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A. Bohren.

Ueber

die Integrale / xmcosnxdx und / xmsinnxdx
0 0

(m und n ganze Zahlen)

(Eingereicht den 5. Juli 1906).

In Tabellen über bestimmte Integrale finden sich1)
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Mit Hilfe dieser Spezialfälle lassen sich nun auch die oben

angegebenen Integrale leicht ausführen.
Durch partielle Integration erhalten wir zunächst
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ì) Nouvelles tables d'intégrales définis de Bierens de Haan.
Meyer, Bestimmte Integrale.
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Mit Hilfe dieser Rekursionsfornielli gelangen wir auf F(l
und f mit den oben angegebenen Werten.

Es ist demnach
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Werden die entsprechenden Werte eingesetzt, so erhalten
wir für die Ft nach geraden und ungeraden Indices geordnet :
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Für F2111 + 1 ergibt sich, wenn wir das Gesetz allgemein
annehmen
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Die 2' ist die Sinusreihe von (iitt).
Für die F., ergibt sich das folgende allgemeine Bildungs-

gesetz
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Die Integrale f ergeben sich wie folgt
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Wir haben also :
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Für m 1 erhalten wir aus I x III
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Da die Integrale bei Entwicklungen von Funktionen nach
trig. Reihen auftreten, so scheint mir ihre allgemeine Lösung
von einigem Interesse zu sein.
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