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A. Bohren.

(Eingereicht den 30. Juni 1909).

°° 1 "
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Über die Summen 2 ^ und 2 ^k=l k=l
Im Intermédiaire des mathématiciens *) erscheinen von Zeit

zu Zeit Fragen nach den numerischen Werten der Summen.
Der dort zur Verfügung stehende Raum erlaubt es nicht, eine

unserer Kenntnis entsprechende allgemeine Antwort zu geben.
Eine Bibliographie soll auch hier nicht versucht werden ; aber
es sind in unsern Mitteilungen Arbeiten über Bernoullische
Funktionen2) erschienen, und da die vielbehandelten Reihen mit
ihnen in engem Zusammenhang stehen, so ist vielleicht der
folgende Beitrag für die Leser von etwelchem Interesse, für den
Kenner deshalb, weil zum ersten Mal eine Berechnung der
Werte, wenn a irrational, versucht wird.

oo 1

Die Summe ^, 77 ist die nach Riemann benannte Funk-
k l

tion, und es haben verschiedene Analytiker wie Scheibner, Ge-

nochi, Piltz, Hermite, Jensen, Lipschitz, Poincaré, Cahen,
Bachmann, von Mangoldt, de la Vallée-Poussin, Hadamard8) sich mit
dieser Funktion beschäftigt.

Einen historischen Überblick über die verschiedenen
Methoden der Auswertung gibt Johnson. Eine ausgedehnte Tafel
der Funktionswerte für a 2 bis a — 70 hat Stieltjes berechnet.4)
Ist a 2 n. eine gerade Zahl, so ergibt sich aus der Definition
der Bernoullischen Funktion

') Intermédiaire des mathématiciens, 1894, 1901, 1908.
s) Renfer, Mitteilungen der Naturforschenden Gesellschaft Bern, 1900.

3) Hadamard, Preisarbeit, Journal de math, pure et appi., 4' série,
t. IX.

*) Acta mathematica 1887.
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oo cos I 2À/TX — n"
X(n,x) - — n>^ Y~ 0<x<l')

da cos (2 /Ittx — nzr) (— l)n cos 2 he x

^ cos2À7ix _„_! (2/c) n

2-F-=("1) "T~z(2n'x)
/1 1

Setzen wir x — 0 und berücksichtigen den Wert für x (2n, 0),

so wird

-^A2n "S-"'
2 2n!

;.=i

Für n 2 n -f- 1 wird cos (2 Z?rx — n it (— l)n sin 2 Xtx x

also

^^SÌn2À7i:X „„ij^ i2ii + l /0 i i \^ ,2,1 + 1 (-!) 2'M Z(2n + ltx)
i i A

Für x 0, -~-, 1 resultiert daraus die identische Gleichung

0 0.

Für x -7- erhalten wir
4

71
sin /. —

,2n + l i L_ + _J_ L_ +^n-f-i Q^n-1-1 *}<•n "1" L H°
/. 1

(-l)m-1-y-(2rr)'* + 1x(2n + l,-l-

Aehnliche Reihen folgen aus x -3-, -5-, -5-, 75 • • ¦OOO lii
') Aus der Definition nach Schläfli, die als die für die Theorie

geeignetste betrachtet werden muss.
') Die Bernoullischen Zahlen sind berechnet und finden sich

beispielsweise in ausgedehnten Tafeln in folgenden Arbeiten:)
Glaisher, die 250 ersten Bern. Zahlen. Trans. Cambr. Phil. Soc,

t. XII, 1873.

Sserebrennikow, Table des 90 premiers nombres de Bernoulli. Petersburger

Abhandlungen, 8* série, t. XVI.
Adams, Tafel der 62 ersten Bernoullischen Zahlen. Journal von Creile,

t. 85.
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Trotz vieler Bemühungen ist es aber nie gelungen, die
Summen s2n+1 analog s2n darzustellen, ebensowenig ihre
Darstellung durch Summen derselben Gattung, aber mit niedrigerem
Index.1)

Anschliessend an Integralformen, lassen sie sich immerhin
durch Reihen darstellen, die nach Bernoullischen Zahlen
fortschreiten. Wir haben

/l (—1)" -*T1 1
y(2n, x)Logsin7Txdx — ^— > -^—rr

fi ç) l'in — 1 OO

X (2n 4- l,x) cotgyrxdx 1 {
+ 1 V -__

Ò
TC'

/1=1
Die Integrale lassen die Anwendung der Trapezmethode

leicht zu. Es verlangt dies bloss die Kenntnis der numerischen
Werte der Bernoullischen Funktionen. Eine Berechnung
derselben, d. h. Erstellung einer Tabelle analog den Tabellen der
Gamma- und Besselschen Funktionen wäre sicherlich eine
verdienstvolle Arbeit.

Zu Reihen, die nach Bernoullischen Zahlen fortschreiten,
gelangt man beispielsweise folgendermassen.

Es sei

L, P(l - x)q -1 — cotg — dx
a J 2 2

oo p 2 n 2n\1-Vb°,?r x dx
2n!

(q_l)! i_^^_-
q! iH(2n

Nun ist
t-q)!|

i\
oo m <^Z 2n-2m,

x k l m 0
V

-

x(2n,^ (_irBnif1_ 1

2 / 2n! \ 2

'; Nielsen, Handbuch der Theorie der Gammafunkt., p. 45 u. folg.
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und es folgt daher
<rk_1 / 1

m^—W2n — 2 m,

{27Crs^-2{ 1)n2Lk+12 f^Tm + w
und z. B. für n 1

Boo o 2n

7 La jg(2n+2)!j
und aus einer analogen Formel

4
c TT,

°° B -T 1

6~^(2n+3)! f}
n l J

Wir können auch im Integral

2 ,V„M ^|1_B1^!-B2^^-...ldxrx(2n + l,x) J"

ò xL
er

V x

die einzelnen Glieder
\2m

B I "" ' ->_x)(2^x) dx
«^ x 2m!

auswerten nach der Formel

Ç
rn ,• m, 1 r m(l —2n) - 2n(l -f-2n)z(2n-4- l,x)xmdx ^ ^ y—±-—±-*)

•/ (2n + l)!l2(m-|-2n + l)(m + 2ii + 2)

+ ^(_1};.-i/2n + l\ m I
ÄJ V 2A /m + 2n —2/ + 2J

Für die numerische Auswertung kommen die Formeln
nicht in Betracht.

Im folgenden soll die Eulersche Summenformel angewendet
werden zur Berechnung der mehrfach verlangten Werte von

oo1 '—-* -i

1. ^y -— und 2. ^y —- wenn a eine irrationale Zahl.
— ka — ka
k=l k=l

') Kluyver, J. C. Amst. Ak. Versi.
') Henneberger. Theorie der Integrale Bernoullischer Funkt. Diss.

Bern 1902.
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Es ist

X-l I -4—L l A a
I A a(a + l)(a + 2)

£i Y (a-l)xa-1_f"2x''t 2xa4lÌ" 4 xa + 3 +"
a(a + l)(a + 2)-(a + 2n-4)TA2n- 2 a + 2n — 3

X ^
a(a + l)....(a-r2n-2)

~t"JA2n a + 2n^l
X

(— l)11_1Bn „A- l-2-3(2n-l)2n
Und ° < * < L

Für grössere Werte von x, die ja allein in Betracht kommen,
oo

kann die Reihe Verwendung finden zur Berechnung von ^^ tt,
k x

Denn es ist
x — 1 oo _, oo

y-=y -y-_ ka — k* âka
k l k l k=x

Beispielsweise ist für a 3

-£k3 s |2x2+2x3^4x4 12x6^12x8 20x10J'
k l L J

und für x 10
k=9

^? ^3 1,202056903159 - 0,005524917485 1,196531985674.

k l
In ähnlicher Weise kann die Eulersche Summenformel

verwendet werden zur Berechnung der Funktionswerte für
oo

1

^y — wenn a eine irrationale Zahl darstellt.
k l

Wir setzen
oo _. x —1 oo 1

k l k l k x
und berechnen die erste Summe direkt, die 2. mit Hilfe der

Summenformel, indem wir für x einen nicht zu kleinen Wert,
beispielsweise 10 annehmen.

') Siehe eine andere Formel, Schlömilch, Kompendium der höheren
Analysis.
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Wir erhalten so für

\J2~ y — — 3.022039
CO

a

k l

-0T 2f ma \/3 > r^r 1,993706.

k=l
Für a \Jh u. s. w. lässt sich die Formel auf gleiche Weise

verwenden. Vorteilhafter ist die Anwendung der Formel von
Newton unter Benützung der bekannten Werte der Funktionswerte

für a — ganze Zahlen.1)
Es ist

F(x) F(a)--t-^pJF(a)+ (*-aHx-a-l) ^F(a)

+ (x->)(»-a-^l)(x—-2) /3F(a)

|_
(x — a) (x — a — 1) • • ¦ (x — a'- n + 1) jn^,,1-2-3- .-n

mit dem bekannten Fehler.
Für jedes a > 2 ergaben sich die entsprechenden Funktionswerte

unter Benützung der 3 ersten Glieder mit grosser
Genauigkeit.

') Stieltjes. acta mathematica; 1887.
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