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Ad. Gasser.

Ueber die Nullstellen der Besselschen Funktionen.

(Eingereicht im Juli 1904.)

Einleitung.

Als allgemeine Lösung der Differentialgleichung

worin a eine beliebige Zahl bedeutet, kann gesetzt werden:

y AJ(x) + BK(x).1)
a a

A und B sind arbiträre Konstante, J(x) und K(x) nennen
wir die Besselschen Funktionen I. Art.

a

J(x) lässt sich durch folgende Reihe darstellen
x\a+2/.

a <^| ; y 2/
J(x)^2j (-1)/'l!r(a+A-fì)'i=0

woraus sich das Integral ergibt

j(x)= LfeiH)r-idt.2l7T J

N ist eine zum unendlich Werden bestimmte Zahl.
a a

Zwischen K(x) und J(x) besteht die Beziehung
a a "J —a

K (x) cotg a TT J (x) ; J(x),
sma/r

woraus sich auch eine Summenformel und Integraldarstellungen
a

für K(x) bilden lassen.

Auf die Besselschen Funktionen stösst man bei der
mathematischen Behandlung mehrerer physikalischer und astronomischer

Probleme, und es spielen darin meist die Nullstellen
derselben eine bedeutende Rolle.

') L. Schläfli, Annali di Matern. Ser. Ila T. VI.
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Von verschiedenen Mathematikern sind daher Untersuchungen

angestellt worden, um die Zahl und Lage derselben zu
ermitteln, ohne dass es bis dahin gelungen ist, einen einfachen
Weg zur genauen Berechnung zu finden.

Wir haben uns die Aufgabe gestellt, die bis dahin bekannten

Resultate und eingeschlagenen Methoden kurz zusammenzustellen und.

in einem zweiten Abschnitt eine derselben weiterzuführen.

I. Historischer Überblick.
a

Bereits Poisson1) hat gezeigt, dass die Gleichung J(x) 0
für reelle a nur reelle Wurzeln besitzen kann. Er stellt das

Integral auf:
n
tJ(ot).J(/?t)dt 0,

o

worin a und ß zwei beliebige aber verschiedene Wurzeln von
a

J(x) 0 bedeuten. Wäre a komplex, so könnten wir als ß die

konjugiert komplexe Wurzel wählen, es mussten dann auch
a a

J(«t) und J(/it) konjugiert sein; ihr Produkt wäre positiv längs
des ganzen Weges, somit könnte das Integral nicht den Wert
Null annehmen.

Kurze Zeit später hat Sturm2) eine allgemeine Methode
entwickelt, welche, angewendet auf die Besselschen Funktionen,
sehr weitgehende Schlüsse auf die Lage ihrer Nullstellen zulässt.
Da wir jedoch dieselbe im zweiten Teil unserer Arbeit einläss-
lich behandeln, so sei sie hier nur erwähnt. Dagegen müssen
wir uns etwas länger bei der interessanten Untersuchung von
Hurwitz9) aufhalten. Er beschäftigt sich nicht direkt mit den
Besselschen Funktionen, wie wir sie eingangs definiert haben,
sondern geht aus von einer verwandten aber einfachem Reihe.
Er setzt

r

') Sur la distribut, d. 1. chaleur d. 1. corps solides. Paris 1821.

2) Liouville Journal. Vol. 1. 1831.

3) Math. Annalen. Bd. 33. 1889.
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1 r

fa^ r(a+l) + r(a+ 2).l!
"* *~

r(a+ r-f-l)-r! +
und es gilt dann:

J(x^(1)m-t
Daraus ergeben sich mit Leichtigkeit die Nullstellen von J(x),
wenn diejenigen von fa(z) bekannt sind. Hurwitz sucht die
Aufgabe weiterhin zu vereinfachen, indem er die transzendente
Funktion fa(z) durch eine rationale zu ersetzen sucht, deren
Nullstellen in einem bestimmten Grenzfall mit denjenigen der
transzendenten zusammenfallen. Zu diesem Zwecke beweist er
folgenden Satz: Es sei f(z) die gleichmässige Grenze der Funktionsreihe

g0(z), Si(z)> s2(z)> ' §,»>
so dass gilt „^1^, gv(z) f(z), *o liegen in einem Gebiet, in welchem

f(z) endlich und stetig, und die Funktionen gv(z) alle den Charakter
einer rationalen Funktion besitzen, die Nullstellen von f(z) in den

Verdichtungsstellen der Wurzeln der Gleichungen

g0(z) 0, gl(z) 0, ga(z) 0, ....g» 0

und zwar liegen in einer beliebig kleinen Umgebung der Stelle w, die

eine v-fache Wurzel von f(z) 0 ist, genau v Nullstellen von gv(z),
so bald v eine bestimmte, von der Grösse jener Umgebung abhängende
Zahl überschreitet.

Als solche Hilfsfunktion g,,(z) wählt Hurwitz Zähler und
f fz)Nenner der Kettenbruchentwicklung des Quotienten —-,

Vf-i iz)
welche Funktionen von Heine1), Christoffel2) und Lommel3)
bearbeitet worden sind.

g*(z) ist definiert durch die Reihe

r=0 vi;
und hängt in folgender Weise mit f(z) zusammen:

(~l)v>n\t ]

sin arc
%v ™ow I a-l ' f-a-y Z *-a+l " \+v

') Heine, Handbuch der Kugelfunkt. Bd. 1.

2) Creile Journal Bd. 58.

*) Math. Annalen Bd. 4.
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Setzt man für f „ und i_!i_v die Reihenentwicklungen ein,

so lässt sich leicht zeigen, dass v^>0 w~~r~r — fa-r Man

findet daher die Wurzeln der Gleiehung fa(z) 0 mit beliebiger
Genauigkeit, indem man diejenigen von ga+1 (z) 0 bestimmt.
Mit wachsendem v wird die Übereinstimmung immer besser.
Diese Hilfsfunktion g* (z) ist nebenbei bemerkt nahe verwandt
mit der von Graf und Gubler ') eingeführten Schläflischen Funktion,
deren Definition ganz ähnlich lautet.

Sie ist definiert als Zähler und Nenner der Kettenbruch-
a

entwicklung von _t Es ist
J(x)

J(x) iim P„(x)
a—1 )/= oo a—1

J(x) P„+1(x)
a

wobei Pi/ (x) die vte Schläflische Funktion mit dem Parameter a
a

bezeichnet. J(x) bildet ihre gleichmässige Grenze. Ferner ist

xV\, iv(v—r\ r(a+v—r+ 1) /x "

^W (|j S^Vr y r(a+H-i) V2,
r o

Mit der Summenformel von gj,(z) verglichen, ergibt sich

k(x) (£
somit fallen die Nullstellen von P»/(x) mit denjenigen von
»+1 / x2\
g,, I j-l zusammen, und es gilt der Satz:

a
Die Nullstellen der Besselschen Funktion J(x) liegen in den

Verdichtungsstellen derjenigen der Schläflischen Funktion.

Anmerkung. Es ist uns gelungen, eine Differentialgleichung der
Schläflischen Funktion aufzustellen. Sie lautet:

x' d*y x d»y d»y /p \ dy qy _4 dx" + 2 dx3 (P X J
dx2 + \2x + Jxj dx + 4x» ~ U'

wobei p m (^-f a+lj + ^a-f-^-J

q m (m+2) {4a (a+m-f-1) + m (m +2) }.

') Theorie der Besselschen Funkt. II. Art. S. 99. Bern.
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Die weitern Schlüsse von Hurwitz basieren auf einem
bekannten Sturmschen Satz über den Zeichenwechsel innerhalb
einer Funktionsreihe bei Variationen des Arguments. Der
Vollständigkeit halber wollen wir diesen kurz vorführen.

Es sei folgende Funktionsreihe gegeben:

Vm, Vm_i, V,„+1, V,a, V^_! Vi, Vo.

Vi sei eine ganze rationale Funktion der komplexen Variablen z

vom Grade i. Der Koeffizient von z1 sei positiv. Ferner erfülle
V, die Bedingungen:

1. Wenn i ^ 11, so besitzen, wenn Vi verschwindet, die

Funktionen Vi+i und V_i von Null verschiedene Werte
von ungleichem Vorzeichen, dagegen wenn i «, so
sollen sie gleiche Vorzeichen haben.

V,„
2. Geht z von —oo bis + oo, so geht „ überall, wo

Vm—1

der Quotient 0 wird, von negativen zu positiven
Werten über; oder mit andern Worten: Zwischen 2

aufeinanderfolgenden Nullstellen von Vm muss stets eine

ungerade Zahl von Nullstellen von Vm_i liegen.
3. Die Gleichung Vm 0 hat keine mehrfachen reellen

Wurzeln.
Unter diesen Voraussetzungen hat die Reihe V,u, V^„i • •

• • Vi, Vo für z — oo f.i ZeichenWechsel, während sie für
z + oo f.i Zeichenfolgen aufweist. Geht daher z von — oo bis

+ oo, so gehen /.i Zeichenwechsel verloren. Es ist klar, dass

ein solcher Verlust nur stattfinden kann, wenn eine der
Funktionen V durch 0 hindurch geht, und durch die Voraussetzung 1)

beschränkt sich dieser Verlust auf diejenigen Nullstellen von
V«

V«, wo ^y von negativen zu positiven Werten übergeht. Es
vy_i

muss deshalb Yu wenigstens f.i reelle Wurzeln haben. Da diese

Funktion aber vom Grade ii ist, so folgt der Satz: Die Gleichung
Vu

Vu 0 hat nur reelle Wurzeln, und es geht der Quotient -p

jedesmal, wenn er verschwindet, von negativen zu positiven Werten über.

Auf gleiche Weise ziehen wir Schlüsse aus der Reihe
Vm, Vm_j, • • • Vufi, V/*, Yfi-i, • • • Vi, V0; durchläuft z alle Werte
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von — oo bis + oo, so gehen m Zeichenwechsel verloren. Ein
solcher Verlust kann hier eintreten erstens, wenn Vm 0, und
zweitens, wenn Yp 0. Im letztern Falle gehen immer gleichzeitig

zwei Zeichenwechsel verloren. Da Yp 0 /.i reelle Wurzeln
besitzt, so ist die Zahl dieser Verluste 2 ii. Es bleiben deshalb
noch m—2^ Verluste an Zeichenwechseln, die vom Verschwinden
der Funktion Vm herrühren. Es muss diese somit m — 2f.i reelle
und 2/.1 imaginäre Nullstellen besitzen.

Die Bedingungen, denen die Funktionen V unterworfen
sind, werden durch die g-Funktionen erfüllt, wie aus der Summen-

r=0
und der daraus abgeleiteten Beziehung

(a+2v — l)g2„+2 C2J,g2v- (a+2i>+ l)z2g2„_2;
wobei Cv=(a + v){(a+ v —l)(a+ r+ l) + 2z},
leicht ersichtlich ist. Wenn g2J, 0, so müssen g2v+2 und g2j,_2

ungleiche Vorzeichen besitzen, so lange sowohl (a + 2i< — 1) als

(a+ 2»' + l) positiv ist. Da v von 1 an zählt, so ist dies sicher

der Fall, sobald a> — 1. Es kann deshalb in der Reihe g2j,r

g2j,_2 • • • • g^ go nur ein Zeichenwechsel verloren gehen, wenn

g2v 0 wird. Da im ganzen v solcher Verluste erfolgen und
dies zugleich die Zahl der Nullstellen von g2v ist, so gilt fulgen¬

ti
der Satz: hl a^> — 1, so besitzen die Gleichungen g2v(z) 0 für

a

g2v(z)
jedes v nur reelle Wurzeln, und es geht der Quotient jedes.

mal, wenn z eine Nullstelle von gSv(z) passiert, von negativen zu
positiven Werten über.

Die Zahl der positiven Wurzeln erhalten wir, indem wir z
von 0 bis + oo wachsen lassen und die Zahl der eintretenden
Verluste an Zeichenwechseln bestimmen. Für z —0 ist aber:

g0 l, g2 a(a + l), g4 (a+2)(a+ 3)g2

allgemein : gay+2 (a + 2v)(a + 2» + l)gay.

') Der Einfachheit halber betrachten wir nur die geraden g-Funk-
tionen.

Bern. Mitteil. 1904. Nr. 1577.



Für positive a sind alle diese Ausdrücke positiv, es tritt
somit kein Zeichenwechsel ein, wenn z von 0 bis + oo wächst

a

und deshalb haben die Gleichungen g2v(z) — 0 keine positiven
a

Wurzeln. Liegt dagegen a zwischen 0 und —1, so ist |g2(z)|z=0

negativ, und es geht mit wachsendem z ein Zeichenwechsel
verloren. Wir erhalten somit den Satz:

a

Die Gleichung ggv(z) 0 hat eine positive und v—1 negative,

Wurzeln, wenn a zwischen — 1 und 0 liegt, dagegen sind alle

Wurzeln negativ, wenn a > 0. Ist aber a < — 1, Uegt es z. B.
zwischen — (2fi — 1) und — (2 p + 1), wo p eine ganze positive
Zahl bedeutet, so folgt aus

(a + 2 v — 1) g2]/+2 c2rg2), — (a + 2 v + 1) z2 g2j,_2,
dass in der Funktionsreihe

g2j/' g2r+2> • ' ' g2f«+2' g2|U' 82p—2' " - • go

immer, wenn eine der Funktionen verschwindet, die benachbarten
gleiches Vorzeichen besitzen, ausgenommen dann, wenn g2„ zu
Null wird.

Ferner lässt sich zeigen, dass für grosse v der Differential-

quotient von — einen positiven, von Null verschiedenen Wert
g2»>—2

besitzt und somit erfüllt die Funktionsreihe

g2j/' g2j<—2 - - * • g2(" • * • • go

für grosse v alle Bedingungen, die wir für die Reihe

V V V Vm' m—1 {*¦ 0

aufgestellt haben, und so können wir den für die Funktion Vm
a

ausgesprochenen Satz auf unsere Funktion g2v anwenden.

Wir untersuchen wieder die Zahl der positiven Wurzeln.
a

Für z 0 ist g2 +2 — (a + 2r) (a+2v+ l). Liegt a zwischen
a

— (2/.1—1) und —(2fi), so hat g2j/,2 für jedes v das positive

Zeichen, während, wenn a zwischen —(2^+ 1) und —2 p ge-
a

legen ist, g2„,2(z) das einzige Glied ist, das für z 0 negativ
wird. Wir erhalten also im letztern Falle einen einzigen Verlust
an Zeichenwechseln, wenn z von 0 bis + 00 wächst. Dies er-
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gibt den Satz: Liegt a zwischen —(2/^+i) und —(2/.i— 1),

a

so besitzt die Gleichung g„v(z) 0 genau 2fi imaginäre Wurzeln,

falls v eine gewisse Zahl N überschreitet. Zugleich ist ron den reellen

Wurzeln dieser Gleichung eine oder keine positiv, je nachdem a zwischen

— (2(i-\-l) und —2fi oder zwischen —2fi und —(2/j.— 1) liegt.

Da die Nullstellen der Besselschen Reihe fa—1(z) in den
a

Verdichtungsstellen der Wurzeln der Gleichungen g,,(z) 0 liegen
a—1

und diejenigen der Besselschen Funktion J (x) gefunden werden,
x2

indem man setzt j- z, so ergibt sich ohne weiteres :

a
Die Wurzeln der Gleichung J (x) 0 sind sämtlich reell und

paarweise entgegengesetzt gleich, wenn a]> — 1. Liegt aber a zwischen

—¦ 1 und — 2. so fallen 2 derselben auf die imaginäre Axe und liegen

symetrisch zum Nullpunkt.

Dagegen können wir die Sätze für den Fall, wo a <[ — 2

nicht ohne weiteres anwenden, da die Verdichtungsstelle eines

Systems komplexer Werte nicht notwendigerweise komplex sein

muss. Um nachzuweisen, dass sie es in diesem Falle ist, gehen
wir aus von der Gleichung

g2v(Z) + '<g(2r+l)(Z)=0>
wobei k einen reellen variablen Parameter bedeutet. Für l 0
hat diese Gleichung für ein genügend grosses v sicher «-Paare
konjugiert komplexer Wurzeln. Variiert r, so kann ein solches
Paar nur verschwinden, wenn sich die konjugierten Werte auf
der Realitätsgeraden treffen und eine reelle Doppelwurzel bilden.

g 1

In diesem Punkte würde aber, da —^^ -, der Differential-
fifev X

quotient dieses Bruches 0, was nach früherem nicht möglich
ist. Durchläuft deshalb À kontinuierlich alle Werte von — oc
bis + oo, so bewegen sich die komplexen Wurzeln der Gleichung
a a

g2r(z) + ^g2j/, 1(z) 0 auf einer Kurve, die aus 2p getrennten
Zügen besteht. Es lässt sich zeigen, dass diese ganz im
Endlichen liegen und in sich geschlossene Ovale bilden, von denen
keines das andere schneidet oder berührt. Dagegen wird jedes
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Oval, das zur Gleichung g2j/ + ^g2v+i =0 gehört, von Innen
berührt durch ein Oval, auf dem die komplexen Wurzeln der
Gleichung g2(„+1) + ^g2(„+1)+1 0 liegen. Der Berührungspunkt
liegt da, wo g2,,+i(z) —0. Ferner müssen sich die Ovale mit
wachsendem v verkleinern, und jedes schrumpft für v oo in
einen Punkt zusammen, der nach früherem eine Nullstelle von
f(z) sein muss.

Da aber J(x) (j){>( T~)'
a

so erhält man die Nullstellen von J (x), indem wir setzen
x2

Z - 4
und nach x auflösen.

Wir bekommen dann aus einem konjugierten Wurzelpaar
a

von fa(z) 0 deren zwei für die Gleichung J(x) 0. Die Resultate

von Hurwitz auf die Besselschen Funktionen übertragen,
lauten somit:

Die Gleichung J (x) — 0 hat für negative, zwischen — (2 /.i + 2)
und —2 /.t liegende Werte von a genau 2/.t-Paare konjugiert
komplexer und übrigens unendlich viele reelle Wurzeln. Zur nähern

Bestimmung der komplexen Wurzeln hat man eine unendliche Reilie

algebraischer Kurven
%(*,y) o, ipv+1(*,y) o...,

von denen jede einzelne aus 4 /x im Endlichen und aussereiuander-

liegenden Ovalen besteht. Das einzelne Oval der Kurve xpv — 0 berührt
und umschliesst je ein Oval der nächstfolgenden Kurve i// i+l 0 und

enthält zugleich in seinem Innern je eine imaginäre Nullstelle von
a

J(x). .Auf diese Nullstelle zieht sich das Oval mit wachsendem v
immer mehr zusammen. Dazu kommen noch zwei auf der lateralen
Axe liegende Wurzeln für den Fall, dass a zwischen —(2,« + 1)
und — (2 f.i + 2) liegt.

Durch Anwendung von Integralsätzen bestimmt Hurwitz
die Lage der komplexen Wurzeln von fa(z) 0 noch genauer; das
Resultat spricht er aus in dem Satz: Die komplexen Wurzeln der

Gleichung — ^a_1 (z) 0 liegen in denjenigen Gebieten der Ebene, in
denen die Funktion
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9vW-9v-x(z') — 9v-i(z) • 9v(2')
l>v(r> y) ; At

negativ ist.

Dabei bedeuten z und z' 2 konjugierte Werte und v eine

ganze Zahl, die der Bedingung: a+»>0, genügt. Ferner hat er
den Fall untersucht, wenn a eine komplexe Zahl mit positivem
reellem Bestandteil ist, und dabei folgendes gefunden:

Es sei a eine Zahl mit positivem reellem Bestandteil. Man
a2

zielte durch den Punkt — zwei Halbstrahlen, von welchen der erste

parallel zur Axe der negativen reellen Zahlen läuft, während die

Verlängerung des zweiten durch den Nullpunkt geht. Die sämtlichen
Wurzeln der Gleichung fa(z) — 0 liegen dann in dem von den

genannten Strahlen begrenzten (konvexen) Winkelraum.

Auf die Beweise dieser letzten Sätze können wir nicht
eintreten, da sonst unsere Arbeit zu ausgedehnt würde; der
Vollständigkeit halber haben wir sie trotzdem angeführt.

Das sind in kurzen Zügen die Resultate, die wir Hurwitz
verdanken. Seine höchst interessante Methode gibt uns
genauen Aufschluss über die Zahl der Nullstellen der Besselschen

Funktion, lässt aber die Lage derselben ziemlich unbestimmt.
Immerhin liefern diese Resultate eine erste Annäherung.

Wir wenden uns nun zur Besprechung einer Note von
Rudskg.1)

Eingangs derselben führt er einen Beweis, dass zwischen
a

zwei aufeinanderfolgenden Nullstellen von J(x) stets eine, aber
"+1

nur eine Nullstelle von J(x) liegen kann. Dieser Beweis wurde

später auch von Bocher2) gegeben, und wir wollen ihn kurz
reproduzieren.

Es sei gegeben

y O0 l a+l ' 2!(ä + l)(a+2)
- u

3!(a + l)(a+2)(a+3) ^
') Mém. de la Société Boy. d. Sciences de Liège (2) Bd. 18.
2) Bull. Americ. Math. Soc. (2) Bd. 3. 97.
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/x\-aa
dann ist y(z) r(a+l) ("H"/ J(x), wenn

Z +T-
a /x2\ *
y I — I hat die gleichen Nullstellen wie J (x).

y(z) genügt der Differentialgleichung:

^ + ^+^+^0 (1>

und aus der Reihe folgt die Beziehung:

a+l dv
y(z) -(a+ l)^. (2)

a

Für z 0 ist y (z) 1
a

und ^ negativ für a, die grösser sind als — 1.
XX z
a

Es muss somit y(z) mit wachsendem z abnehmen und wenn
a

es die Nulllinie passiert, so ist -—— immer noch negativ und

a+l a+l
somit nach (2) y(z) positiv. Die erste Nullstelle von y(z) muss

a

also nach derjenigen von y (z) liegen.

Nehmen wir zwei beliebige benachbarte Werte a und ß,
a

welche y(z) zu Null machen, so muss, nach derselben Gleichung (2),
"+1

zwischen diesen sich sicher wenigstens eine Nullstelle von y (z)
befinden.

Wären es mehr als eine, z. B. k, so musste in dem Intervall

(a, ß) die zweite Ableitung (k—l)mal verschwinden. Die
a

Differentialgleichung (1) zeigt uns aber, dass y(z) sein Zeichen

ebenso oft wechselt als d2y(z)
d2z

Somit ist k—1 0

k l,
d. h. zwischen zwei beliebigen aufeinanderfolgenden Wurzeln der

a a+i
Gleichung y(z) — 0 liegt eine, aber nur eine Wurzel von y (z) 0.
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Rudski wendet sich nun speziell zur Untersuchung der

Wurzeln von J(x), wo n eine ganze Zahl bedeutet.

Nach Poisson lässt sich setzen:
n + ¥ c
y W ^+r Ìxnsinx - x„cos x |-

Dabei bedeutet c eine Konstante, und Xn sowie X^ sind ganze
rationale Funktionen in x vom Grade n oder n — 1, je nachdem

n gerade oder ungerade ist.

n +i
Für y(x) 0 folgt

4.
X»

cotx yT-
n

n + 1
_

Die Nullstellen von y (x) liegen somit in den Schnittpunkten der
beiden Kurven

V =7 ; W COtX.
n

Es lässt sich nun zeigen, dass, sobald x grösser ist als die

grösste Wurzel von Xn 0 und X'n 0, der Quotient ¦==-" stets
n

einen endlichen Wer-t besitzt, der

positiv ist für ungerade n und
negativ » gerade n.

Die Schnittpunkte der beiden Kurven liegen somit nur in
ungeraden oder nur in geraden Quadranten; es gilt also der
Satz:

Nachdem x den Wert der grösslen Wurzel der Polynome X

«+{
und A" überschritten hat, liegen die Wurzeln der Gleichung J (x) 0

nur in den geraden resp. ungeraden Quadranten, wenn n gerade resp.
ungerade ist.

Soweit sind die Resultate von Rudski ganz richtig. Er
sucht nun aber den obigen Satz auch auszudehnen auf die ersten

Wurzeln von J (x) 0 und führt zu diesem Zweck einen Schluss
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von n auf n+ 1 durch, macht aber mitten im Beweis eine
Annahme, deren Richtigkeit weder vorausgesetzt noch bewiesen ist,
die sich im Gegenteil als falsch erweist. Er setzt stillschweigend

Xn
voraus, dass die beiden Kurven v =7 und w cot x sich

A.
n

innerhalb des Gebietes, in welchem die Nullstellen der beiden
Polynome Xn und X^ liegen, niemals schneiden. Dies ist ganz
richtig für n l, 2, 3 und 4. Dagegen stimmt es bereits nicht
mehr für n 5. Gerade für diesen Fall hat Herr Rudski in
seiner Arbeit ein Schema gegeben, dessen genaue Ausführung ihn
von der Unrichtigkeit seiner Behauptung hätte überzeugen können.
Die Nullstellen von X5 liegen nämlich bei 1,5708 und 5,053 und
diejenigen von X5' bei 3,15 und 9,75.

x if x<?

y

9,75\\/,570B 3.15 ,05 9€3K>. S/i\ 5h~ft sK\ an
2 \

7h \ th
2 \

\

Der Verlauf der beiden Kurven v =+ und w cot x ist

in dem vorliegenden Schema veranschaulicht. Es bedeuten darin
die punktierten Linien die Kurve der cotg., die ganz ausgezogenen

X.
diejenige von =^. Die cotg. verlaufen in jedem Halbkreis gleich.

u

Ä.. ft
yt bleibt bis zu x 1,5708, was ]> -5-) positiv, dann wird der

5

Zähler und damit der ganze Bruch negativ und behält das
Vorzeichen bis x 3,15, wo der Nenner zu 0 und der Bruch da-
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durch — oo wird. Mit wachsendem x wird auch der Nenner
negativ, der Wert des Bruches damit positiv bis X5 bei 5,05
zum zweitenmale verschwindet und zu positiven Werten übergeht.

Der Nenner bleibt noch negativ bis zu x 9,75, was > 3 n,
X6

und erst von diesem Werte an bleibt der Quotient ^j immelmo

positiv. Es muss deshalb bereits im 6. Quadranten ein Schnitt
erfolgen zwischen den beiden Kurven, also die erste Wurzel a von

J (x) — 0 schon im 6. Quadranten liegen. Dafür befindet sich
dann keine im 7. und 8. Quadranten, die zweite Wurzel ß liegt
im neunten. Für grössere n findet man, dass die erste Nullstelle
relativ immer weiter hineinrückt, und dass in das Gebiet, innerhalb

welchem die Wurzeln von X — 0 und X' 0 liegen, mehr
n +4

als eine Nullstelle von J (x) fällt. Dies stimmt überein mit dem

von Sckafheitlin gefundenen Resultat, dass die erste Nullstelle von

J(x) sicher vor \/2(a + l)(a+3) liegt.

Wir können somit nur den ersten Teil der Arbeit Rudskis

anerkennen, der zweite ist, der falschen Voraussetzung halber,
unrichtig.

Wir wenden uns jetzt zu den Resultaten, die wir Paul
Sckafheitlin ') verdanken. Er stellt folgende Integralform auf:

«

__
2n+1xn /•fcosn_^o.sin(x-^iw)e-2xcotgt'J

J(x)— /— ry / • 2n+i dw.
\itr(r\—2-J J sin T (j

11

Bezeichnen wir das Integral mit Y(x) und setzen darin
x k n + e,

wobei k eine ganze Zahl und 0 •< s < n, so bekommen wir die
Gleichung:

kn r(-l)Y(x)=/
/ 2n —1 \n n — ir / 2n —1 \ —2xcotgro

-^ cos 2w-sin(e s—6))e
• 2 n+lsin T a

Mit wachsendem <o ändert nur der Faktor sin s ^— a

') Creile Journal. Bd. 122.

Bern. Mitteil. 1904. Nr. 1578.
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sein Zeichen. Die Grenzen, innerhalb denen das Vorzeichen
konstant bleibt, können allgemein dargestellt werden durch

2e+2(v + l)»r _2e~\-2v7t
öy 2n-l ' ""^ 2n—1

Zerlegen wir nach diesem Prinzip das Integral Y(x) in
Teilintegrale, so haben diese abwechselndes Vorzeichen.

Lässt man v von 1 aus alle ganzen Zahlen durchlaufen, so
Ist der absolute Wert jedes nachfolgenden Integrals unter
bestimmten Bedingungen stets grösser, als derjenige des vorangehen-

n
den. Das Vorzeichen von ï(x) hängt somit nur noch ab von
der Zahl der Integrale, und diese wird bestimmt durch die
Grössen n und e.

Die Schwierigkeit dieser Methode liegt in der Bestimmung
der oben erwähnten Bedingungen. Da diese ziemlich mühsam
und von keinem allgemeinen Interesse ist, so wollen wir sie
hier übergehen und nur die Resultate uns merken. Sie lassen
sich in folgenden Satz zusammenfassen:

4 )j2 l n—4p
Ist x "> — — so haben sämtliche Funktionen J(x),

(2n—l)7r-4e
wo p eine positive ganze Zahl bedeutet, dasselbe Vorzeichen wie J(x).
/x bedeutet den Rest, den man erhält, wenn wir n durch 4
dividieren. Ist n ein Vielfaches von 4, so ist ii 4 zu setzen.

Macht man sich von e unabhängig, indem man seinen Grenzwert

einsetzt oder es auf ein kleines Intervall beschränkt, so

erhält man speziell:
n 4n2_i %„

(—l)kY für |U 0 und x >¦—= negativ für e>-^-

/ 1M.-5- r. ^ 4nz — 1 n(-l)kY » p — 2 » x > » » e < -

7t 2

7t

T
/ iM,in7 o 4n2—1 7t
(— l)kY » i.i 3 » x> » » e>-

Aus der wohlbekannten Formel:

(n + l)-J-+2n{1-2'"+ 1x',<-»)j + (n-.)ÎM 0

und dem vorhin angeführten Satz über das Vorzeichen von
n n—4
J und J folgt:
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n 4fn-4-212 1 7t
(—l)kY ist für « 0 und x> l r ; positiv für e<^,

TT £

(-If Y » 2 » x>^±31l± » £>fr,
7t *

i ^k£ ^ 4 (n+2)2 — 1 ^n(—If Y » » m 1 » x> l ^ ; » » £>-r-V ' r TT 4

Deshalb gilt der Satz:

4(n-\-2)t 1 "
Ist x ]> —-—!— so liegen die Nullsteilen von J (x) in

7t

den Intervallen I k + -— j -rt und I k + -^- tt resp. fc/r wnd A- + -7 ti,
je nachdem n gerade oder ungerade ist.

Ferner sieht man, dass zwei Funktionen, deren Parameter
Q

sich um zwei unterscheiden, nur in den Intervallen -xr bis —r-2 4

resp. 0 bis -j- gleiches Vorzeichen haben können. Daher folgt

mit Hilfe der Relation

«JJ n-1 n+12^ J-J.dx

Ist x ^> —- so liegen die Maxima und Minima von
7t

1\ 1\
J(x) in den Intervallen kTi und I k-\-—j-\7t resp. (& + -0-) n un'l

3\
k-\-—J 7t, je nachdem n gerade oder ungerade ist.

n ist hier immer als ganzzahlig vorausgesetzt, doch lassen
sich die hergeleiteten Sätze leicht auf Funktionen mit
gebrochenem Index übertragen.

Schafheitlin beschäftigt sich im weitern auch mit der Funktion

K (x) —4 J(x) - cotg a J(x)-
sma TT

Er stellt sie durch das Integral dar:
_±

2n+1 xn fj cos 2 °- cos (x ir^(J)vt ï g_lx fK(x)= /— —, rx /sJ^.r(n-\)J sin2n+1w
—2xcotgft»je aio.
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Setzt man hier x k ~- tx + s', wo

0 < S' < 7t,
k n

so geht das Integral in (—1) Y (x) über. Will man jedoch
dieselbe Substitution anwenden wie früher, nämlich x — k n + e,

11 7t
so braucht man in den oben für Y entwickelten Sätzen nur -

L̂I

von e abzuziehen. Man erhält dann z. B.:
4(n-\-2)2 1 "

Ist x > —-—¦— so liegen die Nullstellen ron K(x) in

3N

4}"-den Intervallen k n und I k + — I n resp. I k + -^ J 7t und k +
je nachdem n gerade oder ungerade ist.

Diejenigen Fälle, wo n < 4 -^ erfordern eine spezielle

Untersuchung, welche gestattet, die Nullstellen in etwas engere
Grenzen einzuschliessen. Schafheitlin findet dadurch:

0 3\Sämtliche Nullstellen von J (x) liegen zwischen \k-\- — )n und

7\ « l\ '

3\k + — I /i und die von K (x) zwischen I A- + —- I n und I k + — 1 7t.

wo k alle positiven ganzen Zahlen mit Einschluss der Null zu durchlaufen

hat.
3 7tErhöht man die hier angegebenen Grenzen um —-—. so be-
8 i

kommt man die Intervalle, in welchen die Nullstellen von J (x) und
1 1 O

K(x) liegen. Die erste Nullstelle von K(x) liegt zwischen -— unj—-—

Die Resultate für die Parameter 2, 3 und 4 stimmen mit den

allgemeinen Sätzen überein, nur wird die Grenze für x auf folgende
Werte herabgesetzt:

Für J (x) und K (x)

» J(x) » K(x)

» J(x) » K(x)

x > 5,2,

x > 10,75,

x > 14,5 n.
Diese hier angegebenen Grenzen sind immer noch ziemlich

weit; wir werden sehen, dass sie sieh auf andere Weise
bedeutend enger ziehen lassen.



2

p=l
oo

— 109 —

Zum Schlüsse wollen wir noch einige Betrachtungen von
n

Schafheitlin über die Funktion K (x) und ihre Nullstellen anführen.
n

Es lässt sich K(x) darstellen durch1):

-.iw-(»w-kw^}iW+4.2p^i,(-f)T&
fi)

Sj ,,p n+2p n+2p,+2^ -pln+fr J(X)'

P=l
wobei ip die bekannte Gausssche Transzendente bedeutet. Wegen

n
dem auftretenden Logarithmus ist K (x) keine eindeutige Funktion
mehr, sondern besitzt unendlich viele Werte, wie der Logarithmus.
Schafheitlin bezeichnet denjenigen als Hauptwert, wofür das Argu-

ment von x zwischen ^- und + -jr- liegt, entsprechend der
u 2t

Bezeichnung beim Logarithmus. Die andern Werte unterscheiden
n

sich dann vom Hauptwert durch die additive Grösse — 2miJ(ç,^),
wenn x ge wie aus der Summenformel ohne weiteres
ersichtlich ist.

Es lässt sich zeigen, dass diese Hauptwerte für keine komplexen
Grössen zu Null werden, sobald n 0, oder n—1 ist.

Der Beweis stützt sich auf die bekannte Formel von
Lommel2)

/b
n n X f n "+1 n "+1 1

x y (rx) y (sx) d x -^—-2 J r y (sx) y (rx) — s y (rx) y (sx) j,
a

wobei y ein partikuläres Integral der Besselschen Differentialgleichung,

und r und s zwei verschiedene Parameter bedeuten.
Wir treten jedoch nicht näher darauf ein, sondern verweisen auf
die Arbeit von Schafheitlin.3)

Wir stehen damit am Schlüsse unseres ersten Abschnittes.
Wir haben in demselben alle uns bekannt gewordenen
Publikationen über die Zahl und Lage der Nullstellen der Besselschen

i) Programm des Sophien-Realgymnasiums, Berlin 1896.

2) Zur Theorie der Besselschen Funktion V, Math. Annalen 14.

3) Archiv der Mathematik und Physik. III. Reihe I.
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Funktionen einer kurzen Besprechung unterworfen und vor allem
immer die bis dahin bekannten Resultate hervorgehoben. Im
folgenden wollen wir zeigen, wie man durch die konsequente
Anwendung einer von Sturm gegebenen Methode auf die Besselsche

Differentialgleichung in leichter und eleganter Weise die

gleichen Resultate ebenfalls erhält, ja dass es damit gelingt, die
a a

Nullstellen der Funktionen J(x) und K(x) in noch engere Grenzen
einzuschliessen.

II. Die Methode von Sturm.1)

Es sei die Differentialgleichung gegeben:
d2V dVm+4+l4^+nv=o.dx2 dx '

M, L und N sind Funktionen von x und allfälligen Parametern.
Sie lässt sich in die Form bringen

dlKdV
dx

f-GV 0 (1)dx
d2V dK dV

oder K++ + -^41- + GV 0. (la)dx2 dx dx

J*rd* N
Es wird K eJL ; G J^K

dV
Aus (1 a) sieht man, dass V und -=— nicht gleichzeitig

verschwinden dürfen in einem Punkt, in dem K nicht zu Null wird.
d2V

Denn alsdann musste auch -j—j 0 sein, und ebenso alle folgenden

Ableitungen der Funktion V, wie man durch fortgesetztes
Differenzieren sieht. V musste eine Konstante sein, was der
Voraussetzung widerspricht. Daraus schliessen wir:

Die Funktion V hat keine reellen Doppelwurzeln ; sie geht
jedesmal, wenn sie den Wert 0 passiert, von positiven zu nega-

dVtiven Werten über, wenn -3— negativ ist, und umgekehrt im

andern Fall.

Liouville Journal. Vol. 1831.
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Wir setzen voraus, es seien K und G nicht Funktionen von
x allein, sondern ausserdem abhängig von einem willkürlich
variablen Parameter m. Dann ist auch V von m abhängig. Wir
haben also:

K K(x,m); G G(x,m), V=V(x,m).
Wir differentieren die Differentialgleichung nach m und

kombinieren die beiden Gleichungen auf folgende Weise:

dYOK Sx

S* K

dx
SY

+ GV 0

dx • dm
G

av SG
Sm Sm

¦ 0

SY
S m

dx

Vdx

SY
Sm

OK ÔY

Sx
Sx

S Y
S m

SY
dx + G-V^—dxSm

a2 K
SY
Sx

Sx'dm dx

GV-^dx-V2|^dx 0.
cm S m

ô K
SY\
Sx

a2 K

Sx
Y

SY
Sx

Sx- Sm
SG
Sm

Wir integrieren zwischen den Grenzen xl und x und erhalten

S m S x
— V

S\K >x I
S m

==C + V2
SG

Sm
SVYSK--\--\dx.ax, I Sm

(2)

C ist der Wert der linken Seite für
x xv

Unter der Voraussetzung, dass sowohl x als m reelle
Variable bedeuten, lassen sich aus der vorstehenden Gleichung
(2) verschiedene Schlüsse ziehen auf die reellen Nullstellen der
Funktion V. Wir werfen vorerst die Frage auf, unter welchen
Bedingungen die linke Seite negativ werde?
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Dies ist sicher der Fall, wenn gleichzeitig:
1. C negativ und

2. -r— negativ und
Sm

à. -r— positiv ist.
cm r

im ganzen
zu betrachtenden Intervall.

(Es dürfen natürlich auch eine oder zwei dieser Grössen zu Null
werden.)

Da K-P-4^-Y V.^/=_v « I **
5m Sx Sm Sm \ V

so ist die Bedingung (1) gleichbedeutend mit der Forderung:
8Y\K

soll mit wachsendem m zunehmen.
V

Sind die drei Bedingungen erfüllt, so bleibt der Ausdruck

8 I ^~ä
— V2 -r— l —==— J im ganzen Intervall negativ. Wir können

somit folgenden Satz aufstellen:

Nimmt innerhalb der Grenzen x} und x die Funktion K mit
wachsendem m zu und zugleich G ab, so nimmt der Wert von

K
SV
Sx

mit wachsendem m ebenfalls zu im ganzen Intervall, sobald
V

es an der untern Grenze zunimmt.

Wir denken uns für ein bestimmtes x und m die Gleichung
erfüllt:

V(Xlm) 0.

Lassen wir die Variablen um dx resp. dm zunehmen, so
erhalten wir den Zuwachs:

-z— dx + -r— dm.
ox cm

Soll für die neuen Werte der Variablen der Wert der
Funktion ebenfalls Null sein, so muss der Zuwachs verschwinden.
Dies ist der Fall, wenn
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_0_V_

dm Sx

JI'~ ~SY^'
Sm

Aus der Gleichung (2) folgt aber, dass, wenn V 0

SY SY
-rr— und ^— entgegengesetztes Vorzeichen besitzen müssen, so

bald die drei aufgestellten Bedingungen erfüllt sind. Folglich ist

t— positiv, also besitzen dm und dx gleiches Zeichen.

Mit kontinuierlich wachsendem Parameter m wachsen auch die
Nullstellen der Funktion V(x, m).

Es sei auf der reellen Axe ein Intervall xx bis x„ gegeben,
innerhalb welchem die obigen Voraussetzungen gelten, und die
Funktion V p verschiedene Nullstellen besitzt. An der untern
Grenze bleibe V stets positiv, wenn wir den Parameter m von
va1 bis m, wachsen lassen.

Die p-Nullstellen werden sich mit wachsendem m in
positiver Richtung verschieben, und es muss ein bestimmtes m geben,
für welches die grösste derselben a, mit x, zusammenfällt.

Lassen wir m weiter wachsen, so rückt or ausser das Intervall,

das wir betrachten, und deshalb wird die Zahl der
Nullstellen von V (x, m),
die zwischen xx und x2 zu liegen kommen, um eine vermindert.
Dieser Verlust wiederholt sich jedesmal, wenn mit wachsendem

m eine der Nullstellen von
V(x,m)

mit x2 zusammenfällt. Deshalb ist die Differenz zwischen der Zahl
iler Nullstellen von

V(x, mj) und V(x. mg)

m Intervall .r; bis x0 gleich der Zahl der Nullstellen von

V (x2, m),
wenn m von m] bis mg wächst.

Wir wollen diese Resultate auf die Besselschen Funktionen
anwenden. Ihre Differentialgleichung lautet:

-2 d2y +xdf^+(x2 — a2)y 0.
dx2 dx

Bern. Mitteil. 1904. Nr. 1579.
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Setzen wir K x

x2 — a2
G

dlx^
so erhalten wir die Form (1).

dy\
jW xW

dx ' x J v '
Als Grenzen xx und x2 wählen wir 0 und oo, welche alle

positiven Wurzeln einschliessen. Innerhalb dieser Grenzen
genügt die Differentialgleichung (3) allen drei früher aufgestellten
Bedingungen. Denn:

1. Nach der Gleichung

dJ(x) a » a+i
— — J (x) — J (x), wirddx

„ dV dJ(x)K X — a+l
dx dx J(x)

J(x) J(x)
was an der untern Grenze x 0 in den Wert a übergeht.

Betrachten wir a als den variablen Parameter m, so ist
sicher die erste Bedingung erfüllt.

2. -|*- £-0lcm da
x2—a2

3. — r negativ für positive a.
Sm Sa

Wir können somit die für die Funktionen V aufgestellten
Sätze ohne weiteres auf die Besselschen Funktionen anwenden
und erhalten:

xdJ(x)
A rp

1. Der Wert des Quotienten — nimmt für jedes positive
J(x)

x mit wachsendem Parameter a zu.
a

2. Die reellen, positiven Wurzeln der Gleichung J (x) 0
nehmen mit wachsendem Parameter a kontinuierlich zu.
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3. Es sei N eine sehr grosse positive Zahl. Dann ist die

Differenz zwischen der Zahl der Nullstellen von
a a+2 ia
J (x) und J (x),

¦die in dem Intervall 0 bis N liegen, genau gleich der Zahl der Null-
p

.stellen 'von J (N), wenn p von a bis a + 2 m wächst.

Nach Poisson gilt für grosse x

^N^V^T'C0S[N-(P+^ 71

2 Ì ~2

Wenn p von a bis a+ 2 m geht, so passiert dieser
Ausdruck den Wert Null m-mal. Deshalb können wir sagen:

o+3.m
Die Funktion J(x) hat in dem Intervall 0 bis N, wo N eine

sehr grosse positive Zahl bedeutet, genau m-Nullstellen weniger als die
¦a

Funktion J(x) oder mit .andern Worten:
Es gibt auf der positiven X-Axe m-Intervalle, die von je zwei

a

aufeinanderfolgenden NuilsteUen der Funktion J(x) gebildet werden,

innerhalb weichen keine Nullstéle der Funktion J (x) liegt; in allen

übrigen Intervallen liegt jedoch je -eine Nullsteile dieser Funktion.

1/1 I 2
Nun ist J (x) — \ / «in x.V ^x

a/t •

Die Nullstellen von J(x) îallem mit den Vielfachen von it
zusammen.

Wir können also obigen Satz etwas bestimmter fassen
und sagen:

Teilt man die positive Axe in oo viele Abschnitte von der Grösse 7t,
so gibt es unter diesen im ganzen m-Intervalle. in denen keine Null-

•+Ï
stelle von J (x) gelegen ist. wenn a zwischen 2 m und 2m-\-2 liegt.

i
In allen übrigen Intervallen befindet sich je eine Nullstelle von J(x).

Als Spezialfall erhalten wir den von Bocher auf elementarem.

Wege bewiesenen Satz: Ist 0 <^f.i <^2, so liegt zwischen zwei auf-
a

¦einanderfolgenden NuilsteUen von J (x) je eine und nur eine Nullstelle
"+i"

aVou J-(x).
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Aus der Summenformel von J(x) ersieht man, dass die

negativen Nullstellen der Funktion dem absoluten Werte nach mit den

positiven zusammenfallen, somit lassen sich alle obigen Sätze auch
auf die negativen Nullstellen anwenden.

Wir gehen nun über zur Untersuchung der Besselschen

Funktion mit negativem Parameter.
— a

J (x) ist ebenfalls eine Lösung der Besselschen Differentialgleichung

und wenn wir auf diese Funktion die Sturmsche
Methode anwenden wollen, so haben wir nur + a durch — a

zu ersetzen.

Es wird dann

T^dV dj"(x)
K X — -a+t

dx dx J(x)!• -^T~ _r» —a-Xrz^-,
J(x) J(x)

was an der untern Grerjze x 0 in den Wert —a übergeht,
dVN

dx
also mit wachsendem a abnimmt. Somit wird »cm \ V

negativ und der Wert der Konstanten C in der Gleichung (2)<

positiv.

3. « -»ï-_0.
cm ca

o SG ~3. —=-— ——^ positiv.
cm ca

Wir erhalten also in diesem Falle für die linke Seite der
Gleichung (2) einen positiven Wert, und es wird

da ~~a

-j— für J (x) 0 negativ,

d. h. wenn der absolute Wert von a in der Funktion J(x) zunimmt,

so wird der Wert ihrer Nullstellen kleiner. Oder mit andern Worten::
a

Bewegt sich der Parameter von J (x) von einem beliebigen
Punkte der negativen reellen Axe aus nach links, so bewegen
sich auch die positiven NuilsteUen der Funktion nach links.
Erfolgt die Bewegung des Parameters nach rechts, so ist dies auch
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für die Nullstellen der Fall. Dieses ist aber genau das gleiche
Gesetz, das wir bereits für die Besselschen Funktionen mit posi-

'tivem Parameter gefunden haben. Wir dürfen somit die frühern
Sätze erweitern zu folgendem allgemeinem Gesetz:

a

Die positiven Nullstellen der Funklion J (x) bewegen sich immer
im gleichen Sinn wie der Parameter a, so lange er auf der reellen

Axe bleibt.

Für die negativen Nullstellen erfolgt die Bewegung natürlich

in entgegengesetztem Sinn.

Aus diesem Gesetz lassen sich einige weitere Schlüsse
ziehen.

o 1

1. Ueber die Lage der NuilsteUen von J(x) und J (x).
Vi
J(X)

1

2

TtX
sin x.

/(X): 2

7tX
cosx.

v«
Die n,e Nullstelle von J(x) liegt bei n/r und diejenige

von J(x) bei (2 n — 1) -=-¦ Folglich liegt die nu positive Null-
LA

stelle von
" 1 1
J (x), wobei jr- < a < -~-,~2 ^ * ^ T

zwischen (n — n und n -it.

Aus dem asymptotischen Wert

'(x) \l~£rcos(x-(a+T") 2)
o

lassen sich die Grenzen noch enger ziehen. Z. B. wird J(x) für
grosse x zu

j(x)=V^Vcos(x 4

welcher Wert verschwindet für
7t

x (4n-l) -4
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wenn n eine ganze Zahl bedeutet. Die n* positive Wurzel nähert

sich also dem Wert (4n —1) -j~
Da, wie wir später sehen werden, das Intervall zwischen

o

zwei aufeinanderfolgenden Nullstellen von J(x) kleiner als 7t ist,
7C

so muss die Annäherung an den Grenzwert (4 n — 1) -j- von

7toben erfolgen. Daher ist die nte Nullstelle grösser als (4n—1) -j-i
so lange n endlich bleibt. Es folgt somit:

o nDie nu Nullstelle von J(x) liegt zwischen (4n—1) —t- und U7t.

Kennt man die erste derselben, so kann man die Grenzen
noch enger ziehen, so dass sie enger werden als die von
Schafheitlin gegebenen.

i
Wendet man die gleiche Betrachtungsweise auf J(x) an

und berücksichtigt, dass das Intervall zwischen zwei aufeinanderfolgenden

Nullstellen grösser als n ist, so erhält man den Satz :

i nDie nu Nullstelle von J (x) liegt zwischen ri7t und (4 n+1) —•

Liegt die erste Nullstelle bei 7t+ e, so werden die Grenzen

iï7t-\-e und yxttA——•i 4
— a

2. Ueber die Lage und Realität der Nullstellen von J(x).
Wenn m eine ganze Zahl ist, so gilt

— m m

J(x) (-l)mJ(x).
— m m

Die Nullstellen vonJ(x) fallen also mit denjenigen von J(x) zu-
a

sammen. Rückt nun der Parameter a in J(x) von —m aus

nach —(m + 1), so muss nach einem frühern Satz die nte Null-
a

stelle von J(x) ebenfalls nach links rücken und zwar so weit,
m+l

bis sie mit der (n—l)ten Nullstelle von J(x) zusammenfällt. Wir
erhalten somit den Satz:

Ist m <ia <Cm-\-l, so liegt die nu Nullstelle der Funktion
—a m+/ m

J(x) zwischen der (n—l)Un Nullstelle von J(x) und der n**1 von J(x)..
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Aus dem allgemeinen Gesetz über die Verschiebung der
Nullstellen bei variablem Parameter lässt sich auch die Existenz

a

und Zahl der komplexen Wurzeln von J'x) nachweisen.

Durchläuft der Parameter a von Null aus die negative
reelle Axe, so verschieben sich die positiven Nullstellen der

a

Funktion J(x) nach links, die negativen nach rechts und da sie

paarweise absolut gleich sind, so treffen sich je zwei im
Nullpunkte, von wo aus sie ihre Wanderung auf der reellen Axe
nicht mehr fortsetzen können und somit auf das komplexe Zahlenfeld

übertreten müssen. Dieser Prozess findet jedesmal statt,
wenn a eine negative ganze Zahl passiert, das erstemal bei — 1.

Da sich zwei konjugiert komplexe Nullstellen nie wieder in zwei
reelle entgegengesetzte vereinigen können, so lange a seinen Weg
auf der negativen reellen Axe fortsetzt, so bekommen wir folgenden

Satz:
Ist m<C_a •< m + 1 (wobei m eine positive ganze Zahl),

— a

so hat die Funktion J (x) m-Paare komplexer Nullstellen.

Dieses Resultat stimmt mit den von Hurwitz gefundenen
Sätzen genau überein.

Die Tabelle, die sich am Schluss unserer Arbeit findet,
gibt uns ein anschauliches Bild über den Verlauf der reellen

a

Nullstellen von J(x) bei Variation des Parameters.

Wir verweisen auf das Schlusswort.

a

Ueber die Nullstellen ron K(x).

Ein grosser Vorteil der Sturmschen Methode besteht darin,
a

dass wir alle Sätze über die Nullstellen der Funktion J(x)
entweder wörtlich oder mit geringen Modifikationen auf das zweite

a

partikuläre Integral der Besselschen Differentialgleichung K(x)
übertragen können.

a a

K(x) und J(x) sind verwandte Funktionen und genügen
deshalb -teilweise den gleichen Relationen. So gilt z. B. :

dJfx) a » "+1
—5— — J (x) — J (x) und analog
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dK(x) a
]

dx

dK(x)x dx

x

a+l
K(x) — K(x) und es wird

a+l
xK(x)

a

K(x) K(x)
was für x 0 in den Wert 0 übergeht. Somit gilt das Gesetz
über die Verschiebung der Nullstellen bei Variation des Para-

a

meters a auch für K(x), d. h.: Die positiven Nullstellen, der Funktion
a

K(x) bewegen sich immer im gleichen Sinn wie der Parameter a.
a a

Wie J(x) besitzt auch K(x) für ein grosses Argument einen

asymptotischen Wert, der durch einen einfachen Ausdruck
dargestellt wird. Es gilt:

i(xW^s4x-(a + i)irJ
Somit erhalten wir den Satz:
Auf der positiven X-Axe gibt es m-Interralle. die von je zwei

a

aufeinanderfolgenden Nullstellen der Funktion K(x) gebildet werden.
a+2m

innerhalb welchen keine Nullstelle der Funktion K(x) liegt. In allen
'a+Sm

übrigen Intervallen befindet sich jedoch eine Nullstelle von K(x).

~1 V» /~2~Ferner ist K(x) J(x) —l/ sin x und daraus folgt:

Teilt man die positive Axe in gleiche Abschnitte von der Grösse

7t, so gibt es unter diesen, im ganzen m-Intervalle, in denen keine
i

a~~s
Nullstelle von K (x) gelegen ist, wenn

2m<a<2m + 2.
1

In allen übrigen Intervallen befindet sich je eine Nullstelle von K(x).
Diese Gesetze lassen sich auch mit Leichtigkeit aus der

Lommelschen Formel
a a+l a a+l 9
J (x) K (x) - K (x) J (x) -—— ableiten.

a a a+l
Für J (x) 0 müssen K (x) und J (x) immer gleiches Vor-

a+l
zeichen haben. Da J(x) zwischen zwei aufeinanderfolgenden
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a

Nullstellen von J(x) das Zeichen einmal wechselt, so muss auch
a

K(x) in diesem Intervall wenigstens einmal den Wert Null
annehmen. Da aber, wie wir später sehen werden, der Abstand

a

zweier aufeinanderfolgenden Nullstellen der Funktion K (x) etwas
a

grösser ist als der entsprechende Abstand bei der Funktion J(x),
so kann dies nur einmal geschehen. Deshalb der Satz:

Zwischen je zwei aufeinanderfolgenden Nullstellen der Funktion
a a

J(x) liegt stets eine und nur eine Nullstelle ron A'(.r).

Aus der Definitionsgleichung
a ^ a — a

K(x)=—; (cosa/rJ(x) — J(xV) folgt, dass
sina?T

K (x) 0, sobald

it \ J(x)
COtg a 7t J (x) —~-^—

sm a TT

— a

Nun hat aber J (x) für x 0 das Vorzeichen von sin a tt
a

und J(x) ist für kleine x stets positiv. Wir müssen 3 Fälle
unterscheiden :

1. a —»—; cotg a 0.

2n+l Sn+1
2 3

Die Nullstellen von K (x) fallen zusammen mit denjenigen von J(x).
2. cotg a 7t — positiv.

a a

Die nie Nullstelle von K(x) liegt vor der ntm Nullstelle vonJ(x)
— a

sowohl als derjenigen von J(x).
3. cotg a 7t negativ.

a
Die nu Nullstelle ron K(.r) liegt zwischen den entsprechenden

— a a

Nullstellen ron J(x) und J(x).
Aus den beiden asymptotischen Werten

i(x)==\/^rsin{x-(a+-2-)-f-|
Bern. Mitteil. 1904. Nr. 1580.
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folgt ferner, dass sich die höhern entsprechenden Wurzeln von
a a 71
J(x) und K(x) um -~- unterscheiden. Bei den kleinern ist die

Differenz grösser. Wir erhalten somit folgenden Satz:
a

Die Funklion K(x) hat auf der reellen, positiven x-A.re genau
a

so viele Nullstellen wie die Funktion J(x). Die nu derselben ist um
a

einen bestimmten Betrag J kleiner als die nu Nullstelle von J(x),
wobei J sich mit wachsendem n dem Werte -^- nähert.

Aus der bekannten Beziehung:
— m m

K(x) (-l)mK(x)
a

folgt analog wie bei der J(x)-Funktion der Satz:

Ist m <C a <^m-\- 1 (wobei m eine positive ganze Zahl),
— a

so liegt die nu Nullstelle der Funktion K(x) zwischen der (n — l)sten
m+7 m

Nullstelle con K(x) und der nUn von K(x).
Während in Bezug auf die positiven Nullstellen der Funk-

a a

tionen J(x) und K(x) die weitgehendste Analogie besteht, hört
dieselbe bei den negativen NuilsteUen auf.

Das verschiedene Verhalten der beiden Funktionen in dieser
Beziehung lässt sich sehr einfach zeigen, indem wir das Argument

x den Nullpunkt umkreisen lassen. Graf1) hat gezeigt,
dass folgende Beziehungen gelten:

J/ i m 71 \ i m n a t / \(e • x) e J (x).

£ iinTT 2icosa7T-sinm7ia a -imn^-è-, ^K(e x) ; J(x) + e K(x),
sinaTT

wobei m eine ganze Zahl.
a

Durch das Umkreisen des Nullpunktes erhält also J(x)
a

keinen additiven Zuwachs, während K(x) einen imaginären
Periodizitätsmodul besitzt.

a a

J(em7lx) verschwindet somit jedesmal, wenn J(x) zu Null
wird, während aus der zweiten Gleichung folgt, dass die Null-

*) Einleitung in die Theorie der Besselschen Funktion I. Art.
Bern 1898.
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a

stellen von K(eim"x) im allgemeinen nicht mit denjenigen von
a

K(x) zusammenfallen. Dies kann für reelle x nur dann
stattfinden, wenn gleichzeitig

*
„ cos a 7t -sin m 7t a *

K(x) und ; J(x)
sin a 7t

verschwinden, was nur möglich, wenn
2n + la-^2—

Da aber die Beziehung gilt
2 n+l 2 n+1

K(x) (-1)°"1 J(x2),
2 n+1

2

so folgt, dass K(e x) für jedes m unendlich viele reelle und

dazu n-Paare konjugiert komplexe Wurzeln besitzt, welche mit
2 n+l

2

denjenigen von J(x) zusammenfallen.
Sn+1

K(x) besitzt somit auch negatine reelle NuilsteUen.

2n-\-l "
Ist aber a von — verschieden, so kann K(x) ausser in den

früher bestimmten Stellen der positiven X-Axe für keinen reellen Wert

des Argumentes zu Null werden.
2 n+l
~~2

Da die negativen Nullstellen von K(x) nach früherem
keine mehrfachen Nullstellen sein können, so sind sie nicht
entstanden durch das Zusammenfallen von konjugiert komplexen
Wurzelpaaren. Sie sind also nicht durch imaginäre Äste
untereinander verbunden, sondern treten als isolierte Punkte auf.

Wir lassen die Frage nach der Zahl und Lage der kom-
a

plexen Nullstellen von K(x) unbeantwortet und begnügen uns
mit einer möglichst genauen Bestimmung der reellen Wurzeln.
Zu dem Zweck müssen wir uns nochmals dem Sturmschen
Theorem zuwenden und dasselbe in seine allgemeine Fassung
bringen.

Setzen wir in der Differentialgleichung

dx '
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so geht sie über in

V -

d2y
dx2

V'K"

+ Hy 0,

wobei H von K und G abhängt.
Betrachten wir wieder y und H als Funktionen eines

Parameters m, so können wir wie früher nachweisen, dass die Wurzeln
der Gleichung y 0

mit wachsendem m abnehmen, sobald gleichzeitig

cH
c m

positiv und
cm (*) negativ

ist. xx bedeutet die untere Grenze.

Wir denken uns im folgenden drei Differentialgleichungen
gegeben :

d2v' x
J +H'y'=0dx3

d3y"
dx2

d2y
dx2

+ H"y"=0

+ Hy=0

giltig von xt bis x9

H' und H" sind voneinander unabhängige Funktionen in
x, so dass aber im ganzen Intervall

H" > H'.

Ferner gelte: dy"
dx
v"

<
X Xl

dy'
dx
y'

Die Funktionen y und H der dritten Differentialgleichung
seien ausser von x noch von einem variablen Parameter m
abhängig und zwar in der Weise, dass folgende Bedingungen
erfüllt sind:

H(x,m)|m=ra]=H'(x)
H(x,m)|m=m„=H"(x)

2. H(x, m) nehme mit wachsendem Parameter innerhalb
der Grenzen m' und m" kontinuierlich zu.

1. wobei m" > m'.
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dy dy' dy dy"
dx dx dx dx
y y' X Xl y

X X1
ni m" v"

Dann müssen nach früherem die Wurzeln der Gleichung

y 0

mit wachsendem m abnehmen.

Wählen wir ein m, das zwischen m' und m" gelegen ist,
so muss jede zwischen xx und x0 liegende Wurzel von

y o
sicher kleiner sein als die entsprechende von

y' o,
aber zugleich grösser als diejenige von

y"=0.
Die drei letzten Bedingungen, welchen die Funktion H(x, m)

unterworfen ist, lassen sich aber leicht für jede beliebige Funktion
H(x) erfüllen, sobald in einem bestimmten Intervall der reellen
Axe die Beziehung gilt:

H"(x)>H(x)>H'(x).
Man kann immer auf beliebig viele Arten in die Funktion

H(x) einen Parameter m so unterbringen, dass die gestellten
Bedingungen erfüllt sind. Deshalb können wir das Sturmsche
Theorem in folgenden Satz fassen:

Sind die drei Differentialgleichungen gegeben:

d2y'
dx2

d2y"

+ H'y'=0

dx2

d2y
dx2 + Hy 0

giltig ztciscken x} und x0

die den Bedingungen genügen, dass

1. H">H>H'
dy"
dx
y"

<
dy 1

dx <
y ix=x!

dy'
dx
y'

3. alle drei Funktionen g", y und y' an der untern Grenze das

gleiche Vorzeichen besitzen.
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so liegt die nu Wurzel der Gleichung

ìl=--0
zwischen den nten Wurzeln ron

y" 0 und y' — 0.

Dabei sind die Funktionen H" und H' ganz willkürliche, einzig
der Bedingung unterworfen

H" > H' für jedes x.

Wir können sie also auch als Konstante betrachten. Die
allgemeinen Integrale der Differentialgleichung lauten dann

y'^C'sinv/H7(x —c')

y" -^C"sinv/H77(x-c").
Die willkürlichen Konstanten lassen sich immer so wählen,

dass die Bedingungen 2 und 3 erfüllt sind.

Wählen wir z. B. als untere Grenze xx eine Wurzel der
-Gleichung y 0

und bezeichnen sie mit a, dann können wir c' und c" so

bestimmen, dass a auch eine Nullstelle wird für y" und y'. Wir
setzen zu diesem Zweck

y'-=C'sinv/H7"(x-a)
y"=C"sinV'H7"'(x — a).

Es wird dann

dy"
dx

dv'
dx_
y' x=:

-Aldx
y

+

Wählen wir jetzt H' und H" so, dass

H">H>H',
so ist sicher, dass die auf « folgende Nullstelle al von y durch
diejenigen von y' und y" eingeschlossen wird. Diese letztern

liegen aber bei a + \/H'''
und

V/H'
Es muss somit die Beziehung gelten

\/H7> «i — « > \/H'



- 127 —

Die vorstehenden Entwicklungen wenden wir auf die
Besselsche Differentialgleichung an.

Setzen wir in derselben
z

so geht sie in die Form über

dx2

Es wird somit, in diesem Falle
2 1

a — TH l x2

Es seien «x und « zwei aufeinanderfolgende Nullstellen der
Funktion

z yx J(x). at >¦ a.

Sobald der absolute Wert von a grösser als 1/2, so ist

H(«1)>H(«).
Wir wählen nun

H" H(o1) und H' H(«).
Im Intervall von « bis «1 gilt dann

H">H>H'.
Wir können deshalb die oben abgeleitete Beziehung

anwenden und schreiben
7t 7t

V -^T^ > «i - « > V ì - --TT^-' a" ' ' a:
Die richtige Differenz

/I a^— a

erhalten wir, wenn wir an Stelle von « resp. a1 einen Wert §

setzen, der zwischen « und ar gelegen und noch näher zu
bestimmen ist.

Die obige Formel ist noch richtig für

Sie ergibt für J den Wert 7t.
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Ist dagegen der absolute Wert von a < -~-, so wird

H"<H<H'
und deshalb kehrt sich die Ungleichung um. Es gilt dann

' or ' * af
Deshalb können wir folgenden Satz aufstellen:

Die Differenz J zwischen zwei aufeinanderfolgenden Nullstellen
7t

v / a2 - |
a und ttj von J(x) ist gleich y 1 ^ > wobei S. einen noch

näher zu bestimmenden Wert zwischen ctj und a bedeutet. Es ist

j rr je nachdem der absolute Wert ton a —r- ist.
< J < 2

Das Intervall zwischen den grossen Wurzeln nähert sich für
jedes endliche a dem Werte 7t.

Genau das gleiche Gesetz gilt selbstverständlich auch für
a

die reellen Nullstellen der Funktionen K(x). Es ist
7t

-A-s/i-^-
Weil die erste Nullstelle von K(x) vor derjenigen von J(x)

liegt, so ist '%y < |
und daher Jl > J für endliche a.

Auch für die Abstände der Maxima und Arminia der beiden
a a

Funktionen J(x) und K(x) lassen sich ähnliche Grenzwerte

aufstellen, indem man die Differentialgleichung von

dJ(x) dK(x)——^ resp. von —î-5—
dx dx

aufstellt und auf sie das Sturmsche Theorem anwendet. Da
aber sowohl die Methode als auch die Resultate nichts Neues
bieten, so wollen wir von einer Ausführung absehen.
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Die oben abgeleitete Beziehung
7t <J <

/ a2-1 I - '

Vi—is v/î-4 1 / 4

gestattet uns, den Abstand von zwei aufeinanderfolgenden Null-
a a

stellen der Funktionen J(x) resp. K(x) in zwei Grenzen ein-
zuschliessen. Diese sind für die ersten Nullstellen allerdings
ziemlich weit, werden aber für die höhern immer enger, so
dass sie die betreffenden J ziemlich genau bestimmen. Kennt
man daher die paar ersten Nullstellen, so lassen sich die höhern
mit Hilfe obiger Beziehung auf leichte Weise annähernd berechnen.

Die Genauigkeit ist um so grösser, je kleiner a.
Dabei existiert aber der Übelstand, dass man zur Berechnung

der höhern Nullstellen immer auf die kleinern, ungenau
bestimmten zurückgreifen muss. Diese Schwierigkeit kann man
auf folgende Weise umgehen.

a

Die nte Nullstelle an von J(x) nähert sich dem Werte

(2n + a- lW
2) 2

von unten. Wir setzen deshalb

„a ^2n + a—i-)|—,n
und bestimmen ijn.

rin ist gleich der Summe all derjenigen Beträge, um welche

dp. > *,
wenn ii von n + 1 bis oo läuft.

Also
oo oo

*în ^| (- ',« — ") *2a
i"=n+l |« n+lten

Diese Summe lässt sich zwischen zwei Integrale fassen.
Es sei allgemein

y^. f (x,«)
und s x — x
tendiere mit wachsendem ii gegen den endlichen Grenzwert g,
so dass gilt

Bern. Mitteil. 1904. Nr. 1581.
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Ferner

ô >g.
nehme y mit wachsendem 11 ab.

Es wird dann
oo

U=n+X

oo

•y^ZiV
wob'

und

ei

im

<5 > <*>gn+l -^ -^ &

weitern gelten folgende zwei Beziehungen
/•OO oo

j f(x)dx<<?2 )>
xn+l ,«=n+l

/•OO

J tu-
X„-L1

-<u><>2 j>-
/U=n+1

Setzt man im letzten Integral für x den Wert x + öa, so
erhalten wir die Ungleichheit

/CO
OO /*00

ydx>2 y^>iyydx-
X fl =11+1 X
n n+1

In unserem Fall ist
1

y

s/l 2 1

a -T
x =£

Diese Werte in obiger Gleichung eingesetzt, ergibt

,«=n+if i/1 a2—^

>ÌGtn+1-v/C+l-(aS-T)).
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Nun ist aber
oo

U=u+X I ^r>
Deshalb die Beziehung

Gc.-v/c-(a'-^))>^>f(^-v/i.-(a*-T)
Diese Formel gilt sowohl für die Nullstellen von J(x) als

a

für die von K(x). Da man weder d noch £n und |n+1 kennt, so

kann sie wiederum nur für die Berechnung der grössern Null-
steilen verwendet werden und zwar wie folgt:

Der Grenzwert von ô ist gleich 7t. Man kann daher ohne

grossen Fehler -r- 1 setzen.

Bei den grössern Nullstellen stehen £n und f : von dem

gesuchten a um ungefähr -~ nach links und rechts ab, so dass
LA

a
annähernd für J(x) gilt:

£n «n-?=(2n + a-!) n
2 y— 2/2

ln+i-«n+|=(2n + a + ij|
Dies eingesetzt ergibt:

{(2n + a-|)f-V/(2nfa-4)2^-(a2-i-)}

>,n>{(2n+ a + i)f-V/(2n + a + 4)3^-(a2-i)]

und da an (2n + a — -jj-)-y— rln, so folgt
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y/(2n + a + i)2-r-(a2-i)- 7t

>«n>N/(2n+a-4)^-(a2-i)+f
Die entsprechende Formel für K(x) lautet:

V/(2n + a-4)^2-(a2-|). ir.

><>v/(2n + a-4)^-(a2-l) + ^.
Diese Formeln sind natürlich nicht streng richtig und sind

zur Bestimmung der ersten und mit wachsendem a auch für die
zweite und dritte Nullstelle nicht anwendbar. Immerhin haben
wir an Hand der Tabellen von Lommel konstatiert, dass sie noch

8

richtig sind für die zweite Nullstelle von J(x). Die höhern
Nullstellen werden in so enge Grenzen eingeschlossen, dass für die
meisten praktischen Zwecke die Resultate wohl genügend genau

i
sind. So liefert z. B. die Formel für die 10. Nullstelle von J(x)
die Grenzen 32,1887 und

32,1890.
Exakte Werte würden wir dann erhalten, wenn es gelänge,

die | und |x genau zu ermitteln.
Die Erfahrung hat uns gelehrt, dass die § sehr nahe zu-

a
sammenfallen mit den Nullstellen von K(x) und umgekehrt die

a

it mit den Nullstellen von J(x). Wir wissen aber nicht, wie
weit diese Übereinstimmung geht und ob sie eventuell von der
zweiten Nullstelle an eine vollkommene ist.

In den beiliegenden Tabellen haben wir die Nullstellen a
a a

und ax von J(x) und K(x) als Funktionen des Parameters a

dargestellt.
Tabelle I entspricht somit der Gleichung

a f(a)
und Tabelle II der entsprechenden

o1 f1(a).
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Beide Funktionen f und fx besitzen unendlich viele voneinander

isolierte Äste, entsprechend den unendlich vielen reellen
Nullstellen. Von diesen haben wir nur je die 10 ersten dargestellt.
Jeder Ast erstreckt sich ins Unendliche. Der senkrechte
Abstand zwischen zwei benachbarten Ästen entspricht der Grösse J
und ist zwischen

a -JL
2

und a + -=-

kleiner als 7t,
1

für a — + "9

wird er gleich 71, und im übrigen Teil der Ebene ist er grösser
als 7t. Zwischen den zwei ersten Ästen ist er am grössten,
nähert sich aber immer mehr dem Werte 7t, je weiter wir uns
von der a-Achse entfernen.

Die horizontalen punktierten Geraden veranschaulichen die
Beziehung

j"(x) (— l)nJ(x) resp.

K(x) (-l)nK(x).
Wir haben absichtlich nur einige dieser Linien gezogen, um

die Anschaulichkeit des Kurvensystems zu heben.

Die einzelnen Äste der Funktion f liegen symmetrisch zur
a

a-Achse, weil zu jeder positiven Nullstelle von J(x) eine gleich
grosse negative gehört. Die Funktion fx dagegen besitzt auf der
negativen Hälfte der Zahlenebene nur einzelne isolierte Punkte,

2 n+l
2

welche mit den Nullstellen von J(x) zusammenfallen.

Der Ricktungskoefßzient der reellen Kurvenäste ist stets
positiv. Dies folgt schon aus dem Sturmschen Theorem; doch
ist sein Wert auch direkt bestimmt worden, wie Graf und Gubler

in ihrem schon oft zitierten Werk auf Seite 108 u. folg.
nachweisen.

Es gilt nämlich, wenn
a f(a)
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d^__^a_p(t)]2dtda a+x
«[J(«)]2o

a+l 2 /"" a

oder da [J(a)]2 -^ / [J (t)]21 • dt
o

P» dl

j>

/K[j(t)]2

dt
/ LJ(t)J-

— aa -^—— — giltig für positive a.
da C a

_,tdt

Dieser Wert ist immer positiv.

Für a 0 wird +- + o<
da

t?- n da 1

r ur a 0
a[J(a)]-

Da der Nullpunkt eine n-fache Nullstelle der Funktion
a

J(x) ist, wenn
n<a<]n+ l,

so ist in der Tabelle I die ganze positive a-Achse eigentlich
als der erste Kurvenast anzusehen.

a

Die komplexen Nullstellen von J(x) könnten wir so
veranschaulichen, dass wir eine dritte Achse, die i-Achse einführten
und sie senkrecht zur aa-Ebene stellten. Die komplexen Äste
würden dann im Räume verlaufen. Das Bild wäre folgendes:

Im Punkt — 1 der Tabelle I treten zwei rein imaginäre
Äste in den Raum und vereinigen sich wieder im Punkte —2.
Zwischen —2 und —3 liegen 4 komplexe Äste, allgemein sind
die Punkte —n und —(n + 1)
durch n-Paare konjugiert komplexer Kurvenäste verbunden.

Legen wir durch dieses Raumgebilde an irgend einer Stelle
der a-Achse einen ebenen Schnitt parallel zur ai-Ebene, so
ergeben uns die Schnittpunkte sämtliche reellen und imaginären

a

NuilsteUen der Funktion J(x).
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a

Die entsprechenden Verhältnisse für K(x) haben wir nicht
untersucht.

Zum Schlüsse sei noch bemerkt, dass wir die Daten zur
Erstellung der beiden Tabellen aus den Beziehungen berechnet
haben, welche uns die Sturmsche Methode lieferte. Ein
Vergleich mit den Lowrae/schen Tabellen ergab eine genügende
Übereinstimmung.
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