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0. Schenker.

Neun Kreisscharen am Dreieck.
(Mllgemeiner Fall und Ubertragung aul die Ankreise).

(Eingereicht im Dezember 1906..

1. Satz: Im ebenen Dreieck ABC treffen die innern und
sussern Winkelhalbierenden (CM® und CM,) eines Winkels (C)
den Umkreis in zwei Punkten M° und M,, welchen die Eigen-
schaft zukommt, dass die Kreise mit M° und M, zu Zentren ge-
zogen durch die zwei zugehorigen Beruhmno*spunkte (A, und B)),
des Inkreises und durch seinen Bemhrungspunkt (01) an der
dritten Seite, sich im Umkreis schneiden.

2. Satz; Im ebenen Dreieck ABC treffen die innern und
dussern Winkelhalbierenden CM® und CM, eines Winkels (C)
den Umkreis in zwei Punkten M° und MC, welchen die Eigen-
schaft zukommt, dass die Kreise mit M° und M, zu Zentren ge-
zogen durch die zwei zugehorigen Bertihr ungspunkte (A, und B,)
des vom Winkel C eingeschlossenen Ankreises und durch seinen
Berithrungspunkt (6,) an der dritten Seite, sich im Umbkreis
schneiden.

3. Satz: Im Dreieck ABC treffen die &ussern und innern
Winkelhalbierenden (CM, und CM®) eines Winkels (C) den Um-
~ kreis in zwei Punkten (M und M°), welche an. die Eigenschaft
gebunden sind, dass die Kreise mit M, und MY zu Zentren ge-
zogen durch dle zugehorigen Beriihrung bpunkte (U, und B, bezw.
9, und B,) eines der beiden Ankreise, welche dem \Vinkel A
bezw. dem Winkel B gegeniiber liegen, und durch seinen Be-
rithrungspunkt (€, resp. €,) an der dritten Seite, sich im Umkreis
schneiden.
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Festlegung des Koordinatensystems.

Als Koordinatenaxen, wihlen wir die Winkelhalbierenden
von C mit der angegebenen Richtung (S. Figur). Der Umkreis-
durchmesser sei die Léngeneinheit, so sind die Dreiecksseiten
sinA, sin B und sin C und der Inkreis hat den Radius:

—23i151~—-sin—~-sinE
&= 2 2 2
(denn A ABC — sin A | 51121B -} sinC 1
smA.sinB.sinC A . B . C
5 raus o = 1‘27112. 5
cOS COS —+C0S —: 4c0s—-cos =~ cosE
e SRR R Z 2
; : : A C
wegen sin A + sinB 4 sinC = 4. cos 5 " €08 5. COS
oder ¢ == 2sm? - Si 5+ sin —Qu)

Der Ankreis (Zentrum O,), welcher C gegeniiberliegt, hat

i . C
den Radius: ¢, == 2 cos-? £ €08 5=+ SI o
inA -} sinB — sinC
Kdenn A ABC — sin A -} 512 sin G i
| sin A - sin B - sin O
S 5 woraus
8 < L. cosé COS -+ COS
gy = 8-sin o sin o+ sin 5 5 5 5
. A B C
4 sin 5+ SIN 5 008 o wegen
sinA -} sinB — sinC = 4sin% - 8in 5 €08 5 oder

., B . C
93 == 'COS§'COS—2‘"51H§
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Der Ankreis (Zentrum O,), welcher A gegeniiberliegt, hat

: B cC . A
den Radius: 0, = 200&,—2— $ €08 5+ SIN -
B O — sinA A sinB. s
(denn A ABC __sin -+ 81112 sinA . sin su;B SlIlC}
B ; . :
woraus ¢, == 8008? £ €08 5+ €08 5+ SIN 5 - SIN 5=+ SINl 5

: . A : : ;
: 4 sin }23 sin o+ €08 5, wegen sinB 4 sinC — sinA

— 4sin—E—}—- sing-cosé)
2 2 )

M und O seien die Zentren des Umkreises, bezw. des In-
kreises und die Berithrungspunkte der Kreise O, O; und O, an
den Seiten BC, CA und AB, A, B,, C, | bezw. %, 3B, €, | bezw.
€0, B, € |. .

Beriicksichtigt man, dass < (MC 4 X)

— <B4 — 4 ¢+ x00),

(Man denkt sich dabei einen positiven Winkel durch Drehung
eines Strahls um seinen Anfangspunkt im entgegengesetzten
Sinne des Uhrzeigers entstanden oder auch im Sinne der Be-
wegung der Erde um ihre Axe oder um die Sonne), so leitet
man an Hand der Figur 1 die Koordinaten ab, wie sie in der fol-
genden Tabelle zusammengestellt sind:
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Hieran schliessen sich noch die Koordinaten von M, M,
- ‘
und M™:

X y
w| L.ewhA=B | LA
5t €08 —5— 5 S1 5
M, 0 sin A—E—E
M° cos —A——E—B 0

Beweis zu Satz 1.
Der Kreis aus M, durch C, hat die Gleichung:
2 B i 2 . B
x (y —sin é—Z—B) == [2 smig—- smg

7

T Sl ; -A—B1?

-+ 2s1n —2~-sm§-sm§- cos—é—]

.2 A—B PN SRS - R o it
—'I" Sin —""—2— (1 + ZSID—Q—-Sln?-Sm §>

) . €
und der Kreis aus M~ durch A :

( A—B\?, AiB . K, B U
X — €08 —5 )—{—y:(cos————-—w28111——-sm~-cosf>

N

2 | 2 2 2
| v i (sin% -‘sin g-sin % C—OS%)Z
daher lautet die Gleichung der g.emeinsamen Sehne: -
2x cos A——_Z_— -— 2y - sin —g—}é =4 singg - sinzg
— 4_sin2% - sing—g - cos4g
——_4-sin2% . singg . cosgg - singg



. 2 A sB .20 s A . .B . C A—B
-+ él:SlIl? SIn" - - 810”5 +~8'SIH?'bIH 5 tSlig-Cos—5
it A . B .C 2A—DB
F SIn -+ 810 5~ + Sl 5« I —5—
4 sin = B i A
81 -+ 510 -+ €08 "5+ COS —
:49111 —};— sinz—_z— :3111—4—-1 blHq? sm)g sng—
——I—SSIH% sin _I; bm? CObA—z—P—)
- —_Lsmi;— sin g-sin%-sing%—g
i A . B 2 C A—B
-+ Sl 5~ + SIN 5+ €08 ;- €08 ———
3 2B . 20 3 cp s Bed 0 AR
= 880" - 810" - - SN -+~ SIN° 5~ + 10" - - 81N -+ COS— 5
P A B C gn)A—B
—}.b1n2 51n251r12 1 5
-+ 4 sin — smg COSZ% cos A—z—B
_—'16"'2A .z2B . O A B
- s1n ?'b]ll? blﬂ“é"'(ﬂ).%“ﬁ'(?@b*éﬁ
-} 4-%111% sm—;)]i . alng sin’ A: s

A . B .0  -A—B
5+ €08

— 8 . sin i-‘si QE -‘sin—C—-cos—é COS B
2 - 2 A & 2 , |
4, Bk . 3B . C A B
-+ 8sin o SIN 5 - S 5+ COS 5= - €OS o
—+ 4sin~% - sin = - sin —- - singﬂ'
o g "3 2

WIS e - 2 A—B
+ L_Lbl_n“é“ 'Sll’l? + COS —Q_.C'OS’T



= 4 'n—Ii *'nE qinE siné smE-cos~ cosE
St Al Tk 2 2 2 2
A . B
—}-sm——z—-sm-uz—-coq—g-cos?
. A B A
—{—sm-;z—-cosg-sm?-cos—g—
_+CSA--“HE ?(*._.A-_.. 1 E
0 9 S1 9 L-)b2 SIH2
oA 5 B
—|—8s1n§-31n—2—-81n§-cos?-cos,§
— SSin2A . sin®= - sin — - A . B
5 5 5 " €085 - COS
. A . B 2 C A—B
+431n—2--51n§-cos?-cos 5
= 4sin— . 8in — - sin —- 'né- B C
= 458l 5« 8In 5 - SIN 5 | S5« €08 5~ + €08 -
.- B A C
—]—s1n—2—-cos~2-acos§]
. A . B 9 A—B
+451n~g-sm§-cos§-cos 5
‘ : . C o C ol . o B 2 A-B
—— 451n§ *Sing - S5+ €08 §+481n—2— * SN 5 - CO8™ 55+ COS—5—
: g 20 A+ B - A—B
__4sm§-sm?-cos>2[cos 5 -+ cos 5 J
== 88i1‘l~— - 81N — + CO8 — + COS —— - coqBg
e 2 2 .2 2 w8

Die Gleichung der gemeinsamen Sehne hat also die end-
giiltige Gestalt:

A—B . A—B
ZXCOS—-—Q——Qy-smH—z———

Y B 2
-_8-sm~2—-sm§-cos§-cos~—2—-cos§ (1)

Die Gleichung des Umkreises ist:
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' i 2 . o 2
(x — l—cosA B)‘i“(y ‘““lﬁ"iné““_g\):l

2 2 2 2 5!

und daher lautet die Gleichung der gemeinsamen Sehne fir die
Kreise M® und M:

/

— B ;A —B - )
— X-c0s—5 -+ y-sin 5 =481n“%-81112§ 0052—(21
4 si i B cos — cosA_B
 dsin g sin 5o c0s T
— 4sin— . sin — - cos'— sin.—-sin——--— A—B
= il 2 2 D) g, T B
H-—é’r-s'n—-sinﬁ—-cosk-c — 2 O der
— n 5 5 082-005—2— oder
A—B .. A=—B
2Xx-cos 5 — 2y-sin 5
. h ‘ B s C ;
== SSm?-sm?-cos—g-cos—Q—-cos§~ (1')

da (1) mit (1”) identisch ist, so ist der erste Satz bewiesen.

Beweis zu Satz 2.
Der Kreis aus M® durch 9, hat die Gleichung
: A—B\V, o 7 A B 2 C A—B\?
(x-—cos )—I—y:(Qcos——-cos—-cos——-—cos )

2 2 2 2 2

2 2 g 2
und der Kreis aus MC durch €,

9 . A—B\ ¢ A B
x—}—(y—bm 5 )—(2cos§-cos?

, ( A B Cc . )2
-+ 4(cos - cos = -cos— -+ SIN =

9 A . C A — B\?
=t COSg * COS ——2— » SIn -§COS B )

. 9A—DB/ A B . C\
-+ sin 5 (1—2008v2f-cos?-51n§)

und daher hat die gemeinsame Sehne die Gleichung:
Bern. Mitteil., 1907. . Nr. 1644,
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A—B . A—B

— 2x-cos 5 + 2y-sm_§_ = 4COSQ"~2A— . coszg . cosi—g
R ¥R .1 >
4 COSZ? . cosgg . cos‘—g— t-?Slngfg“
i COS2é . cosz-—BJ
2 2
— 4. cosz—;“i . cosi"§ . singg
4 A _Ei 2_9 COSA____B
— 4cos - cos 5 cos’ 5 5
-+ 8-00523 -c_bs?g-sin%g—-cosAgB
B . C . T
-+ 4-008?-00‘0?-5111—2—-8111 5
PR - 2 A : B . -zg
= COS 5 + €O8" 5« SN 7
o 8-0052% 2 cosgg- sin g— 3 cosé%}i)
. 20 A—B |
— 4 £ €08 o+ COS o - co§ —2—-005—-2—
+ 4-003%-cosg-sin—gi . sinBA;B
— 8C0$27A | césg < sin & [COSA ok - cosA +B]
o L e ] culliiE TN s
—4-COSA‘COS— AL A—B
5 5 " 0085+ COS—
A B . C. .2:2A—~B
-+ 4-cos§-cos§-sm§l- sin 5
2 A 2 . - :
il 16-008—2—-008 —2—-smt§-sm—2—-sm§
— 4.cos—:cos— - cosz—g-- cosA—B
2 g g - 2 :
-+ 4-COSA-COSE'SinE- singA_B

2 2 2

Lo



e LRI R s S ¢
= COS 5=+ COS o+ Sill 5+ 8IN 5+ 8In |
T e ey UVE
- $ €08 5+ COS 5+ SIN 5+ i o+ 81N 5
y A B '1‘19 c=ingA——-B
-} COS 5 * CO8 5 - S 5 - 5
P, B 2 A—B
— 4cos5 - cos 5 - €0S 5 - €OS 3
~ deesd o B CO[ A B . A . B
== COS“:Z“"COhg“Slng COS§'COb"2— SIHE'SIHE‘
- cosé cOS T, “irll-é * 8in L
Rk Sy
-} nf!L B-“iné- SB+COSé' ing-c o sin —
S1 5 COSg S 9 CO “é“ 2 S 9 05ﬁ2"'..1 9
+ 8 24 (,E in — - sl w—-'s'ng
COS™ + COS 5 - sin 5 - sin 5 ,1‘ 5
——8(3052é cos = Siné 'sinE s'ng
) 2 2 g PP
~-—él:co*é csB SQE c e B
S5 1 C0S 5 COS' 5 - COS—p
== aL-(;()sé-ccm:.—E n — | si L
s 5 S5 tsilg|sing - cos 5 - cos 5
' A . B C
- cos & -31n§-cos§-]
+8-cosg-cosg-smg-bmé—-smg
- SCosgé-co‘SQE siné.s' E - 9 |
— 4cos=:co & 2L e S
5 05243052-003 5
—*4-005—%-00 LSRN 20 |
et 5 SgﬁSlﬂé“'COSg
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4 o 5 B {X——B
— cos—z—'cos—Q—-coL?-cos 5
y: B 5 A} B A—B
———4-cosu§-cos§-cos§[cos——é——cos 5 ]
— 8 . sl n B COS — + COS — pe
— -smé—-smg 5 c 5 0052

und die Gleichung der gemeinsamen Sehne hat endlich die Ge-
stalt:

A—B _, . A—B
g AYyrSlTT

2X + COS

: . 5 O
= 8-s1n§-51n§-cos§-cos§- €os™ 5 (2)

Da dem Umkreis die Gleichung zukommt:

: — B\ / __B\2
(x—ml—cosA B)—F( -~——1—-sinu>=l

2 2 2 2 4

so ist die Gleichung der gemeinsamen Sehne fir die Kreise M°
und M:
A—B A—B s A 2B

R - 1 frzreorer » R —_ e ; 2——
— X008 —5 + y - sin 5 4cos g * €08’ 5 * €08 5
08 3 + 5 * €S 5 . COS 5
== 4(:08é cosE 00529 cosé coSs E — A—DB
= g YBg t S g g T 8T
== e 4B o= « SIN =+ COS — « COS — » 00529 oder
2 2 2 2 2
2X-cosAgB — 2y-sinA_B
R TR - A s C
— . —_— S Rt e o I8 i g s 2f
8.sin g * Sl 5 + €08 5 - C0S 5 - €08 ' 5 (2)

Die Ubereinstimmung von (2) und (2) beweist den 2. Satz:

Folgerung aus (1) und (2).

Die Gleichungen (1) und (2) stimmen miteinander iiberein
und da sie die gemeinsamen Sehnen von Kreissystemen be-
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stimmen, die einen Kreis (nimlich den Umkreis) gemein haben,
so sind diese beiden Kreissysteme identisch.

Die Punkte A, B,, %, und B, liegen auf einem Kreis mit
Zentrum M°.

Beweis zu Satz 3.

Der Kreis von M, durch 2, hat die Gleichung
A — B)2 2B 2 A . 2C 2 C
= 4cos 35 -

2 3 . .
qu—(yf—sm,2 — - sIn"= - sin

2 2 2
. A—B B . A .20\
-+ (sm 5 — ZCosgsm——gsm E)
und der Kreis aus M° durch G,:
’ A — B\? 2
(X—-COS 5 )+y
s A—B/, . B C . Ay
= 008’ —5 (1 — 2cos 5 +€08 5 -sin E)
(9 B.é__z B _ G . . A — BY?
- cos 5 -sin 5 9052-cos§.sm—2~-sm 5
die gemeinsame Sehne hat daher die Gleichung:
3 aA—B - .A—Bm4 e B . 2 L2
2X- 08 —5— — 2y-sin—5— = 4.cos’5 - sin 5 - s
5 . 2 A
—4-cos§-sm§
— 4 GOSZE sin’ = (:032~(—J
‘ 5 S0 - 5
4 A ..C . A—B
SE -COSTH)"-SIHTz"-blng'SIH 5
B C . A 2 A —B
e 4-005—2—-605—2——-51n§-cos 5
3 2B . 2 A C A—B |
—+ COS 5 « S5 . COS 5 - SN ——
= — 8 ceng sm.aé Y
e 5 . 5 -COSg
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2B & &
-+ 8cos 5 - s1n"5 - cOS

5 5 sin —
. SRSy} [ sing»g sinAh_'B
+€08 5 - 810 5 - 5 * 5
, B .. A oA — B
»—{— 4-003-2—-0085-5111—2—-005 5
= B co“2E 'n2é cosg sinA“B-—' AT B)
= 8.c08 5 - 8l 5 -COS 5 5 sin——
4 *Es'nf[}— s'nz—(—j inli_m——B
— 4.cosgsing .8l 5 -8 5
. A A — B
+4.cos§-cos—2—-sln§-cos 5
— 16 23 silfzé sgc 2 inuP—)
= — 16cos'5 5 + €08 5+ €08 o - Sin 5
4 S R L A—B
+€0s 5 - 81N 5 -+ 8IN' 5 - SN —5
4~ 4(303E cosg -'né e
g 5+ Sl 5 - COST—
— — 8 (:os2E singéc RL o'é 'nB
== . 2- 2-,052-052.51—5
B BT R R T
£ €OS 5« Il - €08 5 - COS 5+ SIN
4cos= -€0S = - SIN = il 1
I ARG Ry RN g R TR
' . L I P
--4~Cos-»2—~-sm—2f-smu§-sm 5
e C . A 2 A 2 B FaA. . ab
_-4-cos§-cos~2—-sm§[cos—2—-cos—§+ s’ -« SIS
- CURE . BT SR e S
e COSg-COS—g—'Slng-SIH g——SII}fo- SIH—Q_-COb—g-COS §
aB . 2A C A B
— 8.c¢08 = . 8In" = .C€O8 cos = - SIn =

2 2 | Bl 3



DT, P

A

. “'2_‘ . 2_ : B el . AL
-+ 8cos g Sl 5 €08 5 €08 5 sIn 5
i . o AR
— -cosg-sm§-dn§-sm 5
=4 - Wil i 'né cosé COSE sin—9
= -COb2-0082-81 5 5 5 ° 5
Yoo @ = - 800 ==« B1H 9
g TR g 2
4 B in = . sin’ sinAm'B
= SEEg TR 9’ 2
= -0052-6032-51112-8112 |
4 B é . 9 .HA—B
- -0055-51112 -51n§-51 5
B WL PN, U s RS kAN Tol -
= dcos 5 5 St 2(111 5 sin 5
— 8.81n — - 81 E 08 — s = . sin’
= §-sin 5 - 8in 5 -c 2-802-b]Il§

und die Gleichung der gemeinsamen Sehne gewinnt daher die
Grestalt:

A—B .A—B
2x.c08 5 Qy.g,ln_Q_
- v "B a3 A B ..C
= 8-sm§-sm§-cos§-cos§ $ S 5 (3)

Mit dem Umkreis:
x—imﬁ“BY _ 1. A—B\ 1
g ¢y | T{¥ g 2)‘4

- bestimmt der Kreis aus M, die gemeinsame Sehne von der Glei-
chung:

A—B_ . A—B
2 yoS Ty

X cos
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il 2B . sA .20_4 SE s'lA .20 . A—B
= 4.c08" 5 - sin' 5 - sin o co 5 - Sl 5 - sin 5 - sin —
— 4.c b *'né 'nzg s'nA co —P—) sl A—B
= 4.cos 5 - s 2-8] 5 |sing -c0s 5 —sin—p
— 4.8ln — + SIN — + COS — - COS — -sinz—.Q oder
I 2 8 . 2 2 2
A== B . A—=B
2x.cos —5— — Zy-]sm —y
= 8.8l In -« COS — - COS — *in2~—g (3"
= -81n§-81n2-052- 5 S5

Da (3) mit (3') tibereinstimmt, so ist auch dieser Satz be-
wiesen. |

Folgerung: Wenn wir in (3) und (3’) rechter Hand A
mit B vertauschen, so erhalten wir die Gleichung fiir die gemein-
samen Sehnen zwischen dem Umkreis und dem Kreise aus M,
durch 2, und B, bezw. dem Kreise aus M® durch €, Da hie-
bei (3) und (3’) ungeiéindert bleiben, so heisst das:

Die Kreissysteme, welche aus den Ankreisen O, und O,
(nach Satz 3) abgeleitet werden konnen, sind identisch; ferner:

Die Punkte 2, B, 2, und B, liegen auf einem Kreis mit
Zentrum M, :

- Konstruktion der durch Satz (1) und (3) bestimmten
gemeinsamen Sehnen.

X cosﬁ— s'nA_:mBﬁ

Erlbs =gl
s B A iy B ‘A NE s C
p— 'bln—é*-- Sin —2“°COS—§'COb 2 . COS?
:sinA-SinB—~———-1 +§OSC

ist die Gleichung der durch Satz (1) und (2) gegebenen gemein-
samen Sehnen. Ihr Abstand vom Koordinatenanfang ist daher:
1 -+ cosC

sinA.sinB. 5



X - COS 5 — Yy-S51In 9
4 AL B A B,
— 4 .81n B - SIn ? + COS _2'— « COS ? - S1n ——2—

ist die Gleichung der durch den dritten Satz bestimmten gemein-

samen Sehne und da 4sin % - sin o5+ CO0s ig— - COS % . sinQ%
== sinA-sinI?)-]h:;ﬁg
so 1st die Entfernung vom Koordinatenanfang
sin A.sinB. L%@
um daher die Teilpunkte dieser Sehnen auf der Hghe CH, |
(H, = Hohenfusspunkt zu C) zu bestimmen, bezeichne man die

- Mitte von AB mit M,, ziehe M’ H, und M, C und verbinde ihren
Schnittpunkt S mit M., so erhalten wir den einen Teilpunkt;
zieht man aber M°C und M, H, und verbindet ihren Sechnitt.
punkt S' mit M,, so bekommt man den andern Teilpunkt.

Besonderer Fall: Im Falle von C — 90° stimmen
die Gleichungen (1) und (3) mit einander tiberein, d. h. die beiden
aus der Kcke C abgeleiteten Kreissysteme fallen zusammen.

Durch die bewiesenen Sitze wird die eine Wurzel von qua-
dratischen Gleichungen geometrisch zur Darstellung gebracht,
Im folgenden soll auch die andere Wurzel geometrisch anschau-
lich gemacht werden. Um uns kirzer ausdriicken zu koénnen,
geben wir folgende |

Definitionen.

Die Ergiinzung eines Bertihrungsradius (zu Kreis O, 9 0,
oder O,) zum Strahle heissen wir Bertihrungsstrahl (mit O, 0, -
O, oder O, zum Anfangspunkt). Die Ergénzung eines Beriithrungs-
strahls zur Geraden heissen wir Ergénzungsstrahl. Den Punkt
auf einem Beriihrungsstrahl im Abstande 1 vom Anfangspunkt
bezeichnen wir als Einheitspunkt und den Punkt auf dem FEr-
génzungsstrahl im Abstand 1 vom Anfangspunkt Erginzungs-
punkt. Alsdann haben wir folgende Sitze : ,

Bern. Mitteil., 1967. Nr. 1645
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4 Satz: Im ebenen Dreieck ABC treffen die innern und
sussern Winkelhalbierenden (CM° und OM,,) eines Winkels (C)
den Umbkreis (Zentrum M) in 2 Punkten (M® und M), welchen
die Eigenschaft zukommt, dass die Kreise aus M® und M, durch
die zugehorigen Erginzungspunkte (A, und B,’) des Inkreises
bezw. durch seinen Erginzungspunkt (C,') an der dritten Seite
sich im Umbkreis schneiden.

5. Satz: Im Dreieck ABC treffen die innern und &ussern
Winkelhalbierenden (CM® und CM,) eines Winkels (C) den Um-
kreis in 2 Punkten (M° und M), welche durch die Eigenschaft
ausgezeichnet sind, dass die Kreise aus M® und M, durch die
zugehorigen Einheitspunkte (2, und B,') des der Ecke C gegen-
iiberliegenden Ankreises bezw. durch seinen Einheitspunkt (G,")
an der dritten Seite, sich im Umkreis schneiden.

6. Satz: Im Dreieck ABC treffen die &ussern und innern
Winkelhalbierenden (CM,, und CM°) eines Winkels (C) den Um-
kreis in 2 Punkten (M, und M%), welche die Eigenschaft zeigen,
dass die Kreise aus M, und M® durch die zugehorigen Einheits-
punkte (2, und B,’) des dem Winkel B gegeniiberliegenden
Ankreises bezw. durch seinen Einheitspunkt (€,") an der dritten
Seite, sich im Umkreis schneiden.

Bestimmung der Koordinaten.

Seien A/, B,’ und C," die Ergénzungspunkte des Inkreises,
(0, B, € und A, B,/, €/ die Einheitspunkte far die An-
kreise O, und O,, so leiten sich aus der Figur 2 die Koordinaten
ab, wie sie in der folgenden Tabelle zusammengestellt sind.



131

G G

uis 6 ms— §00 — — §0D+ — §09 [ 9
d—V 0 qa—v d LARE
G G &
—— 8§09 — S09 ,
D d—V | .mw
€ 509 8 509 = 8 g G moo.&rmoom N
@) g—V O d v
hmoo - = 8 urs — imiﬁm.lmimoom — C $09 G
0 d—V d Vv d—YV .
G & g
uis = uIs
m”ll|< G O . \mm\
G G G G o & é
als = — 800 -} =2 us - soop — - urs —
Tl 0 _ g "y 508 7™ (G
G G G L g— G T
urs = Ul — = > ulS* — Uls g - s00 —| |
qa—v " T g ™y e F H—v 0
G G T
= 509 S09
0 qd—vV ri
G G G G G T
2§09 — - 809 = — uls | = urs - -2 urs
0 d—V 0 +_m Ty e a
A X




— 132 -

Hieran schliessen sich noch an die Koordinaten von M
M und M,:

X y
1 A—B . — B
M 5 cos 5 5 sin 5
M° coS =2 0
2
: A
M, 0 sin —

Beweis zn Satz 4.

Der Kreis aus M® durch A’ hat die Gleichung:

(X — €O0s i ; B)H—F y2 ke coszg

2
und derjenige aus M, durch C/:

2 _A—BY .0
X _I_(y -— Ssin 2 ):Sln -—2—

Die Gleichung ihrer gemeinsamen Sehne lautet daher:

— 2X-COSA;B -+ 2y-sinA_B

2
—“csgg——sinz—o——c A — B oA —B
= G 5 5 0s 5 -+ sin 5
= cos C — cos (A— B) oder
—X-COSA;B—l—y-SinAgB = — cosA . cosB (4)

Der Umkreis aber hat zur Gleichung:

1, A—Bz (1 A—Bp |
X — 5 c0s—5 (\y 5~ sin >—-——

2
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Seine gemeinsame Sehne mit dem Kreis aus MS durch
A" hat deshalb zur Gleichung:

-~ X .08 - ;B + y-sin g
_ .20 JA—B
= cos cos’ —5 |
_ 14+ cosC 14 cos(A — B) o
2 2
——X-COSA;B—}—y-sinA;Bz———GOSAQCOSB 4")

Die Ubereinstimmung von (4) und (4') beweist den 4. Satz.

Beweis zu Satz 5.
- Der Kreis aus M, durch €, hat zur Gleichung:

2 A= B . 50
x -+ (y—sm 5 )_'sm 5"

und derjenige aus M° durch B

A — B\2 2 C
(X——COS 5 )—k i €OS" 5~

daher ist die Gleichung der gemeinsamen Sehne :

f'2x-cosé—;~§ -+ 2y-sinA;B
—. 2 O . 3 2A—— 2A — B
= 008 5 — sin 5 — 008 ——5— -} sin 5
= cosC — cos(A — B) oder
m—.x-cosAgB+y-sinA‘;B=———cosA-cos‘B 6)

Der Umkreis hat zur Gleichung:

1 A — B)\2 1 . A—B\? 1
(X—?cos—g—>—f—(\y——-§—sm 5 ):1—
Seine gemeinsame Sehne mit dem Kreis aus M, durch €,’

hat daher die Glelchung

A—B .2A—B .20

e e O +y.31n 5 — SIn 5 . — SIn _2_
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_1—cos(A—B) 1—cosC

.2 2
__c0sC —cos(A —B) oder
2
—x-cosé—g——ﬁ ~+ y-sinA;-B-————cosA-cosB 5"

Der Vergleich von (5) und (5’) vollendet den Beweis zum
5. Satz.

Folgerung: Da die Gleichungen (4) und (5) miteinander
tibereinstimmen, so heisst das: _
Die Kreissysteme von Satz (4) und (5) fallen zusammen.

Beweis zu Satz 6.

Der Kreis aus M, durch 2,” hat zur Gleichung:

2 £, . B - B)Z_W « 2 O
x + {\y — sin —5 == sin" -

/

und derjenige aus M° durch G, :

A — B\? 2 s C
(x——cos 5 >+y=cO33_2_

und ihre gemeinsame Sehne bestimmt die Gleichung:

A—B . . A —
— 2x.cos 5 -+ 2y.sin 5
o 2 -k 2A—B E gA-—B
= Co0S 5 sin 5 cOS 5 -+ sin 5
— cosC — cos(A — B) , - oder
—x-cos%_g——B —l—y-sinAg_Ez — cos Acos B (6)

Die Gleichung fir den Umkreis ist wiederum:
2 2 ( 2 2 4

=

seine gemeinsame Sehne mit dem Kreis aus M, durch 20, hat
daher zur Gleichung:
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— X.€08 —5— + y-sin —5— =sin—5— —sin" 5
1 cos(A — B) 1 — cosC Tuow
= 5 - o oder
- x-cosA E—B + y-sin QA—E—B':: — cosA.cos B (6")

Folgerung: Wenn wir in (6) rechter Hand A mit B ver-
tauschen, so bekommen wir die Gleichung der gemeinsamen
Sehne zwischen den Kreisen M, M, (durch 9(") und M® (durch
€,). Da hiebei (6) ungeindert bleibt, so heisst das:

Die Kreissysteme, welche nach Satz 6. aus den Kreisen
O, und O, abgeleitet werden konnen, sind identisch.

. Durch Vergleich von (5), (6) und (7) ergibt sich:
Die Kreissysteme der Sitze (5), (6) und (7) fallen zusammen,

Konstruktion der gemeinsamen Sehne.

Die Gleichung derselben lautet fiir alle 3 Sitze:
A—B . A—B

— X CO0S —2— + y-sin —,— = — cosA.cos B oder
sl

X - COS E%_;—A -+ y-sin ———2:& = cos A .cos B.

Ihr Abstand vom Anfangspunkt C des Koordinatensystems
1st somit: cosA . cos B.
Daraus ergibt sich die Konstruktion weil
cosA . cosB = sinA . sinB + cos(A |+ B)

— sinA . sinB — cosC _
gleich ist die Hohe des Dreiecks ABC aus C vermindert bezw.
vermehrt, um den doppelten Abstand des Umkreismittelpunktes
von der Seite AB:

Man drehe die Seite AB im Umkreis um 180° so fillt sie
mit der gemeinsamen Sehne zusammen,



	Neun Kreisscharen am Dreieck : allgemeiner Fall und Übertragung auf die Ankreise

