Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Bern

Herausgeber: Naturforschende Gesellschaft Bern

Band: - (1910) **Heft:** 1740-1769

Artikel: Über die Kiepertsche Parabel

Autor: Neuberg, J.

DOI: https://doi.org/10.5169/seals-319214

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

J. Neuberg (Lüttich).

(Eingereicht den 20. März 1910.)

Über die Kiepertsche Parabel.

1. Eine Transversale t treffe die Seiten A_2A_3 , A_3A_1 , A_1A_2 des Dreiecks $A_1A_2A_3$ in den Punkten B_1 , B_2 , B_3 . Aus diesen als Zentren mit den Halbmessern B_1A_1 , B_2A_2 , B_3A_3 beschreibe man drei Kreise U_1 , U_2 , U_3 . Letztere schneiden sich in denselben zwei Punkten P, P' oder gehören zu einem Kreisbüschel W, wenn t eine Tangente der dem Dreiecke eingeschriebenen Parabel ist, welche die Apollonische Zentrale berührt (Kiepertsche Parabel).

Dieser hübsche Satz, den ich neu glaube, ist kürzlich von Herrn O. Schenker¹) bewiesen worden. Eine bekannte Lage von t ist die Apollonische Zentrale; P, P' sind alsdann die sogenannten isodynamischen Punkte. Nimmt man für t die Dreieckseite A_2A_3 , so wird $B_2=A_3$, $B_3=A_2$; die Kreise U_2 , U_3 haben denselben Radius A_2A_3 und schneiden sich in den Scheiteln C_1 , C_1 ' der über A_2A_3 als Basis errichteten gleichseitigen Dreiecke; für B_1 muss man den Schnittpunkt D_1 der Seite A_2A_3 mit der Mittelsenkrechten der Strecke A_1C_1 nehmen. D_1 ist offenbar der Berührungspunkt der Seite A_2A_3 mit der Kiepertschen Parabel. Ähnlicherweise findet man die Berührungspunkte D_2 , D_3 der Dreieckseiten A_3A_1 , A_1A_3 ; wie bekannt treffen sich die Geraden A_1D_1 , A_2D_2 , A_3D_3 auf der Steinerschen Umellipse im Steinerschen Punkte.

Die Büschel W könnten wohl noch andere interessante Eigenschaften haben. Ich gebe hier einen Beitrag, in der Hoffnung weitere Untersuchungen oder auch Vereinfachungen der analytischen Behandlung anzuregen.

¹⁾ Über eine dem ebenen Dreieck eingeschriebene Parabel (Mitteilungen der naturforschenden Gesellschaft in Bern aus dem Jahre 1908).

2. In baryzentrischen Koordinaten 1) μ_1 , μ_2 , μ_3 lauten die Gleichungen des Umkreises U, der unendlichfernen Geraden L, eines beliebigen Kreises und der Transversale t:2)

$$U \equiv \alpha_{1}^{2} \mu_{2} \mu_{3} + \alpha_{2}^{2} \mu_{3} \mu_{1} + \alpha_{3}^{2} \mu_{1} \mu_{2} = 0,$$

$$L \equiv \mu_{1} + \mu_{2} + \mu_{3} = 0,$$

$$U - L (p_{1} \mu_{1} + p_{2} \mu_{2} + p_{3} \mu_{3}) = 0,$$

$$t \equiv \lambda_{1} \mu_{1} + \lambda_{2} \mu_{2} + \lambda_{3} \mu_{3} = 0;$$
(1)

 α_1 , α_2 , α_3 bezeichnen die Längen A_2A_3 , A_3A_1 , A_1A_2 ; p_1 , p_2 , p_3 sind die Potenzen der Ecken A_1 , A_2 , A_3 in bezug auf den Kreis (1).

Es seien jetzt V₁₂, V₁₃ die zwei durch A₁ gehende Kreise, deren Zentren A2 und A3 sind; ihre Gleichungen ergeben sich sofort aus (1), da respektiv

$$\begin{aligned} \mathbf{p}_1 &= o, \ \mathbf{p}_2 = -\alpha_3^2, \ \mathbf{p}_3 = \overline{\mathbf{A}_3} \overline{\mathbf{A}_2} - \overline{\mathbf{A}_2} \overline{\mathbf{A}_1} &= \alpha_1^2 - \alpha_3^2 \,; \\ \mathbf{p}_1 &= o, \ \mathbf{p}_2 = \alpha_1^2 - \alpha_2^2, \ \mathbf{p}_3 = -\alpha_2^2 \,. \end{aligned}$$

Mithin kann man schreiben

$$V_{12} \equiv U - LL_{12}, V_{13} \equiv U - LL_{13},$$
 (2)

Kreispaare UV₁₂, UV₁₃.

Die Kreise V₁₂, V₁₃, U₁ gehören zu einem Büschel W₁, dessen Grundpunkte die Ecke A₁ und deren Spiegelbild A₁' zu A₂A₃ sind. Die Gleichung irgend eines Kreises des Büschels W, ist

$$m V_{12} - n V_{13} = 0;$$

das Zentrum dieses Kreises teilt die Strecke A2A3 nach dem Ver-Für den Kreis U, ist also hältnisse n:m.

$$n : m = B_1 A_2 : B_1 A_3 = \lambda_2 : \lambda_3$$
.

Hieraus schliesst man die Gleichungen

$$\begin{array}{l}
U_{1} \equiv \lambda_{3} V_{12} - \lambda_{2} V_{13} = 0, \\
U_{2} \equiv \lambda_{1} V_{23} - \lambda_{3} V_{21} = 0, \\
U_{3} \equiv \lambda_{2} V_{31} - \lambda_{1} V_{32} = 0.^{2})
\end{array} (3)$$

¹⁾ Im Nachtrage gebe ich Aufklärungen über die Beweismittel, die noch nicht ganz klassisch geworden sind.

²⁾ Dasselbe Symbol bezeichnet eine Lime und das erste Glied ihrer Gleichung.

⁵) Die Symbole W₂, W₈, V₂₃..., L₂₃... bedürfen keiner besonderen Erklärung.

Die Elimination der veränderlichen Grössen λ_1 , λ_2 , λ_3 gibt für den Ort der Punkte P, P':

$$V_{12}V_{23}V_{31} = V_{21}V_{32}V_{13}. \tag{4}$$

Mithin ist das Produkt der Potenzen eines Punktes dieses Ortes in bezug auf die Kreise $V_{12},\ V_{23},\ V_{31}$ gleich dem Produkte seiner Potenzen in bezug auf die Kreise $V_{21},\ V_{32},\ V_{13}$.

Die Gleichung (4) ist vom 6. Grade in μ_1 , μ_2 , μ_3 ; jedoch kann man einen Faktor L³ ausscheiden. Nach Einsetzen der Werte $V_{rs}=U-LL_{rs}$ bekommt man

$$-\mathbf{A}\mathbf{U}^{2}\mathbf{L} + \mathbf{B}\mathbf{U}\mathbf{L}^{2} - \mathbf{C}\mathbf{L}^{3} = 0;$$
 (5)

wo A, B, C die Aggregate

$$\begin{array}{c} \mathbf{L}_{12} + \mathbf{L}_{23} + \mathbf{L}_{31} - \mathbf{L}_{21} - \mathbf{L}_{32} - \mathbf{L}_{13}, \\ \mathbf{L}_{12} \mathbf{L}_{23} + \mathbf{L}_{23} \mathbf{L}_{31} + \mathbf{L}_{31} \mathbf{L}_{12} - \mathbf{L}_{21} \mathbf{L}_{32} - \mathbf{L}_{32} \mathbf{L}_{13} - \mathbf{L}_{13} \mathbf{L}_{21}, \\ \mathbf{L}_{12} \mathbf{L}_{23} \mathbf{L}_{31} - \mathbf{L}_{21} \mathbf{L}_{32} \mathbf{L}_{13} \end{array}$$

bezeichnen. Um diese zu berechnen, schreibe man

$$\begin{split} \mathbf{L}_{12} &= \alpha_1^2 \, \mu_3 - \alpha_3^2 \, (\mu_2 + \mu_3) = \alpha_1^2 \, \mu_3 + \alpha_3^2 \, \mu_1 - \alpha_3^2 \, \mathbf{L}, \text{ usw.} \\ \text{und setze} \end{split}$$

$$\alpha_2^2 \,\mu_3 + \alpha_3^2 \,\mu_2 = l_1, \ \alpha_3^2 \,\mu_1 + \alpha_1^2 \,\mu_3 = l_2, \ \alpha_1^2 \,\mu_2 + \alpha_2^2 \,\mu_1 = l_3,$$
 so dass

$$egin{aligned} \mathbf{L}_{12} &= \mathbf{l}_2 - lpha_3^2 \, \mathbf{L}, \ \mathbf{L}_{23} &= \mathbf{l}_3 - lpha_1^2 \, \mathbf{L}, \ \mathbf{L}_{31} &= \mathbf{l}_1 - lpha_2^2 \, \mathbf{L}, \\ \mathbf{L}_{21} &= \mathbf{l}_1 - lpha_3^2 \, \mathbf{L}, \ \mathbf{L}_{32} &= \mathbf{l}_2 - lpha_1^2 \, \mathbf{L}, \ \mathbf{L}_{13} &= \mathbf{l}_3 - lpha_2^2 \, \mathbf{L}; \\ \mathbf{dann} \ \ \ \mathbf{bekommt} \ \ \ \mathbf{man}^1) \end{aligned}$$

$$A = 0, B = L \Sigma (\alpha_2^2 - \alpha_3^2) l_1,$$

$$C = -L^2 \Sigma \alpha_1^2 (\alpha_2^2 - \alpha_3^2) l_1 - L \Sigma (\alpha_2^2 - \alpha_3^2) l_2 l_3.$$

Setzt man noch

$$\begin{split} \Sigma \, (\alpha_2^2 - \alpha_3^2) \, \, l_1 &= D, \; \; \Sigma \, \alpha_1^2 \, (\alpha_2^2 - \alpha_3^2) \, l_1 &= E, \\ \Sigma \, (\alpha_2^2 - \alpha_3^2) \, \, l_2 \, \, l_3 &= F, \end{split}$$

so reduziert sich (5) nach Unterdrückung des Faktors L³ zu DU + L (LE + F) = 0. (6)

Der eigentliche Ort der Punkte P₁P' ist also eine zyklische Kurve 3. Ordnung.

 $^{^{1}}$) Das Zeichen Σ deutet hier ein Aggregat von drei Gliedern an, die sich aus den ersten, welches hinter diesem Zeichen steht, durch zweimaliges Vorrücken der Indices ableiten.

Die Gleichungen $l_1 = o$, $l_2 = o$, $l_3 = o$ stellen die Tangenten in A_1 , A_2 , A_3 an den Umkreis dar. D = o ist die Gleichung der Eulerschen Gerade, die das Umzentrum M, den Schwerpunkt S und das Orthozentrum H enthält. Denn für den Punkt S hat man $\mu_1 = \mu_2 = \mu_3$, folglich

$$l_1: l_2: l_3 = \alpha_2^2 + \alpha_3^2: \alpha_3^2 + \alpha_1^2: \alpha_1^2 + \alpha_2^2$$

und letztere Summen sind eine Lösung von D=o; eine andere Lösung ist $l_1=l_2=l_3$ und aus dieser folgert man

$$\frac{\mu_1}{\alpha_1^2 (\alpha_2^2 + \alpha_3^2 - \alpha_1^2)} = \frac{\mu_2}{\alpha_2^2 (\alpha_3^2 + \alpha_1^2 - \alpha_1^2)} = \frac{\mu_3}{\alpha_3^2 (\alpha_1^2 + \alpha_2^2 - \alpha_3^2)}$$
(7) was gleichbedeutend ist mit

$$\mu_1: \mu_2: \mu_3 = \sin 2 A_1: \sin 2 A_2: \sin 2 A_3$$

und auf den Punkt M hinweist. Aus (6) erhellt, dass MH eine asymptotische Richtung der Kurve ist.

Eine weitere Rechnung gibt

$$\begin{split} \mathbf{E} &= \boldsymbol{\Sigma} \alpha_2^2 \; \alpha_3^2 \, (\alpha_3^2 - \alpha_2^2) \; \boldsymbol{\mu}_1, \\ \mathbf{l}_2 \; \mathbf{l}_3 &= \alpha_2^2 \, \alpha_3^2 \, \boldsymbol{\mu}_1^2 + \alpha_1^2 \; \boldsymbol{\Sigma} \, \alpha_1^2 \, \boldsymbol{\mu}_2 \, \boldsymbol{\mu}_3, \; \text{usw.}, \\ \mathbf{F} &= \boldsymbol{\Sigma} \; \alpha_2^2 \, \alpha_3^2 \, (\alpha_2^2 - \alpha_3^2) \; \boldsymbol{\mu}_1^2 \; , \\ \mathbf{LE} + \mathbf{F} &= \boldsymbol{\Sigma} \boldsymbol{\mu}_1 \cdot \boldsymbol{\Sigma} \, \alpha_2^2 \; \alpha_3^2 \; (\alpha_3^2 - \alpha_2^2) \; \boldsymbol{\mu}_1 + \boldsymbol{\Sigma} \, \alpha_2^2 \; \alpha_3^2 \; (\alpha_2^2 - \alpha_3^2) \; \boldsymbol{\mu}_1^2 \\ &= \boldsymbol{\Sigma} \, \alpha_1^2 \, (\alpha_2^2 - \alpha_3^2) \; (\alpha_2^2 + \alpha_3^2 - \alpha_1^2) \; \boldsymbol{\mu}_2 \, \boldsymbol{\mu}_3. \end{split}$$

Die Gleichung LE+F=o stellt einen Kegelschnitt dar, der durch die Ecken A_1 , A_2 , A_3 , den Mittelpunkt M und den Lemoineschen Punkt K geht; man sieht letztere Eigenschaften, indem man μ_1 , μ_2 , μ_3 durch die Nenner der Brüche (7) oder durch α_1^2 , α_2^2 , α_3^2 ersetzt.²)

3. Um die Umhüllungskurve der Transversale t zu finden, schreibe ich die Gleichungen (3) in folgender Form:

$$\frac{\mu_2}{\alpha_2^2} + \frac{\mu_3}{\alpha_3^2} = K \alpha_1^2, \quad \frac{\mu_3}{\alpha_3^2} + \frac{\mu_1}{\alpha_1^2} = K \alpha_2^2, \dots$$

²) Ein anderer merkwürdiger Punkt dieses Kegelschnittes ist der Seitengegenpunkt des Orthozentrums H, mit den Koordinaten

$$\alpha_2^2 + \alpha_3^2 - \alpha_1^2$$
, $\alpha_3^2 + \alpha_1^2 - \alpha_2^2$, $\alpha_1^2 + \alpha_2^2 - \alpha_3^2$.

¹) Um diese Proportionen zu finden, kann man das System $l_1=l_2=l^3$ durch folgendes ersetzen, wo K eine Hilfsgrösse ist:

$$\frac{\mathbf{U_1}}{\lambda_3-\lambda_2} \equiv \mathbf{U} - \mathbf{L} \ \frac{\lambda_3 \mathbf{L_{12}} - \lambda_2 \mathbf{L_{13}}}{\lambda_3-\lambda_2} \equiv \mathbf{U} - \mathbf{L} \mathbf{M_1} = \mathbf{0}, \text{usw.}$$

 $M_1 = o$, $M_2 = o$, $M_3 = o$ sind die Gleichungen der Radikalaxen der Kreispaare UU_1 , UU_2 , UU_3 ; $M_1 - M_2 = o$, $M_1 - M_3 = o$, die der Kreispaare U_1U_2 , U_1U_3 . Sollen die zwei letzten Axen zusammenfallen in eine Gerade i, so müssen die drei Geraden M_1 , M_2 , M_3 sich in einem Punkte I der Geraden i treffen. Jedoch ist diese Bedingung nicht hinreichend, wenn man für t einen beliebigen Durchmesser des Umkreises nimmt.

Der Punkt I genügt den drei Gleichungen

 λ_3 $L_{12} - \lambda_2$ $L_{13} = 0$, λ_1 $L_{23} - L_3$ $L_{21} = 0$, λ_2 $L_{31} - \lambda_1$ $L_{13} = 0$. Die Elimination der veränderlichen Grössen λ_1 , λ_2 , λ_3 gibt für den Ort des Punktes I

$$L_{12} L_{23} L_{31} - L_{13} L_{21} L_{31} = 0$$

oder nach dem obigen

$$C \equiv L (L E + F) = o;$$

dieser Ort besteht also aus der unendlich fernen Geraden, welche den Durchmessern des Umkreises als Transversale t entspricht, und dem Kegelschnitt $A_1A_2A_3$ OK.

4. Ordnet man die Gleichungen $M_1=0, M_2=0, M_3=0$ nach $\mu_1, \ \mu_2, \ \mu_3, \ \text{so bekommt man}$

$$\begin{split} & \left[\left(\alpha_{1}^{2} - \alpha_{2}^{2} \right) \ \lambda_{2} + \alpha_{3}^{2} \ \lambda_{3} \right] \ \mu_{2} = \left[\ \alpha_{2}^{2} \ \lambda_{2} - \left(\alpha_{3}^{2} - \alpha_{1}^{2} \right) \ \lambda_{3} \right] \ \mu_{3}, \\ & \left[\left(\alpha_{2}^{2} - \alpha_{3}^{2} \right) \ \lambda_{3} + \alpha_{1}^{2} \ \lambda_{1} \right] \ \mu_{3} = \left[\ \alpha_{3}^{2} \ \lambda_{3} - \left(\alpha_{1}^{2} - \alpha_{2}^{2} \right) \ \lambda_{1} \right] \ \mu_{1}, \\ & \left[\left(\alpha_{3}^{2} - \alpha_{1}^{2} \right) \ \lambda_{1} + \alpha_{2}^{2} \ \lambda_{2} \right] \ \mu_{1} = \left[\ \alpha_{1}^{2} \ \lambda_{1} - \left(\alpha_{2}^{2} - \alpha_{3}^{2} \right) \ \lambda_{2} \right] \ \mu_{2}. \end{split}$$

Durch Elimination von μ_1 , μ_2 , μ_3 erhält man für die Gleichung der Enveloppe von t in Linienkoordinaten λ_1 , λ_2 , λ_3 :

$$\begin{split} 2 \ & \left(\alpha_{1}^{2}-\alpha_{2}^{2}\right) \left(\alpha_{2}^{2}-\alpha_{3}^{2}\right) \left(\alpha_{3}^{2}-\alpha_{1}^{2}\right) \ \lambda_{1} \lambda_{2} \lambda_{3} \\ & + \boldsymbol{\Sigma} \left(\alpha_{1}^{2}-\alpha_{2}^{2}\right) \ \lambda_{1} \ \lambda_{2} \ \left[\alpha_{1}^{2} \ \lambda_{1} \left(\alpha_{2}^{2}+\alpha_{3}^{2}-\alpha_{1}^{2}\right) \right. \\ & \left. + \alpha_{2}^{2} \ \lambda_{2} \left(\alpha_{3}^{2}+\alpha_{1}^{2}-\alpha_{2}^{2}\right) \right] = \mathrm{o}. \end{split}$$

Setzt man

$$\Sigma \alpha_1^2 \lambda_1 (\alpha_2^2 + \alpha_3^2 - \alpha_1^2) \equiv G$$

und entwickelt $(\alpha_1^2 - \alpha_2^2)(\alpha_2^2 - \alpha_3^2)(\alpha_3^2 - \alpha_1^2)$, so wird diese Gleichung

$$\begin{split} &-2\,\lambda_1\,\lambda_2\,\lambda_8\,\varSigma\,\alpha_1^4\,\left(\alpha_2^2-\alpha_3^2\right)\\ &+\varSigma\left(\alpha_1^2-\alpha_2^2\right)\lambda_1\,\lambda_2\,\left[\mathbf{G}-\alpha_3^2\,\,\lambda_3\left(\alpha_1^2+\alpha_2^2-\,\alpha_3^2\right)\,\right]=\mathbf{o}, \end{split}$$

oder einfach

G
$$\Sigma (\alpha_1^2 - \alpha_2^2) \lambda_1 \lambda_2 = 0.$$

Die Gleichung G = o drückt aus, dass t durch den Punkt M geht. Die eigentliche Lösung des Problems ist

$$\Sigma(\alpha_1^2 - \alpha_2^2) \quad \lambda_1 \lambda_2 = 0; \tag{8}$$

sie wird befriedigt durch $\lambda_1 = \lambda_2 = \lambda_3$ und durch $\lambda_1 : \lambda_2 : \lambda_3$

 $=\frac{1}{\alpha_1^2}:\frac{1}{\alpha_2^2}:\frac{1}{\alpha_3^2}$. Hieraus schliesst man, dass die gesuchte Kurve die Seiten des Grunddreiecks, die Gerade L und die Apollonische Zentrale berührt; sie ist also die Kiepertsche Parabel.

5. Die Radikalaxe i der Kreise U₁, U₂ hat zur Gleichung

$$\frac{\lambda_3 L_{12} - \lambda_2 L_{13}}{\lambda_2 - \lambda_3} = \frac{\lambda_1 L_{23} - \lambda_3 L_{21}}{\lambda_3 - \lambda_1}, \qquad (9)$$

unter der Bedingung (8). Aus dieser folgt

$$\begin{split} \lambda_{3} &= -\frac{(\alpha_{1}^{2} - \alpha_{2}^{2}) \ \lambda_{1} \lambda_{2}}{(\alpha_{2}^{2} - \alpha_{3}^{2}) \ \lambda_{2} + (\alpha_{3}^{2} - \alpha_{1}^{2}) \ \lambda_{1}}, \\ \lambda_{2} &= \lambda_{3} = \lambda_{2} \ \frac{(\alpha_{2}^{2} - \alpha_{3}^{2}) \ (\lambda_{2} - \lambda_{1})}{(\alpha_{2}^{2} - \alpha_{3}^{2}) \ \lambda_{2} + (\alpha_{3}^{2} - \alpha_{1}^{2}) \ \lambda_{1}}, \\ \lambda_{3} &- \lambda_{1} = - \ \lambda_{1} \ \frac{(\alpha_{3}^{2} - \alpha_{1}^{2}) \ (\lambda_{1} - \lambda_{2})}{(\alpha_{2}^{2} - \alpha_{3}^{2}) \ \lambda_{2} + (\alpha_{3}^{2} - \alpha_{1}^{2}) \ \lambda_{1}}. \end{split}$$

Führt man diese Werte in (8) ein und unterdrückt gemeinschaftliche Faktoren, so bleibt eine Gleichung von der Form

$$\lambda_1 \varphi_1 + \lambda_2 \varphi_2 = 0,$$

in welcher φ_1 und φ_2 lineare Funktionen von μ_1 , μ_2 , μ_3 darstellen. Mithin geht die Gerade i durch einen festen Punkt. Dieser ist offenbar der Mittelpunkt M des Kreises U, da den Seiten des Dreiecks $A_1A_2A_3$ und der Appollonischen Zentrale die Mittelsenkrechten der Seiten und ein Durchmesser von U entsprechen.

6. Die obigen Ergebnisse können auch synthetisch aufgestellt werden.

Man wähle beliebig das Zentrum B_1 des Kreises U_1 . Nach einem bekannten Satze geht die Radikalaxe von U_1 und irgend eines Kreises des Büschels W_2 durch einen festen Punkt J_2 der Axe A_2A_2' dieses Büschels. Ebenso geht auch die Radikalaxe von U

und irgend eines Kreises des Büschels W_3 durch einen festen Punkt J_3 von $A_3A'_3$. Hieraus folgt, dass die Schnittpunkte P, P' des Kreises U_1 und der Geraden J_2J_3 konzyklisch sind mit A_2 , A'_2 und auch mit A_3 , A'_3 . Damit haben wir drei Kreise U_1 , U_2 , U_3 der Büschel W_1 , W_2 , W_3 , welche zwei gemeinsame Punkte P, P' besitzen.

Einem Punkte B_1 von A_2A_3 entspricht nach dem Vorigen ein einziger Punkt J_2 auf $A_2A'_2$ und ein einziger Punkt J_3 auf $A_3A'_3$. Umgekehrt entspricht einem Punkte J_2 von $A_2A'_2$ ein einziger Punkt B_1 von A_2A_3 und folglich auch ein einziger Punkt J_3 von $A_3A'_3$; denn der Kreis U_1 ist bestimmt durch zwei gegebene Punkte A_1 , A'_1 und durch die Bedingung, dass seine Potenz in bezug auf J_2 gleich J_2A_2 . $J_2A'_2$ ist.

Hieraus fliesst, dass die Punkte J₂, J₃ zwei projektive Reihen erzeugen, die sogar perspektiv sind. Denn man kann für t die unendlichferne Gerade L wählen; die Kreise U₁, U₂, U₃, deren Zentren die unendlichfernen Punkte der Seiten A₂A₃, A₃A₁, A₁A₂ sind, bestehen jetzt aus den Geradenpaaren (L, A₁A'₁), (L, A₂A'₂), (L, A₃A'₃), so dass H als gemeinschaftlicher Punkt einen der Punkte P ersetzt, während der andere P' im Unendlichen liegt; man wird sehen, dass die Gerade PP' jetzt mit HM zusammenfällt.

Die Geraden J_2J_3 (oder PP') bilden also einen Strahlenbüschel. Da die Mittelsenkrechten der Seiten des Dreiecks besondere Lagen von J_2J_3 sind, ist M der Scheitel dieses Büschels.

Dieser Büschel ist auch projektiv zur Punktreihe $[B_1]$, und die Zentrale $B_1B_2B_3$ der Kreise U_1 , U_2 , U_3 steht senkrecht zum entsprechenden Strahle PP' des Büschels [M]. Mithin umhüllt teinen Kegelschnitt. Da aber L, A_2A_3 , A_3A_4 , A_1A_3 und die Apollonische Zentrale besondere Lagen von t sind, ist dieser Kegelschnitt die Kiepertsche Parabel.

Auf jedem Durchmesser des Umkreises liegen zwei Punkte P, P'; aber M selbst ist ein Punkt P. Denn die Zentren der Kreise $A_1 A'_1 M$, $A_2 A'_2 M$, $A_3 A'_3 M$ sind die Schnittpunkte von $A_2 A_3$, $A_3 A_1$ und $A_1 A_2$ mit den Mittelsenkrechten der Radien $M A_1$, $M A_2$, $M A_3$ und liegen auf einer Geraden. Folglich ist der Ort der Punkte P, P' von der dritten Ordnung.

¹) Es sei $K_1 K_2 K_3$ das Dreieck, welches die in A_1 , A_2 , A_3 den Umkreis berührenden Geraden bilden. Die Mittelsenkrechten der Strecken MA_1 , Bern. Mitteil. 1910. Nr. 1764.

Nachtrag.

1. Ist ein veränderlicher Punkt P auf ein Grunddreieck $A_1A_2A_3$ bezogen, so nenne ich absolute Normalkoordinaten von P seine Abstände von den Dreieckseiten, mit gehörigen Vorzeichen, und einfach Normalkoordinaten drei zu diesen Abständen proportionale Zahlen \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 .

Ich nenne baryzentrische Koordinaten des Punktes P drei zu den Dreiecksflächen PA_1A_3 , PA_3A_1 , PA_1A_2 proportionale Zahlen μ_1 , μ_2 , μ_3 ; diese Flächen sind der bekannten Zeichenregel unterworfen und man hat

$$\mu_1: \mu_2: \mu_3 = \alpha_1 X_1: \alpha_2 X_2: \alpha_3 X_3.$$

Die absoluten baryzentrischen Koordinaten von P sind die Quotienten

Die Schnittpunkte der Dreiecksseiten mit den Ecktransversalen A_1P , A_2P , A_3P seien P_1 , P_2 , P_3 ; dann hat man

$$\frac{A_{2}P_{1}}{P_{1}A_{3}} = \frac{\mu_{3}}{\mu_{2}}, \qquad \frac{A_{3}P_{2}}{P_{2}A_{1}} = \frac{\mu_{1}}{\mu_{3}}, \qquad \frac{A_{1}P_{3}}{P_{3}A_{2}} = \frac{\mu_{2}}{\mu_{1}}. \tag{1}$$

Hieraus schliesst man, dass P der Schwerpunkt von drei in A_1 , A_2 , A_3 angebrachte Massen μ_1 , μ_2 , μ_3 ist, jedoch muss man negative Massen zulassen.

Nimmt man für μ_1 , μ_2 , μ_3 drei Zahlen, deren Summe = 0, so bestimmen die Proportionen (1) auf den Dreiecksseiten drei Punkte P_1 , P_2 , P_3 von der Art, dass die Geraden A_1P_1 , A_2P_2 , A_3P_3 parallel sind. Man sagt, dass solche Zahlen einen im Unendlichen in der

 $M\,A_2,\,M\,A_3$ sind die Seiten eines zu $A_1\,A_2\,A_3$ perspektiven Dreiecks, dessen Scheitel die Zentren $N_1,\,N_2,\,N_3$ der den Vierecken $M\,A_2\,K_1\,A_3,\,M\,A_3\,K_2\,A_1$, $M\,A_1\,K_3\,A_2$ umgeschriebenen Kreise sind. Die Ecktransversalen $A_1\,N_1,\,A_2\,N_2$, $A_3\,N_3$ schneiden sich im Winkelgegenpunkte des Mittelpunktes des Feuerbachschen Kreises.

Diesen Satz habe ich in *Mathesis*, 1884, Seite 164 vorgelegt; zwei Beweise davon befinden sich in *Mathesis*, 1886, S. 164 und 165.

Die Mittelsenkrechten der Strecken MA'_1 , MA'_2 , MA'_3 bilden auch ein zu $A_1A_2A_3$ perspektives Dreieck, das wahrscheinlich merkwürdige Eigenschaften besitzt.

Richtung A_1P_1 liegenden Punkt bestimmen und dass die Gleichung $\mu_1 + \mu_2 + \mu_3 = 0$ die unendlichferne Gerade darstellt.

Der Übergang von kartesischen zu absoluten baryzentrischen Koordinaten geschieht durch die Formeln

$$\mathbf{x} = \Sigma \mu_1 \mathbf{x}_1, \quad \mathbf{y} = \Sigma \mu_1 \mathbf{y}_1, \quad \mathbf{1} = \Sigma \mu_1,$$
 (2)

wo (x_1, y_1) , (x_2, y_2) , (x_3, y_3) die kartesischen Koordinaten der Ecken A_1 , A_2 , A_3 bedeuten.

2. Ich beziehe den Umkreis auf zwei rechtwinklige Durchmesser MX, MY. Die Potenz p eines Punktes P (x, y) in bezug auf diesen Kreis ist

$$p = x^2 + y^2 - R^2$$

oder nach den Formeln (2)

$$\begin{split} \mathbf{p} &= \mathbf{\mathcal{E}}^2 \boldsymbol{\mu}_1 \mathbf{x}_1 + \mathbf{\mathcal{E}}^2 \boldsymbol{\mu}_1 \mathbf{y}_1 - \mathbf{R}^2 \mathbf{\mathcal{E}}^2 \boldsymbol{\mu}_1 \\ &= \mathbf{\mathcal{E}} \boldsymbol{\mu}_1^2 \, (\mathbf{x}_1^2 + \, \mathbf{y}_1^2 - \, \mathbf{R}^2) + \mathbf{\mathcal{E}} \boldsymbol{\mu}_1 \boldsymbol{\mu}_2 \ \, (2 \, \mathbf{x}_1 \, \mathbf{x}_2 + 2 \, \mathbf{y}_1 \, \mathbf{y}_2 - 2 \, \mathbf{R}^2). \end{split}$$

Die Koeffizienten von μ_1^2 , μ_2^2 , μ_3^2 sind null, da der Kreis die Punkte A_1 , A_2 , A_3 enthält; der Koeffizient von $\mu_1\mu_2$ ist

$$\begin{split} &(2\,\mathbf{x}_1^{}\,\mathbf{x}_2^{} + 2\,\mathbf{y}_1^{}\,\mathbf{y}_2^{} - 2\,\mathbf{R}^2) - (\mathbf{x}_1^2^{} + \mathbf{y}_1^2^{} - \mathbf{R}^2) - (\mathbf{x}_2^2^{} + \mathbf{y}_2^2^{} - \mathbf{R}^2) \\ &= -\left(\mathbf{x}_1^{} - \mathbf{x}_2^{}\right)^2 - \left(\mathbf{y}_1^{} - \mathbf{y}_2^{}\right)^2 = -\,\alpha_3^2\,. \end{split}$$

Folglich hat man

$$\mathbf{p} = -\,\alpha_1^2\,\,\mu_2^{}\mu_3^{} - \,\alpha_2^2\,\,\mu_3^{}\mu_1^{} - \,\alpha_3^2\,\,\mu_1^{}\mu_2^{},$$

und die Gleichung des Umkreises A1, A2, A3 ist

$$U \equiv \alpha_1^2 \mu_2 \mu_3 + \alpha_2^2 \mu_3 \mu_1 + \alpha_3^2 \mu_1 \mu_2 = 0$$

3. Die kartesische Gleichung eines andern Kreises V ist

$$x^{2} + y^{2} - R^{2} + fx + gy + h = 0,$$

und das erste Glied, wenn man die Koordinaten x, y eines beliebigen Punktes P einsetzt, ist gleich der Potenz p von P.

Vermittels der Formeln (2) geht $x^2 + y^2 - R^2$ über in -U und f x + g y + h in eine lineare Funktion $p_1 \mu_1 + p_2 \mu_2 + p_3 \mu_3$; folglich kann man schreiben

$$\mathbf{p} = -\mathbf{U} + \Sigma \mu_1 \ \Sigma \ \mathbf{p}_1 \ \mu_1, \tag{3}$$

und die Gleichung des Kreises V ist

$$V \equiv \Sigma U - L \Sigma p_1 \mu_1 = 0.$$

Die absoluten Koordinaten der Ecken A_1 , A_2 , A_3 sind (1, 0, 0), (0, 1, 0), (0, 0, 1); setzt man sie in (3) ein, so findet man für p die Werte p_1 , p_2 , p_3 . Diese sind also die Potenzen der Ecken in bezug auf V.

4. Es seien in kartesischen Koordinaten

$$\begin{aligned} & V_1 \equiv x^2 + y^2 - 2 \,\alpha_1 \, x - 2 \,\beta_1 \, y + \gamma_1 = 0, \\ & V_2 \equiv x^2 + y^2 - 2 \,\alpha_2 \, x - 2 \,\beta_2 \, y + \gamma_2 = 0, \\ & V \equiv m \, V_1 - m \, V_2 = 0, \end{aligned}$$

die Gleichungen von drei Kreisen, welche zu einem Büschel gehören. Dann ist V der Ort der Punkte, deren Potenzen in den Kreisen V_1 , V_2 ein konstantes Verhältnis m:n haben. Die Zentren der drei Kreise V_1 , V_2 , V haben die Koordinaten

$$(\alpha_1, \beta_1), (\alpha_2, \beta_2), (\frac{n\alpha_1 - m\alpha_2}{n - m}, \frac{n\beta_1 - m\beta_2}{n - m})$$

Mithin teilt auch das Zentrum von V die Zentrale der Kreise V_1 , V_2 nach demselben Verhältnisse m:n.

Dieser Schluss findet auch statt bei den Gleichungen in baryzentrischen Koordinaten:

$$\begin{aligned} \mathbf{V}_1 &\equiv \mathbf{\Sigma} \, \mathbf{U} - \mathbf{L} \, \mathbf{L}_1 = \mathbf{o}, & \mathbf{V}_2 &= \mathbf{\Sigma} \, \mathbf{U} - \mathbf{L} \, \mathbf{L}_2 = \mathbf{o}, \\ \mathbf{V} &\equiv \mathbf{m} \, \mathbf{V}_1 - \mathbf{m} \, \mathbf{V}_2 = \mathbf{o} \, ; \end{aligned}$$

wo L_1 , L_2 lineare Funktionen von μ_1 , μ_2 , μ_3 bedeuten.

5. Es seien jetzt W_1 , W_2 , W_3 drei Kreisbüschel, welche nicht zwei zu zwei zu einem Kreisnetz gehören; die drei Zentralen bilden ein Dreieck $A_1A_2A_3$. Man bezeichne mit

Betrachtet man drei Kreise U_1 , U_2 , U_3 aus den Büscheln W_1 , W_2 , W_3 , welche zwei gemeinsame Punkte P, P' besitzen, so hat der Ort dieser Punkte P, P' noch zur Gleichung

$$V_{12}V_{21}V_{31} = V_{13}V_{21}V_{32}.$$

Es wäre interessant, diese allgemeine Frage näher zu erforschen.

Lüttich, September 1909.

Erklärung. Als Herr Schenker meine Aufmerksamkeit auf seine oben zitierte Abhandlung zog mit der Anfrage, ob seine Untersuchungen neu seien, habe ich obige Entwicklungen ausgearbeitet, um die Resultate auf einem andern Wege zu bestätigen.

Diese Arbeit erscheint jetzt in den Mitteilungen der naturforschenden Gesellschaft gleichsam als Fortsetzung der Schenkerschen Resultate, wofür ich der Gesellschaft meinen aufrichtigen Dank ausspreche.

Später entdeckte ich, dass ich selbst in meinem Mémoire sur le Tétraèdre (Mémoires in 8° de l'Ac. de Belgique, 1884—85) die Kiepertsche Parabel mit den Schenkerschen Kreisen behandelt hatte; aber diese ersten Untersuchungen ergaben sich als Zusätze aus allgemeinen Theorien.

Seither habe ich das Studium der Schenkerschen Kreise durch andere Methoden wieder aufgenommen und zwei Artikel darüber in den Annales de la Société scientifique de Bruxelles (Okt. 1909 und Januar 1910) unter dem Titel Sur la parabole de Kiepert veröffentlicht.

Herrn Schenker waren im Jahre 1908 meine Untersuchungen von 1884 natürlich ganz unbekannt.

Lüttich, Februar 1911.