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Die VerfolgungsKurven einer Qeraden.

Einleitung.
Bewegt sich ein Punkt A (x', y') mit einer bestimmten,

gleichförmigen Geschwindigkeit v auf einer durch die Gleichung
f (x', y') — 0 (1) dargestellten Kurve, und bewegt sich ein zweiter
Punkt B (x, y) von einer gegebenen Anfangslage an mit einer
andern gleichförmigen Geschwindigkeit u derart, dass er in jedem
Augenblicke seinen Weg nach dem ersten Punkte A hinlenkt,
d. h. so, dass er sich immer geradlinig gegen A hinbewegt, so
beschreibt der 2 te Punkt B eine Bahn von der Gleichung
f (x, y) 0, die Verfolgungskurve genannt wird. Die
Kurve heisst auch, von dem Beispiel des auf seinen Herrn
zueilenden Hundes, Hundekurve, bei französischen Geometern
courbe du chien oder courbe de poursuite. Da man
diese Kurve auch erhalten würde, wenn der Punkt B sich so

bewegt, dass er immer in der Richtung von A nach B entflieht,
so ist auch mit der gleichen Berechtigung der Name Fluchtkurve

oder Fliehkurve in Gebrauch. Je nach dem
Verhältnis der beiden Geschwindigkeiten v und u der beiden Punkte
A und B gestaltet sich auch die Form der zu den verschiedenen
Grundkurven von A gehörenden Verfolgungskurven.

Das Problem der Verfolgungskurven wurde auf Leonardo
da Vinci zurückgeführt, indem S. Günther eine Stelle in
dem Werke des grossen italienischen Malers in dieser Weise
auslegte; unabhängig von ihm begegnete diesen Kurven Bourguer
und andere; aber von denen, die der Ansicht von O. Terquem
sich anschliessen, wird dieses Verdienst Dubois-Aymé, der im
Anfange des 19. Jahrhunderts Zolldirektor in Foligno (Prov.
Perugia) war, zugewiesen. *) Es sei hierorts ein in einer Ab-

') Vergleiche Gino-Loria: Ebene Kurven (Leipzig 1902).
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handlung in «La Correspondance sur l'Ecole Polytechnique 1814»

angeführtes Zitat wiedergegeben : *)

«Un ancien élève, directeur des douanes à Fuligno,
département de Trasimène (M. Dubois-Aymé) se promenait sur le
bord de la mer: il aperçut à quelque distance une personne de

sa connaissance, et se mit à courir pour l'atteindre. Son chien,
qui s'était écarté, courut vers lui en décrivant une courbe dont
l'empreinte resta sur le sable. M. Dubois, revenant sur ses pas,
fut frappé de la régularité de cette courbe, et il en chercha

l'équation en supposant, 1° que le chien se dirigeait toujours
vers le lieu que le maître venait de quitter; 2° que le maître
parcourait une ligne droite; 3° que les vitesses du maître et
du chien étaient uniformes.»

Jedenfalls steht fest, dass das Problem erst in dem
Jahrzehnt von 1800—1810 untersucht und teilweise gelöst worden ist.

Was die Anwendungen der Verfolgungskurven anbetrifft,
so können diese nicht hohen praktischen Wert beanspruchen,
immerhin verdienen die mannigfaltigen Formen und Eigenschaften
dieser Kurvenart das Interesse des Mathematikers und dies umso

mehr, da solche Kurven tagtäglich beobachtet werden können.
Bewegt sich z. B., um einen einfachen Fall herauszugreifen, ein
Mensch auf einer geraden Strasse vorwärts und ein anderer,
der seitwärts vom Wege sich befindet, geht immer gerade auf
ihn zu, so beschreibt der letztere eine Verfolgungskurve, deren
Form je nach dem Verhältnis der beiden gleichförmigen
Geschwindigkeiten der beiden Gehenden eine andere ist. Auch in
der Taktik kommt diese Kurve vor und zwar auf eine Art, die
der vorhin erwähnten ganz gleich ist. Wenn nämlich z. B. zwei
Züge mit Abstand hinter einander marschieren, und der zweite
Zug soll während des Marsches links aufmarschieren, so
beschreibt der rechte Flügelmann des zweiten Zuges, der immer
auf den fortschreitenden linken Flügelmann des ersten Zuges
seine Richtung nimmt, eine Kurve von der Form, welche
denjenigen, in der nachfolgenden Behandlung unter Fall II v < u

angeführten Kurven, verwandt ist, weil der Mann schneller gehen

muss, als der linke Flügelmann des ersten Zuges. Da alle

') Nouvelles Annales de Math. VIII. 1849, 91.
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übrigen Personen des zweiten Zuges mit dem rechten Flügelmann

desselben Zuges parallel gehen, so beschreiben auch sie

die gleichen Kurven. Ueberhaupt findet das eben Gesagte
bei allen Aufmärschen statt, die während des Marsches
geschehen. Es sei hier auch noch erwähnt, dass die alte Regel,
nach welcher ein Kaperschiff beständig auf das verfolgte Schiff
hingesteuert wird, auf das Problem der Verfolgungskurven führt.



J. Lnterbacher

Hauptteil.

Ableitung der Integralgleichung der Verfolgungskurven
einer Geraden.

Wie das Problem der Verfolgungskurven gelöst wird, ersieht

man, wenn man beachtet, dass in jedem Punkte der Bahnlinie
des Punktes B die Tangente durch den Punkt A in der
zugehörigen Lage hindurchgehen muss; infolgedessen haben wir
zunächst die Relation1)

y'-y=g-(X'-x) (2)

denn der Punkt A hat die Koordinaten x', y' und B die
laufenden Koordinaten x und y. Ist ferner n das Verhältnis der
Geschwindigkeiten der beiden betrachteten gleichförmigen
Bewegungen, so ist das Bogendifferential des einen Punktes gleich
n mal dem Bogendifferential des andern Punktes, also

\/dx'2 +"d72" n V/dx24-dy2

Aus den Gleichungen (1): f(x', y') und (2) sowie ihren Ablei-
dx' dv'

tungen" ergeben sich x', y', -=—, -^— als Funktionen von x, y,

dv d v-/-, —=j- Werden diese Werte in (3) eingesetzt, so erhält man

eine Gleichung von der Form

pfx.y.S.4i=0 (4)

und damit ist die Untersuchung der Verfolgungskurve der Kurve

*) Vergleiche Gino-Loria: Ebene Kurven.
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(1) auf die Integration dieser Differentialgleichung (4) zurückgeführt.

Die Integration ist vollständig ausführbar, wenn die Bahn
des Punktes A eine Gerade ist, und diese Bedingung, dass A
sich auf einer geradlinigen Bahn bewege, soll den sämtlichen
nachfolgenden Untersuchungen zu Grunde gelegt sein. Wir lassen

nun zwei verschiedene Ableitungen der Integralgleichung für die

Verfolgungskurven einer Geraden folgen.

1.
Die Bahn des Punktes A wählen wir als y-Achse; dann

werden die Gleichungen (1) und (2)

x' 0, y' y — x--£-
Wir bilden die Ableitungen und erhalten

2,

— 0 dy'
x ¦

y
dx ' dx '

dx:2

dx' dy'Setzt man diese Werte für -=— und -~— in der Gleichung (3)

ein, so wird sie

Um diese Gleichung zu integrieren, gibt es keinen bessern

Weg, als zu dem klassischen Verfahren seine Zuflucht zu nehmen,
dv

indem man •**- — p setzt. Dann folgt

dx Vl+p-
dx dp

_x-f- n.^1+ra

n
x

~'~
Vl + p2

Durch Integration erhält man

logx" log (p 4- v/x + p2)-i log (p^™) - l°S c

log-
d. f. elogx» + logc= elogcxn e p+/l+p2)
oder wenn man zu den Numeri übergeht, wird die Gleichung

Bern. Mitteil. 1909. Nr. 1722.
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c-xn -. ; d. f.

p+Vl + p2

p+yi + p2 =c_1x~n (6) und p —\/l4-p2 - c-xn. (7)
Addiert man die beiden Gleichungen (6) und (7), so folgt

2p c-.1x~n-c.x°.
Für p seinen Wert gesetzt, gibt

2 dy c~. x~.ndx — c • xn • dx ;

wenn integriert und die neu hinzukommende Integrationskonstante

aus zwei sich entsprechenden Lagen der Punkte A und
B bestimmt wird, so erhält man die beiden Gleichungen

2(y-y0)

1—n „ n+1X C- X <- wenn n -^ 1—— :—7— wenn u -~>
• (1 — n) n -f-1 -->

1 c • x2
— • log x 7^— ; wenn n

(8)

und dies sind die Gleichungen der Verfolgungskurven der
Geraden, je nachdem die Punkte A und B sich mit ungleicher
oder gleicher Geschwindigkeit bewegen; im letztern Falle ist
die Kurve transcendent, im erstem algebraisch oder interscen-
dent, je nachdem n rational oder nicht; ist insbesondere n eine

ganze Zahl, so haben wir eine parabolische Kurve vor uns.
Wenn die Bahn des Punktes A ein Kreis wäre, so würde

die des Punktes B eine Integralkurve der Gleichung

nm
3^

M2 dy
a_ L" rV"dxV 1

X + y dx
¥ 0 " ^v^RlTJ-h^j,)
sein, wo tu die Winkelgeschwindigkeit von A, b die Geschwindigkeit

von B, und a der Radius des gegebenen Kreises ist1) ; diese

Differentialgleichung ist jedoch noch nicht integriert worden.

3.2)
Wir gehen zu einer zweiten Ableitung der Integralgleichung

über, an welche sämtliche nachfolgenden Betrachtungen

Vgl. von Keelhoff in Mathesis VI.
2) Vgl. Seminar-Vorträge des Herrn Prof. Dr. G. Huber in Bern vom

S.-S. 1906.
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geknüpft sein sollen. Dabei wählen wir, im Gegensatze zur vorigen
Ableitung, die Gerade, auf welcher sich der Punkt A bewegt,
als x-Achse.

Es sei (Fig. 1) CC ein Teil des Weges des Punktes B.
Der Punkt A hat die gleichförmige Geschwindigkeit v und B
die von u. Sind P und Q zwei gleichzeitige, also sich entsprechende

Lagen der beiden bewegten Punkte A und B, so muss
stets die Bewegungsrichtung in P gegen Q gerichtet sein, d. h.
die Gerade PQ muss stets Tangente sein an die Verfolgungskurve.

Zu einer bestimmten Zeit muss sich der Punkt B
senkrecht gegen die x-Achse, die Bahn von A, bewegen, also muss
die Kurve eine zur x-Achse senkrechte Tangente besitzen, und
diese wählen wir in unserer Ableitung als y-Achse. Ihr Berüh-
rührungspunkt D und der Koordinatenanfangspunkt 0 sind dann
zwei sich entsprechende Lagen der bewegten Punkte. Wir
rechnen die Zeit von dem Augenblicke an, indem sich B in D,
also A in O befindet. Nach der Zeit t, von diesem Augenblicke
an, befindet sich der Punkt B in P. Der von ihm durchlaufene
Weg in dieser Zeit ist dann

arc DP — s t • u,

woraus folgt t — • (10)

Nach der gleichen Zeit t befindet sich der Punkt A in Q und
es ist der von ihm durchlaufene Weg OQ t • v, woraus folgt

.-!*• '

dl)
Weil die Zeit in beiden Fällen die gleiche ist, so sind die beiden
Ausdrücke für t der Gleichungen (10) und (11) einander gleich,
also

A OQ. (12)uv
Die rechtwinkligen Koordinaten des Punktes P seien x, y und der

Winkel, den die Tangente PQ mit dem positiven Ast der x-Achse
bildet sei t, dann ist

OQ=OS + SQ x+ tg(18y0_r) =x-tgT-
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Nun ist t=- tg r, also —- also wird OQ — x — y • —.—dx ° tgi dy dy
Setzen wir diesen Wert in der Gleichung (12) ein, so erhält man

s 1 / dx\T'TV-y^)- oder

v dx
s x — y • -j—u J dy

Wir setzen nun zur Abkürzung das Verhältnis der beiden Ge-

v
schwindigkeiten der Punkte A und B, also — k, dann ist

k.s x-y|~ (13)

Der Bogen s DP, den der Punkt P in der Zeit t durchlaufen
hat, ist eine Funktion der Koordinaten x, y seines Endpunktes
P und zwar ist

ds dy V1 + (dy)2' oder

ds\2 /dxx2

Wir differentieren Gleichung (13) nach y und erhalten
ds d x

"

dy — " y '
d7'

Quadriert, gibt

(j\2 /rl2\2 /rl\2
dy/ ^7 Vd"2/ ' Wert fÜr (dy/ aus G1' ^14) einSesetzt>

ergibt

und dies ist die Differentialgleichung der Verfolgungskurve einer
Geraden; sie ist von der zweiten Ordnung und vom zweiten

Grade. Um sie zu integrieren, setzen wir t— p, also—5=^r-
dy F' dy2 dy

und erhalten aus Gl. (15)

.2 i ,.2 „2 2 /dp
k'+k'.p'-y-ljgl),

2
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beiderseits radiziert, liefert
dp

k-Vl + p2=ydy-' oder

dp =k dy

vi+p2 y
Die Gleichung integriert, gibt

log nat. (p 4- VI 4- p2 log nat. yk 4- c,

p4-Vl4-p2=Cyk. (16)
Um die Integrationskonstante C zu bestimmen, beachten wir, dass

die Punkte 0 (x o, y 0) und D (x 0, y a) zwei entsprechende

Lagen der bewegten Punkte A und B darstellen. Es muss
dabei für den Kurvenpunkt D (x 0, y a) die Differentialgleichung

(16) der Kurve erfüllt sein. Die Tangente im Punkte D
steht auf der x-Achse senkrecht, also ist für diesen Fall t 90°,
somit

tgT dX tg90° oo,

also ist -r— p 0.
dy

Setzt, man diese Werte in der Gl. (16) ein, so erhält man

l=C-a\ d. f. C ^ - a_k.
a

Wert für C in Gl. (16) eingesetzt, ergibt

Vl + p =a y — p
1 ¦ 2 —2k 2k 0 — k k i 2

14-p =& y —2a y -p + p
— 2k 2k -, p o — k kl 2k

a y =l + 2a • p • y | • a
2k 2k i 0 k k

y =a +2a -p-y
2k 2k o k k

y —a =2a • p-y
Die ganze Gleichung durch yk dividiert und p -r-gesetzt, liefert

k 2 k — k ci k dx /1 r?\y -a y 2a •

-^- (17)

Mit dy multipliziert und integriert, gibt

l^-a»£21L 2a** + C. (18,
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Um die Integrationskonstante zu bestimmen, verfahren wir auf
gleiche Weise, wie vorhin. Die Gleichung (18) muss erfüllt
sein für den Kurvenpunkt D, also für die Koordinaten x 0,

y a. Dies ergibt
k + l 1 —k

a 2k a n— a t. j- O, oder
k + l 1 —k

k + l k + l / -, -, \ oik-fl„ a a i+k/l 1\ Z k • a
C ì—r-T — -i r— a

k + l 1 —k \l + k 1 —k/ i_k2
Setzt man diesen gefundenen Wert für C in Gleichung (18) ein,
so erhält man

k + l 1 —k 01 k + l
k + l 1 —k i_k2

Schafft man schliesslich noch die Brüche weg, so wird die
Gleichung (19)

(l-k)y1 + k-(l + k)a2k.yl-k — 2 • (l-k2)ak-x+ 2ka1 + k= 0,

oder auf x aufgelöst
l+k k 1— k k•a

-"- y -_a-y ._!_ rr-, für k $ 1. (20)
2(l + k)ak 2(1-k) ' (l-kJ) ' >

Sind die beiden Geschwindigkeiten v und u der beiden
Punkte A und B gleich gross, ist also k 1, so muss die
Integration der Differentialgleichung (17) besonders ausgeführt werden,
und man erhält

2

^- — a2 • log nat. y — 2 ax + C.
Li

Für x 0 wird y a, also
2

C
-g- — a2loga.

Wert für G* eingesetzt, gibt
v2 2

i- — a2 log y 2ax + y — a2 log a

y — 2 a log nat. — 4 ax — a =0 (21)

oder auf x aufgelöst

x=4^-T-l0gnatT-T'fürk==1- (22)
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Die Gleichungen (19) bis (22) stellen also die Gleichungen der
<

Verfolgungskurven der drei möglichen Fälle k 1 in rechtwink-

v
ligen Koordinaten dar. Ist k ¦-= — eine von 1 verschiedene ganze

Zahl, oder ein rationaler Bruch, so stellt die Gleichung (19) oder
(20) eine algebraische Kurve dar. Ist das Verhältnis eine
irrationale Zahl, so heisst die Kurve interscendent. Ist endlich v u,
also k ], so stellt die Gleichung eine transcendente, speziell
eine logarithmische Kurve dar

Um die Gleichung (20) für k ^ 1 in eine symmetrische Form
zu bringen, verschieben wir die y-Achse parallel um den Betrag

2 a und erhalten die Gleichung der Kurve in der einfachem

Form
l+k k 1-k

x - y _a y m)
2(l+k)ak 2(1-k) (2d)

Und diese symmetrische Gleichung soll allen Untersuchungen der
beiden Hauptfälle k> 1 und k<l zu Grunde gelegt sein. Die
Verschiebung der y-Achse wird im Falle k >¦ 1 eine nach links,
im Falle k < 1 eine nach rechts gerichtete sein.

Anschliessend wollen wir für diese beiden Fälle für ein

ganzzahliges k den unendlich fernen Punkt näher untersuchen.
Zu diesem Zwecke schaffen wir in Gleichung (23) die Brüche

weg und bekommen
(1 —k)y1 + k— a2k(l+k)y1-k- 2 (1 — k2)akx 0 f23a)

Im Falle k ^> 1 würde im 2. Gliede der Exponent von y negativ.
Uni dies zu verhüten, multiplizieren wir Gl. (23 a) mit y ~ und
bekommen

(1 - k)y2k — a2k(l + k) — 2 (1 - k2) akyk_1x 0.

Wir bestimmen in dieser Gleichung die Asymptotenrichtungen
indem wir die Glieder höchsten Grades gleich Null setzen und
erhalten y2k=0 also y 0, die 2 kfache x-Achse, d. h. die

g oo (unendlich ferne Gerade) schneidet unsere Kurve in der Richtung

der x-Achse in 2 k zusammenfallenden Punkten. Wir
projizieren den P oo (unendlich fernen Punkt) in den Nullpunkt,
bezw. die g oo auf die y-Achse, d. h. wir transformieren unsere
Gleichung nach den Formeln
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J_ =ï-y x, i y x/

und erhalten

a-k)C-a2k(lfk)-2(l-k2)ak^.i 0.
x x X

Mit x'2k multipliziert, liefert

(l_k)y'2k-a2k(l+k)x'2k-2(l-k2)ak.y'kr1xk==0.
Die transformierte Gleichung beginnt mit einem Gliede (2 k — l)ten
Grades; der Nullpunkt ist somit ein (2 k — 1) fâcher Punkt der

Kurve, und wir erhalten die Tangenten in ihm, indem wir
— 2(1 —k2)aky'k7Vk =0 setzen. Hieraus folgt y'k_1=0, also

y' =0, die (k — 1) fache x'-Achse und x' =0, alsox' 0, die

v'k-fache y'-Achse, oder zurücktransformiert y -^y 0, die(k—1)

fache x-Achse und x -^- -^ =00) die k-fache goo. Die Kurve

hat somit im unendlich fernen (2 k — 1) fachen Punkte (2 k — 1)
reelle Tangenten, von denen k mit der g oo und (k — 1) mit
der x-Achse zusammenfallen.

Unsere Kurve ist, wenn k eine ganze Zahl, von der 2 kten

Ordnung und kann demnach — ~ — Doppelpunkte
LI

besitzen. Ihr unendlich ferner (2k — l)facher Punkt ist aber

äquivalent — -~ Doppelpunkten. Die Kurve er-
Ll

reicht somit in ihrem P oo die Maximalzahl an Doppelpunkten.
Alle Kurven für ein ganzzahliges k > 1 sind somit rational und
unikursal. Die Parameterdarstellung unserer Kurven lautet

y ^xs4-[î+T-nrï]. (24)
2

worin / ein variabler Parameter bedeutet. Wir differentieren
die Gleichungen (24) und erhalten

dy a-dA; dx -§- \t — A_k] • dl;
Li



rner ist das Bogendifferential

ds -*Vi+(£)"- a • dA

-dV'+(\_
a-<i'"+1)-«-

2Ak

:M'-

Ll

L a•dX J

.V/4;2k+A4k-2/i2k+l
a • d x :

2Ak

Nach diesen Vorbereitungen wollen wir übergehen zur
Rektifikation, Quadratur etc. unserer Kurve für die beiden Hauptfälle

k^l.
Rektifikation: Bezeichnet man die Länge des Kurven-

bogens mit s, so folgt

rl2 f)-2 f jl+k jl — k"| X2

*-_ J ^+^^^l^+k + fci ;
(25)

Ai A i i
wo X und X2 hier, wie bei allen folgenden Grenzeinsätzen, gleiches
Vorzeichen haben müssen.

Quadratur: Wir bezeichnen das Flächenstück begrenzt
von Bogen, x-Achse und zwei Ordinaten mit Fx und dasjenige,
begrenzt von Bogen, y-Achse und 2 Abscissen mit F und
erhalten

rx2
2 f>-2

ydx -|- j [X'^-X'-^dX
«l '>-t

__a2[A2 + k A2-kV-
2L2 + k 2 —kj

'-2

(26)

Fy J x-dy J A _____ a.dA

2 r i2 + k „2~k 1*2
~_~| (l + k)(2 + k)

~~ (l-k)(2-k)J,
'¦x

Die Integration muss für den Fall k 2 hier, wie bei der
folgenden Komplanation besonders ausgeführt werden und liefert
als letztes Glied den natürlichen Logarithmus.

Bern. Mitteil. 1909. Nr. 1723.

(27)



— 178 —

Komplanation : Rotiert der Kurvenbogen um die x-Achse,
so beschreibt er eine Oberfläche vom Flächeninhalt

Ox 2/r- | y.ds 7.a2J [„1 + k + X1 ~ k] • dl

2r„2+k „2-kV'
-aL2-+k + 2^k|;

,2-k T A,

(28)
vi

Rotiert der Bogen dagegen um die y-Achse, so beschreibt er
die Oberfläche

0, 2„.A_=2../Ì!!-[i^-^].!-[/
1 a2 Cl2 r>îi + 2k X À „1_2k1

+ „-*Jd„___L_j |^__^ ___+_______j«u
Ai

2 r )2 + 2k ,2 ,2 ,2 —2k ~U2
yra X

_L
~2~ L(l+k)(2+2k) ~ 2(1 —k) + 2(l + k)

~" (l-k)(2-2k)J„!
2

Tra
"IT

"(l-k)2x2(1 + k>-(l-k)(l+k)2^24(I+k)(l-k)V-(l4k)Y(1~k)'|/2r(i-krru+'c>-(i--k)(i+kp+(i+k)(i-k/r-(i4krru~K)'|
1 (l-k)2(l+k)2 I

4(1

2 r-

-^TyT^(l-k)2/2(1+k)-A2.{(l-k)(l + k)2

-(l+k)(l-k)2}-(l + k)2/2(1-kf2

—_iL_[(i_k)2;.2(1+k)-2k(i-k2)„2
4(l-k2)2 L

]Aa • (29)
Ai

Kubatur: Der durch Rotation der Fläche F_ bez. Fy
entstehende Körper habe das Volumen Vx bez. V ; dann ist
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V_=^.J y2.dx=AA.J (x2+k-A2-k)dA

lh
Ai

»1 A

2

2 3 -j- k q3 — k ~| *r

3 + k 3 - k

ry22 /*A2 a2 / ^2(l+k) g
V_ X7cdy rt'\ -r-l j- 5-

A2
y y J J 4 \(i+k)2 i—k2

yi xi
À2(l-k,|

^d-kfJ
„3 T ,3 + 2k 0

(30)

•dA

2 q

(l + k)'(3 + 2k) 3(1- k")

^3-2k 1 Ì-2

^~(l-k)2(3-2k) L
3

a ti

l"3-(l-k)2(3-2k)x3+2k-2(l-k2)(9-4k2)À3+3(l+k)2(3+2k)„a~2kl *2

L 3.(l+k)2(3-r-2k)(3-2k)(l-k)2 J
^

3 r~ r 3(1- k)2(3- 2 k) X3+2 k- 2 (1- k2)(9-4k2)/
12(l-k2)2(9—4k2)L

]*2• (31)

Rektifikation, Quadratur etc. des III. Hauptfalles k 1

sollen erst später angeführt werden.
Es sei nun hier schon eine Fundamentaleigenschaft unserer

Kurven angeführt. Klügel's «Wörterbuch der Mathematik»,
Leipzig 1831, bezeichnet als Verfolgungslinien allgemein Kurven,
bei denen der Bogen zu der Differenz von Subtangente und
Abscisse ein gegebenes konstantes Verhältnis bildet. Dass diese

Eigenschaft für unsere Kurve gilt, lässt sich sofort sehr einfach
beweisen. Dabei setzen wir, wie es die analytische Geometrie
zu tun pflegt, das Gesuchte voraus. Für unsere in Fig. 1 dargestellte

Kurve gelte also die Bedingungsgleichung
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Bogen Konstante. {Subtangente —Abscisse) oder s -j— (St — x).

Es ist allgemein die Subtangente einer Kurve dargestellt durch

dx
den Ausdruck y • -— also ist

1 dx 1
oder s -_.y.- — x.k J dy k

Differentiert man diesen Ausdruck nach x, so erhält man

d fc) d fc
dl__ 1 \dy/ dx 1_ dy_ 1__ J_

r
\dy

' y ' A„ "T" Ax, ' It ' A^ Xt I, *ydx k J dx dy k dx k k * dx '

oder ds =- ¦—¦ • d l -— Allgemein ist nun das Bogendifferential

/ /dx~\2
ds dy • V/ 1 + I jT I ¦ Setzt man die beiden für ds gefundenen

Werte einander gleich, so erhält man

k

Der variable Faktor auf der rechten Seite hat die Form

-, und gibt integriert log nat Iz-|-\/i+z2}; also liefert die
Vl-f-z2

_

Integration der Gleichung (33)

somit

i

dx
In Fig. 1 ist aber für -— 0 y a, also folgt C — a, deshalb

wird aus Gleichung (34)
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i

W'+(|)T

^•#--vMl)!-
Wir quadrieren diese Gleichung und erhalten

2k 0 k kdx 2k/dx\ 2k, 2k/dxV
* ~2^ ad7 + a WJ=a +a ld7J;

daraus folgt
2k 2k j / k k \

dx=-y ~a -dy^^-^-A
2akyk y 2 Uk yk

Diese Gleichung integriert, gibt
-, t — k 1 + k k 1 —ki1 a • y a • y

(35)

2 1 + k 1-k
Für x 0 ist aber y a; also wird

k • a

+ C.

c 1-k2
Setzt man den gefundenen Wert für C in der obigen Gleichung
ein, so erhält man

—k 1+k k 1—k ¦
a • y a • y i

k •a fi^i maxx° 2-(l + k) - Tö^-kT + (I-Tp-)
fur k ^ h (36)

Ist k 1, so folgt durch Integration der Gleichung (35)

X l.(A.4_a.logy) + C |l-|-.logv + C.

Ist x 0, so wird y a, und wir erhalten

C — log a - A.

Diesen Wert in der obigen Gleichung eingesetzt, gibt
2

x A- — Aiogy + Aioga_JL 0(]er

x £-T1<*_--Tf0rk-1- W
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Die Gleichungen (36) und (37) stimmen aber vollständig
mit den Gleichungen (20) und (22), den Gleichungen der
Verfolgungskurven einer Geraden, überein, und wir können sagen:

Bei den Verfolgungskurven einer Geraden ist das Verhältnis
des Bogens zur Differenz von Subtangente und Abscisse konstant
und gleich dem reziproken Geschwindigkeitsverhältnis der beiden

bewegten Punkte A und B. Da ferner nach der Gleichung

s -r- y • - x j für unsere Kurven mit Leichtigkeit der Bogen

s bestimmt werden kann, so darf man mit Recht die
Verfolgungskurven der Geraden als Kurven bezeichnen, die mit Hilfe
ihrer Subtangente rektifiziert werden können. Wir wollen nun
im Folgenden die drei verschiedenen Hauptfälle der Verfolgungs-
kurven der Geraden einer eingehenden Diskussion unterwerfen.

I. Hauptfall k > 1.

Die Geschwindigkeit des verfolgten Punktes A ist grösser
als diejenige des verfolgenden Punktes B, also v ^> u.

Die für k ^ 1 geltende symmetrische Gleichung heisst

1+k k 1—k

._ y »y
2(i + k)ak 2(l-k)

Da in diesem Hauptfalle k "> 1 ist, so musste die ursprüng-
k

liehe y-Achse um 5- • a nach links verschoben werden, undJ
1 — k2

die den folgenden Untersuchungen dieses Hauptfalles zu Grunde
gelegte Kurvengleichung lautet

k+l k

x —I j- + — (38)
2(k + l)ak 2(k-l)yk-1

Beim I. Hauptfall können wir drei verschiedene Unterfälle

auseinanderhalten. Seien p und r zwei ungerade, ganze
Zahlen und q eine gerade, ganze Zahl, und es bestehe die
Bedingung p ¦< q <d r, dann kann k, oder das Geschwindigkeitsverhältnis

der beiden bewegten Punkte A und B, die Formen

r q rannehmen 1. k —, 2. k — und 3. k — Darunter
p p q
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sind alle möglichen Fälle enthalten; denn entweder ist k eine

ganze Zahl und dann ist sie unter den beiden ersten Fällen
begriffen, von denen der erste alle ungeraden, der zweite alle
geraden Zahlen enthält, oder k ist ein unechter Bruch, bei dem
der Nenner entweder eine gerade Zahl — dann haben wir Fall
3 —, oder eine ungerade Zahl ist, und dann enthält Fall 1. alle
Brüche derart, wo der Zähler eine ungerade Zahl, Fall 2.

dagegen, wo er eine gerade Zahl ist.
j»

Unterfall 1. k —= unechter Bruch mit ungeradem
P

Zähler und Nenner, oder ungerade, ganze Zahl.

Setzt man den Wert für k in der Gleichung (38) ein, so

erhält man

x

r + P ^
y P aP

—
i \ r / s r — P

-_-_\bp 2fH___Piy—
P / VP

2r 2r

a? y p

Da nun r — p immer eine gerade Zahl ist, so wird der Faktor
__

vor der Klammer, wie auch der Ausdruck yp stets positiv; folglich

liefert derselbe positive und negative Wert von y nur einen

positiven Wert von x, und die Kurve muss daher ihrer ganzen
Ausdehnung nach symmetrisch zur x-Achse, auf der rechten
Seite der y-Achse liegen. Für y 0 wird x oo. Ferner ist

r + p —p
aP

dx _ \ p /^
j_

\ P

dy ofr+P a?
r —p + p

[4-41
La? yPJ

Um die der y-Achse zunächst liegenden Punkte, die Scheitel
der Kurve, zu bestimmen, setzen wir diesen Ausdruck 0 und
erhalten
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vp aP n yP
-T - — 0, also i-

La? ypj aP
2 I L

aP

r >

y7
__ _£

oder y p a p ; d. f. y —= 4 a. Setzt man diese Werte für y in
der C-Gleichung (Kurvengleichung) (39) ein, so erhält man

x —=

r+p

Ferner ist

— T + -
(r + p)aP (r

ar — a p + ar -

a''

-p)-a p

ap 1
_ p • r

J 2,[r-P+r-pJ

j21 S

d?
X
2

_P_

2

r
P

r — P

J P aP

a.

r
P

a?
r + P

y p

y —= + a gesetzt, liefert

j2d x

d/ [*
_n_

a p

a?

aP

r+ P

a p
2

" [ a +
a J

+ ¦ pos., d.h. die Ordinaten y 4a ergeben

als Minimalwerte der Abscissen

p • r _ a • k
x — ~ 2 ' a ~~ "T. A~'

r — p k — 1

Da ferner in der C-Gleichung (39) der Exponent —> List,

so liefern die Werte y =— + oo, x 4 °°. Die Kurve erstreckt sich
somit in zwei kongruenten Ästen aus + oo durchs endliche Gebiet

nach 4- oo zurück. Die Punkte x

Scheitelpunkte, und die Gerade x

p-r
r — p

p-r

a, y 4 a sind

2 a, die ursprüng-
r —p

liehe y-Achse, ist Scheiteltangente an die beiden Kurvenäste.
Die Ordinaten y 4 a der Scheitel sind unabhängig von r und

p, also auch unabhängig von k, d. h. die Scheitelpunkte aller
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Spezialfälle dieses Unterfalls liegen auf den beiden Geraden

y +a-
Als Beispiel dieses Unterfalles sei der Spezialfall

k 3 ungerade, ganze Zahl
angeführt.

Setzt man in der Gleichung (39) k — —= 3, so wird die

Kurvengleichung
4 3

_ y _!_
a

X ~~ _~~3 ~ ~t 2»8a 4y
oder y6 + 2 a6— 8a3y2 x 0.

Die Kurve ist von der 6. Ordnung. Sie enthält das x in der 1.

Potenz und stellt somit eine parabolische Kurve dar. Die Scheitel

der beiden Kurvenäste liegen in den Punkten y + a, x -pr-a

und die zugehörige Scheitel- und Doppeltangente hat die Glei-
3

chung xt=7—-a (Fig. 2). Die goo schneidet die Kurve in der
o

Richtung der x-Achse in 6 zusammenfallenden Punkten. Der
P oc ist ein fünffacher Punkt der Kurve. Die g oo ist dreifache
und die x-Achse zweifache Tangente in demselben.

Im unendlich fernen, fünffachen Punkte hat somit der eine
Kurvenast einen Spitzpunkt oder Bicuspidalpunkt mit drei in der

g oo zusammenfallenden Tangenten und der andere Kurvenast
eine Spitze mit der x-Achse als Rückkehrtangente (Fig. 3). Unsere
Kurve ist von der 6. Ordnung, nach Plücker von der 10. Klasse
und besitzt 24 Doppeltangenten, die reell oder imaginär sein

können. Die Kurve hat das Geschlecht 0, ist rational, und
ihre Parameterdarstellung lautet nach Gleichung (24)

a(„6 + 2)

Wir bestimmen nach diesen Gleichungen einige Kurvenpunkte
und erhalten:
Für x 4 0 0,1 0,2 0,5 1 2 2,4 2,8 oo wird

y + 0 0,1a. 0,2a 0,5a a 2a 2,4a 2,8a oo und

x= oo 24,9a 6,2a 1,0a 0,4a 2,1a 4,2a 7,7a oo

(Graphische Darstellung siehe Fig. 2). Die Kurve besteht aus
Bern. Mitteil. 1909. Nr. 1724.
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zwei kongruenten, parabolischen Asten, die symmetrisch zur
x-Achse, der gemeinsamen Asymptote, im I., bezw. im IV.
Quadranten liegen.

Wächst der variable Parameter X von -,— oo bis + °°, so

wandert der Schnittpunkt der Geraden y X a mit der Kurve
vom + oo ins endliche Gebiet, kehrt beim Punkte D'^um und

geht in Pfeilrichtung nach + °o (IV) ; von hier aus kommt er
mit pos. X zurück und geht über D wieder nach 4 °° (!)•

Die Länge des vom Scheitel D aus gerechneten Bogens DC
ist

._2-iA 2

S A f _______!1
__ A ["M5 _ JL _ A i JLl

2 L 4 2 JA __i 2[4 8 4 + 2 J

ga 2,06a;

mit der x-Achse und den zugehörigen Ordinaten bildet er eine
Fläche vom Inhalt

a2 ri'*-1?"' a2 [32 1 1 ]
57 2 o 0- 2

2Öa =2,85 a.

Rotiert der Bogen DC um die x-Achse, so beschreibt er eine
Fläche vom Flächeninhalte

n 2 Ta5 „-n*-' 2[s_ i i I

67 2 oi n- 2
7T77 Tr • a 21,05 a

und diese schliesst einen Körper ein vom Volumen
2 r ,6 ,_(TÙ=2 3 T -6 "li 2

^•a3 ("64 1 1 21 3 1ß.Q 3

-TT * L6"+0°--6— °°J T "'a 16'49a •

Für alle GeschwindigkeitsVerhältnisse dieses Unterfalles
besteht die Kurve aus zwei kongruenten, parabol. Ästen, von denen
der eine ganz im I., der andere ganz im IV. Quadranten
verläuft. Die x-Achse ist immer gemeinschaftliche Asymptote an
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T) * r
beide Kurvenäste. Die Gerade x —f 5- • a, oder die ur-

r —P
sprüngliche y-Achse, ist Scheitel- und Doppeltangente an beide

Kurvenäste. Diese letztern nähern sich mit zunehmendem k immer
mehr der Geraden y + a, bezw. y — a und gehen mit k 00

in diese über, d. h. die beiden parabol. Äste reduzieren sich auf
die je doppelt gelegten Geraden y 4 a bezw. y — a aus

+ 00 bis zur Doppeltangente. Das ganze westliche Gebiet der

Doppeltangente besitzt keine reellen Punkte der Kurve.
Beobachten wir die Bewegung der beiden Punkte A und

B, so gestaltet sich diese auf folgende Weise. Der Punkt B

aus + 00 kommend verfolgt den von — 00 auf der x-Achse
heranrückenden Punkt A. Ist A im ursprünglichen Nullpunkte
angelangt, so ist B in y + a der Scheiteltangente. Von hier
aus gehen beide nach + °° und zwar A mit der k-fachen
Geschwindigkeit des B, so dass B hinter A immer mehr zurückbleibt.
Die gleiche Verfolgungsbewegung kann auch auf dem Kurvenaste

im IV. Quadranten erfolgen; dabei durchläuft der Punkt A
die x-Achse ebenfalls von — 00 nach 4 °°.

Unterfall 2. k ——= unechter Bruch mit geradem Zähler
P

und ungeradem Nenner, wobei q > p, oder gerade ganze Zahl.

Setzt man den Wert k — in der C-Gleichung ein, so er-
p ° '

hält man
q + p _q

__ y p a p

__±!i_7 oY____PN q P

2(__-_laP 21 3 K)y P

p 1

r 2_q 2q -I

_y__+_A__
q+p q—p2 _. ____ q + p

'
q —p

aP-y p '
Da q — p stets eine positive, ungerade Zahl darstellt, so ist hier

q —p

y p stets positiv oder negativ, je nachdem y positiv oder negativ
ist. Der Klammerausdruck ist immer positiv. Die Kurve liefert
somit für die gleichen positiven und negativen Werte von y gleich-
grosse Werte von x, nur mit entgegengesetzten Vorzeichen. Die
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Kuive liegt also symmetrisch zum O-Punkt im I. und III.
Quadranten. Für y 0 wird x 4 oc ;

ferner ist

fi±P)y1±PL ai.(-a_^)
dx V p /J L

V p / J^_
dy q^

aP
i —p+p

y
5_

2aP

q

aP

q_

2yP
P / VP

2_q 2_q

Setzt man die 1. Ableitung 0, so erhält man y q aq
w. f. y 4 a. Diesen Wert in der C-Gleichung eingesetzt, liefert

q + p _q

(±a) p aP
x 2

2

(q
q —p

p)-(+a) p

ferner wird

l2'I X

(q + p)-aP
+ a +_a_l + P^-q-pj ~q2-iq4p

q ü_i_
—-y p

p
J aP • —

dy2 _q

2aP
q+p

2y p_
Setzt man hierin y 4 a, so wird

q —p

_L
2p

JL
2p

p q ~P iL "i
y p aP

I _~ i___ I
L aP y P J

j2d x

dy

(±a)"
_q

aP
pos.

y +a macht x 4

q^

a?

p-q

q + p

(±a) p J
a zu einem

d. h.

I neg.
I Minimalwerte.

q~ — p (Maximalwerte.
Da je beide Koordinaten der Kurvenpunkte entweder

das positive, oder das negative Vorzeichen besitzen, so hat die
Kurve je einen Ast im I. und III. Quadranten. Die beiden

Punkte x 4 —a 2 ' a> y ì a hegen der y-Achse am nächsten ;~
q —P

sie sind Scheitelpunkte, und ihre zugehörigen Scheiteltangenten

haben die Gleichungen x + —j.
2 • a 4 —2—~ >

wie im
q" — p — k — 1

Unterfall 1. Die Doppeltangente durch den O-Punkt habe die

Gleichung y mx. Setzt man diesen Wert für y in der von
den Nennern befreiten Kurvengleichung (38) ein, so erhält man

n 1\ 2k 2k 0 n 2 i\k k — 1 k /1 n 2k n(k — 1) m -x — 2 (k — 1) a m x 4- (k + 1) a =0.
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Diese Gleichung ist in Bezug auf x quadratisch, und man hat
deshalb

k (k2-l)akmk"1±V(k2-l)-a2k-[(k2-l)m2k-2-m2k]
(k-l)m2k

Die vier Schnittpunkte der Geraden y mx mit der Kurve
liegen paarweise symmetrisch zum O-Punkt. Setzt man in
der obigen Gleichung die Diskriminante (k — 1) m — — m

0, so fallen je zwei Schnittpunkte zusammen, und die Gerade
durch den O-Punkt wird zur Doppeltangente an die Kurve. Durch
O-Setzung der Diskriminante folgt aber

n 2 -ii 2k 2k + 2 j(k — 1) m m oder

m k — 1, woraus folgt

m + \/k2—1 ±(k2 —1)T

als Richtungskoeffizienten der zwei Doppeltangenten durch 0.

Setzt man den positiven Wert für m in dem Ausdruck für x ein,
so erhält man

n 2 ,-, k k —1 —2k /, 2 .-, k —1 —k
k _ (k — 1) a • m (k — 1) a • m

(k - 1) k - 1

2 —k —1 1—k 1 —k
-2 11 5 /i- i 1\ •>. /i. il 2

— a
¦ (k -1) 2

k (k + l) 2 .(k-l)± k-l a - (k-l)
l — k

________
2

„*
i_+k ' a

(k-l) 2

d. f. x a\ + -, ; es wird somit

l—k
k + l

1 + k

(k-l) 2

kl X"k

y m.x a(k2 - 1)2~.\ /+Lk___il_l__.

V (k-l)2
Ersetzt man in den gefundenen Resultaten k durch das Ge-

q
schwindigkeitsVerhältnis —, so folgt
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q'-p'\t V/q2-p2
m_= + r*_i »=+

p2 ; -- p '

und die Koordinaten der Berührungspunkte werden

q+p
+X

1 + 4
q—p

p —qq+p W
+

pVT

q + p
VV-+

p + q

¦v
p —q

(q+p) 2

±a-Pl P_+q

(q-p) 2

q,
i/~2—2 \q/(q+p) 2

_=4a.Vq— p • \ - ^r+q
V(q-p) 2

Die Doppeltangente durch den O-Punkt hat somit die Gleichung

vV-: 2

A. P
y ——- • xi

p
und die Berührungspunkte haben die oben angegebenen
Koordinaten. Die reelle Doppeltangente hat den Richtungskoeffi-

i/ 2 2

zienten — — und schliesst mit dem positiven Zweig der

\J 2 2

x-Achse einen Winkel von q> arc tg — — ein. Die negative

Wurzel von m würde für x und y imaginäre Werte und eine

Doppeltangente mit imaginären Berührungspunkten liefern.
Als Beispiel führen wir den Fall an

k — — _=—-_= gerade Zahl,
u u 1

Setzt man den Wert k 2 in der Kurvengleichung ein,
so wird sie

y4—6a2yx + 3a4=0.
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Die Kurve ist eine Parabel vierter Ordnung. Die Koordinaten-
2 2

paare x + -~- a, y + a, bezüglich x= tt-a, y — a, sind

die Koordinaten der Scheitelpunkte D des C-Astes im L,
bezüglich D' des C-Astes im III. Quadranten. Die zugehörigen

2
Scheiteltangenten haben die Gleichungen x + -g a und schliessen

ö
ein Gebiet ein, in dem sich keine reellen Punkte der Kurve
befinden. Die g oo schneidet die Kurve in der Richtung der x-Achse
in vier zusammenfallenden Punkten. Der P oo ist ein dreifacher
Punkt, und die Tangenten in ihm haben die Gleichungen y 0,

x-Achse und x 0 doppelt, d. h. in der g oc fallen im 3-fachen
Poo der x-Achse zwei Tangenten der Kurve zusammen. Die
x-Achse ist die 3. Tangente an die Kurve im dreifachen Punkte.
Beide Tangenten haben in ihm mit der Kurve vier Punkte gemein.
Die Kurve hat somit im P oo eine Spitze, die auf einem Kurvenzweig

aufsitzt, mit der g oo als Spitzentangente. Der dreifache
P oo besteht aus der Vereinigung von zwei Doppelpunkten und
einer Spitze. Die Kurve ist rational und ihre Parameterdar-

Stellung lautet nach (24) y X a, x — ——T" —. Wir bestim-

men einige Kurvenpunkte, indem wir dem X aufeinanderfolgende
Werte erteilen und erhalten:
Für

À 40 0,1 0,2 0,5 1 2 3 oo wird

y ±o 0,1a 0,2 a 0,5 a a 2a 3a oo und
X =+ oo 5,0 a 2,5 a 1,0 a 0,7 a 1,6 a 4,7 a oo.

Die Kurve besteht (siehe Fig. 4) aus zwei kongruenten,
parabolischen Ästen, von denen der eine ganz im L, der andere ganz im
III. Quadranten verläuft. Beide Äste nähern sich asymptotisch der
x-Achse. Erteilt man in der rationalen Darstellung dem X alle Werte
von + oo, bis — oo, so durchläuft der Schnittpunkt der Büschelgeraden

y X a mit der Kurve alle Kurvenpunkte und zwar von

+ oo durchs endliche Gebiet nach + oo (I), kommt dann von
— oo bis zum Punkte D' und kehrt wieder nach — oo (III)
zurück. Die Kurve ist unikursal und nach Plücker von der
5. Klasse. Die reelle Doppeltangente durch den Ursprung hat
die Gleichung y y 3 • x. Sie berührt die Kurve in den Punkten
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w.\J27
a + 0,76 a, v + \/3-a + 1,32

und bildet mit dem positiven Ast der y-Achse den Winkel <f

60°. Die Länge des Bogens DC ist

-rU=2
a \x3 ___"!__ a r______.___.4_1l
2 |_3 ~ 1 Ji

1
2 13 2 ~ 3 +1J

17

12
a 1,41 a;

mit der x-Achse und den zugehörigen Ordinaten schliesst er
eine Fläche ein vom Inhalt

*_--!-• j (A3-A"1)d/ A^_L_lognat.^=i

[Ï- log nat. 2 ]

-f[ 4 — -i 0,69
4

+ log nat. 1

A-. 3,06 1,53a2.
_

Rotiert der Bogen DC um die x-Achse, so beschreibt er eine
Fläche vom Inhalte

0_=/ra2l; l2+k
2 + k

,2 —k 1^ 2

+ : ft a
A i

[22 + 2

|_2 + 2+ 2

,2 — k 1 2 + 2

2 + 2
____ìl
2-k_L2

Tr a _-.]M£-£L
Der Klammerausdruck des 2. Gliedes liefert aber für k 2 das

vieldeutige Symbol 00 — 00 und hat, nach der bekannten Regel
ausgerechnet, den Wert 0. Es wird also

15
O. n • a 11,78 a

Der Körper, den die Oberfläche 0_ in sich schliesst, hat das

Volumen

t--t-[m::-2s4?t»--h
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V_ 7777 tv • a 8,16 a

Für diesen 2. Unterfall liegen die beiden kongruenten,
parabolischen Kurvenäste ihrer ganzen Ausdehnung nach im I.
und III. Quadranten und nähern sich in + oo bezw. — oo asymptotisch

der x-Achse. Die Scheiteltangenten haben die Gleichungen

~——2 • a ; sie nähern sich wie ihre Scheitelpunkte mitx -
2 2

q -p
zunehmendem k — der y-Achse und fallen im Grenzfall k oo

P
mit dieser zusammen. Die Halbäste der beiden Parabeln nähern
sich mit aufsteigendem k immer mehr den beiden Geraden

y + a, bezw. y — a, und die parabolischen Züge reduzieren
sich für den Grenzfall k oo auf die je doppelt gelegten
Geraden y + a von + oo, bezw. — oo, bis zur y-Achse. Mit
veränderlichem k ändert sich auch die Lage der jeweiligen
Doppeltangente durch den O-Punkt. Der Richtungswinkel dieser

Doppeltangente nimmt mit wachsender Geschwindigkeit von 0°

[für k 1] an zu und wird im Grenzfall k oo gleich 90°. Für
diesen Grenzfall fallen also sowohl die Doppeltangente durch
den Nullpunkt, wie auch die beiden Scheiteltangenten in der
y-Achse zusammen.

Die Bewegung der beiden Punkte gestaltet sich im
endlichen Gebiete auf folgende Weise: Der Punkt B verfolgt aus

+ oo auf dem Kurvenast im I. Quadranten herkommend den

Punkt A, der von — oo her auf der x-Achse vorrückt. Ist der
Punkt A im Schnittpunkte der Scheiteltangente mit der x-Achse

angelangt, so befindet sich B in y a der Scheiteltangente,
senkrecht über A. Von hier aus rücken beide Punkte nach + oo

und zwar A mit der k-fachen Geschwindigkeit des B, so dass

B hinter A immer mehr zurückbleibt. Die analoge Verfolgungsbewegung

kann auch auf dem Kurvenaste im III. Quadranten
erfolgen. Dabei kommt der verfolgende Punkt B aus — oo und
geht über D' nach — oo zurück, während der Punkt A die
x-Achse gerade entgegengesetzt wie im vorigen Falle, also von

+ oo nach — oo, durchläuft.
rUnter fall 3. k =— unechter Bruch mit ungeradem

Zähler und geradem Nenner, wobei r > q. Setzt man den Wert
Bern. Mitteil. 1909. Nr. 1725.
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für k in Gleichung (38) ein, so erhält man
_4q ___

y « a«
X _

r ' /_ „ \ r — q

2(L±_q)aq 2(^5 I y «

_q ___________ _i
2

-
L "T r-j, •

L(r + q)a" (r- q)y « J
Weil r + q und r — q stets ungerade, positive Zahlen
darstellen, so wird x für negative y imaginär; für positive y dagegen
erhält man zwei gleiche und entgegengesetzte Werte von x.
Für y 0 wird x 4 oo ; ferner ist

r + q A^ AJ '-qdx q *

dy o^+q.i2_-__-.a« 2 3)y «
r — q

r — q4q

Wir setzen die 1. Ableitung 0 und erhalten

__ __
y q a q, w. f. y a.

Dieser Wert in der C-Gleichung eingesetzt, liefert
r + q

_____

I
a__

L a^ y« J

-4-A
2

I r + q
_. i

-^++—+-,L_if • +__.1
L(rfq)aï (r - q) a~J 2 Lr + 1 r " -

o • r
: 4 -~ 2

• a. Ferner wird

[
r— q

r — q
,2 a,

I A y q aq .(____
d x _

1 I q J \ p /I r

r —q
~~

r
"i ai

dv2 2 _. _±_ 2qJ 'a« y q I

y + a x + ~—
_

• a zu einem \

L r + q

ai y i

{positiv d. h. es macht
negativ

q • r f Minimalwerte.
_*

_
• a zu einem {

r — q {Maximalwerte.
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Nimmt y von +a an beständig zu, so wächst auch x von

p-r+ —f s a aus positiv und negativ und wird für y + oo zu
r —q

x 4 oo. Nimmt y von + a an beständig ab bis y 0, so
wächst auch x positiv und negativ von obigen Werten aus bis

x + oo. Die Kurve liegt somit ganz auf der Nordseite der
x-Achse und besitzt im I. und II. Quadranten je einen Kurvenast,

die sich von + oo, bezw. — oo, durchs endliche Gebiet nach

+ oo, bezw. — oo, hinziehen. Die beiden Pnnkte y + a,
Q * rx= + —g _• a liegen der x-Achse am nächsten; es sind die

r -q
Scheitelpunkte der Kurvenäste und ihre zugehörigen

Scheiteltangenten haben die Gleichungen x + -^—g • a- Alle Kurven
r —q

dieses Unterfalles sind nicht mehr rational.
Als Beispiel für Unterfall 3 wählen wir den Spezialfall

q 2

Setzt man den Wert von k in der Kurvengleichung ein, so
bekommt man

_. JL"

2 I y2 a2
l;x ^r MHr+-

y2J
oder

__ J.
y3 + 5 a3 5 a 2 y2x; quadriert gibt
y6 + 10a3y3 + 25a6 25a3yx2 oder

y6 + 10 a3 y3—25 a3yx2 + 25 a6=0.

Die Kurve ist von der 6. Ordnung und schneidet die g°°
in der Richtung der x-Achse in 6 zusammenfallenden Punkten.
Der P oo ist ein vierfacher Punkt der Kurve und die g oo ist
dreifache-, die x-Achse einfache Tangente in demselben. Die
Kurve hat somit im P oo einen Spitzpunkt, oder Bicuspidalpunkt
mit der g oo als zugehörige dreifache Tangente, und zudem geht
die Kurve noch einfach durch denselben.

Bringt man die Kurvengleichung in die Parameterdarstellung,
so lautet diese
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3 —2\.3 /3 + 2\
(k-l)Â2k+(k+l) » '* +

- tv ti 1 —V o i. 1 d
2(k2-l)Àk-x "

of^A-Af
X3 + ò „3+5

- "i 4 -j= ¦ a.

4

5- \pTj_
bXj

Die Kurve ist nicht mehr rational. Um die Kurve zeichnen zu
können seien noch einige Punkte derselben berechnet:
Für X 0 0,1 0,2 0,5 1 2 3 4 oo
wird x 4 oo 3,2 a 2,2 a 1,4 a 1,2 a 1,8 a 3,7 a 6,9 a oo
und y — 0 0,1 a 0,2 a 0,5 a a 2 a 3 a 4 a oo.
(Graphische Darstellung siehe Fig. 5).

Die Kurve besitzt je einen C-Ast im 1. und II. Quadranten,
die aus + c-o, bezw. — oo, herkommen und wieder nach + oo)
bezw. — oo, zurückgehen. Die x-Achse ist Asymptote an beide

C-Äste. Die Scheitel liegen in den Punkten y a, x + -=- a,
o

und die zugehörigen Scheiteltangenten haben die Gleichungen

x + -77- a. Die Länge des Bogens DC beträgt
_

3 + 2 3-2-^=2
a"

S
"2

j- o-t- <,

_ _>_______-]|A

X 2 % 2^
3 + 2 3 — 2

L 2 2 Ja

A.hï_5„-aT "a__±..r2ä__^— 1 + 5] 1,2a.

Er bildet mit der x-Achse und den zugehörigen Ordinaten die
Fläche

T J_+2 -(l-A-l 2 r 1+ X V22

F _=_L
* 2

p + 2

,£_£___ a2 |"*T „rl

lî^+^_r Lt j

[Ç-2Ï-i + l]a2[7__2!_i + lj 1,07a2.

Rotiert der Bogen DC um die x-Achse, so beschreibt er eine
Fläche vom Inhalt
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0.= Tra
3^

_2

-42

+ 2

(I-2)"
_3

2

2 Tr-a' të+C
•7T-a té + 2 11,88 aJ

und schliesst einen Körper ein vom Volumen

__+3 _f3_3Nr* 2 r- «

*2+3 1 U Vye a

+ 3 _3

2 -3

71 ¦ a
[__
L9

_1 1

Ì-1-iJ-
tnen

r __ _--iJl=_23U2 H* L"9"~T1a=1
i=l

1
.,62 a3.

3^

_____ i + l3 9 3
Für den 3. Unterfall liegen die beiden Parabeln im I. und II.

Quadranten. Die x-Achse ist wieder gemeinschaftliche Asymptote.
d • rDie Scheiteltangenten haben die Gleichungen x + -~ _- a ;

r —q
sie nähern sich mit steigendem k der y-Achse. Für den Grenzfall

k 00 fallen sie mit der y-Achse zusammen und die Parabeln
reduzieren sich gleichzeitig auf die je doppelt gelegte Gerade

y a von + 00, bezw. — 00, bis zur y-Achse und zurück. Die
Bewegung der beiden Punkte stimmt mit derjenigen des vorigen
Falles überein, mit der einzigen Ausnahme, dass der 2. Ast der
Verfolgungskurve hier nicht in den III., sondern in den 71.

Quadranten zu liegen kommt. Der 1. Ast der Verfolgungskurve
Hegt also immer im I. Quadranten, während der 2. je nach dem
Werte von k > 1 in einem der drei andern Quadranten verläuft.

II. Hauptfall k < 1.

Die Geschwindigkeit des verfolgenden Punktes B ist für
diesen Fall grösser, als diejenige des verfolgten Punktes A. Die
für diesen Hauptfall geltende symmetrische Gleichung der
Verfolgungskurve heisst

1 + k k 1-
a y

2(14k)ak 2(l-k)
und ist aus der Grundgleichung dadurch hervorgegangen, dass
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man die Ordinatenachse um • a parallel nach rechts ver-
1 —k*

schob.
Wie beim ersten Hauptfall, so können wir auch hier drei

verschiedene Unterfälle auseinanderhalten. Das

Geschwindigkeitsverhältnis, das immer ein echter Bruch sein muss, kann sein

p _ ungerade Zahl

q gerade Zahl '

„ p ungerade Zahl
2. k -£- — 3—„ r. und

r ungerade Zahl
q _ gerade Zahl

r ungerade Zahl '

wobei p, q und r die nämliche Bedeutung wie im Hauptfall I
haben und der Bedingung genügen

p < q < r.

Unterfall 1. ______
ungerade Zahl

q gerade Zahl
Setzt man den Wert für k in der symmetrischen Gleichung ein,
so erhält man

1. k

3. k

q + p

y q

q+p\ _¦— la»

aq y q _q_

2

q + p

y q

a«(q + p)

p

a«
q —p

y q

(q -p)

Da q gerade ist, die Ausdrücke q + p und q — p dagegen
stets ungerade Zahlen darstellen, so würde für ein negativ
gewähltes y, x imaginär, und für ein positiv gewähltes y erhält
man stets zwei gleiche, entgegengesetzte Werte von x. Die
Kurve muss daher ganz auf der obern Seite der Abscissenachse
und symmetrisch zur neuen Ordinatenachse liegen. Setzt man

y 0, so wird auch x 0; ferner ist
__

dx _ 1 y«
dy "2" __

_ ai yq_
Setzt man diese 1. Ableitung 0, so folgt

p. p

vq a.* 2p 2p

-+J p=0 yq—a«, also y ±a.
a"» y«

_p

A_
__

,<x
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Der Wert y — a ist zu verwerfen, weil er auf imaginäre
Resultate führen würde. Setzt man y + a in der obigen
Gleichung ein, so erhält man

q + p _p q— p~

q a i a^a q
X

~2~ -E (q-p)
_a<.(q + p)

Da q im Nenner des Exponenten eine gerade Zahl ist, so
liefert die Wurzel zwei Werte, und man erhält

a aA
2 |_q + p

Die 2. Ableitung wird

j2d x n

+ ______.T^ 2 2
q —p

dy2 2q

p —q

Y q

p_

a«

_p

ai
p+q

y q J
1

Setzt man hierin y a, so wird
d x
dy' —2q la a

+
q a

d.h.

y a macht
__ _ qpx —o o * a zu einem

+ qp
î-k"

k
Minimalwerte.

zu einem
2 2

q —p 1 __ _2 Maximalwerte.

Für x 0 fanden wir y 0. Setzt man den Wert x 0 in
dem Ausdruck für x ein, so erhält man

q4p
y q

p q —p

a« y q

ai.(q + p)

w.f. y

also auch y

(q-p)

o

0 y

_p

yq
JL —JL

a« y i 1

-/q + p

\q-p

^ (q — p)
_ao(q + p)

2p 2p
und yo (q-p) — a « (q + p) « 0,

2p • a. Dem Werte x — 0 entspricht

1 + k\g_sowohl y 0, wie auch y )2 p • a :

Vq-p/
Da aber, wie wir gesehen haben, die Kurve symmetrisch zur
y-Achse liegt, so müssen die Punkte x 0, y 0 und x 0,

y= _
)2p ' a der Kurve je doppelt angehören. Der erstere
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kann nur ein Berührungspunkt sein; der letztere dagegen ist
ein Knotenpunkt unserer Kurve, was durch Verschieben des

O-Punktes in denselben leicht gezeigt werden kann. Vom
Doppelpunkte an nimmt der Wert von x positiv wie negativ immer
zu und wird für y + oo zu x= + oo.

Als Beispiel dieses Unterfalls sei der Spezialfall

_ p _ ungerade Zahl 1

q gerade Zahl 2

angeführt. Die Geschwindigkeit des Punktes B ist also hier
doppelt so gross, als diejenige von A. Setzt man den Wert

von k -77- in der allgemeinen Kurvengleichung dieses Unterfalls
_

ein, so folgt
.,1 1 1 3

__ y a-y 2

_ y2
i / x -* -i — a2y2'

l + |)a2 2(1-^ 3-a2

oder y3—6ay2+9a2y —9ax2 0,
und dies ist die Gleichung der Verfolgungskurve für k -_r-. Sie

_
ist von der 3. Ordnung und beginnt mit Gliedern 1. Grades;
die Kurve geht somit einfach durch den O-Punkt; dieser ist der

Scheitel der Schleife, und die x-Achse ist zugehörige

Scheiteltangente in demselben. Für y= a wird x— _• 2a= ~ öa
q —p d

2
zu einem Minimalwerte, und x + -75- a zu einem Maximal-

2
werte. Die beiden Punkte y a, x — + — a sind die äussersten

Punkte D und F (Fig. 6) der Schleife und ihre zugehörigen Tangenten
2

haben die Gleichungen x + -75- a. Die y-Achse schneidet die

Kurve ausser im Punkte y =0 noch in y __+__ )2p a 3 a;
\q-p/dieser Punkt ist ein Knotenpunkt unserer Kurve ; denn

verschiebt man den Ursprung in diesen Punkt, d. h. transformiert

man obige Kurvengleichung nach den Formeln
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x x' y y' + 3 a, so wird sie

y'3+3ay'2— 9ax'2=0.
Die transformierte Kurvengleichung beginnt mit Gliedern

2. Grades; der neue Nullpunkt ist somit wirklich ein Doppelpunkt

unserer Kurve und die Tangenten in ihm haben die
Gleichungen y'= + \/3-x'. Die Tangenten sind reell und
verschieden; der Doppelpunkt ist ein Knotenpunkt. Wir transformieren

die Gleichungen der Tangenten rückwärts und erhalten

y + V3 • x + 3a. Die Doppelpunktstangente y-=\/3x + 3a
hat den Richtungswinkel yx — 60° und schneidet die x-Achse im
Punkte x -v'3a — 1,732 a; die andere y — \/ 3 • x + 3a
dagegen hat den Richtungswinkel <pn 120° und schneidet die

x-Achse im Abstände x \J 3 • a 1,732 a vom Ursprung. Die
beiden Doppelpunktstangenten schliessen somit am Knotenpunkte
einen Winkel von 60° ein. Die zwischen dem Knoten und der
x-Achse gelegenen Teile der beiden Doppelpunktstangenten bilden
mit dem auf der x-Achse abgeschnittenen Stücke ein
gleichseitiges Dreieck, dessen Seitenlänge gleich ist dem zwischen
Knoten und x-Achse gelegenen Stücke der Doppelpunktstangente,
nämlich gleich 2. \j 3 a 3,46 a.

Um die rationale Darstellung zu ermitteln, schneiden wir
unsere Kurve mit einer Schar von Geraden durch den Doppelpunkt

von der Gleichung y lx + 3a. Jede Gerade des Büschels
schneidet die Kurve 3. Ordnung im Knoten in 2 zusammenfallenden

Punkten und ausserdem noch in einem 3. Punkte, der je
nach dem Werte von l alle Punkte der Kurve durchläuft. Wir
setzen in der Kurvengleichung y X x + 3 a und erhalten

X3x + 3aA2 — 9 a 0, woraus folgt

und somit

9a -3aA2
X3 -[W]-¥[_--i}

y >ix+3a 3ar4- — 1 + 11 9a^~2;

diese Werte von x und y repräsentieren die rationale
Darstellung unserer Kurve. Um die Kurve zeichnen zu können,
bestimmen wir nach diesen Gleichungen einige Punkte und
erhalten :

Bern. Mitteü. 1909. Nr. 1726.
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9 a 2,3 a a ìla0
« -3o a -j.-— a

o

2

¥a
39
64a °

zeigt, liegt unsere Kurve
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Für X ±0 \/Tß ^"2" \/"3"

wird y oo 5,6 a 4,5 a 3a

und x + oo 2,1 a 1,1 a 0 i

Wie die Konstruktion (Fig. 6)

ganz auf der Nordseite der x-Achse und symmetrisch zur y-Achse.
Im endlichen Gebiete zeigt sie die Schleifenform der Newton'schen
Knotenparabel oder Parabola nodata, oder die Form der
Cayley'schen Crunodale. Erteilt man in der Parameterdarstellung

dem X alle Werte von 0 bis + oo, beziehungsweise von 0
bis —oo, so durchläuft der dritte Schnittpunkt der Büschelgeraden

mit der Kurve diese von + =», beziehungsweise von — oo)
über den Knoten zum Ursprung.

Um den P oo der Kurve zu untersuchen, bestimmen wir
die Asymptotenrichtungen und erhalten y 0, also y 0
dreifach, d. h. die g oo schneidet unsere Kurve in der Richtung der
x-Achse in drei zusammenfallenden Punkten. Wir projizieren
die g oo auf die y-Achse, d. h. wir transformieren unsere
Kurvengleichung nach den Formeln

i y'

und erhalten
y'3-6ay'2x' + 9a2y'x'2=9ax'.

Die transformierte Gleichung beginnt mit Gliedern 1. Grades;
die Kurve geht deshalb nur einfach durch den neuen O-Punkt.
Die Tangenten in ihm erhält man aus 9ax' 0, d. h. x'

0 die y'-Achse. Für x' 0 wird aber y'3 0, also y' 0

dreifach, d. h. die Tangente im neuen O-Punkte, also die y'-Achse
schneidet die Kurve in drei zusammenfallenden Punkten ; sie ist
also eine Wende- oder Inflexionstangente im neuen O-Punkte.
Der P oo ist somit ein Wende- oder Inflexionspunkt. Die
Wendetangente erhält man durch Rücktransformation von x' 0,

nämlich x —r -tt- °°, d. h. die g oo ist Inflexionstangente

im Wendepunkt. Die Richtigkeit des obigen geht schon daraus

hervor, dass die Newton'sche Knotenparabel im P oo wirklich
eine Inflexionsstelle besitzt.
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Wir differentieren die Gleichungen der Parameterdarstellung

und erhalten

dx=3a(/i~2— 9_-4)<U und dy —18aA_3d;..

Ferner ist ds \J(£f+ (&Ï " d*

\/ 9_2(„_4 — 18A-6+8U-8+36„~6)d*
3a-V/(„~2 + 9^"4)2 <U 3a(A-2+9„-4).d^.

Bezeichnet man die Bogenlänge der Schleife E D O F E mit s,

so wird

A arcEDO= I 3a(A~2+9A_4).d_=3a -__1-3rs|

3 a 77 77- + -77= -j 7=_i und dies ist[0 0 '
./3 ^3\/3_

2 ^3"a 3,46a,
was sofort durch Wertbestimmung des an der obern Grenze
auftretenden vieldeutigen Symbols gezeigt werden kann. Die
halbe Schleife ist somit gleich der Länge einer Knotenpunktstangente

und gleich dem halben Werte der Subtangente im
Knoten. Die ganze Schleife ist 4 \J 3 a=6,92a. Diese Grösse
lässt sich leicht konstruieren; sie ist gleich der Höhe in einem

gleichseitigen Dreieck von der Seitenlänge 8 a.

Wir bezeichnen die Fläche der Schleife mit F und erhalten

J.A=
i/i"
9aA_23a[„_2-9„_4]dA

l=— ¦/-§-

/A=i/¥[A"4 —9A_6]dA

\j lt
Rotiert die ganze Schleife um die x-Achse, so beschreibt

sie eine Fläche vom Inhalte

u 9 1 ~IA= ^3
27aa|c._ JJ

J„_=_ ^-3

2
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»a_=- /ir/•A=-Vs
0_ t*. I 18a.„"2.3a[A "2+9A""4]d>ì

54-nr.a2l [„-4 + 9Z_6]-dÂ

l= VT

_. 2r 1 9 -|A=-V8 56
_„._..^__.___j -_v.. 2

7T • a
11= VT

Rotiert dagegen die halbe Schleife OFE um die y-Achse,
so beschreibt sie einen Flächeninhalt von

/A=
VT

2-3a[3A~2— „_1]-3a[A-2+9A-4]-d„
1 0

-»A=V¥

1=0

187ra2/ Î3A_6+27„"7-„"3— 9„~ °]-dX

-i« _2r 27_l _i_6t=v/3
L 6X6 2X1 4„4JA=0

Das an der untern Grenze auftretende Symbol oo — oo hat
den Wert Null, und wir erhalten

0_ 18„.a2[-i +i+ !] 3,ra2,

gleich der dreifachen Fläche des Kreises vom Radius a.

Die Oberfläche Ox schliesst einen Körper ein vom Volumen
/»1= VT

V_=/r. I 81a2A_4-3a.[A-2-9A-4]dA
1=— VT

fi='/T
1=_— VT

-q «1 _»l~ 9 X f"^ - 144 V/T »8— o • ol • a I 77 =- I 7777- ¦ V d • re• a
[_7-„7 5/J1=__KT 30

und diejenige von O einen Körper vom Inhalte

v,-„./^£[£-i+_].-_,._-..„
1 0

8-81.wa8. I [„_6—9„_8]dÀ
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r»l=\ß i

9-18-7r-a3 I [-9*-9+6„-7— x"5 \dX
1 0

s i_9_ _J_ __Lii=V3
8„8 X6 -**_[___„ »

:9.18-^.a3- U--_+ -r7

und dies ergibt, weil das an der untern Grenze auftretende
vieldeutige Symbol den Wert Null hat,

-, Q ie 3 9 1,1 3 3?-=9.18.«.a .__-+_ =T^.a ;

9
dies ist 777; des Inhaltes einer Kugel vom Radius a.

16

Substituiert man in der für diesen Unterfall geltenden

Kurvengleichung für k kleinere und grössere Werte als -75-, so
LI

werden die zugehörigen Kurvengleichungen, wenn ihre
gebrochenen Exponenten durch fortgesetztes Quadrieren ganzzahlig
gemacht werden, immer mehrgliedriger. Mit veränderlichem k
ändert sich die Lage des Knotens und der Knotentangenten,
während die x-Achse in allen Fällen Scheiteltangente bleibt.

Für alle von -~- abnehmenden k nähert sich der Knoten
_

dem Punkte y — a der Ordinatenachse. Die Kurve wird schmäler;
der Winkel, den die Doppelpunktstangenten bilden, nimmt
beständig ab, und die Doppelpunktstangenten, wie die Kurvenäste,

schmiegen sich mehr und mehr der y-Achse an. Pur

den untern Grenzfall, also für k A — 0 f_n_
q 00 (gerade)

der Knotenpunkt in y a der Ordinatenachse. Der von den

Doppelpunktstangenten eingeschlossene Winkel wird zu 0°, und
die Doppelpunktstangenten, wie die Kurvenäste, fallen ihrer
ganzen Ausdehnung nach in die y-Achse. Für diesen Grenzfall
reduzieren sich somit die beiden Kurvenäste auf die doppelt
gelegte y-Achse von + °° bis zum Ursprünge.

Nimmt k dagegen von -75- an zu, so entfernt sich der
_

Knoten auf der y-Achse immer mehr von der x-Achse; der von
den Doppelpunktstangenten eingeschlossene Winkel wird immer

grösser und die ganze Schleife breiter. Wird k =—=—^-A-^—t-J-
q 00 (gerade)
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so fallen Knoten und Doppelpunktstangenten ins Unendliche.
Der von den Doppelpunktstangenten eingeschlossene Winkel wird
zu 180°, und der im Endlichen liegende Teil der Kurve wird
in die x-Achse gedrängt. Der P oo der Kurve ist für alle Fälle
ein Inflexionspunkt, und die g oo ist stets Wendetangente in
ihm mit mehr oder weniger innigerer Berührung.

Die Bewegung der beiden Punkte A und B gestaltet sich
im endlichen Gebiete für diesen Unterfall auf folgende Weise:

B kommt mit der k-fachen Geschwindigkeit des A aus + oo

und verfolgt den aus — oo auf der x-Achse heranrückenden
Punkt A. Ist B im Knotenpunkte E, bezw. im Punkte D,
angelangt, so ist A bis zu G, dem Schnittpunkte der Doppelpunktstangente

mit der x-Achse, bezw. bis J, dem Schnittpunkte der

Tangente in D mit der x-Achse, vorgerückt. Im Ursprung, im
Scheitel der Schleife, treffen sich die beiden Punkte, und nun
tritt B auf die Fluchtbahn, d. h. bewegt sich von jetzt an immer

so, dass er in jedem Augenblicke in der Richtung der Tangente
durch A entflieht. Ist A bis H, dem Schnittpunkte der 2.

Doppelpunktstangente mit der x-Achse, vorgerückt, so ist der
Punkt B zum 2. Male im Knoten E angelangt. Von hier aus

bewegen sich A in Pfeilrichtung nach + oo und B auf der Fluchtbahn

nach — oo.

_ p ungerade Zahl
Unterfall 2. k= -£-= ^ — wobei p < r.r ungerade Zahl r

Setzt man den Wert von k in die symmetrische Gleichung ein,
so bekommt man

r+P P_ r— P

___
y r *ry r

_±_)a7 2(+P
Da r + p, wie r — p stets gerade Zahlen bedeuten, so liefert
die Gleichung für dieselben positiven und negativen Werte
von y nur je einen Wert von x, der positiv oder negativ sein
kann. Die Kurve liegt somit symmetrisch zur Abscissenachse.
Für y 0 wird x 0. Es ist ferner

JL JL

dx
__ yr ar

dy I __
'

2ar 2yr
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Setzt man diesen Ausdruck 0, so erhält man

2 p 2 p

y r a r, w. f. y + a.

Werte für y in der C-Gleichung eingesetzt, liefert
f+P ¦ _P r—P

a r ar • a r r T a
2" ^r + p* l±2 r - p

r-p ferner ist

P- r
d x _ P

a gesetzt, liefert
2r p + >

dy
y r

_ar
d x __ p

.2dy 2r [-1]- positiv, wenn a _> 1 vorausgesetzt wird.

Da also die 2. Ableitung von x positiv ausfällt, so liefert y 4 a
Y • Y) k

für x — k—^—«. a 5-a zwei Minimalwerte. Die Punkte
Û At -t 1 _r —p 1 — k

y 4 a, x g—;j a — "t TT ' a smd Scheitelpunkte,

chung x g— 2 '&== 2 ' a* Setzt man in der C-Glei-

__ rP „ k
~~2 2a Z
r — p 1 — k

und die zugehörige Scheitel- und Doppeltangente hat die Glei

__ r ' P - k
2 „2 i i ;r — p 1 — k

chung x 0, so erhält man
r + P _P r —P

-^L_A i___J__A 0, oder
_E r — p '

(r+p).ar
r jl __ _p.i

y[yr(r-p)-ar (r + p)y rJ o, w.f.
JL __ ___

y 0 und yr(r — p) — ar (r+- p)y r =0, oder
2p 2p

yr(r-p)-a^(r + p) 0,
/r + p\_l

also y 4 I I2 p • a. Die Kurve schneidet somit die y-Achse

ausser im O-Punkte noch in den Punkten

/r+p\_L /l+k\__
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Ferner ist x stets negativ, solange |y| < )2p. a und stets

(r + pN —-tep-a ist; denn angenommen y sei

um einen kleinern Betrag kleiner, also z. B.

_+(_±__JL)é.a,-\r-p n)
so wird vorerst

r—P

A y r

2
'

JL

ar

2p 2p

y~ a7
r+p r-p
/r + p 1 \ ___Ersetzt man hierin y durch + { kp-a, so folgt

r+_+p_±yu^ r _r L—\r — p n/ J I ar
x —

p — Lr + p \r — p n
ar

__
~

ar
r —P_

[fHlP-iU.JV F 2p 2p 2p-,
_\r— p n/ J I

________
ar

__
a r 1

— | r— P n(r+P) r — P I '- + f a

d. h. x negativ. Ersetzt man dagegen y durch + I "

_ \JL
-) )2pa, so wird der Ausdruck für x positiv. Wird y positiv

und negativ grösser als (—^--W-a, so nimmt x stetig zu und

wird für y +oo zu x +oo.

Das Wertepaar x 0, y 0 genügt, wie wir gefunden haben,
der C-Gleichung. Da aber die Kurve symmetrisch zur x-Achse
gelegen ist, so muss ihr der Punkt x 0, y 0 doppelt
angehören. Die beiden C-Äste bilden somit im O-Punkte eine Spitze
mit der x-Achse als Spitzentangente, was auch sofort aus der
Kurvengleichung folgt.
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Als Beispiel führen wir an

p ungerade Zahl 1

r ~ ~

ungerade Zahl ~ 3

Die Geschwindigkeit des verfolgenden Punktes B ist 3 mal so

gross als diejenige des verfolgten Punktes A. Setzt man den

Wert k -ö- in der für diesen Unterfall geltenden C-Gleichung

ein, so erhält man

x i_yJ_ !_!_!, oder3y^(yA_2a^)__.8aÌ.
8 a3"

Wir erheben diese Gleichung in die 3. Potenz und bekommen

— — i —
27 y2 [y2- 6 a^y3 + 12 a^y3 - 8a2] 512 ax3

_____ 1.
27y2[y2— 8a2] — 27y2-6a3 -y3 (y3 —2a3) 512ax3

__
2 2 2

27 y2(y2— 8a2) — 54a3"y2. 3 y
»" y« — 2 a1) 512ax8.

Der Faktor des zweiten Gliedes stimmt vollständig mit der
linken Seite unserer Ausgangsgleichung überein, und wir erhalten

_ _!
27 y2 • (y2- 8a2) 54a3 y2.8a¥x 512ax3,

oder 27 y4— 216 a2y2- 432ay2x— 512ax3 0.

Die C-Gleichung ist von der 4. Ordnung und beginnt mit
Gliedern 2. Grades; der O-Punkt ist somit ein Doppelpunkt
der Kurve. Die Gleichungen der Doppelpunktstangenten erhält
man, indem man die quadratischen Glieder 0 setzt, und es

folgt — 216 a y 0, oder y 0, die x-Achse doppelt. Die
Tangenten im Doppelpunkte sind reell und zusammenfallend; der

Doppelpunkt ist somit eine Spitze mit der x-Achse als
Spitzentangente. Die Berührungspunkte der Doppeltangenten liegen

in den Punkten y + a, x —5~a — 0,37a, und die zugehörige

Scheiteltangente, bezw. die Doppeltangente, hat die Gleichung
3

x — -_- a Die Kurve schneidet die y-Achse ausser im Ursprung
o

noch in den Punkten y + ~E jap a=+ 2 • \T_~ • a 2,82 a.

Die C Gleichung liefert für alle y < 2 • y 2 a nur negative, für
alle y _> 2 \J 2 a dagegen nur positive Abscissen. Die Untersu-

Bern. Mitteü. 1909. Nr. 1727.



210

__

8

chung des P oo zeigt, dass dieser ein einfacher Punkt ist, durch
welchen die Kurve auch nur einfach hindurch geht. Die goo ist
Tangente an die Kurve mit 4 punktiger Berührung; ihre Para-

meterdarstellung lautet nach (24)

& \ X3 AT 3Ü3 SX3
y „a, x=_--hr- jT

L 3 3

Erteilt man dem X in obigen Gleichungen verschiedene,
aufeinanderfolgende Werte, so erhält man :

Für A ±01 2 3 4oo
wird y + 0 a 2a 3a 4aoc
und x= 0-0,37 a — 0,25 a + 0,06 a + 0,49 a. + oo.

Wie die Konstruktion (Fig. 7) zeigt, besitzt unsere Kurve
zwei kongruente, symmetrisch zur x-Achse gelegene Äste, die im
Ursprung eine Spitze bilden mit der x-Achse als Spitzentangente.

3
Die Gerade x= —77-a, die ursprüngliche y-Achse, ist Scheitel-

und Doppeltangente an die Kurve. Auf der Westseite derselben
besitzt die Kurve keine reellen Punkte.

Nach der Rektifikationsformel hat das Bogenstück EO, wo
E der Schnittpunkt der Kurve mit der positiven y-Achse ist, die

Länge
2 —1=2 • i/T t/_

s

— £
L
4^

3

J
2_

3 _

8
L3 + 2XS

V1

1=0

Fläche

Aa.f242.2j 3 a, und bildet mit der y-Achse die

I l3
I

4_ 7_

L3 '
3

5_

X3

2_

3

9 2

7_

AI
28

__¦

ü.
10

_9

2
a —

3_i ^

1=0

¦y-

+ ||\/2a2 0,73;28 ' 10

Rotiert dieser Bogen EO um die x-Achse, so beschreibt er eine
Oberfläche von
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0, : n a

L —
X3 X3

7_

3
5^
3 _i,

2 r 7 6-]J-V2"
^H"¥+7iTL

^•(V?) +7(V?) l=7^V2.«.i.'=25,89a!—=— • n • a | 5
35

und schliesst einen Körper ein vom Volumen

A=> V23

v.=
3

a • n
10

i 3

10

3
j8
3 _

TC • SL

160

1=0
10

8A3-10A3
1=V23

160
.a3^-^^3)3— \o(\Ì23Y =-|-.7r.a8=: 5,65i

Rotiert dagegen der Bogen ODE um die y-Achse, so
beschreibt er eine Oberfläche von

0 t= — /r. a 7=4,71 a und schliesst einen Körper in sich
y Lt

vom Volumen
in

Vy =^\/2-7r- a3 0,69a3.

Ersetzt man in der C-Gleichung k durch kleinere Werte

als -5-, so nähern sich die Scheitelpunkte D und D' und mit
ö

ihnen die gemeinschaftliche Scheiteltangente und Doppeltangente
der y-Achse und die Schnittpunkte E und E' der Kurve mit
der y-Achse den Punkten y ± a. Für den untern Grenzfall,

also für k — 0, fällt die Doppeltangente in die y-Achse ;

die Schnittpunkte E, bezw. E', der Kurve mit dieser fallen mit
den Scheiteln D, bezw. D', in y a, bezw. y — a, zusammen,
und unsere Kurve reduziert sich auf die einfache y-Achse von

+ 00 bis — 00.

Mit von -75- an steigendem k entfernen sich die

Doppeltangente, wie die Schnittpunkte E und E' der Kurve mit der
y-Achse immer mehr von dem O-Punkte und fallen für den
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obern Grenzfall k —= — =7 )—=—J ms Unendliche; die

r 00 (ungerade)
Kurve reduziert sich dabei im endlichen Gebiete auf zwei der
negativen Hälfte der x-Achse unendlich benachbarte Geraden,
die im Ursprung zu einer Spitze zusammenlaufen.

Die Bewegung der beiden Punkte gestaltet sich für diesen
Unterfall in gleicher Weise, wie die Verfolgungsbewegung im
vorigen Unterfalle. Im Ursprünge aber, also im Punkte, wo A
und B zusammenstossen, hört die Bewegung plötzlich auf. Der
Lauf von B kann hier auch auf dem zur x-Achse symmetrischen
Kurvenaste im III. und IV. Quadranten erfolgen.

q gerade Zahl

r
Unterfall 3. k wo r._> q.ungerade Zahl'
Setzt man den Wert von k in der symmetrischen

Gleichung ein, so erhält man

r-j-q q r — q r — q — 2q 2q

_ _ y • y r y
2 ±

r
SL

r + q

Je nachdem y pos. oder neg. ist, wird y
r ebenfalls po-

2j
sitiv oder negativ. Da ferner y

r für positive und negative
Werte stets positiv ausfällt, so liefert unsere C-Gleichung für
dieselben positiven und negativen Werte von y dieselben
Werte von x, nur mit entgegengesetztem Vorzeichen. Die Kurve
liegt also symmetrisch zum O-Punkt. Für y o wird x 0.

Ferner wird

dx

dy
_a

Die 1. Ableitung 0 ge¬

setzt, liefert
_q 2q

yr a
r also y ± a. Werte von y in der C-Gleichung

eingesetzt, ergibt
r + q

__ _
— q~

(±a) r ar-(±a) rr

(r + q)-ar (r-q) ¦+-M——1
2 |_r + q r — q J
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r 2 2
r -q

a. Die 2. Ableitung wird

d2x

dy
3,
2

- q — r
r

y + a

__
' q + r

r r
a .y

y t= + a gesetzt, liefert

(±a)dJx q
dy2" ¥

+ -+ d. h.
— a

y t= + a macht x — -
r"— q

+
_________

(±a) r
-

=-- 4
2

' [a aj

— a » ____ r • qx — +¦ o o ¦ a :
2 2

r — q

k • a zu einem Minimal-
1 _2 werte und

k • a zu einem Maximal-
1 k2 werte.

Die Kurve schneidet die y-Achse ausser im Punkte x 7= 0,

y _777 0 noch in den Punkten y Vfe a ; denn setzt

man in der C-Gleichung x — -= • y

q_ q

a""y

x =7= 0, so folgt y 0 und
__ __ ____

1 r r
y a y

(r + q) aI (r-q) '1

(r + q) • ar (r-q)

oder

2q 2q

: 0, also y
r (r — q) a r

• (r + q),

y ± V (^)q • a ± a(^)2k- Wird y pos. und

neg. grösser als r + q\q"
a, so nimmt x pos. und neg. zu

vr-q
und wird für y ± 00 zu x 7= + 00.

Als Beispiel dieses Unterfalls sei hierorts der Fall
q gerade Zahl 2

ungerade Zahl 3

angeführt. Setzt man den Wert von k in der C-Gleichung ein,
so erhält man

k
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3 + 2
__

3—2 5 2_ J_
3 33 o 3 o 3 3

y a -y 3y 3a y
3 + 2

_r _ -.n a
3^y3_5a3J -"¥-

2
10 a

oder

3yy —5a I 10 a x. Wir erheben diese Gleichung in die

3. Potenz und bekommen

[_1 £ JL A "1

y4— 15a3y3 + 75a3y3 — 125 a41 1000a2x3

__
11 _8 ]_

27y6— 405a3y3+2025a3y3— 3375a4y - 1000a2x3 0

27 y5— 135 aV- 3 y¥ (yT- 5 aJ I - 3375 a4y — 1000 a2x37= 0.

Der eingeklammerte Faktor des 2. Gliedes stimmt aber
vollständig mit der linken Seite der Ausgangsgleichung überein ;

wir erhalten somit als C-Gleichung den Ausdruck
27 y5— 1350 a2y2x - 3375 a4y - 1000 a2x3 0.

Die Gleichung ist von der 5. Ordnung und beginnt mit Gliedern

ersten Grades; die Kurve geht deshalb einfach durch den

O-Punkt und die x-Achse berührt sie als Tangente in drei zusammenfallenden

Punkten. Unsere Kurve besitzt somit im Ursprung
einen Inflexionspunkt ; die x-Achse ist zugehörige Wendetangente.
Ausser im Punkte y 0 schneidet die y-Achse die Kurve noch

r 3

in den Punkten y — ± \-zJ) "•
a ±5 a ± 3,34a. Die

r-qScheitelpunkte haben die Koordinaten y 4 a, x — + —_—-^-y • a
r — q

+ -=- a =777 + 1.2 a und ihre zugehörigen Scheiteltangenten be-
o

sitzen die Gleichungen x + —- a. Der oo ferne Punkt der

Kurve ist ein Doppelpunkt und zwar speziell eine Spitze mit
der goo als zugehörige Spitzentangente. Die Kurve hat die

Parameterdarstellung

_
a

y Aa, x y
__ ^

X3
_

J_

3 3

_3

10
ai3-5a3
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Wir bestimmen einige Kurvenpunkte und erhalten :

Für A==±0 2 3 4 oo wird
y 7= + 0 2a 3a 4a oo und

x= 0 + 0,94a + 0,29a +0,64a ± oo

Die Kurve (Fig. 8) besteht aus einem Kurvenaste, der sich

von + oo durch den L, IL, IV. und III. Quadranten nach — oo
erstreckt. Der O-Punkt ist ein Wendepunkt und die x-Achse

Wendetangente.
Die Länge des Bogens ODE beträgt

S 7= ¦

3

- 5 1 "

X3 X3

5 + 1

3 3

1 5*

1=0

3-\/5a==4,49a.

Er schliesst mit der y-Achse eine Fläche ein vom Inhalte
3

F..
a
~2 8_

3
4_

3

1 5*

^ „2 o Q1 „2— a z,81 a
16

1 0

Rotiert dieser Bogen um die x-Achse, so beschreibt er eine
Oberfläche vom Inhalt

0.7= /r a Alo. __8 + 4

1 5

105 2 .-, OQ 2
n • a — 41,23 a

8
3 3-l=0

und schliesst einen Körper ein vom Volumen
3

it a

~2 __TT
3

7_

3

1 59

180 _T 3-5 • nt • a •

77
20,85 a3.

-1 0

Rotiert dagegen der Bogen ODE um die y-Achse, so
beschreibt er eine Oberfläche vom Inhalt

0 8,43 a und schliesst einen Körper ein vom Volumen

Vy =77= 8,67 af



— 216 —

Ersetzt man in der Kurvengleichung dieses Unterfalles k
2

durch kleinere Werte als -tj-, so nähern sich auch hier die

Scheitel und die Scheiteltangenten der y-Achse und die jeweiligen

Schnittpunkte E und E' der Kurve mit der y-Achse den
Punkten y ± a derselben. Für den untern Grenzfall, nämlich

2
für k t= — —-= 0, fallen die Scheitelpunkte und die 2.

oo (ungerade)
Schnittpunkte der Kurven-Halbäste mit der y-Achse in die Punkte

y _= a, bezw. y — a, der y-Achse, in welch letztere auch

gleichzeitig die beiden Scheiteltangenten übergehen. Unsere
Kurve reduziert sich dabei auf die einfache y-Achse von + oo
bis — oo.

2
Nimmt dagegen k von -tj- an immer zu, so entfernen sich

Scheite] und Scheiteltangenten, wie auch die jeweiligen Schnittpunkte

E und E' der Kurve mit der y-Achse und fallen für
den obern Grenzfall k 1 unendlich fern. Die Kurve drängt
sich dabei im endlichen Gebiete in die x-Achse.

Die Verfolgungsbewegung auf der Nordseite der x-Achse

geschieht hier in analoger Weise, wie in den beiden vorigen
Fällen. Während aber im vorigen Unterfalle die beiden Punkte
A und B im Ursprünge plötzlich zur Ruhe kamen, bewegt sich
der Punkt A nach dem Zusammentreffen weiter über den 0-

Punkt hinaus nach + oo, und B entflieht in einer der
Verfolgungskurve kongruenten Bahn, der Fluchtbahn, durch den IV.
und III. Quadranten nach — oo.

III. Hauptfall k 1.

Ist die Geschwindigkeit des Punktes A gleich derjenigen
des verfolgenden Punktes B, also k 1, so findet man für die
Verfolgungskurve die Gleichung

y — 2 a2log nat — 4ax — a2 0,

die eine transzendente, speziell eine logarithmische Linie
darstellt. Lösen wir diese Gleichung nach x auf, so erhält man

y2 - 2 a2log|- - a2 y2 - a2log (^j- a2

4a 4a
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Diese C-Gleichung liefert für dieselben pos. und neg. Werte

von y nur ein pos. x. Die Kurve liegt somit symmetrisch zur
x-Achse und ganz auf der Ostseite der y-Achse.

Nach dieser letzten Gleichung berechnen wir einige Kurvenpunkte,

indem wir dem y aufeinanderfolgende Werte erteilen,
und erhalten :

Für y + 0 0,1a 0,2a 0,5a a 2a oo wird
x + oo 0,91a 0,56a 0,16a 0 0,41a oo.

Die Kurve (Fig. 9) besteht auch hier aus zwei kongruenten
Ästen, von denen der eine ganz im I., der andere ganz im IV.
Quadranten liegt. Beide Äste berühren die y-Achse, die
gemeinschaftliche Scheiteltangente und Doppeltangente, in den Punkten

x=±a und nähern sich sehr rasch asymptotisch der pos. x-
Achse.

Aus der obigen C-Gleichung folgt

x + — log y + -77- log a _- Wir differen-
4a 2ÖJ'2& 4

tieren diese Gleichung und erhalten

_iy_
2ay

dx 77-^- y2 — a2 also

2\2

dy —r_——~ dx ; ferner ist
y-a

ds=W1 + (f)"W1+ftar)
V 4a2y2 2ay

J

Rektifikation: Bezeichnet man den Kurvenbogen mite,
so folgt

8
V (2a "f" 2yjdy ' integriert, liefert

°4i.+>"].:=M£+H::-
So hat z. B. der Bogen DC eine Länge von

a T v2 ly==2a a T4a2 a2 1
s=—M-^ + l°gy —— —_. +log 2a __—Ioga2l_2a2^ 6JJy=a 2|_2a2 ,6 2a2 6J
Bern. Mitteil. 1909. Nr. 172a
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~ Tl,5 + log2l j Fl,5 + 0,69J 1,09a.

Quadratur: Bezeichnen wir die von dem Kurvenbogen,
der y-Achse und zwei Abszissen eingeschlossene Fläche mit F.,
so wird diese

y- y- -

yi
Nun ist aber

yi yi

{wa~"Ty\7rJ

a 2

a

lìji)alog(^)dy=77=-ary.log|---a-y

F
y [l2a ' 2 J 2

y1 0 und y2 a wird
12a ^ 2 y

a y a 1y
yiogf-4yJyl-

also

Für die Grenzen

r 2 2 2 21 2

Fy -= j2 + y - -g- log — — --- -g-, und dies ist der Inhalt
des oo langen Flächen Streifens, der vom Kurvenaste DE + oo
und der pos. x-Achse eingeschlossen wird; er hat also einen
endlichen Inhalt.

Kubatur: Den durch Rotation der Fläche F um die y-
Achse entstehende Körper habe das Volumen V ; dann ist

/y2xz • n • dy 7= 7t • I

yi

y2 /-2a» log (i)
4a
/

dv

îî?7' [>-4»yio.(i) + *a<(.os ^'-2,y
yl L

+ _a4log-y- + a4ldy

!.—

—=y 2 /*y 2

y 2 2 3 4 ,2 2, /y\ j_5~3ay4ayJr4 4aylogu)dy

+ j 4a4Aog --Vdy + / 4 a4log (^ dy • Es ist nun

B
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I u • dv u • v — I v • du

V dy 4 2 3 V
u log — du -— u-v -ay log —ay 3 a

J i 2 2j 4 2 3 / j /4 2 2-, 4 a 3dv 4aydv v ="ay /v-du=/-g-aydy=—ay
* /i22i y, * 2 S, y _ 2 3A j 4a y log-dy -a y log- gay ;

auf gleiche Weise gibt

B J*4 a4 (log IJdy 4a4y (log |-J- 2 J*4a4log ^ • dy

und /y y
4a log- dy 4a4ylog "~— 4a y ; es wird somit

a a

V n \f 2 2 3 - 4 4 2 3, y 4 2 3

+ 4a4y (log |-J-4a4y log ^ + 4a4y]^.
Für die Grenzen y 0 und y2 a wird

TC

V, Î6^li-|»V»+5aV-(logj)-(^V-4a«ylogi
\ 1 y a

+ 4a4y
/. y o

=ìi& [ir ~ 9&5+5aJ ~ 45'c** °'98a3 ' dies ist

der Inhalt des Körpers, der durch Rotation der Fläche DO 00
um die y-Achse entsteht.

Die Verfolgungsbewegung für k 1 kommt derjenigen des

1. Unterfalles von Hauptfall I ziemlich nahe und kann hier wie
dort im I. oder IV. Quadranten stattfinden.
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