K, auf das System BAC bezogen, sind schon
berechnet worden und betragen

v c /1 / n ~2m \ b (-i / n —2m"

Nun liegen die Punkte K, L und J als Schnittpunkte der
Hyperbeln auf den Mittellinien des Dreiecks ABC, und ihre
Verbindungsgeraden sind den Seiten dieses Dreiecks parallel.
Mit den Koordinaten des Punktes K in Bezug auf das Achsensystem

BAC sind daher auch die der Punkte L und J gegeben,
nämlich

^-ì(Wzi3'*~t(Wz?!)
Als Fläche des Dreiecks resultiert nun nach bekannter Formel

lb \ y n n /
Das Segment der Hyperbel HK ist die Differenz zwischen dem
Dreieck AKJ und dem Sektor AKJ.

Es ist aber

16
und

AAKJ=i(l0v/--^-3-3.-^m I.F.

Sektor AKJ £- ¦ F • Log

(yn~f v/n— 2m

2n ¦|-(v'ii_v/n_2m)

=[jl.LogM+^ElBLl.F,
L2n ° 4m J

Als Ausdruck für die Fläche des Segments der Hyperbel Hc
erhält man demnach

^[nvVS,=l^|10v/i^ü!.-3-3.n-2m
n

_m (Vn-f-yL^än^2!
2n ë 4m

Bern. Mitteil. 1910. Nr. 1744.
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Die beiden andern den Dreieckseiten anliegenden Segmente sind
mit diesem flächengleich, da man sie in die nämliche Zahl
flächengleicher Trapeze zerlegen kann.

Die gesuchte, von den drei Hyperbeln eingeschlossene Fläche
berechnet sich somit auf G A JKL -f- 3 Sx, oder

\S /n-2m 1 3m (y,n"+y/n-2m)2]
G=|T'V~n Y"2ÏÏLog 4m J-F-

Setzt man in diesem Ausdruck für m 4 und n 9, so folgt

\2 3 2 3 ë 16 /
Die drei Hyperbeln müssen sich in dem Fall im gleichen Punkte,
im Schwerpunkt des Dreiecks, schneiden.

Zu den substituierten Werten für m und n kommt man
durch die Überlegung, dass ein Zusammenfallen der Schnittpunkte
J, K und L nur im Schwerpunkt des Dreiecks möglich ist, weil
die Hyperbeln in der Richtung der Dreieckseiten symmetrisch
zu den Mittellinien angeordnet sind, und dass bei diesem
Zusammenfallen der Schwerpunkt zugleich zum Berührungspunkt
wird für die Tangenten, die den Dreieckseiten parallel laufen.
Diese Tangenten teilen die Dreieckseiten im Verhältnis von 2:3
und schneiden daher, weil ähnliche Dreiecke sich wie die
Quadrate gleichliegender Seiten verhalten, vom gegebenen Dreieck

irFab-
Analytisch erhält man die beiden Werte etwa durch Gleichsetzen

der Ausdrücke für die Ordinaten der Punkte K und L.

§ 8. Die konjugierten Hyperbeln.
Ein Dreieck von gleicher Grösse, wie eine Tangente der

besprochenen Hyperbeln vom Asymptotenwinkel abschneidet,
schliesst jede Tangente der konjugierten Hyperbeln mit den

Asymptoten ein. Dies Dreieck liegt ausserhalb des gegebenen
Dreiecks ABC, und es vergrössert dessen Fläche F um so viel,
wie eine Tangente der ersten Hyperbeln von ihm wegschneidet.

Die Dreieckseite, die von einer Hyperbel geschnitten wird,
kommt in ihrer Verlängerung auch mit der konjugierten Hyperbel
zum Schnitt. Die Koordinaten dieser Schnittpunkte, auf die
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Asymptoten bezogen, werden erhalten, indem man in den

bezüglichen Ausdrücken für die ersten Hyperbeln das Vorzeichen
der Grösse ändert, die vom konstanten Gliede der Hyperbelgleichung

herrührt. Bezeichnen s und s' wieder die Dreieckseiten,

die für eine Hyperbel die Asymptoten darstellen, und

H?r, sowie H'fi die zu H? und H'? konjugierten Hyperbeln, so

folgen für die Schnittpunkte der Dreieckseiten mit den Hyperbeln
H„/ die Koordinaten

s/L, /nfm\ s'L. /n-f-m\

und für die Schnittpunkte mit den Hyperbeln H' » :

s f /2n—m\ s' / /2n-mx=tì1±V"~t-J; y^Tl^v^T-
Die beiden Schnittpunkte einer Hyperbel H„/ bezw. H'„, » haben

mithin eine Entfernung voneinander, die gleich s"V/l-| bezw.

s"\ / 1-) ist. Durch sie gezogene Parallele zu den

Asymptoten bilden also mit der geschnittenen Seite ein Dreieck, das

sich der Ähnlichkeit wegen zum gegebenen verhält wie I 1 -\— : 1,

bzw. 1

n
n — m

N

§ 9. Beispiel: Dreiteilung eines gleichseitigen Dreiecks.

Im gleichseitigen Dreieck werden die Hyperbeln, deren
Tangenten und Asymptoten gleich grosse Dreiecke bilden,
kongruent. Die Mittellinien sind die Hauptachsen der Kurven.

Die Tangenten der Hyperbeln H der Figur 6 schneiden

vom Asymptotenwinkel einen Drittel des gegebenen Dreiecks ABC

ab. Die lineare Exzentrizität dieser Hyperbeln misst-y-y3. Sie
ö

ist also gleich zwei Dritteln der Mittellinie, und der Schwerpunkt

S des Dreiecks ist somit gemeinschaftlicher Brennpunkt
der sich schneidenden Hyperbeläste. Für die Brennpunkte der
andern Äste ist ein Zusammenfallen nicht möglich, weil die

Hyperbeln nicht koaxial sind. Die Hyperbeln H„ sind also ein-
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fach konfokal. Im beliebigen Dreieck würden aUe Brennpunkte
gesondert liegen. Die halbe Hauptachse hat eine Länge von
s
-jr-, während die halbe Nebenachse für alle Hyperbeln im gleich-
Li

seifigen Dreieck der halben Exzentrizität gleich ist und für die

Hyperbeln H demnach einen Drittel der Mittellinie beträgt.
Die Tangenten der Hyperbeln H'

2
Asymptoten Dreiecke von der Fläche -~- • F.

trizität dieser Hyperbeln ist s V / -g-, die halbe Hauptachse -~ \j~2~.

Die Tangenten aus jedem Punkt X auf einer Seite des

Dreiecks oder ausserhalb an die zwischen den Mittellinien
gelegenen Hyperbelbogen zerlegen das Dreieck in drei gleiche Teile.

Nach den Formeln des § 6 ist der Inhalt der Dreiecke

bestimmen mit den

Die lineare Exzen-

AR^^-F. AB'^—g-F.
P P P — -F1 l1 31 2 3 x PWa—g--*.

AP.P.-yJJ.F. AP'2P'i ^.
Ferner misst

.F, etc.

Segment PXJKP2^

Segment P'JJVP'^
Das Zweieck GK hat die Grösse

J.
"

3

|—1. Log V 3-tVï) F.

[^ Log
iVs iül

Zwei Hyperbeln, die sich schneiden, grenzen also ein Flächenstück

von gleichem Inhalt ab, wie eine Hyperbel, die die andern

nur berührt, mit der geschnittenen Dreieckseite einschliesst. Die
Übereinstimmung dieser Flächen ist dem angewendeten
Teilungsverhältnis, nicht der Form des Dreiecks zuzuschreiben.



II. Folgerungen betreffs der Hyperbel.

§ 10. Beziehungen zwischen der Hyperbel und der Sekante.

Wenn man durch die Schnittpunkte einer Dreieckseite mit
einer von Teilungslinien umhüllten Hyperbel Geraden parallel
zu den andern Seiten, den Asymptoten der Hyperbel, zieht, so

erhält man ein Dreieck, das nach § 6 die Differenz zwischen dem

gegebenen und dem durch eine Tangente vom Asymptotenwinkel
abgeschnittenen Dreiecke darstellt. Zieht man durch die Schnittpunkte

mit der konjugierten Hyperbel Parallele zu den übrigen
Seiten, so wird nach § 8 die Summe des gegebenen und des

durch eine Tangente und die Asymptoten gebildeten Dreiecks
erhalten.

Statt nun vom Dreieck auszugehen und die Hyperbel
entsprechend zu konstruieren, kann man auch eine Hyperbel als

gegeben betrachten und diese durch eine Sekante schneiden.
Die Sekante schliesst dann mit den Asymptoten eine Fläche ab,

zu der die Dreiecke, die von den Tangenten und den Asymptoten
begrenzt werden, in einem konstanten Verhältnis stehen. Die
Hyperbel hat also für das Dreieck zwischen der Sekante und den

Asymptoten die gleiche Bedeutung, wie wenn sie zu ihm
konstruiert worden wäre. Wenn die Sekante nur einen Ast der

Hyperbel schneidet und wenn man durch ihre Schnittpunkte
Parallele zu den Asymptoten zieht, so dass sie mit der Sekante
ein Dreieck bilden, so muss dessen Fläche daher gleich sein der
Differenz zwischen den Dreiecken, die die Asymptoten mit der
Sekante und mit einer Tangente bestimmen.

Wenn die Sekante beide Äste der Hyperbel trifft, so
schneidet sie vom Nebenwinkel des Asymptotenwinkels ein Dreieck

ab. Nun kann man auch den Nebenwinkel als Asymptotenwinkel

auffassen und in ihm eine Hyperbel von gleicher
Exzentrizität, wie die gegebene sie besitzt, konstruieren Zu dieser
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Hyperbel ist die gegebene die konjugierte, und man hat in
Bezug auf den Schnitt der Sekante mit der gegebenen Hyperbel
die gleichen Verhältnisse, wie früher beim Schnitt einer Dreieckseite

mit der konjugierten Hyperbel. Das Dreieck, das entsteht,
wenn man durch die Schnittpunkte der Sekante mit der Hyperbel
Parallele zu den Asymptoten zieht, ist also gleich der Summe der
beiden Dreiecke, die von den Asymptoten mit der Sekante und
mit einer Tangente gebildet werden.

Es ergibt sich hieraus der Satz:

1. Zieht man durch die Schnittpunkte einer Sekante
mit einer Hyperbel Geraden parallel zu den Asymptoten,
so dass sie mit der Sekante ein Dreieck bilden, so ist,
je nachdem die Sekante beide Äste oder nur einen Ast
der Hyperbel schneidet, dies Dreieck gleich der Summe
oder gleich der Differenz der Dreiecke, die von der
Sekante und den Asymptoten und einer Tangente und den
Asymptoten gebildet werden.

Es sei nun in Figur 7 eine Sekante g so gelegt, dass sie

beide Äste der Hyperbel H schneidet. R1 und R2 seien ihre
Schnittpunkte mit der Hyperbel und St und S2 die Schnittpunkte
mit den Asymptoten. Der Abschnitt Rt R2 zwischen den
Schnittpunkten mit der Hyperbel sei mit r und der Abschnitt St S2

zwischen den Asymptoten mit s bezeichnet. Es werde ferner die

zur Sekante parallele Tangente der konjugierten Hyperbel Ht
konstruiert. Sie schneide die Asymptoten in Tx und T2, und t
bezeichne ihren Abschnitt zwischen den Asymptoten. Zieht man
noch Rj R3 parallel der Asymptotenrichtung Sx O und R2 R3

parallel S20, so ist nach (1)

AR^R* A SAO + A TtT2o.
Die drei Dreiecke sind nun ähnlich. Ihre Flächen verhalten

sich also wie die Quadrate gleichliegender Seiten. Aus der
Proportion

ARAR, : A S^O : ATiTjO r2 : s2 : t2

folgt aber

AR^Rg : (ASA0 4-ATtT20) r2:(s2 -f t2)

und hieraus, da

A R^Rs A SAO + AW ist,
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2 2 -2
r s -j- t

t ist aber dem parallelen Durchmesser d der Hyperbel gleich.
Somit ist auch

2 2 j2r — s -f- d
Schneidet eine Sekante g' nur einen Ast der Hyperbel, und ist
r' der Abschnitt zwischen den Schnittpunkten mit der Hyperbel,
s' der Abschnitt zwischen den Asymptoten und d' der
Durchmesser, der der Sekante parallel läuft, so folgt

/2 /2 j/2r s — d
und man erhält die Beziehung:

2. Bei jeder Sekante ist das Quadrat des
Abschnittes zwischen der Hyperbel gleich dem Quadrat
des Abschnittes zwischen den Asymptoten plus oder
mi nus dem Quadrat des parallelen Durchmessers, je nachdem

die Sekante beide Äste oder nur einen Ast der
Hyperbel schneidet.

Die Gleichungen
2 2 i2 j ,2 ,2 1/2r s -j- d und r s — d

geben noch
i2 2 2 i j/2 ,2 /2d r — s und d s — r

Dies heisst:
3. Das Quadrat eines Durchmessers ist gleich der

Differenz zwischen dem Quadrat des Abschnittes, der
durch die Hyperbel, und dem Quadrat des Abschnittes,
der durch die Asymptoten auf einer parallelen Sekante
erzeugt wird,
oder :

4.BeiparallelenSekantenist dieDifferenz zwischen
dem Quadrat des Abschnittes zwischen der Hyperbel
und dem Quadrat des Abschnittes zwischen den
Asymptoten konstant und dem Quadrate des parallelen
Durchmessers gleich.

Es schneide ferner die konjugierte Hyperbel die Sekante

g in JJ1 und U2 und die Sekante g' in ~U\ und U'2. Die Strecke

Ut U2 sei u, und die Strecke U^U'g sei u'. Da ein Durchmesser
der Hyperbel zugleich ein Durchmesser der konjugierten Hyperbel
ist, so muss nun sein:
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j2 2 2 2 2
d r — s s — u

di2 ,2 ,2 ,2 ,2 ju — s —s — r oder
,2 ,2 ,2 ,2r — s s —u

Aus diesen Gleichungen wird erhalten :

2 2

„a - r +u_ 2
,2 ,2

2_ r' + u'
_ 2

Es folgt also
5. Bezeichnet man den durch eine Hyperbel erzeugten
Abschnitt einer Sekante mit r, den Abschnitt

zwischen den Asymptoten mit s und den durch die
konjugierte Hyperbel erzeugten Abschnitt mit u, so gelten
die Beziehungen:

2 2 2 2
r — s s — u

2 i 2
2 I' + Uund s

2
Geht eine Sekante durch den Mittelpunkt einer Hyperbel,

wird sie also zum Durchmesser, so ist die Fläche des Dreiecks,
das sie mit den Asymptoten bildet, gleich Null. Zieht man durch
die Schnittpunkte mit der Hyperbel, d. h. durch die Endpunkte
des Durchmessers, Geraden parallel zu den Asymptoten, so dass
sie mit dem Durchmesser ein Dreieck bilden, so folgt aus (1),
dass die Fläche dieses Dreiecks stets gleich ist dem Dreieck, das
eine Tangente vom Asymptotenwinkel abschneidet, also gleich
dem Rechteck aus den Halbachsen a und b der Hyperbel. Werden
durch jeden Endpunkt eines Durchmessers Parallele zu beiden

Asymptoten gelegt, so entsteht ein Parallelogramm von der
Fläche 2 ab. Man erhält somit als Ausdruck eines Spezialfalles

den Satz:
6. Parallelezuden Asymptoten durch die Endpunkte

eines Durchmessers bestimmen ein Parallelogramm von
der konstanten Grösse 2ab.

Ist ferner die Fläche des Dreiecks S^O der Fig. 7 gleich

F, so sei die Fläche des Dreiecks TtT20 gleich F. Dann

verhält sich

,22 mt : s =— : 1,
n
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A '? /t\2 m s2

und es ist {-)= — .-
Weiter ist nach § 8

SR-S ?4/Tfm
-i-i g 2 V n

Q „ s,s./ n-fm
toiK2-y-r-2~

Multipliziert gibt es

SlR,SlRa |-|(1+ i)—i.f
Nimmt man die Strecken S1R1 und S1R2, die entgegengesetzt
gerichtet sind, in der gleichen Richtung, so wird

2 /
S1R1.S1R3 — -T-^-2

Schneidet die Sekante nur einen Ast der Hyperbel und beträgt auch

n \ 2 / n
,,2 m ,2 /t'\2 m s'2
t =—s und -7r r--

so ist

e, p, s s /n —mb iK i y
s' /n —i

Q' P' s s /n — mb lK2==~o" + "

2 ' 2 V n '

/2 ,2 / \ /2 / w \2
somit S'.RVS'^^-^l-^)^.^^

Es ist also das Produkt der Abschnitte der Sekante zwischen
einer Asymptote und der Hyperbel dem Quadrat der halben

parallelen Tangente und mithin dem Quadrat des parallelen
Halbmessers gleich. Man kommt zum bekannten Satz:

7. Die von einer Asymptote aus gemessenen Segmente
einer Sekante ergeben das Quadr at des parallelen
Halbmessers als ihr Produkt.

Setzt man in der Gleichung
d2

S1R1 • StR2 -|-
für d2 den Wert, den es nach Satz (2) besitzt, nämlich d2=r —s >

so erhält man
Bern. Mitteil. 1910. Nr. 1745.
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r2 — s2 /' R] R2 \2 / S1S2\2
S1Rl-S1R2==—|— — y—g— \~)'

Für die Abschnitte der Sekante g'g findet man:
S'2_r'2 / s\S'2 \2_/R\ R'2\2

s'lR'1-s'1R'a=—4— — ^—%—; v—2—/'
Demnach folgt

8. Schneidet eine Sekante die Asymptoten in St
und S2 und die Hyperbel in R, und R9, so ist S1R1-S1R2

/S1S2\2 /R^2gleich der Differenz zwischen (—5—) urm

§ 11. Die Sekante und Tangente aus einem Punkte der

Asymptoten.

In Figur 8 sei S, ein Punkt der Asymptote OY, durch den
die Sekante Sx S2, die beide Äste der Hyperbel H in R1 und R2

schneidet, sowie die Tangente SXT gezogen werde. Durch Rt
und R2 konstruiere man noch Parallele zu den Asymptoten, dass
das Dreieck R1R2R3 entsteht. Dann ist dessen Fläche nach
Satz (1) gleich der Fläche des Dreiecks S1S20, das die Sekante
mit den Asymptoten bildet, plus der Fläche des Dreiecks OTSi;
das die Tangente mit den Asymptoten einschliesst. Die Summe
dieser beiden Dreiecke wird aber auch durch das Dreieck S1S2T

gegeben, das von der Sekante, der Tangente und der Asymptote
OX begrenzt wird.

Zieht man durch S, die Sekante SjS'2 so, dass sie in R'x
und R'2 nur einen Ast der Hyperbel schneidet, und konstruiert
man durch Parallele zu den Asymptoten das Dreieck R'jR'gR^
so ist dessen Fläche gleich der Differenz zwischen dem Dreieck,
das die Asymptoten mit der Sekante und dem Dreieck, das sie

mit der Tangente bestimmen. Diese Differenz ist aber auch

gleich dem Dreieck S^S',, zwischen der Sekante, der Tangente
und der Asymptote OX. Es gilt also der Satz:

9. Schneiden sich eine Sekante und eine Tangente
auf einer Asymptote, und zieht man durch die Schnittpunkte

der Sekante mit der Hyperbel Parallele zu den
Asymptoten, so dass sie mit der Sekante ein Dreieck
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bilden, so ist dessen Fläche gleich dem Dreieck, das
die Sekante mit der Tangente und der andern Asymptote

bestimmt.
Weil nun das Dreieck Rj R2R3 dem Dreieck S^O ähnlich

ist, so verhält sich

RtR2 : SjS2 AR1R2R3 • AS1S20.
Da aber ARiR2Rs AS^T ist, so folgt

RjR2 : S1S2 — A SjS2T : ASjS^O.
Ebenso gilt:

R'i.R'2: SiS'2 ASXTS'2: A^OS'y
Dies heisst:

10. Wenn sich eine Sekante und eine Tangente
auf einer Asymptote schneiden, so verhält sich das
Quadrat des Sekantenabschnittes zwischen der Hyperbel

zum Quadrat des Sekantenabschnittes zwischen den
Asymptoten wie das Dreieck, das die Sekante mit der
Tangente und der zweiten Asymptote bildet, zum Dreieck,

das sie mit den Asymptoten einschliesst.
Da Dreiecke von gleicher Höhe sich wie ihre Grundlinien

verhalten, so gilt ferner die Proportion:
AS^T : ASA0 S2T : S20

Da auch die Proportion besteht

ARiR2Rs: ASjS20 RiR2 : SjS2,
und ARiR2R3 AS1S2T, so folgt

RjR2 : S^2 S2T : S20= (S20 + OT) : S20.

Auf gleiche Weise bekommt man

R',R'2 : S.S'2 - S'2T : S'20 (S'20 - TO) :S'20.

Hieraus, ergibt sich:
11. Wenn sich eine Sekante und eine Tangente

auf einer Asymptote schneiden, so verhält sich, je nachdem

die Sekante beide Äste oder nur einen Ast der
Hyperbel schneidet, das Quadrat des Sekantenabschnittes

zwischen der Hyperbel zum Quadrat des
Abschnittes zwischen den Asymptoten wie die Summe
oder Differenz der vom Mittelpunkt der Hyperbel aus
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gemessenen, durch die Sekante und die Tangente
erzeugten Abschnitte der zweiten Asymptote zum
Abschnitt, den die Sekante auf dieser Asymptote
bestimmt.

Es werde noch durch den Schnittpunkt T der Tangente
SXT mit der Asymptote OX eine Parallele zur Asymptote OY
konstruiert. Sie schneide die Sekante SjS'2 in T\ und die
Sekante S1S2 in Tr Dann verhält sich infolge der Ähnlichkeit:

A RiR2R3 : ATis2T RiR2 : Txs2.
Weil die Höhen gleich sind, so folgt:

A ö^Ogl : /^IjOjjl ^= öj02: ljö2.
Aus diesen Proportionen ergibt sich:

R1R2 : TA SXS2 : TtS2

und R1R^=S1S2-T1Sa
Analog kommt:

R'jR'2 S^'g.T'jS'j, und es folgt:
12. Bezeichnet man die Schnittpunkte einer Sekante

mit der Hyperbel mit Rx und R2 und die Schnittpunkte mit
den Asymptoten mit Sx und S2, und schneidet eine
Tangente die Asymptoten in Sx und T und eine durch T
gelegte Parallele zur Asymptote durch Sx die Sekante
in T1? so gilt die Beziehung:

R1R2 0^2« TXS2.

Nimmt man an, dass das Dreieck, das die Tangente mit den

Asymptoten bildet, — mal so gross sei wie das Dreieck zwischen

der Sekante und den Asymptoten, so hat man, wie auf Seite 41
berechnet wurde, die Gleichung :

Weil die

SjRj • SjRjj

erwähnten Dreiecke die

m /S1S2\2
" n V 2

gleiche Höhe haben, ist weiter

OT -^
n

--OS2.

Wird die erste Gleichung durch die zweite dividiert, so erhält
man:

S.R, • S,R0 : OT
AS2\2Ui :OS2
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(SS

\2
-L^-j OT : OS2.

Entsprechend wird gefunden :

/S. S' \2
S^.SJRL: -V- =OT:OS'2.

13. Wenn sich eine Sekante und eine Tangente
auf einer Asymptote schneiden, so verhältsich also
das Rechteck aus den Sekantenabschnitten zwischen
der Asymptote und der Hyperbel zum Quadrat des
halben Abschnittes der Sekante zwischen den
Asymptoten wieder Abschnitt der zweiten Asymptote zwischen
der Mitte und der Tangente zum Abschnitt zwischen
der Mitte und dem Sekantenschnittpunkt.

Bezeichnen U1 und U2, bezw. \J\ und U'2 die Schnittpunkte
der Sekanten g und g' mit der konjugierten Hyperbel Ht, so
müssen nach (7) die zwei letzten Proportionen auch richtig sein
in der Form :

/S.S9\2
S,U, -S,ü0: Mr-2- =OT:OS„Jl"l K-'lVJ2" \ 2 / ' 2

(S
S' \2-Lij OT : OS'2.

Es schneide ferner in Fig. 8 die Sekante s die Asymptoten
in Pj und P2 und die konjugierte Hyperbel Hx in V1 und V2.
Aus Pt gehe an Hx die Tangente tv die in Qx die Asymptote
OY schneide. Man erhält dann nach (11)

V1V2:P1P2 (P20 + OQ1):P20.
Nun lasse man die Sekante s zur Tangente t durch Px an die

Hyperbel H werden. Sie treffe alsdann die konjugierte Hyperbel
in Wt und W2 und OY in Q. Da man die Tangente auch als
Sekante betrachten kann, darf man setzen :

WXW2 : PtQ2 (QO -f OQJ : QO

Da OQx QO, so folgt
W1W2:P1Q2=2-QO:QO 2:l.

oder WjW2 2 - PxQ2, d. h.

14. Das Quadrat des Abschnittes einer Tangente
zwischen der konjugierten Hyperbel ist doppelt so
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gross wie das Quadrat des Abschnittes zwischen den

Asymptoten.
Zieht man WjW3 parallel OY und W2W3 parallel OX, so

verhält sich der Ähnlichkeit wegen

AW1WSW2: AQOP^ WXW2 : QP2 2:1.
Das Dreieck WXW3W2 ist mithin doppelt so gross wie das

Dreieck QOPx, das durch die Asymptoten und eine Tangente
der Hyperbel gebildet wird, und somit dem doppelten Rechtecke
aus den Halbachsen gleich. Werden durch Wx und W2 Parallele
zu beiden Asymptoten konstruiert, so ist das Parallelogramm
W1W3W2W4 demnach inhaltsgleich mit dem Rechteck aus den

Achsen, und es ergibt sich der Satz :

15. Parallele zu den Asymptoten durch die Schnittpunkte

einer Tangente mit der konjugierten Hyperbel
geben ein Parallelogramm von der konstanten Grösse
des Rechtecks aus den Achsen 2a und 2b.

§ 12. Anwendungen auf Konstruktionsaufgaben.
Es seien die Asymptoten OX und OY, sowie ein Punkt Px

einer Hyperbel gegeben.
1. Aufgabe. Man bestimme den Durchmesser parallel der

gegebenen Richtung 1.

Lösung. Durch Px (Fig 9) ziehe man parallel 1 die Sekante s.

Sie schneide die Asymptoten in Qx und Q2. Macht man
Q 2P2 Q1P1, so ist P2 der zweite Schnittpunkt der
Sekante mit der Hyperbel, und das Quadrat des gesuchten
Durchmessers ist nach (3) gleich der Differenz zwischen

QjQ^ und PjP2 • Die Strecke d kann somit ermittelt
werden als Kathete in einem rechtwinkligen Dreieck oder
als geometrisches Mittel zwischen der Summe der Strecken
QXQ2 und PjP2 und ihrer Differenz.

Wird die Sekante s parallel zur Halbierenden des

Asymptotenwinkels gelegt, so findet man die Länge der Achsen
2a und 2b.

2. Aufgabe. Man konstruiere die Tangenten parallel einer
gegebenen Richtung 1.
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Lösung. Die Länge t des zwischen den Asymptoten liegenden

Stückes einer Tangente lässt sich finden wie die Länge
des Durchmessers d in der ersten Aufgabe. Fig 9.

3. Aufgabe. Man konstruiere die Tangente durch einen ge¬

gebenen Punkt Qt einer Asymptote.

Lösung. Man ziehe in Fig. 10 durch P, die Sekante QXQ2
und bestimme die dritte Proportionale Q2T' zu QXQ2 und
P1P2. Hierauf ziehe man T'T parallel OY. Aus der
Umkehrung des Satzes (12) folgt dann, dass TQX die gesuchte
Tangente ist.

Die dritte Proportionale kann nach Gouzy konstruiert
werden, indem man um Q2 mit dem Radius PjPg einen
Kreisbogen schlägt und nachher QXQ, von Qx nach Q3, von
Q3 nach Q4 und von Q4 nach T' abträgt. Es ist dann

AQiQ8Qa~AQ8Q2T\
Daraus ergibt sich

QtQ2: Q3Q2=Q3Q2:Q2T',
und weil Q3Q2 P1P2, so folgt

QjQ,: P1Pa P1P8:QaT'.

4. Aufgabe. Man bestimme den Schnitt einer gegebenen Ge¬

raden g mit der Hyperbel.
L ö s u n g a. Es seien in Fig. 9 St und S2 die Schnittpunkte

¦ von g mit den Asymptoten und Rt und R2 die gesuchten
Schnittpunkte mit der Hyperbel. Dann ist nach (2), wenn
d den parallelen Durchmesser bezeichnet :

Rj R2 SjS2 — d

Zieht man durch Px die zu g parallele Sekante, so kann d

wie in der Aufgabe (1) konstruiert werden, und R1R2 wird
gefunden als Kathete im rechtwinkligen Dreieck mit S1S2

als Hypotenuse und d als der andern Kathete. Ebenso
leicht ist RxR2 wie d als mittlere Proportionale zu erhalten,
was z. B. auf einfache Weise durch Umkehrung des
angeführten Verfahrens zur Konstruktion der dritten
Proportionalen erfolgen kann.

Lösung b. Man ziehe in Fig. 11 durch Pl parallel zu g die
Sekante QjQ.,, errichte im Schnittpunkte Sx der Geraden
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mit der Asymptote OX die Senkrechte und mache SiT1

=¦ QXQ2 und TT,, PJL Weil nun

Sm2 q rp2 o G^ m m2 o m2
1X2 — ö2i2 — Ö2Ö1 — 1li2 ~~ ^L

oder S2T2 - S2S2 P^2 - QtQ2,

so gibt S2T2 nach (4) den Abstand r der gesuchten Schnittpunkte

Rx und R2.

Lösung c. Man konstruiere nach Fig. 10 wie in der dritten
Aufgabe den Schnittpunkt T der Tangente t durch Qt mit
der Asymptote OX, indem man zu Qt Q2 und PA°2 die dritte
Proportionale Q2T' bestimmt und TT parallel OY zieht.
Ist T" der Schnittpunkt dieser Parallelen mit g, so ist
das geometrische Mittel zwischen QtS und ST" nach (12)
gleich dem Abstand r der Punkte R1 und R2.

5. Aufgabe. Es seien die Asymptoten und der Schnitt einer
Geraden mit der Hyperbel gegeben. Man bestimme den
Schnitt der Geraden mit der konjugierten Hyperbel.

Lösung. In Fig. 11 seien Rj und R2 die Schnittpunkte der
Geraden mit der Hyperbel und R\ und R'2 die gesuchten
Schnittpunkte mit der konjugierten Hyperbel. Errichtet
man in Sx die Senkrechte zu g und macht S2T2=R1R2
und T2U S1S2, so ist StU nach (5) gleich der Strecke
R'jR'2 ; denn es ist

ST2 S2T2 - S.S2 T2U2— StU2

oder RtR2 - S,S2 S^2 - SJJ2.

6. Aufgabe. Man bestimme den Schnitt einer Geraden mit
den Asymptoten, wenn die Schnittpunkte Rt und R2 mit
der Hyperbel und die Schnittpunkte R\ und R'2 mit der
konjugierten Hyperbel gegeben sind.

Lösung. Bezeichnen Sx und S2 die gesuchten Punkte, so hat
man nach (5) die Beziehung

RT>2 i TD/ t)/2 Q C C2 •

j rx2 -f- ±t j^Xl 2 & ' öjö2
Nimmt man also R1R2 und R'jR'g als Katheten eines

rechtwinkHgen Dreiecks RjRgRg und konstruiert über der
Hypotenuse R3R2 das rechtwinklig gleichschenklige Dreieck
R3R4R2, so ist dessen Kathete gleich S1S2.
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7. Aufgabe. Gegeben seien die Asymptoten einer Hyperbel

und eine Tangente. Man bestimme den Schnitt der
Tangente mit der konjugierten Hyperbel.

Lösung. Schneidet die Tangente die Asymptoten in T: und
T2 und die konjugierte Hyperpel in Ux und U2, so ist nach

(14) UjU2 2 • TT2, und ^U2 kann als Hypotenuse im
rechtwinklig gleichschenkligen Dreieck mit TjT2 als Kathete
konstruiert werden.

§ 13. Erzeugung der Hyperbel bei konstanten Teilverhältnissen.

Eine Gerade g bewege sich so, dass sie mit den Asymptoten

einer Hyperbel ein Dreieck von festem Inhalt bestimmt,
und in jeder Lage sei durch ihren Schnittpunkt St mit der
Asymptote OY die Tangente an die Hyperbel konstruiert. Ist
nach Fig. 8 T deren Schnittpunkt mit der Asymptote OX, so
verhält sich nach (10)

RjR2 : SjS2 ASjS2T : /\ S1S2Q.

Das Dreieck StS2T ist nun die Summe der Dreiecke S1S20 und

SjOT. Da das Dreieck StS20 nach Voraussetzung und das Dreieck
SjOT nach den Eigenschaften der Tangente konstant ist, so ist
auch das Dreieck S,S2T von unveränderlicher Grösse. In der
obigen Proportion hat also die rechte Seite einen konstanten

Wert und infolgedessen auch das Verhältnis RjR2 : SXS2 oder

RjR2 : SjS2. Weil die Schnittpunkte Rx und R2 stets symmetrisch

zur Mitte M der Strecke SjS2 liegen, so ist daher

MR: : S^j, MR2 : S2S, konstant
und StRt : S^ S2R, : S2S1 konstant.

Würde die Gerade nur einen Ast der Hyperbel schneiden, so
müssten Rj und R2 als innere Teilpunkte die Strecke S1S2 nach
festem Verhältnis teilen.

16. Bewegt sich also eine Hyperbelsekante so,
dass sie mit den Asymptoten ein Dreieck von festem
Inhalt bestimmt, so wird der Abschnitt zwischen den
Asymptoten durch die Hyperbel in konstantem
Verhältnis geteilt, oder:

Bern. Mitteil. 1910. Nr. 1746.
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Alle Geraden, die mit den Asymptoten einer
Hyperbel inhaltsgleiche Dreiecke bilden, werden durch
die Hyperbel und die Asymptoten proportional geteilt.

Umgekehrt folgt :

17. Wenn eine Hyperbelsekante sich so bewegt,
dass sie von der Hyperbel und den Asymptoten in
festem Verhältnis geteilt wird, so bestimmt sie mit
den Asymptoten ein Dreieck von unveränderlicher
Grösse.

Das Teilverhältnis l, das R, und R2 auf der Strecke S,S2

MR,
der Sekante bestimmen, kann gegeben werden durch X „„ -

MR2
Schneidet die Sekante bei gleicher Grösse des durch

2

MS2
sie abgeschlossenen Dreiecks eine andere zu den gegebenen
Asymptoten konstruierte Hyperbel, so bilden die neuen Schnittpunkte

R, und R2 auch ein anderes Teilverhältnis mit S, und

S2. Wenn sie mit M zusammenfallen, wenn also die Sekante

zur Tangente wird, so hat <? als tj^- den Wert Null. Liegt R,

MR, MRj
zwischen M und S, und R„ zwischen M und S„, so ist -^^- ^r^1 2 2' MS, MS2
ein echter Bruch. Der Schnitt der Sekante mit den Asymptoten,
dem Grenzfall der Hyperbel, gibt X den Wert 1. Liegen R,
und R9 ausserhalb der Asymptoten, so wird l grösser als 1.

Je grösser der Abstand MR, MR2 wird, um so mehr wächst

l, bis es für die Schnittpunkte der Sekante mit der unendlich
fernen Hyperbel den Wert oo erhält.

Wie nun jede Hyperbel, die zu den gegebenen Asymptoten
gehört, durch ihre Schnittpunkte auf der Sekante ein konstantes
Teilverhältnis X bestimmt, das einen Wert zwischen Null und
Unendlich hat, so muss umgekehrt jedes Punktepaar R1 und R2,
das symmetrisch zu M liegt und die Strecke 8,8, in konstantem
Verhältnis teilt, eine Hyperbel beschreiben, wenn die Gerade
sich auf die angegebene Weise bewegt.
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Es gibt dies den Satz:

18. Wenn eine Gerade sich bewegt und
dabei mit den Schenkeln eines festen Winkels
ein Dreieck von konstanter Fläche bestimmt,
so beschreiben je zwei ihrer Punkte, die
symmetrisch zur Mitte d e s Abs chn it t es zwischen
den Schenkeln des Winkels liegen und diesen
Abschnitt in konstantem Verhältnis teilen,
eine Hyperbel. Die Mitte speziell beschreibt
eine Hyperbel, die von der Geraden umhüllt
wird.

Wenn sich die Punkte R, und R2 innerhalb der Strecke
S,S2 befinden, so beschreiben sie gleichzeitig den selben Hyperbelast.

Als äussere Teilpunkte der Strecke S,S2 dagegen beschreiben
sie die beiden Äste getrennt. Wie aus einer Betrachtung der
Geraden in den aufeinanderfolgenden Lagen sofort hervorgeht,
muss in beiden Fällen jeder der Punkte R, und R2 die ganze
Hyperbel durchlaufen.

Es sei ferner in Fig. 12 g, eine Gerade, die sich so

bewegt, dass sie mit OX und OY ein Dreieck von konstantem
Inhalt bestimmt, und g2 sei eine Gerade, die durch ihre Schnittpunkte

T, und T2 mit OY und OX die Abschnitte OS, und OS2
nach feststehendem Verhältnis teilt. Dann sei noch T,U parallel

T,S,
S,S2. Nach Voraussetzung hat nun das Verhältnis -3—=r einen

us2
konstanten Wert und daher auch öTT Weil nach Voraussetzung

o2U

22
^-t^ ebenfalls unveränderlich ist, so folgt
ö2U

US2 S2T2
_ US2 _ T,R _s^ö: S^Ü S^ ~ RT2

konstant-

S,R
Ebenso lässt sich beweisen, dass ^-3- konstant ist.

Kb2
Der Schnittpunkt R der beiden Geraden bestimmt also auf

den Abschnitten zwischen den Schenkeln des festen Winkels
ein konstantes Teilverhältnis und beschreibt daher eine Hyperbel.
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19. Wenn also eine sich bewegende Gerade
mitden Schenkeln eines festen Winkels ein
Dreieck von konstanter Grösse einschliesst
und eine zweite Gerade so gleitet, dass sie
die durch die erste Gerade erzeugten
Abschnitte auf den Schenkeln des festen Winkels
in konstantem Verhältnis teilt, so ist der Ort
des Schnittpunktes der beiden Geraden eine
Hyperbel.

Wenn die Punkte T, und T2 der Fig. 12 die Strecken
OS, und OS2 bei der Bewegung der Geraden g, und g2 nach
gleichbleibendem Verhältnis teilen, so hat das Dreieck OT,T2
wie das Dreieck OS,S2 eine konstante Grösse. Ist ferner R,
ein Punkt auf g, mit festem Teilverhältnis in Bezug auf SLS2

OV, OV,
und V, ein Punkt auf OY, so dass v ^ und also auch „ „ kon-

stant ist, so folgt durch Umkehrung aus dem Beweis des letzten
Satzes, dass die Gerade g durch R, und V, den Schenkel OX

ov2 ov2
in V2 so schneidet, dass „ ^ oder „ „ einen unveränderlichen

y^-2 V2-*-2

Wert erhält. Es beschreibt daher nach (19) auch der Schnittpunkt

R2 der Geraden g und g2 eine Hyperbel. Wiederholungen
der Konstruktion geben das Resultat :

20. Wenn eine sich bewegende Gerade mit
den Schenkeln eine s fe sten Winke 1 s einDreieck

von k o n s t an t e m In h a 11 b e st i mm t und man
durch Punkte auf ihr mit festem Teilverhältnis

in Bezug auf die Schnittpunkte mit den
Schenkeln d e s Wi n k e 1 s S t r ahi e n b ü s c h e 1 legt,
die auf dem Abschnitt einesSchenkels zwischen
dem Scheitel und dem Schnittpunkt mit der
Geraden konstante Teilverhältnisse bilden,
so ist derOrtdesSchnittpunktesjedesStrahles
mit jedem andern eine Hyperbel.

Wie im vorausgehenden gezeigt wurde, beschreibt in
Fig. 12 jeder der Punkte R, R', R" auf g, mit festem
Teilverhältnis in Bezug auf S,S2 eine Hyperbel. Diese Hyperbeln
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sind koaxial und haben die Schenkel des festen Winkels zu

Asymptoten. Betrachtet man die Gerade als Sekante, so folgt
umgekehrt, dass sie in jeder Lage, in der sie mit den
Asymptoten ein Dreieck von der gegebenen Grösse bildet, durch die

Hyperbeln und die Asymptoten im nämlichen Verhältnis geteilt
wird. Als Verallgemeinerung der Beziehung (16) folgt daher
der Satz:

21. Geraden, die mit den Asymptoten ko-
axialerHyperbelnDreieckevongleicherGrösse
bilden, werden durch die Hyperbeln und die
Asymptoten proportional geteilt.

Insbesondere teilen koaxiale Hyperbeln
und eine Asymptote alleParallelen zur andern
Asymptote proportional.

In Fig. 4 seien nun zwei Systeme von koaxialen Hyperbeln
mit den beliebigen Asymptotenwinkeln a und ß gegeben, und es

sei die Eigenschaft vorhanden, dass die Tangenten der Hyperbel
Hß, bezw. H'„, H"„. mit den Asymptoten ein Dreieck von
gleicher Grösse einschliessen, wie die Tangenten der Hyperbel
H^, bzw. H'^, H"^... Ferner soll die Sekante g, vom
Asymptotenwinkel a ein gleich grosses Dreieck abschneiden, wie g2 von ß.

Die Schnittpunkte von g, und g2 mit den Asymptoten seien mit
R, und S, und R2 und S2 und die Schnittpunkte mit den

Hyperbeln HK und H, mit U, und V, bzw. U2 und V2 bezeichnet.
Dann werde noch die Tangente R,T, an H„ und die Tangente
R2T2 an H# gezogen. Nach (10) verhält sich alsdann :

UxV2 : R,S2 A R^S, : A^AS,
Ü2V2 : R2S2 AR2T2S2: AR2BS2.

Aus der Voraussetzung folgt aber

A R^S, : A RxAS, A R2T2S2 : A R2BS2.

Somit besteht die Proportion
U^-.Rß^V^-.Rß,.

Schneiden g, und g2 die Hyperbeln H'„ und H'« in U', und

Y'v bzw. U'2 und V2, so wird erhalten

U'JVRA^Ü^:^
22. Entsprechen sich also in zweiSystemen

koaxialer Hyperbeln je zwei Hyperbeln in
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dem Sinne, dass eine Tangente der einen
Hyperbel vom Asymp t o t en win kel einDreieck
von gleicher Grösse abschneidet, wie eine
Tangente der andern, so werden alle
Sekanten, die mit den Asymptotenflächen gleiche
Dreiecke bilden, in beiden Systemen durch
d i e Asy m p t o t e n und Hyperbeln im nämlichen
Verhältnis geteilt. (Vergi, hiezu § 5: «Die Schnitte
der Hyperbeln mit Transversalen des Dreiecks.»)

Es sei endlich in Fig. 13 der Winkel a, das Dreieck S,0 S2

und ebenso das Verhältnis R,S1 : S,S2 =- R2S2 : S2S, für alle
Lagen der sich bewegenden Geraden g konstant, und R,W und

R2W seien den Schenkeln des festen Winkels parallel. Weil
nun das Verhältnis R,R2 : S,S2 oder R,R2 : S,S2 konstant ist,
so folgt auch für das Dreieck R,R2W ein fester Inhalt. Der
Ort seiner Ecken R, und R2 ist aber nach (18) und der Ort
der Ecke W nach (20) eine Hyperbel. Die beiden Hyperbeln
sind koaxial, und die Richtungen OS, und OS2 sind ihre
Asymptoten. Geht man umgekehrt vom Punkt W einer Hyperbel
aus und zieht durch ihn Parallele zu den Asymptoten bis zum
Schnitt R, und R2 mit einer koaxialen Hyperbel, so erhält man
die Dreiecke WR,R2 und S,S20, deren Inhalt sich mit der Lage
des Punktes W auf der Hyperbel nicht ändert, und man kann

sagen :

23. We nn man aus einemPunkt einerHyper-
bel Parallele zu den Asymptoten zieht bis zum
Schnitt mit einer koaxialen Hyperbel, so
bestimmen die Schnittpunkte mit dem ersten
Punkt und d i e V e r bin d un gs lin i e der Schnittpunkte

mit den Asymptoten Dreiecke von
konstanter Grösse,
und :

24. Wenn zwei Ecken eines Dreiecks von
konstanter Grösse auf einer Hyperbel gleiten
und die mit der dritten Ecke bestimmten
Seiten den Asymptoten parallel sind, so ist der
Ort der dritten Ecke eine koaxiale Hyperbel.
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§ 14. Die Hyperbel als Erzeugnis doppelter projektiver
Punktreihen auf den Asymptoten.

Die Gerade a der Fig. 14 bewege sich wieder so, dass
sie mit den Schenkeln t und t' des festen Winkels a ein Dreieck
von konstantem Inhalte bildet. Sie nehme nacheinander die

Lagen a,, a2, a3... an, in denen sie t in A,, A2, A3. und t'
in A',, A'2, A'3... schneidet. Durch jeden Schnittpunkt mit t
ist auch der Schnittpunkt mit t' eindeutig bestimmt. Umgekehrt
gehört zu jedem Schnittpunkt der Geraden mit t' ein einziger
Schnittpunkt mit t, und die Punktreihen (A, A2 A3.. und

(A',A'9A'3. sind daher projektive Reihen.

Neben der Geraden a soll sich eine zweite Gerade b so

bewegen, dass sie die Abschnitte der Schenkel t und t' zwischen
dem Scheitel O des Winkels und den Schnittpunkten mit a
nach einem konstanten Verhältnis teilt. Wenn a sich in den

Lagen a,, a2, a3.. befindet, so nehme b die Lagen b,, b2, bg

ein, und die bezüglichen Schnittpunkte von b mit t und t' seien

mit B,, B2, B3 und B'„ B'2, B'3 bezeichnet. Unter der
gegebenen Voraussetzung bestimmt auch b mit t und t' ein
Dreieck von konstanter Grösse, und auch die Punktreihen
(B,B2B3 und (B^B^B'g sind projektiv.

Da durch den Schnittpunkt A. von a mit t der Schnittpunkt
A', von a mit t' gegeben ist, A', nach Voraussetzung aber B'.
eindeutig bestimmt, so folgt, dass auch die Reihen (A,A2Ag...)
und (B',B'2B'g.. projektiv sind, und ebenso ist (Bj^Bj...)
projektiv zu (A', A'2A'3...). Nach Konstruktion besteht zudem
noch zwischen den beiden Reihen jedes Trägers projektives
Entsprechen.

Da die Dreiecke, die die Geraden a und b mit den Schenkeln
t und t' des festen Winkels bilden, eine konstante Grösse
besitzen, so muss dann, wenn die eine oder andere Gerade einen
Schenkel im Unendlichen schneidet, der Schnittpunkt mit dem
andern Schenkel in den Schnittpunkt 0 von t und t' fallen.
Es vereinigen sich daher in 0 die Gegenpunkte sämtlicher
Reihen in Bezug auf die Reihen des andern Trägers. Weil ferner
die Gerade b die von a auf t und t' erzeugten Abschnitte in
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einem endlichen Verhältnis teilt, so schneidet b gleichzeitig mit
a einen Schenkel im Unendlichen und den andern in 0. Daraus

folgt weiter, dass der unendlich ferne Punkt einer Reihe dem

unendlich fernen Punkt der andern Reihe des gleichen Trägers
entspricht, und dass auch die zugehörigen in 0 zusammenfallenden

Gegenpunkte auf dem andern Träger einander zugeordnet sind.
Die Art der Bewegung der Geraden a und b bringt es also

mit sich, dass der eine Doppelpunkt der vereinigten Reihen
eines Trägers im Unendlichen liegt, während der andere in den

Schnittpunkt der Träger fällt und aus den Gegenpunkten in
Bezug auf die Reihen des andern Trägers besteht. Es wird
dadurch auch ein Entsprechen der Doppelpunkte herbeigeführt.
Weil der eine Doppelpunkt der vereinigten Reihen im Unendlichen

liegt, so sind diese Reihen unter sich ähnlich, was auch
OA. OA',

aus der Voraussetzung, nach der die Verhältnisse nR und ^R,
konstant sind, evident ist.

Wie bekannt, umhüllen nun die Verbindungslinien der
entsprechenden Punkte zweier projektiven Punktreihen, deren

Gegenpunkte im Schnittpunkt der Träger zusammenfallen, eine

Hyperbel. Die Träger der Punktreihen sind deren Asymptoten.
Es umhüllen also die Geraden a„ a2, a3... und b,, b2, b3..
und auch die Verbindungslinien a',, a'2, a'3 der entsprechenden
Punkte der Reihen (A,, A2, As...) und (B',, B'2, B'3...), sowie
die Verbindungslinien b', b'2, b'3 der entsprechenden Punkte
der Reihen (B,, B2, B3...) und (A'„ A'2, A'3...) je eine Hyperbel.
Die vier Hyperbeln liegen koaxial. Nach Satz (19) ist aber auch
der Ort des Schnittpunktes der Geraden a. und b;, bzw. a'.
und b',, eine Hyperbel, die t und t' zu Asymptoten hat. Die
Gerade bi verbindet nun die entsprechenden Punkte der Reihen

(B1B2B3...) und (B', B'2 B'3...), die auch den konjugierten
Punkten der Reihen (A, A2 A3...) und (A', A'2 A'3...), deren
Verbindungsgerade a, ist, zugeordnet sind, und analog verhält sich
b'. zu a';. Die Beziehung, die dem Satze (19) zu Grunde liegt,
kann also auch wie folgt ausgedrückt werden:

25. Konstruiert man auf jeder von zwei
Geraden t und t' zwei Punktreihen so, dass die
Reihen auf jedem Träger unter sich ähnlich
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und zu denReihen des andern Trägers projektiv
sind und dass die Gegenpunkte der Reihen in
Bezug auf die Reihen des andern Trägers im
Schnittpunkt der Träger zusammenfallen, so
ist der Ort des Schnittpunktes der
Verbindungslinie entsprechender Punkte zweier
Reihen auf t und t' mit der Verbindungslinie
derjenigen zwei entsprechenden Punkte der
andern Reihen, die auch den vorigen Punkten
zugeordnet sind, eine Hyperbel mit t und f
als Asymptoten.

Als analytischer Beweis werde folgendes angeführt :

Da die Gegenpunkte jeder Reihe eines Trägers in Bezug
auf die Reihen des andern Trägers in 0 liegen, so besteht die
Beziehung :

OA, • OA', OA2 • OA'2 • • • c konstant. (1)

Nach Voraussetzung ist ferner
OB, OB2

-...== m konstant (2)
OA, ~ OA2

OB', OB'
und - =r =- n konstant. (3)

Man bestimme nun den Schnitt der Geraden a, und b..

Nimmt man 0 als Ursprung, t als X-Achse und t' als

Y-Achse eines schiefwinkligen Koordinatensystems, so lauten
die Gleichungen von a, und b, bzw.

— + fÄr-1 0- (*)
OA; ' OA',

+ n4r-l 0. (5)
OB. ' OB'

I i

Aus den drei ersten Gleichungen folgt:

0A'' -ÖT; OBi ra-OAi; OB', n.OA'; -^1.
Nach Substitution in den Gleichungen (4) und (5) ergeben sich
bei der Ausrechnung für x und y die Werte

m(n — l)-OA,
x

n — m
Bern. Mitteil. 1910. Nr. 1747.
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c • n (1 — m)
y— (n-m)-0Ä7*

Wird durch Multiplikation aus diesen Ausdrücken die veränderliche

Grösse OA. eliminiert, so folgt

x cmn(l-m)(n-l) ^^ (ß)
(n-m)

Bestimmt man in gleicher Weise den Schnittpunkt der Geraden
a'. und b'. und schafft aus den Ausdrücken für x und y die11 *>

Variable OA. weg, so kommt

Y v _ cmn(l—m)(l-n)
(1 — m n)

Es besteht also zwischen den Koordinaten x und y des
Schnittpunktes der Geraden a, und b,, bzw. a', und b'. eine Relation,
die durch die Asymptotengleichung einer Hyperbel dargestellt
wird. Der Ort des Schnittpunktes der Geraden ist somit eine

Hyperbel, die die Träger der Punktreihen zu Asymptoten hat.
Aus den ungleichen Vorzeichen der Gleichungen (6) und

(7) folgt, dass die eine Hyperbel im Winkelraum w und die
andere im Nebenwinkelraum a' liegen muss.

Der Satz (25) bestimmt nun die Hyperbel als Schnitterzeugnis

der Verbindungslinien entsprechender Punkte in vier
projektiven Punktreihen auf zwei Geraden. Neben der Forderung,

dass jede Reihe zu jeder andern projektiv sei, wird aber
durch die Voraussetzung noch eine besondere Lage und ein
Entsprechen der Doppelpunkte verlangt. Der Satz ist demnach
der Ausdruck eines Spezialfalles. Er lässt sich nun als solcher
auch leicht aus dem allgemeinen Falle herleiten.

Zu dieser Ableitung seien in Fig. 15 (A,A2A3...) und

(B,B2B3...) zwei auf dem Träger t vereinigte Punktreihen in
allgemeiner Projektivität, und die Reihen (A',A'2A'3...) und

(B\W2B'3.. des Trägers t' seien unter sich und mit den ersten
Reihen projektiv. Die beliebig liegenden Doppelpunkte seien
mit AjB,, A4B4, A'3B'3 und A'6B'6 bezeichnet. Nun umhüllen
die Verbindungslinien der Punkte A. und A'., sowie der Punkte
B, und B', einen Kegelschnitt, in der Figur die Ellipsen Ea und

Eb. Da jeder Geraden A.A', nur eine Gerade B,B'. entspricht,
wie aus der Voraussetzung folgt, so besteht zwischen den
Tangenten der beiden Kegelschnitte projektives Entsprechen, und
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die Aufgabe, den Ort des Schnittpunktes der Geraden AjA', mit
den Geraden BjB', zu finden, ist gleichbedeutend mit der
Aufgabe, den Ort des Schnittpunktes der entsprechenden Tangenten
der beiden Kegelschnitte zu bestimmen. Wenn aber die
Tangenten zweier Kegelschnitte einander projektiv zugeordnet sind,
so ist der Ort des Schnittpunktes entsprechender Tangenten,
wie bekannt, eine Kurve vierter Ordnung mit drei Doppelpunkten,
also eine Kurve vierter Ordnung sechster Klasse, die jeden der
beiden Kegelschnitte viermal berührt und nebstdem mit jedem
vier Tangenten gemein hat. (Vergi. Fiedler, Darstellende Geom.,
III. Teil, 3. Aufl., § 46.) In Fig. 15 berührt diese Kurve jede
der Ellipsen nur zweimal reeU.

Die Ordnungszahl der Kurve lässt sich am einfachsten wie

folgt feststellen. Man ziehe eine beliebige Gerade g. Aus jedem
Punkte X dieser Geraden kann man zwei Tangenten an die

Ellipse Ea konstruieren. Ihnen entsprechen zwei Tangenten der

Ellipse Eb, die sich im allgemeinen nicht auf g schneiden und
die daher auf g zwei Schnittpunkte Y, und Y2 erzeugen. Ebenso

entsprechen jedem Punkte Y der Geraden, von dem aus man
zwei Tangenten an die Ellipse Eb legt, zwei Punkte X, und X2
als Schnittpunkte der Geraden mit den Tangenten an Ea, die
den aus Y an Eb gelegten Tangenten projektiv zugeordnet sind.
Es besteht also auf der Geraden eine (2,2) Korrespondenz..
Nach dem Chasles'schen Korrespondenzprinzip kommt es daher
viermal vor, dass zwei entsprechende Punkte zusammenfallen,
d. h. es kommt viermal vor, dass sich auf der Geraden zwei

entsprechende Tangenten der beiden Kegelschnitte schneiden.
Auf der Geraden liegen also vier Punkte der erzeugten Kurve,
und folglich muss diese von der vierten Ordnung sein.

Die Klasse der K4 lässt sich nun auch sofort angeben.
Weil nämlich jedem ihrer Punkte eine Tangente eines
Kegelschnittes entspricht, so sind beide Kurven eindeutig aufeinander
bezogen Daher sind sie nach einem bekannten Satze vom
gleichen Geschlecht. Die K4 ist also wie der Kegelschnitt vom
Geschlechte Null, d. h. sie ist eine Kurve sechster Klasse.

Nimmt man zur Bestimmung der Zahl der Schnittpunkte
einer Geraden mit der erzeugten Kurve statt einer beliebigen
Geraden eine Tangente t, des einen Kegelschnittes, so lässt sich
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aus jedem Punkte X nur noch eine Tangente an diesen
Kegelschnitt ziehen. Ihr entspricht auch nur eine Tangente an den
andern Kegelschnitt, und somit entspricht einem Punkte X nur
ein Punkt Y. Jedem Punkte Y dagegen entsprechen zwei Punkte
X, da von jedem Punkte auf t, zwei Tangenten an den zweiten

Kegelschnitt gehen. Infolge dieser (1,2) Korrespondenz schneiden
sich auf t, noch dreimal entsprechende Tangenten der beiden

Kegelschnitte. Der vierte Schnittpunkt mit der Kurve fällt dann
in den Punkt, in dem die Tangente t, die ihr entsprechende
Tangente an den andern Kegelschnitt trifft.

Auf jeder der vier gemeinsamen Tangenten der beiden

Kegelschnitte bestimmen die übrigen Tangenten zwei vereinigte
projektive Punktreihen. Auf dem Träger t z. B. erhält man die

ursprünglichen Reihen (A,A2A3...) und (B,B2B3...) wieder. Die
auf ihn fallenden Schnittpunkte zweier konjugierten
Tangenten sind die Doppelpunkte der beiden Reihen. Ausser in
diesen Punkten schneidet der Träger die K4 noch im Punkte
Bo, in dem er als Tangente an Ea von der entsprechenden
Tangente an Eb geschnitten wird, und im Punkte An, in dem er als

Tangente an Eb mit der entsprechenden Tangente an Ea zum
Schnitte kommt. Nun ist t als Tangente an Ea die Verbindungslinie

des Berührungspunktes Ao mit dem Schnittpunkte A'o der
beiden Träger, und die t entsprechende Tangente an Eb schneidet
t in Bo in dem Punkte, der Ao zugeordnet ist. Da nach Voraussetzung

die Reihen (B,B2B3...) und (A',A'2A'3...) auch
projektiv sind, kann B0 konstruiert werden als entsprechender Punkt
zu A'o Als solcher ist er der Schnittpunkt der perspektivischen
Achse pba, der beiden Reihen (B,B2B3...) und (A',A'2A'3..
mit dem Träger t. Auf gleiche Weise erkennt man, dass An
der Schnittpunkt der perspektivischen Achse pab, der Reihen
(A,A2A3. und (B'jB'^B'g mit dem Träger t sein muss. Die
perspektivischen Achsen pba, und pab, bestimmen auch auf dem

Träger t' die neben den Doppelpunkten existierenden Schnittpunkte

mit der K4, während die perspektivischen Achsen paa,
und pbb, die Berührungspunkte der Träger mit den beiden
Kegelschnitten festsetzen.

Konstruiert man die projektiven Punktreihen so, dass ein

Doppelpunkt auf dem einen Träger einem der Doppelpunkte
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auf dem andern Träger entspricht, wie in Fig. 16, in der dem

Doppelpunkt A2B2 auf t der Doppelpunkt A'2B'2 auf t' zugeordnet
ist, so fallen zwei sich zugeordnete Verbindungslinien
entsprechender Punkte oder zwei entsprechende Tangenten der
umhüllten Kegelschnitte in der Verbindungslinie d der beiden

Doppelpunkte zusammen. Diese Gerade sondert sich daher als

Teil der Kurve vierter Ordnung ab, und der Rest ist eine Kurve
dritter Ordnung. Von den vier Schnittpunkten der vorhin
eingeführten Geraden g ist der Schnittpunkt mit d ausser Betracht
zu lassen. Die Kurve besitzt, da sie eindeutig auf die
Kegelschnitte bezogen und also vom Geschlechte Null ist, einen Doppelpunkt.

Sie ist demnach von der vierten Klasse. Die Stelle der
wegfallenden Doppelpunkte nehmen die beiden Schnittpunkte
D, und D3 der Geraden d mit der K3 ein, in denen sich ausser
den in d zusammenfallenden Tangenten noch zwei weitere
entsprechende Tangenten der umhüllten Kegelschnitte treffen. Die

K3 berührt jeden der Kegelschnitte — in der Figur sind es
eine Ellipse und eine Hyperbel — dreimal. Der vierte
Berührungspunkt eines Kegelschnittes mit dem Schnitterzeugnis ist
der Berührungspunkt mit d. Gemeinsame Tangenten haben die

K3 und ein Kegelschnitt ausser den Tangenten in den
Berührungspunkten noch zwei. Die zwei andern der vier ursprünglichen

Tangenten fallen in d zusammen.
Die Figur zeigt ausser der K3, die durch den Schnitt der

Geraden A.A'. und BjB', erzeugt wird, noch das Erzeugnis (K3)
der Geraden AjB', und BjA',, eine Kurve dritten Grades, deren
Schleife sich durchs Unendliche erstreckt. Wie K3 schneidet

(K3) die Träger in den sich nicht entsprechenden Doppelpunkten
AgB6 und A',B',. Ausserdem schneidet sie die Träger in deren
Schnitt mit den perspektivischen Achsen paa, und pbb,. Da die
Geraden BjB'j eine Hyperbel umhüllen, so ist pbb, die unendlich
ferne Gerade, und (K3) muss also jeden Träger ausser in zwei
im Endlichen liegenden Punkten auch noch im Unendlichen
schneiden.

Das Schnitterzeugnis der Geraden A. A', und B, B', reduziert
sich auch auf eine Kurve dritter Ordnung, wenn die Reihen

(A,A2A3...) und (A',A'2A'3...) oder die Reihen (B,B2B3...) und

(B^B'jB'g. perspektiv liegen; denn in diesem Falle um-
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hüllen die Verbindungslinien der entsprechenden Punkte zweier
Reihen einen Kegelschnitt, währenddem die Verbindungslinien
der entsprechenden Punkte der beiden andern Reihen durch
einen Punkt gehen und also ein Strahlenbüschel bilden. Das

Erzeugnis der Projektivität zwischen der Tangentenschar einer
Kurve zweiter Klasse und den Strahlen eines Büschels in ihrer
Ebene ist aber nach einem bekannten Satz eine Kurve dritter
Ordnung vierter Klasse, die den Scheitel des Büschels zum
Doppelpunkt hat und die Kurve zweiter Klasse dreimal berührt,
sowie überdies noch zwei Tangenten mit ihr gemein hat.

Lässt man weiter wie in Fig. 17 beide Doppelpunkte eines

Trägers den Doppelpunkten des andern Trägers entsprechen, so
bilden die Verbindungslinien d, und d2 der sich zugeordneten
Doppelpunkte einen Teil der Kurve vierter Ordnung, und der
Rest ist ein Kegelschnitt K Er berührt jeden der umhüllten
Kegelschnitte zweimal und hat daher ausser in den Berührungspunkten

keine Tangenten mehr mit ihnen gemein. Die drei
ursprünglichen Doppelpunkte werden ersetzt durch zwei der
vier Schnittpunkte der Geraden dx und d2 mit dem erzeugten
Kegelschnitt, in der Figur D, und D3, und durch den Schnittpunkt
D2 der Geraden d, und d2.

Einen Kegelschnitt würde man als Schnitterzeugnis auch

erhalten, wenn ein Doppelpunkt des einen Trägers einem Doppelpunkte

des andern Trägers zugeordnet wäre und nebstdem die
Reihen (A,A2A3...) und (A'jA^A'g...) oder (B,B2B3...) und

(B'jB'gB'g perspektiv liegen würden, oder wenn beide

Reihenpaare perspektiv liegen und also je ein Strahlenbüsche]
bestimmen würden. Bei Entsprechen zweier Doppelpunkte und

Perspektivität beider Reihenpaare oder bei Entsprechen beider
Paare der Doppelpunkte und Perspektivität der Reihen müsste
auch der Kegelschnitt noch zerfallen.

Entsprechen endlich beide Doppelpunkte auf t den
Doppelpunkten auf t', und lässt man, um den Fall der Fig. 18 zu
erhalten, sowohl auf t als auf t' einen Doppelpunkt ins Unendliche

und den andern in den Schnittpunkt der Träger rücken,
so werden die Träger als die Geraden dt und d2 zu einem Teil
der erzeugten Kurve. Der Rest ist wieder ein Kegelschnitt.
Er schneidet die Träger in ihren Schnittpunkten mit den per-
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spektivischen Achsen pab, und pba,. Da nun die entsprechenden
Punkte zu den im Schnittpunkt der Träger vereinigten Punkten
sämtlich im Unendlichen liegen, so rücken auch die
perspektivischen Achsen ins Unendliche hinaus. Der Kegelschnitt muss
also jeden Träger im Unendlichen schneiden, und zwar in zwei
zusammenfallenden Punkten, d. h. er muss ihn im Unendlichen
berühren. Er ist somit eine Hyperbel mit den Trägern als

Asymptoten, wie vorher gefunden worden ist.
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