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0. Schenker.

Uber eine dem ebenen Dreieck eingeschriebene Parabel.

(Eingereicht den 31. Oktober 1908).

Die Seiten eines Dreiecks (ABC) umhiillen mit der
Zentralen (A’B’C’) der Apollonischen Kreise eine Para-
bel, der die folgende Eigenschaft zukommt: Bestimmt
man von irgend einer ihrer Tangenten die Schnitt-
punkte (U, B und 6) mit den resp. Dreiecksseiten (BC
CA, AB), so treffen sich die Kreise mit diesen Schnitt-
punkten zu Zentren, durch die resp. Dreiecksecken
(A, B, C) in zwei Punkten O und O’.

Beweis: M sei der Mittelpunkt des Umbkreises (siehe
Figur), A’, B" und C’ seien die Zentren der Apollonischen Kreise,
so stehen bekanntlich AA’, BB’ und CC’ bezw. senkrecht zu
AM, BM und CM. Die Seite AB bestimmt mit A’B’ auf den
Seiten CA und CB zweil &hnliche Punktreihen (8B... und %...).
Und die Verbindungsgeraden ihrer entsprechenden Punkte (%...
und #U...) umhiillen unsere Parabel. Zwei Paare entsprechender
Punkte sind A, A’ und B, B’ und sei U, B ein beliebiges drittes
Paar, so besteht die Relation:

BA"  B% )
AB" =~ A3

Wenn wir in trimetrischen Koordinaten rechnen und das
Dreieck ABC zum Grunddreieck wihlen (also einen beliebigen
Punkt P durch seine Abstinde x,, X, und x; von den bezw.
Dreiecksseiten bestimmen), so miissen wir zur Bestimmung von
A und B zunichst die Strecken berechnen: B, CA, AB und
C®B. Setzt man BB =p, so ist AB = AB’ — p,
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BC =sinB — AB (Der Kreis um ABC hat hiebei den Durch-

messer 1), BY = Eﬁ, A% nach (1) und C¥ = BY — sin A,

Man findet aber leicht fiir AB’ und A’ B:

po sin® C ) P sin’ C
AB ~ sin(C —A)’ BA ~ sin(C — B)
somit wird:
. 2 5
__sin"C —p-sin(C — A)
At = sin (C — A)
g0  sinB-sin(C — A) — sin’ C 4+ p-sin (C — A)
— sin (C — A)
COS2A5coszc—sinzC—l—p-sin(C——-A)
- sin(C — A) -
____sin:"C——singA—sinQC—J—p-sin(C——-A) dor
— sin (C — A) odet
BC = p-sin(C — A) — sin’ A : sin (C — A)
__sin(C — A) sin®C —p-sin(C — A) .
Bl=mo—5 " sin(C — A) nEn
sin®C — p-sin (C — A)
Bl = sn(C —B)
sin° C — p-sin (C — A) ;
CA = Sn(C — B — sinA
__sin°C — p-sin (C — A) — sin A - sin (C — B)
__ sin (C — B)
sin® C — p - sin (C — A) + sin’ B — sin®C
= S (€ —B) odel

CYA = sin®B — p-sin (C — A) : sin (C — B).
Die Strecken BEG und A6 ergeben sich nach dem Satz des

Menelaus:
BB » /B @\ ! = 1, woraus

C®B . \A(S) . BY
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BE CB BA  p-sin(C— A) —sin’A

AGC ~ A3 'C¥ sin (C — A)
_ sin (C — A)
sin°C — p sin (C — A)
sin’C —p-sin(C —A) sin (C — B)
sin (C — B) sin? B — p-sin (C — A)

= p-sin(C —A) — sin” A :sin° B — p - sin (C — A)
Also ist
B6 = k[p-sin(C—'A)—singA]
AG=k [sin®B — p-sin(C — A)]:
da aber B6 4+ AG = sin C ist, so wird
k = sinC:sin’ B — sin® A
= sinC:(sin B 4 sin A) (sin B — sin A)

o~ BFHA B—-A B+A . B—A
= sinC:4sin g 1 €08 —5— €08 —5— - Sin —
= sinC:sinC-sin(B— A)=1:sin(B — A)

also wird:

BG = p-sin(C - A) — sin’ A:sin(B — A)
AG = sin”® B — p-sin (C — A):sin (B — A)
Kommt man iiberein, dass fiir einen Punkt im Innern des
Dreiecks alle drei Koordinaten positiv seien, so sind nach dem
vorigen die Koordinaten von %, B und G:
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Nunmehr kann man die Gleichungen der Kreise aus ¥,
B, und € durch A bezw. B bezw. C aufstellen, wenn man beriick-
sichtigt, dass der Abstand zweier Punkte P’ und P’’ mit den
Koordinaten x/, x,/, x,” und x,"”’, x,”’, %,/ gegeben ist durch:
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PP =(x,/—x,")’sin°A+(x,—x,"")*sin2 B} (x,/ — x,”")’sin2C
:2sinA.sinB.sinC

(siehe die Mittellungen der naturforschenden Gesellschaft in

Bern 1906),

und dass die Koordinaten der Ecken A, B und C sind:

X, X, X,
A sin B.sinC 0 0
B 0 sin C.sin A 0
C 0 0 sinA.sinB

Gleichung des Kreises aus U:
p.sin(C—A)—sin®B . |
sin (C — B) *sinl
. 92 . 2
, sin"C—p.sin(C — A) .
+- stC[ sn (C — B) -sin B
p.sin(C —A)—sii’B . [
sin (C — B) sl g
sin’ C — p . sin (C — A)
sin (C — B)

sin2 A . (sin B . sin C)’+ sin2 B. [

=sin2A. xf—l—— sin 2 B[X2 —

2
-+ sin 2 Clx3 — - sin B] (2)

Gleichung des Kreises aus B:

sin 2 A[p n it =l == Bl . sin C]d+ sin 2B . (sin A . sin C)°

sin (C — A)
+sin2C.[Sin2CS;II()C'S_ing_A)-sinA]z )
—sin2 A [xl — B Sins(ig(z 4) 5 L 0]24— sin2B- x,°
+ sin2C [xs - sin’ C S_mp(Cbil ES —a) sin A]z

Die gemeinsame Sehne dieser beiden Kreise hat deshalb
(2) — (8 = 0 zur Gleichung oder:
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sin2 A .sin’B.sin’C —sin2 B.sin® A . sin®C

. p.sin(C—A)— sinA .
==sin2A.2x S (€ — A) .sin C

o _p.sin(C-—A)—singB. .
sin2B.2x; s (C—B) sin C

4+ sin2C.2x3[sin20 —p.sin (C—A)]
sinA.sin(C—B)—;sinB.sin(C — A)
sin (C — A).sin (C — B)
oder da sin A .sin (C — B) — sin B.sin (C — A)

_cos2B—cos2C cos2C — cos2 A

2 * 2

— c08s2B —cos2A:2=sinC.sin(A — B) ist

und :
sin2 A sin’ B . sin® C — sin 2 B, sin” A . sin’C
= 2sin A .sin B.sin C[cos Asin B.sinC — cos B.sin A .sinC]
— 2sinA.sin B.sin Csin C. sin (B — A),

so erhilt man daher fir (2) — (3):
2.sinA.sinB.sinC.sinC.sin(B—A)

(C — A) — sin®A

o p . sin e

—sm2A.2x1 i (0 — & sin C

o p.sin(C-——A)——sinQB. .
s1n2B.21ff:2 SnC —B) sin C

. . 5 i sin C. sin (A — B)
+ sin2 C .2x3[31n C—p.sin(C— A)] sin(C — A). sin (C—B)
Dividiert man noch beiderseits durch 2. sin C.sin (A — B),
so gewinnt man die Gleichung :

A R p.sin(C — A) — sin’A

sin A.sinB.sin C =sin2A.x, sin(A — B).sin (C — A)

) p.sin(C — A) — sin°B

Tsm2B. X, B — ) .sn (A —B)

. p.sin(C — A) —sin’C

-+ @02 G, x, sin(C — A).sin (B — O)

[Zur Abkiirzung kann noch p.sin(C — A) =P gesetzt
werden].

(4)




— 161 —

welche Gleichung durch Vorriicken der Buchstaben und Indices

unverindert bleibt, womit der vorangestellte Satz bewiesen ist.

Es eriibrigt, noch die Gleichung unserer Parabel aufzu-

stellen. Sie ist die Enveloppe der Geraden U B, deren Gleichung
sein moge :

a,x +a, X, + a,x, =0 5)

Die Koordinaten von % und B missen diese Gleichung

erfillen und dies gibt uns zur Bestimmung von a,, a, und a,
oder vielmehr ihrer Verhiltnisse die beiden Gleichungen :

a, (P — sin’ B) . sinC + ag(sinzC—P).sinB e= 0

a, (P— sin® A) sin C + a, (sin®C — P).sin A = 0, so dass
a, == a, (P — sin® C) . sin B : (P — sin® B). sin C

a, = a, (P — sin°C) .sin A: (P — sin* A) . sin C

Substituiert man diese Werte von a, und a, in Gleichung
(5), so bleibt:

(P — sin’C). (P — sin® B) . sin A x, - (P — sin®A)(P — sin°C)x,
+ (P —sin®B). (P —sin®A) x, = 0, oder

2 . 2 s
P? [xl.sinA + x,.sinB 4 x,.sin C“-—2P[(Sm B+ Sl;l C)sin A x4

T (sin°C - sin®A) . sin B x, + (sin’ A 4 sin® B) sin C. Xg] (6*)

2 2
+ sin’B . sin®C . sin A.. x; 4 sin°C . sin°A . sin B .
-+ sinzA.singB.sin'C.x?,: 0.
Dies ist eine quadratische Gleichung in P, d. h. durch jeden
Punkt (x, x,, x;) der Ebene gehen 2 Tangenten an die gesuchte

Kurve; fiir einen Punkt der Kurve selbst fallen diese zusammen,
und -die Bedingung hiefiir ist:

[(sin2 B + sin°C) . sin A x, -+ (sin’C -}- sin°A) . sin B x,
2

+ (sin®A - sin® B) . sin C . x3]
= 4(x,.sin A + x,.sin B 4 x,.sin C). (67)
« 2 . 92 . . 2 . 0 .
.(sin" B .sin"C.sin A .x, 4+ sin"C.sin"A.sin Bx,
4 sin’A . sin’ B.sinC. x,)
Bern. Mitteil. 1909 Nr. 1721.
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welches die Gleichung unserer Parabel vorstellt. Dieselbe kann
auch in der Form geschrieben werden:

2 .sin” A (sin’ B — sin® )’ - x,’. sin’ B (sin? C — sin’® A)’
-+ x32 .sin® C (sin® A — sin® B> — 2 X, .X,.siln A.sin B (sin® B
— sin’0). (sin® C — sin® A)
— 2x,.%,.8inB.sinC (sin® C — sin® A) . (sin® A — sin’ B) (6)
— 2x,.x,;sinC.sin A (sin® A — sin® B) . (sin® B — sin’C) = 0

Um die Koordinaten des Brennpunktes ermitteln zu konnen,
erinnern wir uns an die folgende Brennpunktseigenschaft eines
- Kegelschnitts:

X

Die Verbindungsgeraden irgend eines Punktes mit den
beiden Brennpunkten bilden mit den Tangenten aus diesem
Punkt bezw. gleiche Winkel.

Hieraus folgt fiir einen dem Grunddreieck (ABC) einge-
schriebenen Kegelschnitt, dass die Koordinaten des einen Brenn-
punktes proportional den reziproken Werten desjenigen des
andern sind.

Im Falle der Parabel ist der eine Brennpunkt (F~,) der
Berithrungspunkt mit der unendlich fernen Geraden, der die
Gleichung zukommt: x, .sin A 4 x,.sin B + x,.sin C == 0.
Dessen Koordinaten x und x ergeben sich daher

1Fo? XoFeo 3Fe
aus (6°), und
Xipew - SIMA X, .sinB 4 x,, .sinC =0
wie folgt:
x, | sin B.. (sin” C + sin’A) — sin B (sin’ B + sin’ C)J

+ x, sin C . (sin® A «l—inzB)—sinC(sLnZBﬁ—sinzC) = {)

sin® C — sin®A  sin C sin (C — A) X

®sin’ A — sin’B  sinB sin(A — B) 3

und dhnlich:
. si® B — sin®C  sin C __sin(B—0O) X
! % ginA — sin’B  sinA sin(A — B) 3
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Somit besteht fir x,;_, X, und x,., die Relation:
sres, == SN (B — C):sin (C — A):sin (A — B)
und somit fir den im Endlichen gelegenen Brennpunkt F :

1 1 L
oF 3 Xgp = sin(B—C) "sin(C— A) " sin(A — B)

XIF(\) : szf\J - X

XlF:X

Die Direktrix bestimmt sich als die Polare des Brenn-
punktes F. Die Gleichung der Polaren des durch

2
1 *p
— 2a,,.a,,.X%X,.X, = 0 gegebenen Kegelschnitts bezogen auf den
Punkt F lautet:
2 L2 2
Ay Xy Xp T By - X - Xop |- 8570 Xg. Xop — 85 8,)(X) Xop - Xp Xy )
— By Bgy (X Xy T Xy - X)) — 8.8, (X Xyp X, . X)) =0 (7)
Bemerkung: Dass die Polare eines Kegelschnitts diese
Gleichungsform hat, kann man leicht bestitigen, indem man die
Gleichung der Kurve durch die Gleichungen zweier Tangenten
und der Beriihrungssehne ausdriickt.
Nun ist a,, = sin A . (sin’ B — sin’ C)

a,, == sin B. (sin’C — sin® A)

2, _ 2 _2 2.2 o ] 2 )
a + 8y X, 8, X, —2a;,.8,.%,.%X, — 28,.8,.%,.X%,

a,,==sin C. (sin? A — sin® B)
X, proportional sin(C — A).sin(A — B)
Xop » sin (A — B).sin (B — C)
Xor » sin(B — C).sin (C — A)
Also geht Gleichung (7) iiber in:
sin® A (sin® B — sin® 0. sin (C — A) . sin (A — B) . x,
+sin’ B (sin? C — sin®A)? . sin (A — B).sin (B — (). x,
-+ sin? C (sin® A — sin®BY . sin (B — C).sin (C — A). x,
— sin A . sin B (sin® B — sin® C). (sin® C — sin® A)
[xllsin(A—B).sin(B -0 + xz.sin(‘C — A).sin(A — B)]
— sinB. sin C (sin® C — sin® A) (.sin’ A — sin® B)
[%,.sin(B — C).sin (C — A) 4 x,sin (A — B).sin (B — C)]

— sin C.sin A (. sin® A — sin’ B) (sin® B — sin® C)
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[x,.8in(C — A).sin (A — B) 4 x,-sin(B— C).sin(C — A)] =0
oder indem man beide Seiten durch

sin (A — B).sin (B — C).sin(C — A) dividiert:
sin“A . sin (B — C).x, -+ sin’B.sin(C—A)x,-}-sin*C.sin(A —B)x,
—sin’ A . sin’B[x, . sin (B — C) -} x, . sin (C — A)]
—sin® B . sin® C [x,.sin (C— A) + X,. sin (A — B)]
—sin®C . sin’ A [x,.8in (A — B) 4 x,.sin(B—C)] =0, oder
x,sin’ A sin (B — C) [sin® A — sin°B — sin” C]
+ Ey sin” B . sin (C — A) [sin® B — sin®C — sin® A] (8)
+ x,.sin’ C . sin (A — B) [sin’ C — sin’A — sin®B] = 0

Nun 1st aber:

sin®A — sin°B — sin®C =~%~[1 —c0s2A —1

'-|—cos2B-——-1—[~cosZC:|

:% ——1—{—0052B—|—cosQC—-cos2A]
——--% -—2cosA.cos(B-—C)——-2cos?A]

— —rg cosA .sinB.sinC und #dhnlich
sin B — sin®C — sinA = — 2.cos B.sin C.sinA
sin®C — sin® A — sin°B = — 2.cos C.sin A .sin B

Fithrt man diese Werte in (8) ein und dividiert man sodann
beide Seiten der so erhaltenen Gleichung durch —sin A. sin B.sinC,
so bleibt:

x,.sinA.cosA.sin(B— C) 4 x,.sinB.cos B.sin(C — A)

+ x;.8iInC.cosC.sin (A — B)= 0 (8*)

fiir die Gleichung der Direktrix. Dieselbe geht aber durch den
Hohenpunkt des Dreiecks ABC (mit den Koordinaten cosB.
cos C, cosC.cosA, cosAcosB) hindurch, weil (8) durch die-
selben identisch erfillt wird, wie es auch sein soll.
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