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Fritz Iseli.

Die Riccatische Gleichung.

Einleitung.
Am Ende des 17. Jahrhunderts und im Anfang des 18.

beschäftigten sich die hervorragendsten Mathematiker jener Zeit
mit dem Problem der Trajektorien. Hiebei gelangten Nikiaus I.
Bernoulli, Nikiaus II. Bernoulli, Johann Bernoulli,
Taylor und andere zu Differentialgleichungen 2ter Ordnung, und
da und dort findet man Versuche, dieselben zu integrieren. Mit
einer Differentialgleichung 2ter Ordnung beschäftigte sich auch
Graf Jacopo Riccati (1676—1754). In Venedig geboren,
wurde der mit 10 Jahren vaterlose Knabe dem Jesuitenkollegium
in Brescia anvertraut, wo er überraschende Fortschritte machte.
Von 1693—1696 studierte er in Padua und kehrte dann nach

Venedig zurück. Von hier aus lehnte er Berufungen nach Padua,
Wien und Petersburg ab. Ziemlich spät, 1747, siedelte er nach
Treviso über, wo er starb. Er stand mit zahlreichen Gelehrten
aller Länder in so regem Verkehr, dass er sich der Mithülfe
seiner beiden Söhne Vincenzo und Giordano bedienen musste.

Von 1720—22 war Nikiaus II. Bernoulli Hauslehrer in
einer Adelsfamilie in Venedig und erneuerte während dieser
Zeit die Bekanntschaft mit Riccati, die er schon bei einem
frühern Aufenthalt 1706 gemacht hatte. Von Riccatti erhielt er
einen Aufsatz, damit er ihn seinem Vater Johann I. Bernoulli
zur Begutachtung einsende; von dieser sollte die Veröffentlichung
abhängen. Sie muss günstig gelautet haben; denn die Abhandlung

erschien in der Zeitschrift «Acta Eruditorum» im Jahr 1724

(Supplementa VIII, 66—73), nachdem sie wahrscheinlich schon
früher in die Öffentlichkeit gelangt war, da in derselben
Zeitschrift schon im November 1723 von ihr die Rede ist.
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Wir wollen den Gedankengang Riccati's an der Gleichung

xndx dy + (dy)2 (1)

verfolgen, wo x und y zwei abhängige Variable sein sollen. Zum
bessern Verständnis fügen wir eine unabhängige Variable p bei,
die sich Riccati nur hinzu dachte. Unsere Gleichung lautet
daher:

x
dp2 - d? + w (2)

Wie aber x, y und p zusammenhängen, ist unbekannt. Um irgendwelche

Beziehung zwischen den drei Grössen zu erhalten, setzen
dx dx

wir im Sinne Riccati's : — dp, («), wo — konstant ist. Also
q q

ist auch dp konstant. Ferner sei u dp dy, (/?), wo nach (a)
dp auch hier unveränderlich ist.

Durch Differentiation nach p erhält man aus («) und (ß):
2 2

dx dq dy du

dp5" Vdp2- dp
und Gleichung (2) geht über in :

ndq du 2 /o\
Xdp"=dp-^U (3)

Da aber -^ —^
• -=- und

dp dx dp
du du dx „
-5— -j- • -=- ist, so folgt, wenn
dp dx dp

dx
für -5- q gesetzt wird :

dq du ;

q'dx ,!-dx + U

x„ .dq du xl (4)
dx dx q

Diese Gleichung von Riccati ist zwar von der lten Ordnung ; aber
eine Trennung der Variablen ist trotzdem unmöglich, wenn q
von u und x abhängig ist. Riccati fügte daher die Bedingung
bei, dass q nur von x allein abhangen solle, und zwar so, dass

q xm sei. Unter dieser Annahme schliesst Riccati seinen Auf¬

Bern. Mitteil. 1909. Nr. 1712.
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satz mit der Aufgabe, Werte von m so zu bestimmen, dass eine

Trennung der Variablen möglich werde, während der Exponent
n keiner Beschränkung unterworfen sei. Wir werden uns im
folgenden mehrfach mit der Aufsuchung solcherWerte beschäftigen.

Unmittelbar hinter Riccati's Aufsatz sind Bemerkungen von
Daniel Bernoulli abgedruckt, aus welchen hervorgeht, dass sich
die Mathematiker Nikiaus L, Nikiaus IL, Johann I. und
Daniel I. Bernoulli mit diesem Problem befasst haben und
dass sie alle unabhängig von einander zu denselben Werten
von m gelangt sind, die die Trennung der Variablen ermöglichen.

Wrenn q xm so ist
dq m„ir^ mxdx

und Gleichung (4) geht über in :

n m_i du u2
x • mx — ^—dx^ xm

m du 2 n + 2m —1 ,K\x^+u=mx^ (5)

Dies ist wieder die Riccatische Gleichung.
Im Novemberheft der Acta Eruditorum (pag. 502—510)

kam Riccati auf seinen früheren Aufsatz zurück. Er gab der
Gleichung hier eine etwas andere Form, nämlich

xmdx du + -^, (6)
X

fügte aber die von ihm selbst ermittelten, die Trennung der
Variablen ermöglichenden Bedingungen für n nicht bei.

Daniel Bernoulli veröffentlichte im November 1725 in
obgenannter Zeitschrift seine Methode, die Werte von n in der
Riccatischen Gleichung, wie unsere Gleichung nun schon
genannt wurde, zu finden. Er schrieb die Gleichung in der Form

a xn dx -f- u2 dx b du (7)

und behauptet, wenn n — m, wo m vorderhand noch unbekannt
ist, eine Trennung der Variablen gestatte, so müsse dies auch

möglich sein

1) für n —
m-f-1

2) für n — — m — 4
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Die Richtigkeit der ersten Behauptung kann wie folgt bewiesen
werden. Man substituiere in (7)

u — ; du ô dy, so dass dieselbe die folgende Form
y y

annimmt
dx -f- axny"dx — b dy

n

-L_ s^^ + Ms
Hierin setzen wir x sn +1 : dx ;—;— so dass wir er-

n -f- 1

halten :

n

s
n + 1ds +y2ds —^-i^bdy (8)

Dies ist eine Gleichung, die mit (7) sehr grosse Ähnlichkeit hat.
Wenn in letzterer die Variablen für n m separierbar sind, so ist

dies in (8) möglich, wenn n — :—- ist.
m -\- 1

Um den Beweis für die zweite Behauptung zu erbringen,
setzen wir in Gleichung (7)

b y
X X"

b 2y 1
du —2 dx ^ dx -j—- dy

X x' X"

2 b2 2by y2
U 2 3 1 4XXX,2

a xD dx -) j dx - / dx + Ij- dx — 2 dx
x xxx:oder

2 i
a xn dx -f- -=-r dx —- —^ dy

X x"
2

axn + 2dx + ^2-dx=:bdy
X

Nun werde x —, dx rj- ds gesetzt,
s s

und es folgt:

—f dx + — dy

as"11-4 ds - yJds bdy (9)
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Durch Vergleichung von (9) mit (7) ergibt sich, dass n — — m — 4
die Trennung der Variablen ermöglicht, sobald dies für n — m'
zutrifft.

Es muss nun vorerst ein bestimmtes m gefunden werden,
damit sich die Variablen ein erstes Mal trennen lassen. Dies trifft
zu für n — m 0 ; dann wird (7) zu :

a dx 4- u dx b du
bdu

dx
I 2

a + u
Wenn also eine Trennung der Variablen möglich ist für m 0,
so muss sie auch durchgeführt werden können für n m — 4

m — 4
— 4 (nach Gleichung 9) und für n

4
=- — -=- (nach Gleichung 8). Setzt man die Werte, die man für

n sukzessive erhält, abwechselnd in (9) und (8) ein, so erhält man
dadurch alle Werte von n, die eine Trennung der Veränderlichen
ermöglichen. Zu denselben Resultaten gelangt man aber auch
durch wiederholte Anwendung der Relation

4A

wo l eine ganze Zahl bedeutet. Diese Beziehung bewies
allerdings Daniel Bernoulli nicht allgemein. Man kann sich aber
von deren Richtigkeit leicht überzeugen.

Da die Riccatische Gleichung für m 0 eine Trennung der
Variablen zulässt, so ist dies zufolge der Gleichung (9) ebenfalls

4-1
möglich für n — — m — 4 — — ^— -. Dies in (8) substituiert,

Li - 1 1

ergibt :

4-1
n=- 2-1 + 1

Durch analoge weitere Überlegungen erhält man folgende
Ausdrücke, die die Trennung der Variablen gestatten :

4-1 _ 4-1n~ 2-1 — 1 ' n~ 2-1 + 1

4-2 _ 4-2
n— 2-2 — 1 ' n— 2-2 + 1



— 93 —

4-3 4-3
2-3—1' 2-3 + 1

4-A 4-À
n2-1 — 1 ' 2À + 1

Vereinigt man die beiden letzten Werte, so erhält man die oben

genannte Relation

_ _ 4a
n~~ 2a + 1

Daniel Bernoulli fügte noch einige Bemerkungen bei.

Er sagt, alle Werte für n — seien zwischen 0 und — 4
u, A -J~ L

gelegen. Für À oo entstehe n — 2, ein Fall, der besonderer
Betrachtung wert sei. Dann geht (7) über in

a dx 2 -, j—2—(- u dx b du
x

Er transformierte diese Gleichung mittelst u — in

a dx dx b dy
2 I 2~ 2~.7 y

und bemerkte, dass diese Gleichung eine Trennung der Variablen
zulasse, weil alle Glieder derselben eine gleiche Exponentensumme

besitzen, was wir jetzt dadurch ausdrücken, dass wir
sagen, die Differentialgleichung sei eine homogene.

Riccati selber kannte die Werte, die die Variablen seiner
Gleichung zu trennen erlauben, genau, was aus dem Briefwechsel
zwischen Christian G|oldbach, Akademiker in Petersburg
(1690-1764), und Nikiaus II Bernoulli (1695-1726) hervorgeht.

Seit Riccati und seinen Zeitgenossen haben sich mehrere
Analytiker mit unserer Gleichung befasst, in neuerer Zeit unter
andern: Cayley, Lommel, Schläfli, Spitzer, Winkler, Glaisher,
Catalan, Feldblume, Riccardi, Serret, Sturm.

In den zwei ersten der nun folgenden Abschnitte sollen
bekannte Lösungen mittels Reihen und symbolischen Ausdrücken
besprochen werden. Im dritten Abschnitt werden wir mit Hülfe
der Methode der Integration durch bestimmte Integrale
Lösungen herleiten, die neu sein dürften.
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I. Integration der Gleichung durch Reihen.

§ l.
Wir geben der Gleichung folgende Gestalt:

d_1+bu2 cxn (l)1)dx

Sie ist von der ersten Ordnung, aber nicht linear. Deshalb
wenden wir nachstehende Transformation an:

J_ dv
_

du 3_/dv\2, 1 dv
bv dx ' dx bv2 \dx/ ^bv dx2

2 1 /dv\2

und erhalten:
2

dv¦ii-j — b c xn v 0. (2)
dx

Diese Gleichung kann als eine der Riccatischen Gleichung
entsprechende Hauptform genommen werden.

Haben b und c dasselbe Vorzeichen, so kann man sie in
der Form schreiben :

dv 2 n n /0^
—2" — a x v 0. (3)
dx

Haben b und c entgegengesetzte Vorzeichen, so erhält man:
2

TT + a x v 0. (4)
dx

Jede derselben ist in endlicher Form integrierbar, wenn der
betreffende Parameter n auch für die Riccatische Gleichung einen

geschlossenen Ausdruck als Stammgleichung liefert.
Wir substituieren nun in (2) die Reihe:

|)V S0 + S1 + S2 + S3 + +
dv

___
d2S0 d2Si d2S2 d2S3

dx dx dx dx dx

') Siehe Lehrbuch der Differentialgleichungen v. A. R. Forsyth,
S. 199 u. ff.

2) Siehe Forsyth, Differentialgleichungen, S. 124.
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und erhalten als neue Differentialgleichung:

• • =bcxDS0 + bcxnS1 + bcxnS2

+ bcxnS3++ •••

d So d Si d S2 d S3

dx2 dx dx dx2

+ bc xnS0 ; —j + bc x11 Sx u. s. w.

Derselben wird genügt, wenn man setzt

d So „ d Si
dx2

;
dx2 "' dx*

Diese Bedingungsgleichungen liefern der Reihe nach

S0 Ax + B
bcxn + 3

„ bcxn + 2

S + A
(n + 2)(n + 3)

bc2x2n + 5

+ B

S2 A
(n+2)(n+3) (2 n+4)(2n+5)

(n+1) (n + 2)

bc2x2n + 4

(n + l)(n+2)(2n+3)(2n+4)

Daher lautet das allgemeine Integral, wenn man die Terme, die
mit A und B behaftet sind, von einander trennt

bcxn+2

v_Ax|l+ (n + 2)(n + 3)

r v™„n+2

+
be x

2 2n + 4

n+2)(n+3)(2n+4)(2n+5)
•]

bcx11 bc x
2 2n + 4

t + l)(n+2) ' (n+l)(n+2)(2n+3)(2n+4)
Für n — 0 und bc +1 erhält man

.4
v Ax

+ B

1+-37+fr+
2 4

1","2T+4T"f'
Durch Addition und Subtraktion der zwei Reihen bekommt man

v A' ex + B' e~ x

Analog erhält man für n 0 und bc — 1

v Ax

+ B

oder

2 4 6 ~\l_£ + l-^4-3! ^ 5! 7! ^ J
2 4 6 6

i__4_J!__l.JE E l2!T4!r 6! 6! ^
v A sin x + B cos x.

¦]



— 96 —

§ 2.

Wir gehen aus von Gleichung (2) des vorigen §.
2

-^ —bcxnv=0 (1)
dx

und ersetzen die unabhängige Variable x mittelst der Relation

qz xq (2)
Um die Substitution durchführen zu können, hat man die

Formeln anzuwenden :

dv dv dz

dx ~ dz dx
2 2 2

dv dv dz /dz\ dv

Aus (2) wird:

dz q_! dz i. q_2 N-xq ;-—= (q_ l)xq ;x (qz)odx ~ ' dx2

Gleichung (1) geht über in:
2

2q — 2j q-2 i in

(qZ)_T~ S + ((i-1)(qz)~ll - bc(qz)«v 0

9 dv dv 5±J
(qz)2-^ + (q-i)q^-bc(qz) * v=o

Wir bestimmen die bisher noch unbestimmte Grösse q durch
die Relation

q
" + 1 -I (3)^ 2 m

so dass wir als Differentialgleichung bekommen:

i),*+/A_Ai*L_b.(iyT_om / dz \m y m dz \m/
2

dv m-1 dv

^-^¦d¥-bcV ° W

Es sei m— 1 2p (5)
2

dv 2p dv

d?""T dz--bcv 0 (6)
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Nun verändern wir die abhängige Variable durch
p

V WZ

dv p-i p dw
-^wp.z +z*1-

2 2

dv p_2 p_idw p dw

^ w.p(p-l)zP + 2pz* ^+^
Die Gleichung für w wird

2

£_bcw=elp+!>w.
dz z

(7)

Schliesslich ändern wir die abhängige Variable w durch die Relation
x_

w z2-1
und erhalten:

dt 1 dt / l\2 t

oder
2

^+ite-^-yv+i)-?-0
.+^+[{«-"-)ir'-(»+ï)l7-0 (8)

_dt
dz

Nun vergleichen wir hiemit die Bessel'sche Differentialgleichung:
2

dt 1 dt 2 2, t _ 0.T~H j-+(x— a —2 0 (9)
dx2 xdx x2

und deren Lösung:
t AJa(x) + BJ_,,(x). (10)

i_

Wird durch die Relation x (—bc)2z die unabhängige
Variable in z umgeändert, so lautet die aus (9) hervorgehende
Gleichung :

2

iL
2dz

Ihre Lösung ist:

+ii+[i(-»^r-»a]7=o <»)

t AJa|(— bc)2zl + BJ_a (—bc)2z (12)

Nun verifiziert man leicht, dass die zu (8) gehörende
Integralgleichung die folgende ist:

Bern. Mitteil. 1909. Nr. 1713.
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t A JP+"2 (— bc)^z + B J~ v + t) (_ bc) 2"z (13)

1st /p ++-) eine ganze Zahl, so hört (13) auf, die Stammgleichung

zu sein, und wir setzen in diesem Fall

t AJP+^ (— bc)2z +BKP+2|(—bc)?z (14)

Um zu untersuchen, ob und wann (14) der Gleichung (8)
nicht mehr genügt, suchen wir die Lösung der Gleichung (1)
und verwenden dazu der Reihe nach die früher verwendeten
Substitutionen :

w z2t; v zpw; 2p — m—1
n 1 1 1

q — + 1 — ; — z=xma 2 mm
und finden so, dass die Parameter der Bessel'schen Reihen, die
als Lösungen von (1) zu betrachten sind, lauten :

— n + 2"

Der einzige Fall, wo diese Art der Darstellung versagt, ist also
der, in welchem n + 2 0, d. h. n — 2 ist. Die noch zu
lösende Gleichung ist :

2

x2Ì- — bcv 0, (15)
dx2

welche mittelst der Substitution y Axi gelöst werden kann.')

g=AAx^; A=AA(À-l)x'-2
Die unbekannte Grösse / bestimmt sich aus

a2—a —bc 0

^l + l^r+ïbc
Daher sind die beiden partikulären Integrale :

y^Ax^^; j^bJ-^7^
') Siehe eine Arbeit von E. Lommel, Math. Annalen, Band III, 1871,

S. 475.
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und das allgemeine Integral:

§3.
Wir gehen wiederum aus von :

dx
und substituieren

x_

v yx2

2

^-bcxnv 0 (l)1)

dy __ j_ —-j, |dy
dx ~ 2 yX "r X dx

2

d5-=Tyx_l+x^ax+x^
woraus wir erhalten :

*,è+*£-[è+""-+']*-0 (2>

Hierin möge die unabhängige Veränderliche x in z umgeändert
werden mit Hülfe der Beziehung

n + 2

xn+2 z2 oder z x~
Dann bekommt man:

L V 2 / Z
dz2 ^ 2 2

Z dzj

+ zn^ n^^dy _| 1_+bcz2J y==0)

(2 \2
p erhält :

2dy dy [ 1 4bc 2] nz-i + z+-— =-4
p z y 0

dx2 dz L (n + 2)2 (n + 2)2 J

oder «-A+.Ö+fl^lV My 0
dx2 dx L l n + 2 I

(n + 2)2 -T

') Siehe G. Greenhill, Quart. J. Band XVI., S. 294.

(3)
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Durch Substitution von x —%—x z in die Bessel'sche Diffe-
n + 2

rentialgleichung erkennt man, dass die zu (3) gehörende
Stammgleichung die folgende ist:

Sie ist unbrauchbar, wenn n — 2 ist ; dann verwende man
die entsprechende Lösung des vorigen §.

§4.
Die Aufgabe dieses § soll darin bestehen, die Werte des

Parameters n zu bestimmen, welche erlauben, die Riccatische
Gleichung in geschlossener Form zu integrieren, d. h. es soll
die Relation

_ 4/
n— 2Â + 1

abgeleitet werden.

Dazu gehen wir von Gleichung (7) des § 2 aus:
2

z2-d^-bcz2y-p(p + l)y 0 (1)

Hierin sind in Bezug auf die Vorzeichen von b und c zwei
Fälle zu unterscheiden:

1. b und c haben dasselbe Vorzeichen. Dann nimmt die
transformierte Riccatische Gleichung die Form der Gleichung
(1) an.

2. b und c haben entgegengesetzte Vorzeichen. Dann lautet
die zu lösende Gleichung

2

z2^+bcz2y-p(p + l)y 0. (2)

Es solLzuerst Gleichung (1) behandelt werden. Wir
substituieren :

y eK w (3), wo a2 bc sein soll.
dy «z dw az m-~ e -j—p-ae wdz dz '
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2 2

dy _ e^
dw

dz2 dz2 + 2<
az dw

ie -r-dz + a
2 az

e w

und es folgt:

az
e '1

- 2

dw - dw

^2 + 2ad?
2 1

+ a w —
2 2 aï

- a z e
;

w —-POH

2

2 dw 0 2
z -:—p- 2az

dz
: dw
dl -P(p-f-l) w 0

A m i a m + 1 I A „m + 2 I A -m + 3 I

0z +A^ +A2z +A3z +

dz u

•1

Diese lösen wir durch Substitution folgender Reihen :

o2

A0mzm_1 + Ax(m + l)zm + A2 (m + 2)zn

+ A3(m + 3)2m + 2H

—2=A0(m- l)mzm_' + A1m(m+l)zm_1
dz

+ A2(m + l)(m + 2)zm + A3(m + 2)(m + 3)zm + 1-|

Wir setzen diese Werte nun in (4) ein und addieren die Glieder
gleich hoher Potenzen von z:

A0(m-l)mzm + A1m(m + l)zm+1+A2(m+l)(m + 2)zm + 2

+ A3(m + 2)(m + 3)zm + 3 +
+ A0-2amzm + 1 + A1-2a(m + l)zm + 2+A2-2a-(m+2)zm + 3+-
-A0p(p + l)zm-A1p(p + l)zm+1-A2p(p + l)2m + 2

-A3p(p + l)zm + 3+...
Diese Werte müssen addiert identisch verschwinden. Das

ist aber nur möglich, wenn dies auch für die einzelnen
Koeffizienten gleich hoher Potenzen von z gilt. Daher gilt:

A0 [m2 — m — p2 — p] 0.

Da A0 nicht null werden darf, weil sonst die ganze Reihe
verschwinden würde, so muss

m — m — p2 — p 0 sein,

woraus folgt : mt — p m2 p + 1
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Für n^ — p erhält man sukzessive

A - - A a -
S- ¦ A-A Pfc"1) r2

72ai — ° p ' 2 — o / 1 \ 2T

2

A3=-A, p(p--D(p- 2) a3
3

0

poppte--1K
-D(p-

-d8!
-2)(p-

Z

-3) 4

A, — An —^^ r +r r -n z
4 / l\ / 3\ 4

p(p—2")(P —l)(p 2,
Das erste partikuläre Integral der Gleichung (1) lautet:

,-p fi P »„ P(P —1) a2
„2

yi V«~' *-jr"+ 7r Af]2
PIP 2

3P(P-LHp-2) a3z3

IV. ^3! '

(5)(p-4)(p-d
und das zweite wird gefunden, wenn —p durch p -f-1 ersetzt wird

Baz-, oe z
az p -f- 1 P + l (p + l)(p + 2) a:2

(p + i)(p+aj
(p + l)(p+2)(p + 3) a3z3, 1

(p + l)(p+f)(p + 2)
3! J <?>

Die erste dieser Reihen bricht ab, wenn p null oder positiv
ganz wird, d. h. es wird irgend ein Glied geben, das zu null
wird. Alle auf dieses Glied folgenden Glieder der Reihe

nehmen die Form -r--f(p) an. -^- aber ist ein unbestimmter,

vieldeutiger Wert, und man darf hiefür einen willkürlich
gewählten, bestimmten setzen. Das partikuläre Integral y, zerfällt
mithin in zwei Teile, in einen ersten völlig bestimmten und in

einen zweiten, der mit der Unbestimmtheit-^- multipliziert ist,
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welche wir nun zu null werden lassen. Dann fällt dieser zweite
Teil weg, und nun ist das partikuläre Integral auf eine von
der ganzzahligen Grösse p abhängige endliche Zahl von Gliedern
reduziert.

Analog wird y2 aus einer endlichen Zahl von Gliedern
bestehen, wenn p negativ ganz wird.

Wir betrachten nun Gleichung (2). Diese wird durch die
Substitution y eiaz w verwandelt in

und ihre

2 dw 2 dw
z TT +2iaz -37—P(P + 1)W °

dz az

Integrale sind :

yi

und

A0eiazz-pr1 P(ia)z+ P/P-V^V
P / l\ 2!

p(p-yJ

y2 B0
iaz p + 1

e z 1 P + ;(ia)z

(p + l)(p + 2) (ia)2„2
~t~ 'i\ 2!

(p + 1)(p + f

+ 1

(7)

(8)

¦ + •

(9)

Das erste partikuläre Integral kann auf eine endliche Zahl
von Gliedern reduziert werden, wenn p null oder positiv ganz
ist, das zweite, wenn p negativ ganz ist.

Wenn also p eine ganze Zahl ist, so besteht stets eines
der vier partikulären Integrale (5), (6), (8) oder (9) aus einer
endlichen Zahl von Gliedern.

Nun zeigt § 2, dass p durch folgende Relationen mit dem
Parameter n der Riccatischen Gleichung verknüpft ist:

2p m-l; -1 21+1.r m 2

Setzt man darin für p die Laufzahl a ein und löst nach n
auf, so findet man als Bedingung, dass die Riccatische Gleichung
in endlicher Form integrierbar sei, die Beziehung

— _ ^X
n— 2a + 1'
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II. Symbolische Lösungen.
Als Ausgangspunkt wählen wir die Gleichungen (1) und (2)

des vorigen §.
2

z2f|y_-bcz2y-P(p + l)y 0. (l)i)
dz

2

und z2^+bcz2y-p(P + l)y 0 (2)
dz

Der variable Parameter p ist mit demjenigen der Ricca-
tischen Gleichung durch die Relation

n — -^—+-; verbunden.2p+l
Durch Anwendung der Substitution y uzp+1 erhält man

aus (1) und (2):

è+^+DJÏ-'.-o O)
2

und 0+ 2(p + l)i^+a2u O (4)

wo a =bc.
Um Gleichung (3) zu lösen, betrachten wir vorerst

2

dv 2

dz

oder, was dasselbe ist :

(D — a2) v (D + a)(D — a) v 0

wo D -=r bedeutet,
dz

Es ist D[eazf(z)] eM[D + a]f(z).
Mit Hülfe dieser Symbole findet man die zu (5) gehörende

Stammgleichung :

v-Ae" + Be_M (6)

Mittelst der Substitution x -~- z2 erhält man aus (5) :

') Siehe Forsyth, Differentialgleichungen, S. 202 u. f.

2 a'v 0 (5)
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2

_ dV dv 2 ^ in\
2Xd? + dx-aV 0 (7)

Nun differentiieren wir (7) (p + 1) mal nach x und erhalten dabei
sukzessive :

3 2

o dy i m r\ i o\ dy 2 dv „2x^ + (2.0 +3)^-^ 0

4 3 2

dv ,„»„.„, dv 2 dv
2x^+(2.1 + 3)£3-a2-2dx1 ' x ' 'dx3 dx2

2x4 + (2-2 + 3)^-a24 0

P + 3 p+2 p+1
o d v /n i on d v 2 d v - ,0.
2x17TÏÏ + (2.p + 3)1-^-a^T 0. (8)

p+i
d vFür setzen wir t und erhalten:

dx

2x0+(2'P+3)cb7~a2t==O- (9)

Wird nun die unabhängige Variable aus x wieder zurück
in z transformiert mittelst der oben gebrauchten Beziehung

x -=- z2 so geht die letzte Gleichung über in :

k 2(p+l)dt _a2t==Q (10)
dz2 z dz

Aus (3) und (10) geht hervor, dass
p+i

dv
u t

dxp + 1

Setzt man für v aus (6) seinen Wert, so resultiert als Lösung
von (3):

u==[i-DT+1[Aeaz+Be-az].
Bern. Mitteil. 1909. Nr. 1714.
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Das vollständige Integral für Gleichung (1) ist:

y^z^r^-DTî'fAe^ + Be-82] (11)

wo a2 bc bedeutet.

Um Gleichung (4) zu lösen, gehen wir aus von
2

^+a2u 0, (12)
dz

woraus man durch symbolisches Rechnen erhält:

\1 A e1 az A [cos az + i sin az]

v2 Be_iaz B[cos az — isin az].

Durch Addition und Subtraktion dieser zwei Gleichungen findet
man als Stammgleichung

v — A' cos az + B' sin az (13)
Übt man auf (12) dieselben Operationen aus wie auf (5),

so erhält man als Lösung der Gleichung (2) :

y zp+1U-DP- [A'cosaz + B'sinaz] (14)

Da die Differentialgleichungen (1) und (2) ungeändert bleiben, wenn
man — (p + 1) für p setzt, so können ihre vollständigen
Integrale auch dargestellt werden in den neuen Formen:

1 - .P[Aeaz+Be-az] (15)

•p
• [A'cosaz + B'sinaz]. (16)

z-p

y=z

D
z

1d
z

Die Integrale (11), (14), (15) und (16) haben nur Sinn,
wenn p ganzzahlig ist. Die zwei ersten kann man verwenden,
wenn p — 1, 0, 1, 2 ist, die zwei letzten, wenn p — 0,

— 1, —2, Werden die Symbole durch Differentiieren
identifiziert, so wird das Resultat stets aus einer endlichen Anzahl

von Gliedern bestehen, woraus wieder die Richtigkeit der Relation

_ _
Un— 2À + 1

als Bedingung für die Integration der Riccatischen Gleichung
in endlicher Form hervorgeht.
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III. Lösung der Gleichung durch bestimmte Integrale.
§1.

Wir wählen als Ausgang der folgenden Betrachtung

£ + bu2 cx" (1)

aus welcher wir durch Anwendung der schon früher gebrauchten

Transformation u -. ^- erhalten :

by dx
2

ÌI_bcxny 0 (2)
dx

Nun substituieren wir

y=J eiptPdp (3)

wo P eine Funktion von p allein und t eine solche von x allein
sein soll. Diese beiden Funktionen und deren Grenzen sollen
so bestimmt werden, dass dann (3) der Gleichung (2) genügt.

Wir differentiieren (3) zweimal nach x

-iJpep_Pdpdx
2 2

EL- f ^ipt/dtVW.L- /Vjp'A
dx2 jV e1 Pt (0P dp + iJV Pt ^ P dp

Gleichung (2) geht über in:
2

-Jeipt[p2^J+bcx"jpdp + i|>eiptp^Pdp 0

2

- f eipt rp2W2_{i(bc)T|2x'1lpdp+ ij"eiptp|^Pdp 0 (4)

Nun soll die bisher unbekannte Funktion t so definiert
werden, dass sie der Gleichung genügt:

2

dt xt2

-^ {i(bc)2)xn
dx

Dann gelten folgende Gleichungen :

dt — —

t— i (bc)2 x2
dx
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t i(bc)2——

- + 1
2 ^

Es sei i(bc)2 ß ; -^ + 1 m, so dass

t==^- ; dt /3-xm_1 (5)
m

2

dt 1. m _ 2£(„!_ l)xdx

Um eine einfache Gleichung zu erhalten, werde (4) mit
2

—- multipliziert. Dann ist

2/ji\2 2 „2 2m* /dt\_ X fx*~-*=Jx =m tm-1 \dx/ m-1 m • t
2 a2 2m

X 2m-2 /SX
/?-x -—-=m-tm-1 m • t

2
2

2
x dt x m_2 /?(m —1) ,„

5 7' F 0*1— l)-x —— x — m — 1
2 m • t m • tm-t dx

Somit erhalten wir aus (4)

— m i eipt[p2— l]tPdp + (m — l)i I eiptpPdp 0

Das erste Glied soll partiell integriert werden nach der Formel:

I u dv — u • v — jvdu
Wir setzen

u (p2-l)P ; du A(p2_1)Pdp

dv e' ptt dp ; v — ie'pt

so dass wir erhalten :

meipt(p2- l)P_mJeiptA(p2_i)Pdp +

+ (m — 1) | eiptpPdp 0 (6)
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Gleichung (6) wird erfüllt, wenn gleichzeitig:

-m^(p2-l)P + (m-l)pP 0 (7)

und eipt(p2-l)P 0 (8)
Aus (7) folgt:

m(p2_1)df + 2mpP (m-l)pP

m(p2-l)^=-(m + l)pdp

dP_ (m + 1) _pP- m '~"(p2_i)dP
m + 1

LogP Log(p2—1) 2"u + LogA
m + l

P A (p2 - 1) 2 • m (9)

Dies in Gleichung (8) substituiert, gibt:
m —1

eipt(p2— l)2'm 0 (10)

Diese letzte Gleichung liefert die Grenzen, innerhalb welchen
das substituierte Integral (3) gilt. Ihr wird durch einen lemnis-
catenartigen Weg um die Punkte + 1 und — 1 genügt. Denn
bei einem rechtläufigen Umlauf um + 1 gewinnt der Integrand
die Phase

e-2i*(K)
und bei einem rückläufigen um — 1 diejenige von

e2i"(K)
Das Produkt beider ist 1. Es kehrt also der Integrand auf seinen

ursprünglichen Wert zurück. Die Integrationskurve ist eine
geschlossene. Unser substituiertes Integral (3) ist nun völlig
bestimmt :

/_m+_le1PV_l) 2.mdp (11)

Im Punkte A, der auf der Realitätsgeraden liegt, soll das Integral

die Phase Null haben.
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Nach der Theorie der Bessel'schen Funktionen (siehe
Einleitung in die Theorie der Bessel'schen Funktionen von Prof.
Dr. Graf, Band I, Seite 67) ist:

/eipt(p2 —l)a 2dp 2i^

exs)v
— a

Ja(t).

In unserem Falle ist a =- ^— Somit
2 2 m

A- 2L

m + 1 /_t_
2 m l 2

i
2 m

J 2m (t)

wo A eine beigefügte Integrationskonstante bedeutet. Nach
den Gleichungen (5) ist:

^;/? i(bc)T;m="+l;IL±l
m 2 2m

i+2 i
n + 2 ' 2m n + 2

2L /1\ _f_ i(bc)2 f+ i n + 2

(t+2) li+1 J
\n + 2/

2i a

Für A

J_\n + 2

2

(i+i)Vn+27

setzen wir eine neue Konstante
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Aj und für

i(bc)2 4 + 1

1+1
x,

so dass die Lösung folgende Form annimmt:
i

y A1.XM^J(X) (12)
Es ist nach einer eingangs gebrauchten Substitution

""by dx
Aus dem ersten partikulären Integral (12) der Differentialgleichung

(2) könnte man mit Hülfe derselben eine Lösung der
Gleichung (1) bestimmen.

Wir wollen nun ein zweites partikuläres Integral der
Gleichung (2) suchen. Der Gleichung (10) wird auch genügt, wenn
sich die Variable aus i N rechtläufig um +1 nach i N zurück
bewegt. Das substituierte Integral wird daher:

/_m+_leipt (p2— 1) 2m dp (13)

Substituiert man hierin ipt s, so geht der Weg aus — N • t — N
um +it herum nach —N zurück, und es wird

m+l m+1
2m m + l f* _ „ „2m

it"
C i\ 2m m-ri f1

y-L_^_ t m j e>-+t2) ds (14)

+ iP-•*- -iK
Nun ist

eu (u2+ x2) 2 du -

+ ixN
-ix.

|)2i.
~a)(2xr

J(x)
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(Siehe Einleitung in die Theorie der Bessel'schen Funktionen
von Prof. Dr. Graf, Heft I, Seite 73.)

Somit wird

/
m + l

e8(s2+t2)~ 2m dS:
2is

+ ir^
-ir>

m + l;
2 m

i
2m

•J(t)

y B

m + l
(—1) 2m I'-

(2 t)

m + l

,2 m

m + l
2m

2r2i«t- ^- J(t)
¦\(2ty™

Verwendet man nun die Gleichung (5) wie beim ersten partikulären

Integral und setzt man

+ 2

(-1)" n + 2

B

1
•2i;

B,

+ 2\ _L_
2n + 2

n + 2

Ü^3xT + 1

X
—+ 1
2 ^

so nimmt das zweite partikuläre Integral die Form an
i

y^X^jfë) (15)

und die Stammgleichung der Differentialgleichung (2) wird

(16)

i i

y A1Xi+* J(X) + B^^+äJffc)

Diese Lösung wird unbrauchbar für n — 2. Die diesem Werte
entsprechende Gleichung

2

dy
dx2

— bc y 0

ist gelöst in Abschnitt I, § 2.
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Wir wollen nun die Fälle aufsuchen, in denen die Riccatische

Gleichung in endlicher Form integrierbar ist. Dazu

benutzen wir die Integrale (11) und (13). In beiden tritt ~-
als Potenzexponent auf. Setzt man für m nach (5) -~- +1, so

LI

— + 2
geht -^r-—über in ———^, welcher Ausdruck nun eine° 2m n+2
ganze Zahl À sein kann. Wir unterscheiden zwei Fälle, erstens

f+2 i+2
7—=r + a, zweitens —-=- — À.

n+2 n+2

T + 2
1. j—n a. Das Integral (11) lautet nun

n + 2

y= j e*"(p2-l)-'dp

Da À eine ganze Zahl ist, so bildet der Integrationsweg bei B
einen Doppelpunkt, so dass er in zwei geschlossene Kurven um
die Pole + 1 und — 1 zerlegt werden kann.

y Je"V-ir' dp +Je""(p2 - lf'âp

Gleichung (10) lässt aber erkennen, dass schon eines dieser

Integrale eine partikuläre Lösung darstellt. Wir betrachten da
her nur

3ipt dp
vi A

(p + ir (p-i)>.

Auf dieses Integral wenden wir die erweiterte Formel von
Cauchy an:

Bern. Mitteil. 1909. Nr. 1715
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/ ti \ dX 2Ì7T n 2l7T nll,,rt(x) ——— =—-f (a) ——r-D (fTxl)v ;Cx —af+ 1 n! v n! a v L J/(x-a)u

'0
Mithin ist

yi f eipt dp 2im i-x\ e
" J (p+r/ (P-D* (A-i)! ' Up + i^

Werden die Differentiationen ausgeführt, so setzt sich der
entstehende Ausdruck immer aus einer endlichen Zahl von Gliedern

zusammen, d. h. Gleichung (2) ist in endlicher Form integrierbar,
wenn :

n+2
¦ l ist. (17)

1 + 2
2. —?r=— a. In Integral (13) schliesst sich der Inte-

n + 2

grationsweg, und er kann ins Endliche um die Pole +1
zusammengezogen werden. Derselbe W7eg umgibt aber rückläufig
den Pol oo. Daher ist unter der gemachten Bedingung Integral
(13) identisch mit

feipV-iy-dp

©
Für p — gesetzt, ergibt

fjV-vv
J v2X+'2

dv

0
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it

Da ev für v 0 gesetzt, nicht unendlich gross wird, so kann das

letzte Integral mit der erweiterten Formel von Cauchy ausge-
mittelt werden, d. h. Gleichung (2) ist in endlicher Form
integrierbar, wenn

— + 2

¥+2-=-* ÌSt- (18)

Vereinigt ergeben (17) und (18) als Bedingung für eine Integration

der Gleichung (2) in endlicher Form

f + 2

T+T-i*
woraus folgt:

4 a

2 A ± 1
1 dv

Da durch die eingangs gebrauchte Substitution u -r— +- der

Parameter ungeändert blieb, so gilt letztere Relation auch für
die Riccatische Gleichung.

Bis jetzt haben wir ausschliesslich Integrale mit freiem
Integrationsweg ausgewertet. Die Riccatische Gleichung kann
aber durch Integrale mit geradlinigem Wege gelöst werden.
Diese Fälle müssen aber, wie das in der Natur der Sache liegt,
als Spezialfälle in jenen enthalten sein. Wenn die Punkte +1
betreten werden dürfen, so genügen der Gleichung (10) die
geradlinigen Wege — 1 bis + 1, + 1 bis iN, — 1 bis iN. Um zu
erfahren, unter welcher Bedingung in Gleichung (13) die Punkte
+1 zugänglich seien, untersuchen wir

Es sei 1 + p

2m
Hieraus geht hervor, dass m absolut > 1 sein muss.

r m + l
jd+p)

i

2m dp

Dem Punkt p — 1 entspricht z

1 —3m
2m jz dz ¦

1— 111

Z 2m

1-m
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Unter dieser Voraussetzung erhält man aus Integral (13)
folgende drei partikuläre Integrale:

f+l
m+ 1

eipt(p2- 1) 2m dp (19)

— i

/+1 _ m + l
eip,(p-l) 2mdp (20)

iN

/—1 _ m + l
eipt(p2- 1)" 2ra dp (21)

iN
Allen drei Integralen darf eine multiplikative Integrationskonstante

beigefügt werden.

Nun ist

/ + 1 a-i
eiiu(l-u2) 2du

/recpa>^ U/

L+a
J(x).

(Siehe Einleitung in die Theorie der Bessel'schen Funktionen
von Prof. Dr. Graf, Band I, S. 69.)

m + l
Wendet man diese Formel auf das mit (— 1) 2 m

multiplizierte Integral (19) an, setzt für m und t die bezüglichen
Werte, fasst die konstanten Grössen in At zusammen und
benützt die schon früher angewendeten Abkürzungen, so erhält
man als erste partikuläre Lösung der Gleichung (2)

1 x__
n + 2 n + 2 ,nn\

yi AxX J(X) <22)

Wir wollen (19) noch auf eine andere Art lösen. Wir zerlegen
dieses Integral in

y-0
m + l /- + 1 m + l

eipt(p2—1) 2mdp+/ eipt(p2—1) 2m dp
—1 0

Im ersten Integral werde p durch — p ersetzt, und es folgt

/1
m+l

(e^+e-^Hp2-!) 2- dp
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_
m + l

cospt(p'ä—1) 2m dp

^71 T2l fX m + l
22(-1)(2l)Tj P2V-1)-^ dp

Für p z gesetzt, wird hieraus :

.2A m + l rx

2<-tf (2/)! (-1) 2m /V-*a- «)
m + l

2 m dz

;.-=o 0

Durch Anwendung des Euler'schen Integrals I. Art, 1. Form wird

•1 j_ m + l
/ z;~ 2(1 — z) 2m dz:

A + -
m-1

2m

m + l
Für (- 1) 2<

2m
partikuläre Lösung ist

m
— ] darf A1

2m/i + 2m — D
2m

gesetzt werden, so dass die

y^A/VV-l)-
m + l

2m dp

-2;.i= 00

~ : -—
}

(2 a)!
;.=o

(1+i)
2m/! + 2m—1

2m

(22)

Durch die Substitution ipt s transformieren sich [(20)
und (21) in:

m+l 1 m+l
2m

y2 (-i) • 1i-t- / e8(s2
9

2m
4'i-t2) ds

m + l 1

2 m m

y3 (-l) • i.t- / e8(s2+t2)

m +1
2 m

ds

(23)

(24)

Beide Integrale ändern ihre Werte nicht, wenn die untere
Grenze — N ersetzt wird durch — N + it oder — N — it, weil
sie längs des westlichen Horizonts verschwinden.
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Nun aber gilt :

/ e (u +x d du
1) (i+'a e

-i(a-l)^

(2x)-
P(x)

— N + ix
(Siehe Einleitung Band I, Seite 80).

Die Definitionsformel für
a -, ia n r a a ~|

P(x) -±-e~^J(x) + iK(x)J
Man erhält schliesslich

i i
y2^A2X* + 2P(X) (25)

Auf Seite 81 des schon mehrmals zitierten Bandes findet man

eUa"1>T-/ eu(u2+x2)a-i-di
-N—ix

a \ _L*J? T a a 1
in bedeutet Q (x) -^- e 2 J (x) — i K (x)

H,Q(x)
— N —ix

worin

Mit Hülfe dieser Formel erhält man aus (24)

i —
n + 2

y3 A3X°+2Q(X) (26)

§ 2.

Wir gehen von Gleichung (2) des vorigen § aus.

dy
dx;2

bcx"y 0

Hieraus geht durch die Substitutionen

!-+l)z x^+1 • -+l=im
dy_m-ldy _2 A„ UL J v
dz dz

und für m — 1 a ; bc ß gesetzt resultiert

dy „ dy
dz2Z^-af-^=°

(1)

hervor

(2)
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Diese Gleichung soll durch die Methode der Substitution
bestimmter Integrale gelöst werden.

Es sei y ezt T dt, wo T f (t) (3)
»,

Dann ist:

I z • eztT [t2- jf] dt — a ft eztT dt 0 (4)

Erstes Glied partiell integriert:

u (t2-ß2)T ; du I [(t2- ß2)T]dt

dv= eztzdt ; v ezt

Demnach verwandelt sich (4) in

Bzt(t2_^2)T_ / e* _d {(t2-/î2)T} + atT |dt 0 (5)

Diese Gleichung ist erfüllt, wenn :

^{(t2_/î2)T} + atT 0 (6)

und ezt(t2—/?2)T 0 (7)
Aus Gleichung (6) folgt

dT 2t at
-7fr + -ö 2 dt + -ö ô dt 0
T t2—ß2 t2— ß2

Log T + Log (t2-ß2) + Logî(t2-^2)^= 0

T (t2— /Ja)~('ä + l)
Setzt man diesen Ausdruck in (7) ein, so erhält man als
Gleichung, die die Grenzen des substituierten Integrals (3) liefert

a a

welche ein erstes Mal erfüllt ist, wenn t aus — oo kommend
eine Schlinge um +/? beschreibt. Daher lautet das substituierte
Integral (3) nun:

| ezt(t2— /?2) 2 Xdt
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woraus, für zt u gesetzt, wird

a + l/ U/2 ,,2 2X — 9- ~ *
y z / e (u —jïz) 2 du (8)

Aus der Theorie der Bessel'schen Funktionen ist bekannt

/.-e-2 + x2)b 2du

*+ix

2 7
J(x)

1 \.~ ,-b

wo

f-b)(2x)

<1
(Siehe Einleitung etc. Band I, S. 73).

Substituiert man x i • ß • z, so wird daraus

/u 2e(u- 02 2ßz') 2du
2is

|— b) (2i/ïz)"

J(i/?z) (9)

Die Integrale in (8) und (9) stimmen bis auf die Parameter
miteinander überein.

Es ist 1

yev-/8vr*"ldu=-
2i;

-oo -ßz+ßz

i + l

und

a + l

3(ißz) (10)

1 U2ißz) 2

Verwendet man die eingangs gebrauchten Substitutionen

1 n 1 u ^ x2
a — m — 1 ; — —- + 1 ; bc ß ; z

m 2 n
2-+1

setzt abkürzend
- + i

i(bc)1 X (11)

+ 1
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und vereinigt mehrere konstante Werte der Gleichung (10) in
einer beizufügenden Integrationskonstanten, so kann ein erstes

partikuläres Integral folgende Form annehmen:

i_

yi AX^J(X) (12)

Wir bestimmen nun das zweite partikuläre Integral. Der
Gleichung

e^t-tf" *(t + 0" O,

welche die Integrationsgrenzen bestimmt, wird auch genügt,
wenn die Variable t eine Doppelschleife um die Pole + ß

beschreibt, so dass das Integral das folgende ist:

¦=yv^-^-T-1 dt (13)

.-fß+t
welches sich, für zt u gesetzt, transformiert in

y=za + 1 /*eu(u2 —/îY)""1^ (14)

Nun ist

i 2Ì7C

/ eu (u + x 2 du —

1 \ -i7ib2le
y-b)(2x)-b

J(x) (15)

(Siehe Einleitung etc. Band I, S. 71.)

In Gleichung (14) habe u2 — ß2 z2 die Phase null, wenn u

von Osten kommend die Realitätsgerade überschreitet, also bei
A, und sie sei in (15) null, wenn u absteigend beim Kreuzungspunkt

B angelangt ist.
Bern. Mitteil. 1909. Nr. 1716.
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Ist in (15) x i/?z, so wird

/
2L

u 2
e (u — ,tf z rdU:

¥,e
-irrb

-J(i/3z) (16)

(2i*ty ^+b,(2iw"
Jetzt sind die Integrale (14) und (16) einander bis auf die Para-

1 a
meter gleich. Es ist b ~- 1> und mit Hülfe der

Gleichungen (11) können wir das zweite partikuläre Integral in
folgender Form geben

— " T -
(17)

i
y2 BX»+2J(nX)2

Die Stammgleichung setzt sich aus den Integralen (12) und (17)

zusammen.
Aus den Integralen (8) und (14) könnte man ohne grosse

Mühe die integrablen Fälle der Riccatischen Gleichung aufsuchen,
4a

d. h. die Relation n ;

2a+1
ableiten.

§3.
Wir betrachten nochmals Gleichung (2) des vorigen §.

z—^ — a-r- — /Sazy 0 oder —ßi Ti

dz2 dzz-r^ö —a-^- +y zy 0

Es werde in dieselbe substituiert:

und wir erhalten

z -

y= I e <Tdt, wo T f(t)

erhalten

J-|e-TTdt+Je-^+y2z)Tdt 0

0)

(2)
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Wir integrieren das erste Glied partiell nach der Formel

I u dv u • v — I vdu

dT 7 -— --u T; du -iidt; dv 4 e tdt;v e '
dt ' t '

und bekommen :

e-^T+/e-^[(A + r2z)T + §]dt 0

Diese Gleichung ist erfüllt, wenn gleichzeitig

Z

e~ T T 0 (4)
Aus (3) folgt:

LogT + Logt"a —r2zt 0

T eAtf (5)
Setzt man diesen Wert in (4) ein, so erhält man als Ausdruck,
der die Grenzen des substituierten Integrals (2) ergibt

e-T + y2ztf 0 (6)
N

Diesem wird genügt, wenn die Variable t aus 5— (N sehr
2 y z

gross gedacht) eine Schleife um Null herum durchläuft, und es

ist eine partikuläre Lösung der Gleichung (1)

y= JVZt~^tadt

_2rï7x^__£-) Für t — gesetzt.

y=V |VZ(W~-)wadw (7)

_N *. N- 2Y, s—9
Zufolge der Theorie der Bessel'schen Funktionen gilt

l e2Vw_w)w-b-idw==2Ì7rj(x)

Vs) (Siehe Einleitung Band I, S. 52.)
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oder -~- r z gesetzt und — b — 1

j Jz(w~ w)w*dw 27CJ~(2yz)erzV "/wadw 27rJ(2j'z) (8)

Aus (7) und (8) folgt als erste partikuläre Lösung

a-l -"-!
y 2i;ry"a J(2yz)

für 2Ì7C • j'-8-1 A gesetzt

y A.J(2yz) (9)
Wir suchen nun das zweite partikuläre Integral. Gleichung

(6) wird auch erfüllt, wenn t aus e, wo « auf der positiven
Hälfte der Realitätsgeraden sehr nahe bei Null gelegen ist, eine
Schleife um Null herum beschreibt. Um dies zu beweisen, setzen

wir in Gleichung (6) t und erhalten

u z — n r.
e u u

a 0,
N

welcher Ausdruck verschwindet, wenn die Varable aus 5—
2y2z

N
eine Kurve rückläufig um Null herum nach 5—beschreibt.

2y"z
Dem u — Weg entspricht ein rechtläufiger t — Weg aus + e um
Null herum. Die beiden Wege haben somit folgende Form:

Ä"(°^2 A 7. V__2Î
u — Weg t — Weg

Daher genügt unsere Differentialgleichung als zweites
partikuläres Integral

y=yv°zt~Vdt

"T^f oe^j Man setze t y
y=yJ erzvv_-)wadw (10)

>.y* ZA
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Nun gilt folgende Gleichung:

fgl (w")~b-1dw 2i „ e-i?rb f(x)

oe5j

(Siehe Einleitung Band I, S. 60.)

XFür -?r rz un(* — b — 1 a gesetzt, ergibt
Li

reyz(w_-)wadw 2i/I - eirt(a + 1,jt2Vz) (11)

n /^~y\
Aus (10) und (11) folgt als zweite partikuläre Lösung, wenn

2i7r.y-a-1ein(a + 1)=B gesetzt wird.
a + l

y2=B-J(2rz) (12)

und die Stammgleichung heisst

y A - J(2~r z) + B J(2 r z) (13)

Zu bemerken wäre, dass die Integrationswege aus + e stets
ins Endliche hereingezogen werden können, so dass ein solcher
eine unendlich kleine Strecke um den Nullpunkt darstellt.

Die Integrale (7) und (10) können leicht auch ohne
Anwendung einer Formel aus der Theorie der Bessel'schen
Funktionen gelöst werden.

Nach Entwicklung von e w erhält man aus (7)

Â=°° a
e?™ vra rdw

- N

setzen wir — N. was(An Stelle der Integrationsgrenze „2fz
der Grösse von wegen ohne weiteres gestattet ist.)
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Für w — gesetzt, ergibt
J/Z

y y —^-tf (yz)2jl —a-1

;.="
À!

s a — A ie s ds

Aber

==— r
(a) 2ittJ

N-

ess-ads

Dies ist das Integral von Weyerstrass
Somit

y 2i^-y-a~12 (~1}
;.«=o

i(y*)'
2 A - a - 1

Â!|(/-a)

y 2Ì7r-y-a-1J(2rz) (14)
Um das Integral (10) auf ähnliche Art auszuwerten, möge

e;zw entwickelt werden, woraus resultiert:
i=oo

y^y a-i V (rz/
/ — 0

V7 J_

Für -— — substituiert:
w s

i °°

y / .._! ^ (yz)

w a + ^ je w dw

Jl

n+a + l r _±
e ssa + ;'ds

/ o
X\

(15)

Nun soll im Integral von Weyerstrass der Weg - N^

mittels s transformiert werden. Es zeigt sich, dass derselbe
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eine rückläufige Kurve aus +£ um den Nullpunkt herum
darstellt, wo + £ eine sehr kleine positive, reelle Zahl ist, und das

Integral lautet, nachdem die Integrationsrichtung positiv ist:
— i«(a + l)

-2ds (16)-Je -s"
|ï 2i

Aus (15) und (16) folgt:

y 2i7r.ei7,(a + 1)y"a""1 2 (~ ^
/1 0

y--=2i,rei7r(a + 1)r-a-1jt21rz) (17)
Aus (14) und (17) erhält man wie vorhin die Stammgleichung

Y AJ(2yz) + BJ(2yz)
worin r =—ß bedeutet.

(yz)2*+a+1

y|(a+A+ 2)
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