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Fritz Iseli.

Die Riccatische Gleichung.

Einleitung.

Am Ende des 17. Jahrhunderts und im Anfang des 18.
heschiiftigten sich die hervorragendsten Mathematiker jener Zeit
mit dem Problem der Trajektorien. Hiebei gelangten Niklaus L
Bernoulli, Niklaus II. Bernoulli, Johann Bernoullj,
Taylor und andere zu Differentialgleichungen 2%" Ordnung, und
da und dort findet man Versuche, dieselben zu integrieren. Mit
einer Differentialgleichung 2% Ordnung beschiftigte sich auch
Graf Jacopo Riccati (1676—1754). In Venedig geboren,
wurde der mit 10 Jahren vaterlose Knabe dem Jesuitenkollegium
in Brescia anvertraut, wo er iiberraschende Fortschritte machte.
Von 1693—1696 studierte er in Padua und kehrte dann nach
Venedig zuriick. Von hier aus lehnte er Berufungen nach Padua,
Wien und Petersburg ab. Ziemlich spit, 1747, siedelte er nach
Treviso tber, wo er starb. Er stand mit zahlreichen Gelehrten
aller Linder in so regem Verkehr, dass er sich der Mithiilfe
seiner beiden Sohne Vincenzo und Giordano bedienen musste.

Von 1720—22 war Niklaus II. Bernoulli Hauslehrer in
einer Adelsfamilie in Venedig und erneuerte wiahrend dieser
Zeit die Bekanntschaft mit Riccati, die er schon bei einem
frithern Aufenthalt 1706 gemacht hatte. Von Riccatti erhielt er
einen Aufsatz, damit er ihn seinem Vater Johann I. Bernoulli
zur Begutachtung einsende; von dieser sollte die Veroffentlichung
abhingen. Sie muss giinstig gelautet haben; denn die Abhand-
lung erschien in der Zeitschrift «Acta Eruditorum» im Jahr 1724
(Supplementa VIII, 66—73), nachdem sie wahrscheinlich schon
friher in die Offentlichkeit gelangt war, da in derselben Zeit-
schrift schon 1im November 1723 von ihr die Rede ist.
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Wir wollen den Gedankengang Riccati’s an der Gleichung

x“d§=d2y + (dy)® (1)
verfolgen, wo x und y zwei abhiingige Variable sein sollen. Zum
bessern Verstindnis fiigen wir eine unabhingige Variable p bei,
die sich Riccati nur hinzu dachte. Unsere Gleichung lautet

daher:
2 2 ‘
dx  dy (dy)'“‘
... = 2
Wie aber x, y und p zusammenhiingen, ist unbekannt. Um irgend-
~ welche Beziehung zwischen den drei Grossen zu erhalten, setzen

wir im Sinne Riccati’s: %—}5 = dp, (), WO?}—X konstant ist. Also

ist auch dp konstant. Ferner sei udp = dy, (3), wo nach («)
dp auch hier unverénderlich ist.
Durch Differentiation nach p erhilt man aus («) und (8):
dzx __dq, dy du
dp ~ dp’ dp? ~ dp
und Gleichung (2) geht iber in:
‘ dq dll , 2

dp d_p T u (3)

i dq dq dx
Da. abEI @ == a‘}—(‘ L (E und
g—gz gL; . ((_i% 1st, so folgt, wenn

3 .dX —_— iy .
tin Tl q gesetzt wird:

dq du 2
SR '&J““
n dq 4
x T dx dx+— @

Diese Gleichung von Riccati ist zwar von der 1% Ordnung; aber
eine Trennung der Variablen ist trotzdem unmdéglich, wenn g
von u und x abhingig ist. Riccati fiigte daher die Bedingung
bei, dass q nur von x allein abhangen solle, und zwar so, dass
q =x" sel. Unter dieser Annahme schliesst Riccati seinen Auf-
Bern. Mitteil. 1909. Nr. 1712.
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satz mit der Aufgabe, Werte von m so zu bestimmen, dass eine
Trennung der Variablen moglich werde, wihrend der Exponent
n keiner Beschrinkung unterworfen sei. Wir werden uns im
folgenden mehrfach mit der Aufsuchung solcher Werte beschiftigen.

Unmittelbar hinter Riccati’s Aufsatz sind Bemerkungen von
Daniel Bernoulli abgedruckt, aus welchen hervorgeht, dass sich
die Mathematiker Niklaus I, Niklaus II., Johann I. und
Daniel I. Bernoulli mit diesem Problem befasst haben und
dass sie alle unabhingig von einander zu denselben Werten
von m gelangt sind, die die Trennung der Variablen ermoglichen.

Wenn q—=x" ' so 1ist
dq o ,m—1
&;‘( — mzx

und Gleichung (4) geht tiber in:
n m—1_ du 112
X - mXx = -+ o
Xm— du 2 n+2m-—1 (5)

Dies ist wieder die Riccatische Gleichung.

Im Novemberheft der Acta Eruditorum (pag. 502—510)
kam Riccati auf seinen friheren Aufsatz zuriick. Er gab der
Gleichung hier eine etwas andere Form, nimlich

udx

x"dx = du ++ et (6)

figte aber die von ihm selbst ermittelten, die Trennung der
Variablen erméglichenden Bedingungen fiir n nicht bei.
Daniel Bernoulli veroffentlichte im November 1725 in
obgenannter Zeitschrift seine Methode, die Werte von n in der
Riccatischen Gleichung, wie unsere Gleichung nun schon ge-
nannt wurde, zu finden. Er schrieb die Gleichung in der Form

ax"dx -+ u’dx = bdu (7
und behauptet, wenn n = m, wo m vorderhand noch unbekannt

ist, eine Trennung der Variablen gestatte, so musse dies auch

moglich sein
m

m 1

2)fir n=—m—4

1) fir n = —
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Die Richtigkeit der ersten Behauptung kann wie folgt bewiesen
werden. Man substituiere in (7)

u :—;7; du:——1§ dy, so dass dieselbe die folgende Form
. y
annmimmt
dx + ax"y’dx = — bdy
1 s ITnlds
Hierin setzen wir x==s"%t'; dx = Z———" 5o dass wir er-
n—+1
halten :
s Has o yas=—21 2 hgy 8)

Dies ist eine Gleichung, die mit (7) sehr grosse Ahnlichkeit hat.
Wenn in letzterer die Variablen fiir n = m separierbar sind, so ist

. S . m .
dies in (8) moglich, wenn n == o 1st.

Um den Beweis fir die zweite Behauptung zu erbringen,
setzen wir in Gleichung (7)

u =
du-——“—dx——%—dx-i——dy
2
n’ = —1%-— Z—bX -+ LI und es folgt:
X
2b3ydx+—y—4dx=l)-;dx——2byd +——dy
X X X X
y: b
oder ax dx 4 <5 dx==—dy
X X"

2
ax"T?dx + L dx =bdy
X

1
Nun werde x = —, dx = — — ds gesetzt,
8 S

—as " 'ds — y'ds = bdy 9)
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Durch Vergleichung von (9) mit (7) ergibt sich, dass n=-—m —4
die Trennung der Variablen ermoglicht, sobald dies fiir n = m'
zutrifft. '

Es muss nun vorerst ein bestimmtes m gefunden werden,
damit sich die Variablen ein erstes Mal trennen lassen.  Dies trifft
zu fir n = m = 0; dann wird (7) zu: ‘

adx + v’dx =hbdu
dx — b du2
a-}u
Wenn also eine Trennung der Variablen moglich ist fir m =0,
so muss sle auch durchgefiihrt werden konnen fir n—=m—4
m —4

= —4 (nach Gleichung 9) und fir n = — it i |

::—--;i (nach Gleichung 8). Setzt man die Werte, die man fir

n sukzessive erhilt, abwechselnd in (9) und (8) ein, so erhalt man
dadurch alle Werte von n, die eine Trennung der Verinderlichen
ermoglichen. Zu denselben Resultaten gelangt man aber auch
durch wiederholte Anwendung der Relation

4]
272+1

wo A emne ganze Zahl bedeutet. Diese Beziehung bewies aller-
dings Daniel Bernoulli nicht allgemein. Man kann sich aber
von deren Richtigkeit leicht iiberzeugen.

Da die Riccatische Gleichung fiir m = 0 eine Trennung der
Variablen zulisst, so ist dies zufolge der Gleichung (9) ebenfalls

Tl ==

moglich fir n == —m — 4 = — 24%—1 Dies in (8) substituiert,
ergibt:

4.1

T 2.1+1

Durch analoge weitere Uberlegungen erhilt man folgende
Ausdriicke, die die Trennung der Variablen gestatten :

4.1 4.1
I £ e P

2. 1—1' "T Taa+1
£-2 4.9



. 43 4.3

2.3—1° "7 T2.311
I 27 S o7
T T 2a—1' "T T2 F1

Vereinigt man die beiden letzten Werte, so erhilt man die oben
genannte Relation

4
2241
Daniel Bernoulli fiigte noch einige Bemerkungen bei.
Er sagt, alle Werte fir n = — 2—lﬁ——?—1 seien zwischen O und — 4
gelegen, Fiir 4 = oo entstehe n = — 2, ein Fall, der besonderer
Betrachtung wert sei. Dann geht (7) iiber in
ax# 4 o’ dx = bdu

Er transformierte diese Gleichung mittelst u = L] in
adx  dx__  bdy

) 3 2
X y ¥
und bemerkte, dass diese Gleichung eine Trennung der Variablen

zulasse, weil alle Glieder derselben eine gleiche Exponenten-
summe besitzen, was wir jetzt dadurch ausdriicken, dass wir
sagen, die Differentialgleichung ser eine homogene.

Riccati selber kannte die Werte, die die Variablen seiner
Gleichung zu trennen erlauben, genau, was aus dem Briefwechsel
zwischen Christian Gloldbach, Akademiker in Petersburg
(1690—1764), und Niklaus II Bernojulli (1695—1726) hervorgeht.

Seit Riccatli und seinen Zeitgenossen haben sich mehrere
Analytiker mit unserer Gleichung befasst, in neuerer Zeit unter
andern: Cayley, Lommel, Schlafli, Spitzer, Winkler, Glaisher,
Catalan, Feldblume, Riccardi, Serret, Sturm. '

In den zwei ersten der nun folgenden Abschnitte sollen
bekannte Losungen mittels Reihen und symbolischen Ausdriicken
besprochen werden. Im dritten Abschnitt werden wir mit Hiilfe
der Methode der Integration durch bestimmte Integrale Lo-
sungen herleiten, die neu sein durften.
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I. Integration der Gleichung durch Reihen.

§ L
Wir geben der Gleichung folgende Gestall:
du 2 n 1
® fbut = ex” (1)}

Sie 1st von der ersten Ordnung, aber nicht linear. Deshalb
wenden wir nachstehende Transformation an:

2
__l_ér_.du__ 1 Lli2,_1_dv
R T T by’ (dx) Thv gx
o 1 (dvy?
u T ply? \dx
und erhalten:
2 ,
dv2 — bex"v=>0. (2)
dx

Diese Gleichung kann als eine der Riccatischen Gleichung ent-
sprechende Hauptform genommen werden.

Haben b und c¢ dasselbe Vorzeichen, so kann man sie in

der Form schreiben:
dd‘; — a’x"v = 0. 3)
X
Haben b und c¢ entgegengesetzte Vorzeichen, so erhilt man:
2 |
% + a%"v == 0. (4)

Jede derselben ist in endlicher Form integrierbar, wenn der
betreffende Parameter n auch fir die Riccatische Gleichung einen
geschlossenen Ausdruck als Stammgleichung liefert.

Wir substituieren nun in (2) die Reihe:

,,V:SO_I_Sf'}‘Sz"f‘Sg'f’ + i res

dv  d%S, | d%S, | &S, , 4S,
ot T tw Tt

) Siehe Lehrbuch der Differentialgleichungen v. A. R. Forsyth,
S. 199 u. ft.
%) Siehe Forsyth, Differentialgleichungen, S. 124.
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und erhalten als neue Differentialgleichung:
&Sy , 4% d"’sz d°Ss

I + 2 + d =+ =bex"S, 4- bex"S, + bex"S,
+ bex"S, + 4 ---
Derselben wird geniigt, wenn man setzt
2 2
d_820=0; d—Szlz + bex"S; ; dSZ— + bex"S; u.s. w.
dx dx x*

Diese Bedingungsgleichungen liefern der Reihe nach
S,=Ax-B

bex" 13 bex"t?
S e (e R (RS TE
s, — bc g2 ts ) bc2 2n+44

(n+2)(n—|—3) @2 n-l—4)(2n +5) +B (n T 1) (n+2) (2 n—+3)(2n

Daher lautet das allgemeine Integral, wenn man die Terme, die
mit A und B behaftet sind, von einander trennt

bcxn+2 b02 2n+4 ]

1 + (n +2)(n3) + (n +2)(n+3)(2n+4)(2n+5)

v=—AX

bex" T2 bc2 g i {1
+B +(n+ 1)(n +42) T (n +-1)(n+2)(2n+3)(2n+4)
Fir n = 0 und be = -+ 1 erhalt man

2 4
v:Ax[l+%+%4 ----- ]
+ B [H—%+§T+- ‘s J

Durch Addition und Subtraktion der zwei Reihen bekommt man
v=Ae"JBe ~
Analog erhilt man fir n =0 und be = --1

2 4 XG
—

X X
v=Ax[1—3—!~f—ﬁ——
B 1 X? X4 Xﬁ XG
T et e et
oder v=Asinx -}- Beosx.
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§ 2
Wir gehen aus von Gleichung (2) des vorigen §.
ﬁ —bex"v=10 (1)
dx?

und ersetzen die unabhanglge Variable x mittelst der Relation
qz = X" (2)
Um die Substitution durchfihren zu konnen, hat man die

Formeln anzuwenden :
dv dv dz

dx @z E;{
2
dv _dv dz s (dz) dv
dx? dz gy dx,/ dz°
Aus (2) wird:

dz Xq—l_ .d_z =2
dx ’ dx?

2q—-2 q—2

(qz) ¢ Z—Hq 1)(qz) ¢ %i—bc(qz)‘*v—o

2 n-+42

(@25 + @ —Dazgh — be(az) ¢ v=0

Wir bestimmen d1e bisher noch unbestimmte Grésse q durch

die Relation

q=p +1=o ®

m
so dass wir als Diﬂ"erentialgleichung bekommen:

(z)z 4+ 1 zdv__b 2-—~—()

2
dv -—1 dv
g~ e =0 4)
Es sei m—1=2p (5)
. 2
LK L e 6)

a2z dz



Nun verindern wir die abhingige Variable durch
v=wz’

dv p—1 p dw
Z=vpr trg
g

S =wepp =12 2p Y d“i
dz dz”
Die Gleichung fir w wird
2
dl__bcw_?_(Pl_l) - )

2
dt . 1 dt 1\% t
e +“a;*b0t“"<P+*2“) =10

Z
oder

B 1 ewofe— (p+2)]

Nun vergleichen wir hiemit die Bessel’sche Diﬁerentialgleichung:
2

0 (8

1dt t
und deren Lésung.
t = AJ'(x) +BJ " (x). (10)

1
Wird durch die Relation x == (—bc)2z die unabhingige Va-

riable in z umgeindert, so lautet die aus (9) hervorgehende
Gleichung:

d2t2 Ll [{(_ bc)%zr_ az] t—0 (11)

z dZ A
Ihre Losung ist:

t=AJ [(-— bc)%z] + BJ_“[(—bc)%zJ (12)

Nun verifiziert man leicht, dass die zu (8) gehorende Integral-
gleichung die folgende ist:
Bern. Mitteil. 1909. Nr. 1713.
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1 1 1 1
t = AJ”?[(— bc)?z] + BJ” (””2“)[(— bc)?z] (13)
Ist (p —|-—;—) eine ganze Zahl, so hort (13) auf, die Stammglei-
chung zu sein, und wir setzen in diesem Fall
1 1 1
t— AT T (— bc)in +BK"+?[(-— bc)?z] (14)

Um zu untersuchen, ob und wann (14) der Gleichung (8)
nicht mehr geniigt, suchen wir die Losung der Gleichung (1)
und verwenden dazu der Reihe nach die frither verwendeten
Substitutionen :

]
2

1
w=122t; v=2"w; 2p=m—1

n 1 1 A
q=§+1=E; Ez_—_xm

und finden so, dass die Parameter der Bessel’schen Reihen, die
als Losungen von (1) zu betrachten sind, lauten:

1
)
Der einzige Fall, wo diese Art der Darstellung versagt, ist also
der, in welchem n +2=0, d.h. n= —2 ist. Die noch zu
losende Gleichung ist:
2
x‘“’%—bmr:o, (15)
welche mittelst der Substitution y = A x* gelost werden kann.!)
2
dy _ A—1, dy _ A—2
ar = AT g =AM —-1)x
Die unbekannte Grosse A bestimmt sich aus
A—i—Dbec=0

T 1
i=5 + -2—\/1—|-4bc
Daher sind die beiden partikulidren Integrale:

1 1 1 1

< 475 ') Siehe eine Arbeit von E. Lommel, Math. Annalen, Band III, 1871,



und das allgemeine Integral:

1 1 1 1
=+ =\ 1+44be —— 5 \V1+4be
y = Ax? 2\/ + Bx? =V
§ 3.
Wir gehen Wiederum aus von :
dv
— — bex'v=0
dx
und substituieren
1
v=yx?

dv 1 4 +dy
x—3V* Ttx g

2 2
dv 1, =a _—y 24
e TR Y Tt
woraus wir erhalten:
Zdy-f- [1+ bcx“+2]y_—_0

(1))

(2)

Hierin moge dle unabhanglge Verinderliche x in z umgeandert

werden nut Hiilfe der Beziehung

n- 2

+

2 2
x"ti—y oder z—=—x

9
Dann bekommt man:

Z11+2[(n+2 n2n2 d‘y ! n+2._n_ E;gdyJ
iz T 2 2 dz

=

2 n [ i
+Z“+2 ‘;‘2211—{—2@_4_‘_?1__{_ bcz2Jy___ J

. yer e . 2 \?
woraus man- nach Multiplikation mit (m) erhilt :

zdy [ 1 4 be 2] =)
i+ wtrer  myar Y

oder z° —+ — [{21\/1)0} 21 2Jy:O.

Jeals n+2)
') Siehe G. Greenhill, Quart. J. Band XVI,, S. 294.

(3)
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Durch Substitution von x = ilf/{_bzc z in die Bessel’sche Diffe-

rentialgleichung erkennt man, dass die zu (3) gehérende Stamm-
gleichung die folgende ist:
2 1\/ bc 2 1\/ bc
— n+2 n+2
Sie ist unbrauchba.r, wenn n = — 2 ist; dann verwende man
die entsprechende Lo&sung des vorigen §.

§ 4.

Die Aufgabe dieses § soll darin bestehen, die Werte des
Parameters n zu bestimmen, welche erlauben, die Riccatische
Gleichung in geschlossener Form zu integrieren, d. h. es soll
die Relation

42
T 21+1
abgeleitet werden.

Dazu gehen wir von Gleichung (7) des § 2 aus:

2
s d

2 —ber'y —p(p + )y =0 @
Hierin sind in Bezug auf die Vorzeichen von b und ¢ zwei
Fille zu unterscheiden:

1. b und ¢ haben dasselbe Vorzeichen. Dann nimmt die
transformierte Riccatische Gleichung die Form der Gleichung
(1) an.

2. b und c haben entgegengesetzte Vorzeichen. Dann lautet

die zu losende Gleichung
2

j—z” +bez’y —p @+ 1)y =0. @)

Es soll zuerst Gleichung (1) behandelt werden. Wir sub-
stituleren :
y=¢e"w(3), woa’=bc sein soll.
dy e . dw

a—z— d—'+ae W
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2
dy _ azdw 4z dw 2 az
a?—-e @—I—Zae —ag+ae w

und es folgt:
2

eazz2[_d_v%+23g_v1+a2w:|_aZZZequ__p(p+1)eazw=0
dz dz
2
2dW gdW

—_— —_— — =
2 +2ar & —pp+1w=0 (4)

Diese losen wir durch Substitution folgender Reihen :
we=Az" AT AT L AT

d m — m m
_JVZV:_AOM "4 A (m 1)z + A (m 422" T

+ A, (m 32" T L.
2
dw

— =A,(m - Ymz" "+ A m@m-+1)z" !

dz
+ A, (m+1)(m42)z" - A, m+2)(m +3) 2" T ...

Wir setzen diese Werte nun in (4) ein und addieren die Glieder
gleich hoher Potenzen von z:

Ajm —1)mz® A m(m-=-1)z"" A (m 4 1)(m | 2)2"F?
+ Ay (m+2)(m4-3)2" % ..

4 A, -2amz” T A 2am A1) 2" TP A 22 (m4-2) 2 T

— AP+ —Ap@E+DT —Ap(p | DnTE
—App+D"T

Diese Werte miissen addiert identisch verschwinden. Das
ist aber nur moglich, wenn dies auch fiir die einzelnen Koeffi-
zienten gleich hoher Potenzen von z gilt. Daher gilt:

A [m® —m —p®—p]=0.
Da A, nicht null werden darf, weil sonst die ganze Reihe ver-
schwinden wiirde, so muss
2 2 ;
m" —m—p —p=0 sein,
woraus folgt: m =-—p m,=p-|1
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Fir m, — —p erhilt man sukzessive

P .
A1=_A0'3'57 A =

_a20=De=2 o
o ( 1)( — iy
PlpP—35 P
4

A Pe=D—=2p—=3) a .

po—g)o—n(p—5) "

Das erste partikulire Integral der Gleichung (1) lautet:

A=

A=

A — p(p—1) a’ ,
yl_—_-Aoe Z P 1 paz+—12'z
P(P—‘Z‘

_p—D(@—2 & 5
1 3! !
p(p—3)0—1) )

und das zweite wird gefunden, wenn — p durch p 4 1 ersetzt wird
yo=Be T [ 1— gi az + T DR+ ? %Z
p-+D (p + -«2-)
C+DE+e+3) o,
(P-f—l)(p-{—%) (p+2) | ] (6)

Die erste dieser Reihen bricht ab, wenn p null oder positiv
ganz wird, d. h. es wird irgend ein Glied geben, das zu null
wird. Alle auf dieses Glied folgenden Glieder der Reihe

nehmen die Form k) -f(p) an. L] aber 1st ein unbestimmter,

0 0
vieldeutiger Wert, und man darf hiefiir einen willkirlich ge-
wahlten, bestimmten setzen. Das partikuldre Integral y, zerfallt
mithin in zwei Teile, in einen ersten vollig bestimmten und in

einen zweiten, der mit der Unbestimmtheit% multipliziert 1st,
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welche wir nun zu null werden lassen. Dann fillt dieser zweite
Teil weg, und nun ist das partikulire Integral auf eine von
der ganzzahligen Grosse p abhingige endliche Zahl von Gliedern
reduziert.

Analog wird y, aus einer endlichen Zahl von Gliedern be-
stehen, wenn p negativ ganz wird.

Wir betrachten nun Gleichung (2). Diese wird durch die
Substitution y = e'** w verwandelt in

2

£ 0%+ 2ia s —pHHw=0 @
und 1hre Integrale sind:
yleoei“z—P[l-—ﬁ(ia)z—L- PR =1 (o —4—---]
p ' 1) 2! (8)
L P(P”ﬁ)
und
y, = B, e 2" ! |1— gil (1a) z

(P+DE+2) (8 1
+ 21 +| (9)
(p+1)(p+ )

Das erste partikuliare Integral kann auf eine endliche Zahl
von Gliedern reduziert werden, wenn p null oder positiv ganz
ist, das zweite, wenn p negativ ganz ist.

Wenn also p eine ganze Zahl ist, so besteht stets eines
der vier partikuliren Integrale (5), (6), (8) oder (9) aus einer
endlichen Zahl von Gliedern,

Nun zeigt § 2, dass p durch folgende Relationen mit dem
Parameter n der Riccatischen Gleichung verkniipft ist:

1

n
2p=m—1; iy -+ 1.

Setzt man darin fir p die Laufzahl 1 ein und lost nach n
auf, so findet man als Bedingung, dass die Riccatische Gleichung
in endlicher Form integrierbar sei, die Beziehung

42
9L F1

n—-—
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[I. Symbolische Losungen.

Als Ausgangspunkt wihlen wir die Gleichungen (1) und (2)

des vorigen §.
2

d
23 ety —pp Dy =0 oy
2

| d :
und zzgz—z +be’y —p(p-F1)y=0 (2)

Der variable Parameter p ist mit demjenigen der Ricca-
tischen Gleichung durch die Relation

4p

n=—— 5p 1 verbunden.

Durch Anwendung der Substitution y = uz**' erhilt man
aus (1) und (2):

du 1 du
34*2(13—"1);5”"3211:0 (3)
2
und W opni ey 2y—o @)
dz z dz

2
wo a“=be.

Um Gleichung (3) zu losen, betrachten wir vorerst
2

d—‘;—a%_—_o 5)

dz
oder, was dasselbe ist:

(D—a)v=([D4a)(D—a)v=0

wo D= ——(1 _bedeutet.
dz

Es ist D[e™f(z)]= € [D + a] £(z).

Mit Hulfe dieser Symbole findet man die zu (5) gehorende
Stammgleichung :

v=Ae" - Be ™ (6)

Mittelst der Substitution x=%z2 erhilt man aus (5):

1) Siehe Forsyth, Differentialgleichungen, S. 202 u. f.



dv dv | 2 -

Nun differentiieren wir (7) (p 4 1) mal nach x und erhalten dabei
sukzessive:

3 2
2x-——[—(2 0+3) %‘1—0
4 3
zx—+(2 1+3)_H ;'_ 0
i d , v
Vv
2x — | (2-2 3—— o
= T@-2+3 rec il
dp+3 p+2 p+1
vV v
2x— S+ @ p+3) p+2—a2@7=0- (®)
+1
3 dv .
Far R setzen wir t und erhalten:
2
2x§———|—(2 +3)%t--—a2t=0. (9)

Wird nun die unabhingige Variable aus x wieder zuriick
in z transformiert mittelst der oben gebrauchten Beziehung

X:izz, so geht die letzte Gleichung tiber in:

2
dt 2(p4+1Ddt 5
dZ2 '-{— - EE —at=0 (10)
Aus (3) und (10) geht hervor, dass
+1
o dpv
P e

Setzt man fir v aus (6) seinen Wert, so resultiert als Losung
von (3):

1 p+1
u=[~—Z~D:| [Ae™ 4 Be™ ™].

Bern. Mitteil. 1909. - Nr. 1714.
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Das vollstindige Integral fir Gleichung (1) ist:
p+1
y=zp+1[—1—D] . [Ae®” 4 Be™ ] (11)

wo a’ = be bedeutet.

Um Gleichung (4) zu losen, gehen wir aus von

2
%‘;Jr a’u=0, (12)

woraus man durch symbolisches Rechnen erhilt:
iaz s
v,;=Ae " = A[cosaz-|-isinaz]
v,=Be "= B[cos az — isin az].

Durch Addition und Subtraktion dieser zwei Gleichungen findet
man als Stammgleichung

v:=A'cos az -} B’ sin az (13)
Ubt man auf (12) dieselben Operationen aus wie auf (5),
so erhilt man als Losung der Gleichung (2):

1 p+1

y=z"1! [? D] - [A’ cos az 4 B’ sinaz] (14)

Da die Differentialgleichungen (1) und (2) ungeéndert bleiben, wenn
man — (p -+ 1) fir p setzt, so konnen ihre vollstindigen Inte-

grale auch dargestellt werden in den neuen Formen:

— P
y:z“p[—;uD] - [Ae* 4+ Be ¥ (15)
T-r
y—=z"" l% D] - [A’ cos az -}- B’ sin az]. (16)

Die Integrale (11), (14), (15) und (16) hahen nur Sinn,
wenn p ganzzahlig ist. Die zwei ersten kann man verwenden,
wenn p=—1, 0, 1, 2. ... ist, die zwei letzten, wenn p =0,
—1, —2,.... Werden die Symbole durch Differentiieren iden-
tifiziert, so wird das Resultat stets aus einer endlichen Anzahl
von Gliedern bestehen, woraus wieder die Richtigkeit der Relation

4)

T 2A+1

als Bedingung fiir die Integration der Riccatischen Gleichung
in endlicher Form hervorgeht.

1] ==



s DAF ==

Ill. Losung der Gleichung durch bestimmte Integrale.

§ 1.
Wir wihlen als Ausgang der folgenden Betrachtung

du 2 n

Ix -+ bu” = e¢x (1)
aus welcher wir durch Anwendung der schon frither gebrauchten
Transformation u = ;— cy erhalten:

by dx

d2 "

53-2- —bex"y=10 @)
Nun substituieren wir

y=| ¢"Pap 3)

wo P eine Funktion von p allein und t eine solche von x allein

sein soll. Diese beiden Funktionen und deren Grenzen sollen

so bestimmt werden, dass dann (3) der Gleichung (2) geniigt.
Wir differentiieren (3) zweimal nach x

dy . ipt dt

&_l.fp dx Tl

dy _ fﬁe“(dt) Pdp |- J pe™ dt P dp
X ]

Gleichung (2) geht iiber in:

2
—f [ —|—ch ]Pdp+i fei“pad-%Pdpzo
N X

2

_f [ {1(1)0) } ]Pdp—l— ife““pdii}%Pdp=0(4)

Nun soll dle bisher unbekannte Funktion t so definiert
werden, dass sie der Gleichung genligt:

L
Dann gelten folgende Gleichungen :
1 n
& i(bc)2x?

dx



1 g+
—i(he)? X
7 1
. 1
Es sei i(be)2 =3 ; —g— +1=m, so dass
t=% . dt=g.x"? (5)

@ :‘S(In—-].)Xm-m2

Um eine einfache Gleichung zu erhalten, werde (4) mit
2

X multipliziert. Dann ist

mt , .
<2 <£)2ﬁ < ﬂszm_z_ ﬁzX?m,__m )
m-t\dx/ m-t " m-t '
<2 I
m-t"e.X ~— m-t ==t
X’ (ft X’ : g(m—1)
fm—1).x* = L xMe=m —1

m-t.dxz':m-t m-t

Somit erhalten wir aus (4):
—m ['eipt[pz——- 11tPdp -+ (m— 1)i‘f'eipt pPdp=0

Das erste Glied soll partiell integriert werden nach der Formel:

judv=u-v—fvdu

a—@'—DP ; du— g (’— DPdp

Wir setzen

: i
dv=e'"tdp ; ve=—1ie?
so dass wir erhalten:

me' " (p°— 1)P-——mfeipt%(p2——1)Pdp+

—{—(m——l)feip“dep:O (6)
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Gleichung (6) wird erfiillt, wenn gleichzeitig:

d .
—mg, (0 —)P+m—1)pP=0 Q)

und e (pP—1)P =0 @
Aus (7) folgt:

‘ dP
m (p° — gy 1+ 2mpP=(m—1pP

dP
m(pz— l)?—z —(m -4 1)pdp

P~ (m+41)  p
P " m g ®
L o
LogP =Log(p°— 1) 2 =+ LogA
el
P=A(p —1) 7= ©)
Dies in Gleichung (8) substituiert, gibt:
m-—1
e¥(p'— 1T E=0 (10)

Diese letzte Gleichung liefert die Grenzen, innerhalb welchen
das substituierte Integral (3) gilt. Ihr wird durch einen lemnis-
catenartigen Weg um die Punkte 1 und — 1 geniigt. Denn
bei einem rechtliufigen Umlauf um - 1 gewinnt der Integrand

die Phase
e— 2in (l; jml)

und bei einem riickliufigen um —1 diejenige von

2in (’-;i—_—l)

e s
Das Produkt beider ist 1. Es kehrt also der Integrand auf seinen
urspriinglichen Wert zuriick. Die Integrationskurve ist eine ge-

schlossene. Unser substituiertes Integral (3) ist nun vollig be-
stimmt :

e ipt . 2 —?+n:
y=|e (p—1) dp (11)

DI

Im Punkte A, der auf der Realititsgeraden liegt, soll das Inte-
gral die Phase Null haben.
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Nach der Theorie der Bessel’schen Funktionen (siehe Ein-
leitung in die Theorie der Bessel’schen Funktionen von Prof.
Dr. Graf, Band I, Seite 67) ist:

J3(t).

, . 1
j lpt(p 1) 2dp =2imw- ————=
G-
S DE ? ?
In unserem Falle ist a—— =_— — - Somit
l( )2171: I
- d

— T
=10

wo A eine beigefiigte Integrationskonstante bedeutet. Nach
den Gleichungen (5) ist:

t— ﬁX ﬁ.___l(bc)z,m__:%_l_l; m"l_].

2m
n
?+2_ 11
n+2’'2m n-+42
Yz
- 1 1L
1 2 0 n-2
9% g - 1 _l_ol(bC) Xz+1
2 2 £+1 i . 1 n
A. 2 g~ be)® 3+
n
B |
n—+ 2
L 1
n-2
. 21 ¢ (%) (%)
Fir A — setzen wir eine neue Konstante
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A, und fir
1
ril(bc)2 L X,
2 !
so dass die Losung folgende Form annimmt:
1
1 Taxz
y=A -X*+2 J(X) (12)
Es ist nach einer eingangs gebrauchten Substitution
_ 1 dy
u = b_y . '(E

Aus dem ersten partikuliren Integral (12) der Differentialglei-
chung (2) konnte man mit Hilfe derselben eine Losung der
Gleichung (1) bestimmen.

Wir wollen nun ein zweites partikulires Integral der Glei-
chung (2) suchen. Der Gleichung (10) wird auch geniigt, wenn
sich die Variable aus 1N rechtliufig um +1 nach 1N zurick
bewegt. Das substituierte Integral wird daher:

. L
y=[em @ — 1" T ap (13)
iN
~1 1
Substituiert man hierin ipt =s, so geht der Weg aus — N.-t =—N
um -+ it herum nach — N zuriick, und es wird
_m+1 m+1

— 2m mtl1 o - 2m
g1 % -tmtf€w+€) ds (14)

Fif .

Nun i1st

fe“ W+ x%) T Tdu=—e 2L
N +ix '(éma) (23)_"

— X
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(Siehe Einleitung in die Theorie der Bessel'schen Funktionen
von Prof, Dr. Graf, Heft I, Seite 73.)
Somit wird

1 : 1
m-1 i(_é-)Zl“ g

8,2 ¢ 42 2m 3. _ . 4
fe 8"+t ds= "(Hﬁ—_l?)"m)ﬁ; J (t)

2m
y=B%B-

m-{1
(D7

i i
(@)-Zint n -1—~

it l(m+-l)(2t)21_m &

2m

Verwendet man nun die Gleichung (5) wie beim ersten partiku-
liren Integral und setzt man

n
__2__{_2

. (G Y) :+2 (—;—)2171 .
() o

1
i(be)? R4

= x? " =X
g T1
so nimmt das zweite partikulire Integral die Form an
1
1 nt2
y = B, X +2J(X) (15)
und die Stammgleichung der Differentialgleichung (2) wird
L Mgy 1 -
y=A X"+2 J(X) 4+ B, X»+2J(X) (16)
Diese Losung wird unbrauchbar fiir n = — 2. Die diesem Werte
entsprechende Gleichung
2
x? EYE —bcy=0
X

1st gelost in Abschnitt I, § 2.
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Wir wollen nun die Fille aufsuchen, in denen die Ricca-
tische Gleichung in endlicher Form integrierbar ist. Dazu be-

nutzen wir die Integrale (11) und (13). In beiden tritt — I—n—z—_'l;l—l

als Potenzexponent auf. Setzt man fiir m nach (5) %—}—l,so

n

m+l . gt2 .
geht — 5 iiber in —hE3’ welcher Ausdruck nun eine
ganze Zahl A sein kann. Wir unterscheiden zwei Fille, erstens
T 4+2 2 1.3
A = -} A, zweitens 8 =—1
n -+ 2 ? n—+ 2 "

n
L2 Das Tategral (11) lautet
mxe as Integral (11) lautet nun

y — feipt (p?_ 1)'—) dp

D}
Da A eine ganze Zahl ist, so bildet der Integrationsweg bei B

einen Doppelpunkt, so dass er in zwei geschlossene Kurven um
die Pole +1 und — 1 zerlegt werden kann.

= f e (p'—1) " dp + f e (p* — 1) *dp
=~
(& (&)

Gleichung (10) lisst aber erkennen, dass schon eines dieser

Integrale eine partikulire Losung darstellt. Wir betrachten da-
her nur

. elpt. ' dp
o f (p+1 (p—1)

&

Auf dieses Integral wenden wir die erweiterte Formel von
Cauchy an:

Bern. Mitteil. 1909. Nr. 1715
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[10 —Sor = EF r =27 Dl )

(x— a')11-1-1
©

Mithin ist:

_f 21 Dl—l[ e —‘
(10-1-1)/1 (p—l)l (A—1)! (p+1)*

Werden die Differentiationen ausgefiihrt, so setzt sich der ent-
stehende Ausdruck immer aus einer endlichen Zahl von Gliedern
zusammen, d. h. Gleichung (2) ist in endlicher Form integrierbar,
wenn:

sy
— =} ist. (17)
5o
2. ——~ = — 1. In Integral (13) schliesst sich der Inte-
n-r 2

grationsweg, und er kann ins Endliche um die Pole +1 zu-
sammengezogen werden, Derselbe Weg umgibt aber riickliufig
den Pol co. Daher ist unter der:'gemachten Bedingung Integral
(13) identisch mit

{. ™ (p°—1)" dp

[ %%

©,

Far p =1V gesetzt, ergibt

it
T w22
=_[’e(1 V)‘dv

v2A+e
©
o
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it
Da e” fiir v=0 gesetzt, nicht unendlich gross wird, so kann das
letzte Integral mit der erweiterten Formel von Cauchy ausge-
mittelt werden, d.h. Gleichung (2) ist mn endlicher Form inte-
grierbar, wenn

— ] st (18)

Vereinigt ergeben (17) und (18) als Bedingung fiir eine Integra-
tion der Gleichung (2) in endlicher Form

342
nFg —th
woraus folgt:
- 4 )\J
B Y R
Da durch die eingangs gebrauchte Substitution u :Fly- % der

Parameter ungeéindert blieb, so gilt letztere Relation auch Fir
die Riccatische Gleichung.

Bis jetzt haben wir ausschliesslich Integrale mit freiem
Integrationsweg ausgewertet. Die Riccatische Gleichung kann
aber durch Integrale mit geradlinigem Wege gelost werden.
Diese Fille mussen aber, wie das in der Natur der Sache liegt,
als Spezialfille in jenen enthalten sein. Wenn die Punkte 4-1
betreten werden diirfen, so geniigen der Gleichung (10) die ge-
radlinigen Wege — 1 bis + 1, 41 bis 1N, — 1 bis iN. Um zu
erfahren, unter welcher Bedingung in Gleichung (13) die Punkte
+ 1 zugénglich seien, untersuchen wir

_m+1
f(1+p) T dp
g
1

Es se1 1 +p = Dem Punkt p=—1 entspricht z= oo
1—3m 19—11)
2m _ g m
fz dz = B
o 2m

Hieraus geht hervor, dass m absolut > 1 sein muss.
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Unter dieser Voraussetzung erhilt man aus Integral (13)
folgende drei partikulire Integrale:

+1 _mtl
Y= f ePp’—1) = dp (19)
ey _met1
Yo == f e?'(p’—1) Zmdp (20)
iN
-1 _m+1
Ys = f e(p*—1) 2™ dp (21)

iN
Allen drei Integralen darf eine multiplikative Integrationskon-
stante beigefiigt werden.

Nun 1st

+;ixu(lﬂu2)a—%du=|(“%‘) |§"+ a) Sl
- (reépa> %) (?>

(Siehe Einleitung in die Theorie der Bessel’schen Funktionen
von Prof. Dr. Graf, Band I, S. 69.)

m-+1
Wendet man diese Formel auf das mit (—1) 2™ multi-
plizierte Integral (19) an, setzt fiir m und t die beziiglichen
Werte, fasst die konstanten Grossen in A, zusammen und be-
niitzt die schon frither angewendeten Abkiirzungen, so erhilt

man als erste partikulire Losung der Gleichung (2)
1 1

nt2 n42
y,=AX JX) - (22)

Wir wollen (19) noch auf eine andere Art losen. Wir zerlegen
dieses Integral in

o _m1 + _mt1
[ et ap - [ et T dp
0

Im ersten Integral werde p durch — p ersetzt, und es folgt

o . _m+1
Y= f (e™+e” ) (p°—1) 2= dp
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_ masl
=2fcospt(p2—1) 2m dp

22 1 . m+1
—2S( 1)1(51), fp“(pz—l) “m dp

% 2
Farp' == gesetzt, wird hieraus:
L=09

~ t2}. mtl rl l...._l_ _,.m‘)il
y:Z(——l)y(z))'(—l)szZ T(1—z) = dz

==

Durch Anwendung des Euler’schen Integrals I. Art, 1. Form wird

b3) (%)

»] 1 m+1

/ 2772l -—-z) 2™ dz=

’ (2m2—|—2m——1)
3
2m )
m—i—l T~
Fir (—1) 2= (m2;11) darf A, gesetzt werden, so dass die

partikuliare Losung ist
1 _m+1
yo=A [ e T g

0

SR =)
_ v ot 2 ;
A )Ag (=1 24! t(Qm).—{—Zm—l) ()
- 2m

Durch die Substitution ipt = s transformieren sich [(20)
und (21) in: :

m+1 1 m+41
T 2m +it o
—1) - 1-t- f e (s°—+ t9) ds (23)
—N
m—+4 1 1 m+1
T 2m . m it T T2m
Yo=l—1 = l't'f e’ (s*4t%) ds (24)
— N

Beide Integrale &ndern ihre Werte nicht, wenn die untere
Grenze — N ersetzt wird durch — N --it oder — N —it, weil
sie lings des westlichen Horizonts verschwinden.



Nun aber gilt :

14(/1 —ia—17%
X g - ’(—2_) ‘(?—f—a)e - -
f e"(W’4x*) ZTdu= - P (x)
. (2x)"
—N+4ix
(Siehe Einleitung ... Band I, Seite 80).

Die Definitionsformel fiir
ia 7T

P (x) =-;— e? [3(x)+i1§(x)J
Man erhilt schliesslich

i~z
y,— A, X2 F2P (X) (25)

Auf Seite 81 des schon mehrmals zitierten Bandes findet man

B

e ]

—ix 1 . 7T
ell(u2+x2)a~——2~ dll — el(a—l)-? e Q(X)
—N—ix (ZX) )
. a 1 _ iﬂ_a a a
worin bedeutet Q (x) = 5 e 2 [J (x) —1K(x) ]
Mit Hiilfe dieser Formel erhilt man aus (24)
1 ~n ~1{- 2
yo=A,X2+2 Q(X) (26)
§ 2
Wir gehen von Gleichung (2) des vorigen § aus.
2
d_yz —bex"y=0 (1)
dx
Hieraus geht durch die Substitutionen
n gzt n 1 v
(2_}_1)7,__1; . 2+1_m hervor
2
dy m—1dy .
dZ2 — Z —dz — be ViESS 0

und fir m—1=a ; bc=4#" gesetzt resultiert

'z—g—}:—aﬂ—ﬁzzyzo (2)
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Diese Gleichung soll durch die Methode der Substitution

bestimmter Integrale gelost werden.

Es sei ¥ o= {‘e“Tdt, wo T = £(t)

Dann 1st:

[‘z-eZtT[tz—p’z] dt--afte“Tdtzo

Erstes Glied partiell integriert:
u=@t"—p)T; du== d—dt [(t° — £ T]dt

t
dv= e“zdt ; v=e"

Demnach verwandelt sich (4) in

W —p)T — fe“ [%{(tg——ﬁg) T} + atTJ dt =

Diese Gleichung ist erfillt, wenn:
d
=) TH-atT=0

und e (' —p)T =
Aus Gleichung (6) folgt

Log T + Log ( — ) + Log%(tg—ﬁz)?~—~

T = ({t"—§)" (5+1)

0

(3)

4)

()

(6)
o

Setzt man diesen Ausdruck in (7) ein, so erhilt man als Glei-
chung, die die Grenzen des substituierten Integrals (3) liefert

a

e (t—B) %(t +8) 2=0,

welche emn erstes Mal erfillt 1st, wenn t aus — oo kommend
eine Schlinge um —+42 beschreibt. Daher lautet das substituierte

Integral (3) nun:

y:fezt (t2—ﬁ2)—%_1dt
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woraus, fur zt = u gesetzt, wird

y=za+.1~[eu (uz—p’zzz)—%_ldu (8)

=D

Aus der Theorie der Bessel’schen Funktionen ist bekannt

g U ‘(%)oZirr ¥
fe“ W4x%)  ZTdu= J (x)

S (L -bes

M
wo E§'<1
: 1n
(Siehe Einleitung etc. Band I, S. 73).
Substituiert man x =1-8-z, so wird daraus

1 ;
u, 2 2 2b—i ‘(?)21%
e (UWW— f2) 2du =-——=~

s T T

Die Integrale in (8) und (9) stimmen bis auf die Parameter mit-
cinander iberein.

Ty @

. /] a
Es 1st b——é—=—~2~—-1 und

y 1 241
w2 2 2\~ g—l 21 !(7) 2
e(u"—pgz) du=———= 13(1{)’2) (10)

a+t
- 18D

(2+1) @iss »
Verwendet man die eingangs gebrauchten Substitutionen

1 n 9 x-2_+1
a=m—1; —=—4+1; be=g"; z= ,
m 2 n
.—g—}-l
setzt abkiirzend
| g1
) o X
1(bc)? =X (11)

n
g1
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und vereinigt mehrere konstante Werte der Gleichung (10) in
einer beizufiigenden Integrationskonstanten, so kann ein erstes
partikulires Integral folgende Form annehmen :
1
1 n—+42

y,=AX»+2J(X) (12)

Wir bestimmen nun das zweite partikulire Integral. Der
Gleichung

a
T g
=0,

et —p) 2(t+p)

welche die Integrationsgrenzen bestimmt, wird auch geniigt,
wenn die Variable t eine Doppelschleife um die Pole + 8 be-
schreibt, so dass das Integral das folgende ist:

y = fe“ =) 7 dt (13)
A
welches sich, fir zt = u gesetzt, transformiert in
y=za+1fe“(u2—-182z2)v_2__ldu (14)

Nun ist
1 217 }" . e—-i7I b
u 2 2, b—s 2 b
e u'4x) 2du=—- — ¢ J(x) (15)
1 —b
-— K? — b) (2 x)
:B (Siehe Einleitung etc. Band I, S. 71.)

®

In Gleichung (14) habe u’ — 3°z° die Phase null, wenn u
von Osten kommend die Realititsgerade iiberschreitet, also bei
A, und sie sei in (15) null, wenn u absteigend beim Kreuzungs-
punkt B angelangt ist.

Bern. Mitteil. 1909. Nr. 1716.
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Ist in (15) x =18z, so wird

1 Qin '(%)e_i”b
fe" (uz———,b’zz)b—gduz— —_—

Jb(iﬁ z) (16)

1 . —b
B+(3z ’(?—i— b)(21{)’z)
Jetzt sind die Integrale (14) und (16) einander bis auf die Para-
meter gleich. Es ist b — % = — ~;—-—-— 1, und mit Hulfe der

Gleichungen (11) kénnen wir das zweite partikuldre Integral in

folgender Form geben
1

_1 Taxe
Yo = BXrt+2]J (X) (17)

Die Stamingleichung setzt sich aus den Integralen (12) und (17)
zusammen.

Aus den Integralen (8) und (14) konnte man ohne grosse
Miihe die integrablen Fille der Riccatischen Gleichung aufsuchen,

d h. die Relation n = — — L

m—l‘ a«ble iten.

§ 3.
Wir betrachten nochmals Gleichung (2) des vorigen §.

2
zd—yz—ad—y—p’gzyzO oder —p°=7"

dz dZ
dy dy | 5
zﬁ—aa +yzy=0 (1)
Es werde 1n dieselbe substituiert:
y = fe__t‘_'l‘dt, wo T =1 (t) 4 )
2
dy 1 - cdy (1 _:z
Ti?““f?e T gz =) e T

und wir erhalten

f% e tTdt +fe—7(%—|— yzz)Tdt:O



— 123 —

Wir integrieren das erste Glied partiell nach der Formel

fudv:u-v—{‘vdu

u="T; du=—-

und bekommen :

e TT 4 fe—%[<—i:'—+rzz)T+%] dt=0

Diese Gleichung ist erfillt, wenn gleichzeitig
a 9 dT

e tT=0 (4)
Aus (3) folgt:
LogT+Logt * — ' zt=0
T =e?2tt* (5)
Setzt man diesen Wert in (4) ein, so erhdlt man als Ausdruck,
der die Grenzen des substituierten Integrals (2) ergibt
_T""Vl“ta:() (6)

(N sehr

Diesem wird geniigt, wenn die Variable t aus — 52

Y Z
gross gedacht) eine Schleife um Null herum durchliuft, und es
ist eine partikulire Losung der Gleichung (1)

._f’” T dt

T 297, 0 Fiir t — — gesetzt

y:—a;l feyz(w—_) w'dw (7)

Zufolge der Theorie der Bessel’schen Funktionen gilt

x 1
e—g_(w_;)w'_ b=l w = 2i7sz(x)

: 0) (Siehe Einleitung ... Band I, S. 52.)

H|4-
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oder —;i:rz gesetzt und —b—1=a

z w—l- —l— ]
22{ “’)w“dw=27tJ(2yz) @)

N
- 27z @
Aus (7) und (8) folgt als erste partikulire Losung

—a—1

y=2imy "~ J2y2)
fir iz .y "' == A gesetzt

—a—1
. y=A-J(2y2) (9)
Wir suchen nun das zweite partikuldre Integral. Gleichung
(6) wird auch erfilllt, wenn t aus & wo & auf der positiven
Halfte der Realititsgeraden sehr nahe bei Null gelegen ist, eine
Schleife um Null herum beschreibt. Um dies zu beweisen, setzen

wir in Gleichung (6) t = — % und erhalten
uz—ysz
e u Tt =0,
welcher Ausdruck verschwindet, wenn die Varable aus — ONz -
_ry Z
eine Kurve riicklaufig um Null herum nach — ———beschreibt.

z
Dem u — Weg entspricht ein rechtliufiger t — Weg aus 4 ¢ um
Null herum. Die beiden Wege haben somit folgende Form:

N N 'X
2%::}D 27 Uty

u — Weg t — Weg
Daher gentigt unsere Differentialgleichung als zweites parti-

kulidres Integral
L2
Y=fgt‘€m

n b
) i
2}/22@? Man setze t ”

et 2
y— je’” ("= %)y dw (10)

Ce5)

r
N
7

2



Nun gilt folgende Gleichung:

X (w_L)y—b—1 L =D
[‘ez (w “')w dw=2im-e "’ J(x)

N \
X (1} 7

(Siehe Einleitung ... Band I, S. 60.)

Fir —g— =7z und —b — 1 = a gesetzt, ergibt

alm— 2 . at 1
e”( w)w“dwzzin.e‘“(““’J(zyz) (11)

27z @’

Aus (10) und (11) folgt als zweite partikulire Losung, wenn

1TtV — B gesetat erd

| =B-J(2yz) (12)
und die Stammgleichung heisst

2i7r-y

y=A-J(@r2)+BI2r2) (13)

Zu bemerken wire, dass die Integrationswege aus ¢ stets

ins Endliche hereingezogen werden kdnnen, so dass ein solcher
eine unendlich kleine Strecke um den Nullpunkt darstellt.

Die Integrale (7) und (10) konnen leicht auch ohne An-
wendung einer Formel aus der Theorie der Bessel’schen Funk-
tionen gelost werden.

zZ

‘ Y
Nach Entwicklung von e~ w erhidlt man aus (7)

= _a_IZ( 1* (7Z) e?2v w' " 'dw

- N 0)
—

(An Stelle der Integrationsgrenze — 5% setzen wir — N, was

der Grosse von wegen ohne weiteres gestattet ist.)



— 126 —

Fir w :7i gesetzt, ergibt

2l —a—1
o S T g
l=0

1 1
_.____)_:-2—— s _adS

-

Dies ist das Integral von Weyerstrass.

Aber

Somit
h=00 21 —a—1
. a1l §) ),(}’Z)
y=21m-y S (— 1)
le0 ’“|(’l*—a)
—a—1
y=2im.y " T 2r2) (14)

Um das Integral (10) auf ahnliche Art auszuwerten, moge

e/'?v entwickelt werden, woraus resultiert:
1= o
g o * (rZ) —\—v_ W dw

Qbs

Y=v

(!

Fir % i substituiert:
W S

Nun soll im Integral von Weyerstrass der Weg ~N®

mittels s = — 5—'1tr.smsfcurlrnier‘( werden. Es zeigt sich, dass derselbe
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eine riickliufige Kurve aus ¢ um den Nullpunkt herum dar-
stellt, wo -}-¢ eine sehr kleine positive, reelle Zahl ist, und das
Integral lautet, nachdem die Integrationsrichtung positiv ist:

1 B e—iﬂ(a+1) __i_ -
E = —W e S ds (16}
D)
€=
( v
Aus (15) und (16) folgt: :
' _ A=cC 2% 4a41
y =217 - em(a+l)y_a'_1 2 (— 1)}1 . (72 —
= 7@ +2+2)
¢ a1
y=2ime T2 J(2r7) (17)
Aus (14) und (17) erhidlt man wie vorhin die Stammgleichung

—a—1 a-

1
Y=AJ(@2yz)+BJ(2y2)
worin 7*= — ° bedeutet.
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