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G. Sidler.

Zu den logarithmisehen Reihen.

(Eingereicht den 3. Oktober 1904.)

Bei meiner Vorbereitung auf die bernischen Maturitits-
prifungen vom Herbst 1904 haben sich mir die folgenden
Kleinigkeiten ergeben, die ich mir erlaube, der Tit. Natur-
forschenden Gesellschaft vorzulegen.

‘1. In der Reihe
1 14z\ g2 oz 7!
7 log (—1~z)*z+§“"‘r“5+7+ “““
setzen wir z = cosX, so kommt

X

log cotg 5 = COSX - —?1’— (cos xj3 +- % (cosx)* - -- (1)

Auf der rechten Seite wollen wir die Potenzen von cosx
durch Cosinusse der Vielfachen von x ausdriicken. Erheben

wir hiezu die Relation 2 cos x = e*' - ¢~ *' in die Potenz 2n--1,
so ergibt sich

2n 2n+41 2n+1 - '
277 . (cos x) ==cos (2n+41)x+ { cos (Z2n—1)x 4

n (an—l) cos (211—3)}{_,_(211;.1) cos (2n—5)x .- +

-+ (211I:|~ 1) cos X.

Durch diese Substitutionen geht die Reihe (1) iber in



— 145 —

log cotgézcosx +-
3
+ .123 {(I)L%x |—cos3k= sef
1 [ )
| 5o | (2) cOsSX - (])cos3x—|—cos.’5x}+
1 & 7 7 l
- =g {(3) cosx -+ (2) cos 3x (1) cos Bx |- _cos7xl -
N YL EE :
d. h. wenn wir schreiben
logcotg%:Acosx—I—Acos3x—}-~AcosSx+----, (2)
1 3 D
so erhalten wir
JRE L&) I ) O B ©) I
ro20|1. 20 ER R
1] () G 6
“} 22[3.20 7 .94 9. 26 ]
A1) () L6 L6
5 24[5-2 N ETIC |
oder allgemein
%C’O (2k—l~2n+1)
‘_’k n
2 =, .
’k—{l é -‘ {‘2“ l" ) 2211 (‘})
was wir auch schreiben k(‘)nne
= (2k+ )
2k " n—1 » .
2 .A>]\+1 2k- 1_1 { 2 221\ Y T (3)

Untersuchen wir die far A, erhaltene Reihe (3) oder (3)
auf ihre Konvergenz. Der Quotlent irgend eines Gliedes durch das
vorhergehende 1st

u, (2k+2n)(2k+2n——1)
u 4n2k-tn+1)

n

_ n - @k—1) - nk(k—"})
- nt4-2k-41)n '

Nun zeigt Gauss in seiner Abhandlung tiber die Hyper-
geometrische Reihe: . Wenn bei irgend einer Reihe mit posi-
tiven Gliedern der Quotient der Form ist
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un+1 B nt }-C, ot +C, 2 Jaas
u,  n"4Dn" D" ..
so ist die Reihe dann und nur dann konvergent, wenn D —C, > 1.
Bei der Reihe fir A,, , ist nun D;—C = 2k+-1)—2k—"/2)
= %. Somit ist die fir A,  , erhaltene Reihe (3) oder (3")
konvergent.
2. Um nun den Koeffizienten A,, ,, in geschlossener Form

darzustellen, differenzieren wir die Entwicklung (2), so kommt

LA sinx}-3A,sin8x | 5Asinbx 4 (4)
Jetzt bieten sich uns verschiedene Wege dar, den Koeffi
zienten A,,  , zu bestimmen.

Wir konnen (4) beiderseits mit 2 sin (2 h +- 1) x - dx multipli-
zieren, und von x=0 bis x= g— integrieren.

Nun ist, wenn k und k' irgend zwei ganze Zahlen, inklu-
sive 0, darstellen ‘

7!/1
_/QSin(2k’+1)anin(2k—|—1)x-dx:

0
: Al :
=f{co's2(k-——k’)x—cnsZ(k—Fk’—l—l)x}dx:
0
| =0, wenn k’;k
l — ”/2, > k':‘:k.

Somit kommt aus (4)

In/z .
2sn(2k+41)x o
/ e dx =2 @k+1)A

2k41° (o)
V]
'Um das Integral linker Hand zu werten, schreiben wir

TMfe *
Jk=f sm(2k+1)x-dX

sin X

b

so kommt

0
71/:2 %
sinx.cos2kx
Se—dy Zf : ~dx =
sinx
0



- d. h.

Y -

/s
:f2cos2kxdx=0.
- ;

T

Somit J, =J,= L d. h. wir finden
'H/! 2 - .
sin(k4-)x . #n
f sinx thace= 2’ (8)
U
A 2
und 2kl 21 ®)
Oder aber, um (3) zu gewinnen, haben wir
sin(2k'—}— x glPEHIxI _ o—@k4Dxi .
sinx. '“F’ exi___e—xt -

kxf —2)xi 2k—4)xi
— e2 x +e(2k ) x +e( )xi .

+ o~ 2kxi + o~ k=i T o~ @k
=1+42cos2x }2cos4x +2cos6x - - |-2cos2kx,
f””sin(2k+1)x dx T

sinx 2

Somit wie oben.

0

3. Den Wert von A, .,
elementarem Wege aus der Entwicklung (4) gewinnen. Wir

kénnen wir aber auch auf ganz

multiplizieren hiezu (4) mit 2sinx, so kommt

k=co

2= @k+1)4,,,, - | cos2kx— cos(2k +2)x |
k=0

"9—A 4 (BA,—A)cos2x + (BA, —3A)cosdx
-I—(7A7—-—5A5)COSGX+(9A9—7A7)c038x+

Dieses wird zur Identitit, wenn

A, =
3A,—A,

5A,—3A,
7TA,=B5A
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@k+1) 4, =@k—1)4,,_ .

Hieraus durch Multiplikation (2k+1)A,,,, —2, also

2 :
Apy = Sk 1 wie oben.

4. Fithren wir den fur A‘Bk—[—l gewonnenen Wert in (2) ein,
so finden wir schliesslich’

x‘.——

1 1 .

El og cotg 5 (6)
1 1 - ¢ 4 ” T
:cosx—l——_‘;—cos?‘x—l—-—gcos{)x +—,7-coslx+---m inf.

Diese Reihe ist konvergent. Denn fassen wir rechter Hand
die Gruppen aufeinanderfolgender gleichzeichiger Terme je zu
einem einzigen Terme zusammen, so haben wir eine Reihe mit
abwechselnden Vorzeichen, und die absoluten Werte der be-
treffenden Terme werden schliesslich unendlich klein.

Vergleichen wir (6) mit (1)
X
log cotg 5= (1)

| —cosX -} % (cosx)?* -} —;.1; (cos x)° -+ %(cos X)7 e,

so ist interessant, dass in der Entwicklung von log cotg 5 nach

ungeraden Potenzen von cosx und in der Entwicklung von
1 % . . ve
rémlog cotg > nach Cosinussen der ungeraden Vielfachen von x

je die nimlichen Koeffizienten auftreten.

Ce : . TE o .
Setzen wir in (6) und 1in (1) x in 5 — X um, so erhalten wir

X
log tg (_}_‘"?) -

| (1)
—sinx - (sin X)* - (sinx)° |- - (sin )7 -
und
1 7T x
~2—10gtg(—4——|—?): ’
| (6")

; | | 1 .
= —— - T sinbx — — IR
==sinx — 5 sin3x -} 5 sInbx —— sin7x |-
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By . 7€ * ' . '
In (6) se1 X = S0 haben cos x, ¢os 3 x, cos 5x u. s. w.
denselben absoluten Wert —— \/A und zwar ist cos x positiv, cos3x

und cosd x smd negativ, cos 7 x und cos 9 x positiv u.s. f. Wir
erhalten also

1 w 1 1 1,1 1 1
yelse g =lmg g tetyg -t
@ T w 2z .
Sel nun tg g % SO 1st tg T =T also
11— oder 2422 —1=0, also tg - = — 141/

und cotg % —1+4+1\/2. Wir erhalten also aus (6)

%lognat. (14+V2)=
L ) G
1 1 1 1 1 1
“leg gttty —amomt
Aus der Entwicklung (1) aber ergibt sich
(/2 - log nat. (1 + \2) =

(8)

d3. Den fir A.

2k41

erhaltenen Wert fuhren wir auch mn (3')

- m(Zk-{-Zn)

ein, so kommt:

2 -1 N\ ot/ ©)
2k 1 né:dl 0.2 .
d. h.
s | 1, 2k}4 | (2k4-6)(2k+5)
SRrl 1z et g+ @)
L 2k |-8)2k+7) @2k F6) | (2k4-10)(2k+9)(2k+8) (2k-L7)
et 4198 T 51910 -

+ .-« in mf
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6. Die obigen Resultate kénnen wir auch, wie folgt, gewinnen
und verallgemeinern. In der Reihe

1
?log( —'_Z)—L—l- _|_ + ..... (a)
setzen wir z=ae'~, wo « absolut <1, so erhalten wir
acosx+ 1 a cos3x+ a’cosdHx - .- ——1~R[10g H_"eix}
‘ 2 l 1—ce
: 1, . s 1 { 1+ae“‘}
esinx + 5 mn3x+—5—a sin H X —{-—--f-—-z—iJ; log e

wo R die reelle und J die imaginire Komponente des rechts
neben R oder J stehenden Ausdrucks bezeichnet.
' 1+ee'™

— Zahler und Nenner mit
1—ae

Multiplizieren wir in

l—ae ", so kommt |
1+4ae'™ __14-2iasinx —o?

1—ael* 1—2acosx-a?

und wir erhalten daher

2 «*Meos@k-F1)x
o 2k-1 -

(b)
:——-—%—Rlog (1-}21asinx — a?) — é—lo_g (1—2«acosx+ a?),

N *sin(@k +1)x
2; ——Jl 1421 —
= SkF1 og( +2iasinx —«a ) (c)

Aber log (u+ 1v) = i log (u¥4-v?) +-iArc tg —, woraus

log (14+2iasinx —a?) = —;w log{ (1 — e*)?-+ 4 o?sin x* } +
; 2asinx
-I—I'AI'C tg (W)

Hier konnen wir rechter Hand die reelle Komponente

schreiben %log{ (14-«*)? — 4a®cosx? }, und wir finden daher
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Rlog(1-21usinx — «?) = ; log (1-}2c¢cosx -} a?)

| —{——;—log (1 —2acosx+a?),

Jlog (1+4-2iasinx —ea?) =i Are tg (31‘-’:31-2;‘)

Die Relationen (b) und (c) ergeben somit schliesslich

O

N cos@k 4 )x 1 log (1+2acosx—|—a*‘), (10)
— 2k+1 4 1—2eacosx +a?

OO

N osin@kH1)x 0 1., ’zasinx)

kéo a1~ _—Q_AlCtg(_—'—l_az - (11)

In (10) diirfen wir « = 1 setzen, und erhalten dann rechts

1, lJrcosx) 1 X : . :
oy log (T-——m"é“i, w?log cotg 5 So gewinnen wir wieder
unser fritheres Resultat
1 x _S 1 .
5 log cotg 5 —k-om cos (2k-+1)x, (6)
wahrend aus (a) die Substitution z = cos x gibt
N 1
ot X 1 2k+t1
log cotg 5 2 ok 41 (cos x) . 1)
k=0
Setzen wir ferner 1n (11) x :g—, so kommt
Y . azk“_l ( 2 )___ 3
2 (—1) . m— —? Arc tg 1:—0!5/ == Arc tg .,
Die bekannte Arctg Reihe:
20 2k1
kO '
= —) 1
Arctga k‘?_IO( 1) SE 1 (11")

ist also ein spezieller Fall von (11).
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