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Ad. Gasser.

Ueber die Nullstellen der Besselschen Funktionen.

(Eingereicht im Juli 1904.)

Einleitung.

Als allgemeine Losung der Differentialgleichung

dz d . .
Wt x @ —a)y=0,

X2

worin a eine beliebige Zahl bedeutet, kann gesetzt werden:
y =AJ(x) + BK(x).))

a a
A und B sind arbitrire Konstante, J(x) und K(x) nennen
wir die Besselschen Funktionen I. Art.

J (x) lasst sich durch folgende Reihe darstellen

< \o+2d
j(x) :S‘: (__1);. i! (Q)

P rat+i41)
woraus sich das Integral ergibt

SR )
e 5D

N ist eine zum unendlich Werden bestimmte Zahl.
Zwischen K(x) und J(x) besteht die Beziehung

a a 'l —a
K(X) = COtg a %J(X) == Eﬁ; J(X),

woraus sich auch eine Summenformel und Integraldarstellungen

far Iﬂ((x) bilden lassen.

Auf die Besselschen Funktionen stosst man bei der mathe-
matischen Behandlung mehrerer physikalischer und astrono-
mischer Probleme, und es spielen darin meist die Nullstellen
derselben emne bedeutende Rolle.

') L. Schlifli, Annali di Matem. Ser. Il» T. VL




Von verschiedenen Mathematikern sind daher Untersu-
chungen angestellt worden, um die Zahl und Lage derselben zu
ermitteln, ohne dass es bis dahin gelungen ist, einen einfachen
Weg zur genauen Berechnung zu finden.

Wir haben uns die Aufgabe gestellt, die bis dahin bekannten
Resultate und eingeschlagenen Methoden kurz zusammenzustellen und
in einem zweiten Abschnitt eine derselben weiterzufiihren.

I. Historischer Uberblick.

Bereits Poisson') hat gezeigt, dass die Gleichung J (x)=0
far reelle a nur reelle Wurzeln besitzen kann. Er stellt das
Integral auf:

1 a a
ftJ(at)-J(ﬁt)dt:O,
Q
worin ¢« und # zwel beliebige aber verschiedene Wurzeln von

J (x) =0 bedeuten. Wire o« komplex, so konnten wir als g die
konjugiert komplexe Wurzel wihlen, es miissten dann auch

j(at) und J (#t) konjugiert sein; ihr Produkt wire positiv lings -
des ganzen Weges, somit konnte das Integral nicht den Wert
Null annehmen.

Kurze Zeit spater hat Sturm?) eine allgemeine Methode
entwickelt, welche, angewendet auf die Besselschen Funktionen,
sehr weitgehende Schliisse auf die Lage ihrer Nullstellen zulisst.
Da wir jedoch dieselbe im zweiten Teil unserer Arbeit einliss-
lich behandeln, so sei sie hier nur erwihnt. Dagegen miissen
wir uns etwas linger bei der interessanten Untersuchung von
Hurwitz®) aufhalten. Er beschaftigt sich nicht direkt mit den
Besselschen Funktionen, wie wir sie eingangs definiert haben,

sondern geht aus von einer verwandten aber einfachern Reihe.
Er setzt

1) Sur la distribut. d. 1. chaleur d. 1. corps solides. Paris 1821,
2) Liouville Journal. Vol. 1. 1831.
%) Math. Annalen. Bd. 33. 1889.
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1
refn T r(a+2) ot T H F1)-r!

und es gilt dann:
a a 2

Daraus ergeben sich mit Leichtigkeit die Nullstellen von J(x),
wenn diejenigen von fy(z) bekannt sind. Hurwitz sucht die Auf-
gabe weiterhin zu vereinfachen, indem er die transzendente
Funktion f,(z) durch eine rationale zu ersetzen sucht, deren
Nullstellen in einem bestimmten Grenzfall mit denjenigen der
transzendenten zusammenfallen. Zu diesem Zwecke beweist er
folgenden Satz: Es sei f(z) die gleichmdssige Grenze der Funktions-
reihe

f,(z) =

g(,(Z), g1(z)7 gg(z)a """ ? g,,(z)a """
so0 dass gilt hH;o g,(z) =1(2), so liegen in einem Gebiet, in welchem

f(z) endlich und stetig, und die Funktionen ¢,(z) alle den Charakter
einer rationalen Funktion besitzen, die Nullstellen von f(z) in den
Verdichtungsstellen der Wurzeln der Gleichungen
go(z) — 07 gl(Z) = O? gz(z) = 0: e g,,(z) =0

und zwar liegen i einer beliebig kleinen Umgebung der Stelle w, die
eine v-fache Wurzel von f(3) =0 ist. genau v Nullstellen von g,(2),
s0 bald v eine bestimmte, von der Grosse jener Umgebung abhingende
Zahl idiberschreitet.

Als solche Hilfsfunktion g,(z) wiihlt Hurwitz Zihler und
a(z)
f.,@
welche Funktionen von Heine'), Christoffel®) und Lommel*’) bear
beitet worden sind.

g)(z) ist definiert durch die Reihe
a . F(a+ P I‘) r
gv(z) —2 ( r ) r(a+r) .

r=0
und hiangt in folgender Weise mit f(z) zusammen:

i (=1)=n |
8, = m‘{ RS SINE s LTS i

') Heine, Handbuch der Kugelfunkt. Bd. 1.
) Crelle Journal Bd. 58.
%) Math. Annalen Bd. 4.

Nenner der Kettenbruchentwicklung des Quotienten
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Setzt man fiir f oy und £ die Reihenentwicklungen ein,
y o . . . li 8y s
so lasst sich leicht zeigen, dass ™7 Taty) =S Man
findet daher die Wurzeln der Gleichung f.(z) =0 mit beliebiger

Genauigkeit, indem man diejenigen von g “t1(z) = 0 bestimmt.
Mit wachsendem » wird die Ubelemstlmmung immer besser.
Diese Hilfsfunktion g, (z) ist nebenbei bemerkt nahe verwandt
mit der von Graf und Gubler?') eingefiihrten Schliflischen Funktion,
deren Definition ganz dhnlich lautet.

Sie ist definiert als Zihler und Nenner der Kettenbruch-

entwicklung von ;I_E’f) Es ist
J ()
J(x) _ lim PT'(X)___
a—1 == OO a—1 ’
J (%) P, (x)

wobei Py(x) die »¢ Schliflische Funktion mit dem Parameter a

bezeichnet. 3(){) bildet ihre gleichméissige Grenze. Ferner ist

fw(x):(—)_yz (=)’ ( r )T(;?;i_vrlm)l) (2)

Mit der Summenfmmel von g, (z) verglichen, ergibt sich

a Fort —H g LS 2
beo=(3) 8 (-3)

somit fallen die Nullstellen von Pav(x) mit denjenigen von

a1 Xd
g, (—-— I) zusammen, und es gilt der Satz:

a
Die Nullstellen der Besselschen Funktion J(x) liegen in den
Verdichtungsstellen derjenigen der Schliflischen Funktion.

Anmerkung. Es ist uns gelungen, eine Differentialgleichung der
Schliflischen Funktion aufzustellen. Sie lautet: _

x? dty | x ddy § qy _

4 dx*+ 2 dx‘im(pnx)dx"_f-(2x+2X ix Tae =Y

wobei p-—m( —I—a—i—l)—i-(a—}-?)?

q=m(m+-2){4a (a4 m+1)+ m (m+2) )
1) Theorie der Besselschen Funkt. II. Art. S. 99. Bern.
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Die weitern Schliisse von Hurwitz basieren auf einem be-
kannten Sturmschen Satz tber den Zeichenwechsel innerhalb
einer Funktionsreihe bei Variationen des Arguments. Der Voll-
stiindigkeit halber wollen wir diesen kurz vorfiithren.

Es sei folgende Funktionsreihe gegeben:
Vi, Vi, oo« Vugyy Vauy, Vg e oo« Vi, Vo
V; sei eine ganze rationale Funktion der komplexen Variablen z
vom Grade i. Der Koeffizient von z' sei positiv. Ferner erfiille
V: die Bedingungen: _

1. Wenn i;/y, so besitzen, wenn V; verschwindet, die
Funktionen Vij; und Vi_; von Null verschiedene Werte
von ungleichem Vorzeichen, dagegen wenn 1=-u, so
sollen sie gleiche Vorzeichen haben.

Vm—l
der Quotient = 0 wird, von negativen zu positiven
Werten iiber; oder mit andern Worten: Zwischen 2 auf-
einanderfolgenden Nullstellen von V,, muss stets eine
ungerade Zahl von Nullstellen von V,,_; liegen.

2. Geht z von — oo bis - oo, so geht tiberall, wo

3. Die Gleichung V,, = 0 hat keine mehrfachen reellen

Warzeln.
Unter diesen Voraussetzungen hat die Reithe Vu, Vi - -
-+ Vi, V, fiir z— — oo u Zeichenwechsel, wihrend sie fir

z = - oo u Zeichenfolgen aufweist. Geht daher z von — oo bis
+ oo, so gehen p Zeichenwechsel verloren. Es 1st klar, dass
ein solcher Verlust nur stattfinden kann, wenn eine der Funk-
tionen V durch O hindurch geht, und durch die Voraussetzung 1)
beschriinkt sich dieser Verlust auf diejenigen Nullstellen von

Vu, wo —VY“— von negativen zu positiven Werten iibergeht. Es
t—1

muss deshalb Vi wenigstens u reelle Wurzeln haben. Da diese

Funktion aber vom Grade u ist, so folgt der Satz: Die Gleichung

Vi

Vu =0 hat nur reelle Wurzeln, und es geht der Quotient v
u—1
jedesmal, wenn er verschwindet, von negativen zu positiven Werten iiber.

Auf gleiche Weise ziehen wir Schlisse aus der Reihe

Vi, Vmogy « + « Vaugq, Vi, Vg, « -+ Vi, Vo; durchlauft z alle Werte



von — oo bis - oo, so gehen m Zeichenwechsel verloren. Ein
solcher Verlust kann hier eintreten erstens, wenn V,, =0, und
zweitens, wenn Vu =0. Im letztern Falle gehen immer gleich-
zeitig zwei Zeichenwechsel verloren. Da Vu = 0 u reelle Wurzeln
besitzt, so ist die Zahl dieser Verluste 2 u. Es bleiben deshalb
noch m—2u Verluste an Zeichenwechseln, die vom Verschwinden
der Funktion V, herrithren. Es muss diese somit m — 2u reelle
und 2y imagindre Nullstellen besitzen.

Die Bedingungen, denen die Funktionen V unterworfen
sind, werden durch die g-Funktionen erfiillt, wie aus der Summen-

A 2v—r\ I'(a-}2v—r) r
formel ) g,, = 2 ( ) z
e r I'(a-r)

und der daraus abgeleiteten Beziehung
(a+2v-—1)g2y+2=021,g21, — (a—]—2v—|—1)z2g2,,_2,

wobei  Cy=(a+»{(a4r—1)(atr+4+1)422},

leicht ersichtlich ist. Wenn g, =0, so missen g, ., und g,, ,
ungleiche Vorzeichen besitzen, so lange sowohl (a+-2»—1) als
(a-42v-41) positiv ist. Da » von 1 an zihlt, so ist dies sicher
der Fall, sobald a>—1. Es kann deshalb in der Reihe g,
82, _o°"** 8y 8o mnur ein Zeichenwechsel verloren gehen, wenn

g,,=0 wird. Da im ganzen » solcher Verluste erfolgen und
dies zugleich die Zahl der Nullstellen von g,, ist, so gilt folgen-

der Satz: Ist «>>— 1, so besitzen die Gleichungen g, (2) =0 fiir

-~

. _ 9, (2)
jedes v nur reelle Wurzeln, und es geht der Quotient -a—f-'

Jy—2(3)
mal, wenn z eine Nullstelle von g, (2) passiert, ron negativen zu posi-
tiven Werten iiber.

jedes.

Die Zahl der positiven Wurzeln erhalten wir, indem wir z
von 0 bis 4 oo wachsen lassen und die Zahl der eintretenden
Verluste an Zeichenwechseln bestimmen. Fir z==0 ist aber:

g0:17 g2=a(a+1), g4=(a+2)(a+3)g2
a.llgemeini 82— @127 (a+2v+1)g,,

1) Der Einfachheit halber betrachten wir nur die geraden g-Funk-
tionen.

Bern. Mitteil. 1904. Nr. 1577.
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Firr positive a sind alle diese Ausdriicke positiv, es tritt
somit kein Zeichenwechsel ein, wenn z von O bis 4 oo wichst

und deshalb haben die Gleichungen ézv(z).—-: 0 keine positiven

Wurzeln. Liegt dagegen a zwischen 0 und —1, so ist |é2(z) |

negativ, und es geht mit wachsendem z ein Zeichenwechsel ver-
loren. Wir erhalten somit den Satz:

Die Gleichung _t;;,v(z)= 0 hat eine positive und v— 1 negative
Wurzeln, wenn a zwischen — 1 und O liegt, dagegen sind alle
Wurzeln negativ. wenn a> 0. Ist aber a<<—1, liegt es z. B.
zwischen — (2u — 1) und — (2u -} 1), wo u eine ganze positive
Zahl bedeutet, so folgt aus

(a-2v—1) oyy2 = Cop 8oy — (a+2» 1)z 8oy 2
dass in der Funktionsreihe

ggv’ gg,,+21 e g2y+21 ggy? gglu_m -« 8
immer, wenn eine der Funktionen verschwindet, die benachbarten

gleiches Vorzeichen besitzen, ausgenommen dann, wenn g,, zu
Null wird.

Ferner liasst sich zeigen, dass fir grosse » der Differential-

. g2 . . . .
quotient von —="— einen positiven, von Null verschiedenen Wert

g2y—2
besitzt und somit erfullt die Funktionsreihe
Boy Boyneree Bou-eor &
fur grosse » alle Bedingungen, die wir fir die Reihe
Var Vagooor Voot 'V

aufgestellt haben, und so konnen wir den fir die Funktion V_
ausgesprochenen Satz auf unsere Funktion gaz , anwenden.

Wir untersuchen wieder die Zahl der positiven Wurzeln.
Fir 2=0 ist g,,,, — (a429) (a+2»41). Liegt a zwischen
—(@2u—1) und — (2u), so hat gazy 4o fur jedes » das positive
Zeichen, wihrend, wenn a zwischen — (2u-}-1) und —2u ge-
legen ist, ;2” 42(2z) das einzige Glied ist, das fir z=0 negativ

wird. Wir erhalten also im letztern Falle einen einzigen Verlust
an Zeichenwechseln, wenn z von 0 bis 4 oo wichst. Dies er-
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gibt den Satz: Liegt a zwischen — (2u-+- 1) und — (2u— 1),

s0 besitzt die Gleichung ;2 ,(2)=0 genauw 2p 1maginire Wurzeln,
falls v eine gewisse Zahl N iiberschreitet. Zugleich ist von den reellen
Wurzeln dieser Gleichung eine oder keine positiv, je nachdem a zwischen
— (2u+1) und —2u oder zwischen — 2u und — (2u—1) liegt.

Da die Nullstellen der Besselschen Reihe f,_ (z) in den
Verdichtungsstellen der Wurzeln der Gleichungen év (z) = 0 liegen

a—1
und diejenigen der Besselschen Funktion J (x) gefunden werden,
2

indem man setzt — %::z, so ergibt sich ohne weiteres:
a
Die Wurzeln der Gleichung J(x) = 0 sind simtlich reell wund
paarweise entgegengeseltzt gleich, wenn a > — 1. Liegt aber a zwischen
— 1 und — 2, so fallen 2 derselben auf die imagindre Axe und liegen
symetrisch zum Nullpunki.

Dagegen konnen wir die Sitze fir den Fall, wo a < —2
nicht ohne weiteres anwenden, da die Verdichtungsstelle eines
Systems komplexer Werte nicht notwendigerweise komplex sein
muss. Um nachzuweisen, dass sie es in diesem Falle ist, gehen
wir aus von der Gleichung

82, (%) + 48,44, (2) =0,
wobei A einen reellen variablen Parameter bedeutet. Fir 1 =0
hat diese Gleichung fiir ein geniigend grosses » sicher u-Paare
konjugiert komplexer Wurzeln. Varnert r, so kann ein solches
Paar nur verschwinden, wenn sich die konjugierten Werte auf
der Realititsgeraden treffen und eine reelle Doppelwurzel bilden.

In diesem Punkte wiirde aber, da Savt1 =——%,derDifferentia1-

2y
quotient dieses Bruches =— 0, was nach fritherem nicht moglich
ist. Durchlduft deshalb 2 kontinuierlich alle Werte von — oc

bis - oo, so bewegen sich die komplexen Wurzeln der Gleichung

éw(z)—]— ).g%2 y41(@) =0 auf einer Kurve, die aus 2u getrennten
Zugen besteht. KEs liasst sich zeigen, dass diese ganz im End-
lichen liegen und in sich geschlossene Ovale bilden, von denen
keines das andere schneidet oder beriihrt. Dagegen wird jedes
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Oval, das zur Gleichung g,,+18,,,, =0 gehort, von Innen be-
rihrt durch ein Oval, aul dem die komplexen Wurzeln der
Gleichung g, |, 4 T 48344141 = 0 liegen. Der Berithrungspunkt
liegt da, wo g,,.,(z) =0. Ferner miissen sich die Ovale mit
wachsendem » verkleinern, und jedes schrumpft fiir » =oc in
einen Punkt zusammen, der nach fritherem eine Nullstelle von
f(z) sein muss.

Da aber j x)= (%) f (— %2),

a
so erhilt man die Nullstellen von J (x), indem wir setzen

und nach x auflésen.
Wir bekommen dann aus einem konJuglelten Wurzelpaar

von f (z) =0 deren zwei fiir die Gleichung J (x) =0. Die Resul-

tate von Hurwitz auf die Besselschen Funktionen ubeltragen
lauten somit;:

Die Gleichung .; (x) = O hat fiir negative, zwischen — (2 u 4+ 2)
und — 2 u liegende Werte von a genauw 2 u- Paare konjugiert kom-
plexer und iibrigens unendlich viele reelle Wurzeln. Zur nilern Be-
stimmung der komplexen Wurzeln hat man eine unendliche Reile al-
gebraischer Kurven

Y (y)=0, ¥, (&y)=0...,
von denen jede einzelne aus 4y im Endlichen und aussereinander-
liegenden Ovalen besteht. Das einzelne Oval der Kurve y, = 0 beriihrt
und umschliesst je ein Oval der wichstfolyenden Kurve vy, = O und

enthdlt zugleich in seinem Innern je eine imaginire Nullstelle von

J(x). Auf diese Nullstelle zieht sich das Oval mit wachsendem v
immer mehr zusammen. Dazu kommen noch zwei auf der lateralen
Axe liegende Wurzeln fiir den Fall, dass a zwischen — (2u -}~ 1)
und — (2u 4 2) liegt.

Durch Anwendung von Integralsiitzen bestimmt Hurwitz
die Lage der kompleren Wurzeln von f (z) =0 noch genauer; das
Resultat spricht er aus in dem Satz: Die komplexen Wurzeln der
Gleichung — f, _,(3) =0 liegen in denjenigen Gebieten der Ebene. in
denen die Funktion
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9,(3)9,_)—g, ) 9,3

7
g —2

h,(x,y)=
neqativ st
Dabei bedeuten z und z' 2 konjugierte Werte und » eine
ganze Zahl, die der Bedingung: a-}»>>0, geniigt. Ferner hat er
den Fall untersucht, wenn a eine komplere Zahl mit positivem

reellem Bestandteil ist, und dabei folgendes gefunden:

Es sei a eine Zahl mit positivem reellem Bestandteil. Man
2

: a ;
ziehe durch den Punkt — zwei Halbstrahlen, von welchen der erste

parallel zur dxe der negativen reellen Zahlen liuft. wihrend die Ver-
léngeruny des zweiten durch den Nullpunkt geht. Die sidmtlichen
Wurzeln der Gleichung f () =0 liegen dann in dem von den ge-
nannten Strahlen begrenzten (konveren) Winkelraum.

Auf die Beweise dieser letzten Siitze konnen wir nicht ein-
treten, da sonst unsere Arbeit zu ausgedehnt wiirde; der Voll-
stindigkeit halber haben wir sie trotzdem angefiihrt.

Das sind in kwzen Ziigen die Resultate, die wir Hurwitz
verdanken. Seine hochst interessante Methode gibt uns ge-
nauen Aufschluss iiber die Zahl der Nullstellen der Besselschen
Funktion, lisst aber die Lage derselben ziemlich unbestimmt.
Immerhin liefern diese Resultate eine erste Anniherung.

Wir wenden uns nun zur Besprechung einer Note von
Rudsky.)

Eingangs derselben fiihrt er einen Beweis, dass zwischen
zwel aufeinanderfolgenden Nullstellen von j (x) stets eine, aber
nur eine Nullstelle von E:f-(lx) liegen kann. Dieser Beweis wurde
spater auch von Bocher?) gegeben, und wir wollen ihn kurz repro-
duzieren.

Es se1 gegeben
Y =1—

2

Z VA
afi TG IDET)

ZS

~ 3la+1)(a+2)(a+3)

1) Mém. de la Société Roy. d. Sciences de Litge (2) Bd. 18.
2) Bull. Americ. Math. Soc. (2) Bd. 3. 97.

-I—oooo,
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dann 1st ;(z) = I(a+1) (%) j (x), wenn
2
z:—l——-)zi—-.
a 2 a
y (%) hat die gleichen Nullstellen wie J(x).
y (z) geniigt der Differentialgleichung:
ay dy | :_ .
15+ ) G +y=0 (1)
und aus der Reihe folgt die Beziehung:
a+1 d
Yy =—@+DT. (2)

Fir z =0 ist ;(z)zl
und d—giz—) negativ fir a, die grosser sind als — 1.

a
Es muss somit y(z) mit wachsendem z abnehmen und wenn
a

dy(z)
dz

a1 a+41
somit nach (2) y(z) positiv. Die erste Nullstelle von y(z) muss

es die Nulllinie passiert, so ist

immer noch negativ und

also nach derjenigen von y (z) liegen.
Nehmen wir zwei beliebige benachbarte Werte « und g,

welche ;(z) zu Null machen, so muss, nach derselben Gleichung(2),
a1
zwischen diesen sich sicher wenigstens eine Nullstelle von y (z) be-

finden.
Wiren es mehr als eine, z. B. k, so miisste in dem Inter-
vall (¢, B) die zweite Ableitung (k—1)mal verschwinden. Die

Differentialgleichung (1) zeigt uns aber, dass ;(z) sein Zeichen

d*y(z)
d®z
Somit 18t k—1=0
k=1,
d. h. zwischen zwei beliebigen aufeinanderfolgenden Wurzeln der

ebenso oft wechselt als

a a+1
Gleichung y (z) == O liegt eine, aber nur eine Wurzel von y(z) = 0.
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Rudski wendet sich nun speziell zur Untersuchung der
1
n+§
Wurzeln von J(x), wo n eine ganze Zahl bedeutet.

Nach Poisson lasst sich setzen:
n-}-—]z'— "
Y(X)=—5p1 {Xn sinx — X/ cos X

X

|
|

Dabei bedeutet ¢ eine Konstante, und X sowie X' sind ganze

rationale Funktionen in x vom Grade n oder n—1, je nachdem
n gerade oder ungerade ist.
n—l—.—;-
Fir y(x) =0 folgt
X

cot X = —
. X

=]

1
n+—
Die Nullstellen von y (x) liegen somit in den Schnittpunkten der
beiden Kurven

X

v — n
=7
Xn

Es lasst sich nun zeigen, dass, sobald x grosser ist als die

W == COt X.

grosste Wurzel von X =0 und X’ = 0, der Quotient _}{ stets

n
einen endlichen Wert besitzt, der
positiv ist fiir ungerade n und

negativ » gerade n.

Die Schnittpunkte der beiden Kurven liegen somit nur in
ungeraden oder nur in geraden Quadranten; es gilt also der
Satz:

Nachdem x den Wert der grissten Wurzel der Polynome X

n+—f;
und X iiberschritten hat, liegen die Wurzeln der Gleichung J (Zr) =]
nur in den geraden resp. ungeraden Quadranten. wenn n gerade resp.
ungerade ist.

Soweit sind die Resultate von Rudski ganz richtig. Er
sucht nun aber dlen obigen Satz auch auszudehnen auf die ersten

: n-—
Wurzeln von J (}:) =0 und fiihrt zu diesem Zweck einen Schluss
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von n auf n-1 durch, macht aber mitten im Beweis eine An-
nahme, deren Richtigkeit weder vorausgesetzt noch bewiesen ist,
die sich 1m Gegenteil als falsch erweist. Er setzt stillschweigend

voraus, dass die beiden Kurven v = — und w=cotx sich
b X’
n

innerhalb des Gebietes, in welchem die Nullstellen der beiden
Polynome X und X’ liegen, niemals schneiden. Dies ist ganz
richtig fir n=1, 2, 3 und 4. Dagegen stimmt es bereits nicht
mehr fir n =25. Gerade fiir diesen Fall hat Herr Rudski in
seiner Arbeit ein Schema gegeben, dessen genaue Ausfilkrung ihn
von der Unrichtigkeit seiner Behauptung hitte tiberzeugen konnen.

Die Nullstellen von X, liegen nimlich bei 1,5708 und 5,053 und
diejenigen von X." bei 3,15 und 9,75.

X & X &
y h
1]
i ]
\ 1
1 ]
1 \
\ \
\\ \
\\ ‘\ ﬁ 5
\ \0\\
\\ \\\ .
'?\f5\\ N\ %
0+ A7 S NY 1Y AN 7 3
2 \ e N\
\ \
A \
\ \
\ \
\ \
\ \
\ ]
1 \
\‘ \
\ \
\ \
\ \
\ \
i \ [ \
-cF ! —
Der Verlauf der beiden Kurven v =% und w = cot x 1st

in dem vorliegenden Schema veranschaulicht. Es bedeuten darin
die punktierten Linien die Kurve der cotg., die ganz ausgezogenen

diejenige von 'X—,’ Die cotg. verlaufen in jedem Halbkreis gleich.

1)

< bleibt bis zu x = 1,5708, was >—72£, positiv, dann wird der

5
Zihler und damit der ganze Bruch negativ und behilt das Vor-
zeichen bis x = 8,15, wo der Nenner zu 0 und der Bruch da-
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durch — — oo wird. Mit wachsendem x wird auch der Nenner
negativ, der Wert des Bruches damit positiv bis X bei 5,05
zum zweitenmale verschwindet und zu positiven Werten tiber-
geht. Der Nenner bleibt noch negativ bis zu x = 9,75, was > 3 =,
X
X!
positiv. Es muss deshalb bereits im 6. Quadranten ein Schnitt er-
folglen zwischen den beiden Kurven, also die erste Wurzel o von
b4

J (X3=O schon 1m 6. Quadranten liegen. Daftir befindet sich
dann keine im 7. und 8. Quadranten, die zweite Wurzel g liegt
im neunten. Fir grossere n findet man, dass die erste Nullstelle
relativ immer weiter hineinriickt, und dass in das Gebiet, inner-
halb welchem die Wurzeln von X, — 0 und X/ =0 liegen, mehr

11-{——.1)—

als eine Nullstelle von J(x) fallt. Dies stimmt iiberein mit dem
von Schafheitlin gefundenen Resultat, dass die erste Nullstelle von

J (x) sicher vor \/2(a—+1)(a—3) liegt.
Wir konnen somit nur den ersten Teil der Arbeit Rudskis

anerkennen, der zweite ist, der falschen Voraussetzung halber,
unrichtig.

und erst von diesem Werte an bleibt der Quotient immer

Wir wenden uns jetzt zu den Resultaten, die wir Paul
Schafheitlin') verdanken. Er stellt folgende Integralform auf:

1

n—— . 2n—1 —2 1
n gntl cn 2 €Os 2(.).s1n(x— = ca)e ot
J (X) R 1 f - 2n41 —do.
\/-zr F(n — —?) sIn ©
0
n
Bezeichnen wir das Integral mit Y (x) und setzen darin
x =k ¢

wobei k eine ganze Zahl und 0 <<&¢<7, so bekommen wir die
Gleichung:

1
n—- 211-—1(1)) e—?xcotgm

(*1)lel(X)——-“—f%l cos m-sin(e— .

) d w.
sin?" o

0

Mit wachsendem « #ndert nur der Faktor sin (e—-— 2n2_1‘0)

1) Crelle Journal. Bd. 122,
Bern. Mitteil. 1904. Nr. 1578.
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sein Zeichen. Die Grenzen, innerhalb denen das Vorzeichen
konstant bleibt, kénnen allgemein dargestellt werden durch

 2ef 20 _ 2e42vm

v 2n—1 ' vHT 9p—1

Zerlegen wir nach diesem Prinzip das Integral %(x) in Teil-
integrale, so haben diese abwechselndes Vorzeichen.

Liasst man » von 1 aus alle ganzen Zahlen durchlaufen, so
ist der absolute Wert jedes nachfolgenden Integrals wunter be-
stimmten Bedingungen stets grosser, als derjenige des vorangehen-

den. Das Vorzeichen von Y (x) hingt somit nur noch ab von
der Zahl der Integrale, und diese wird bestimmt durch die
Grossen n und e.

Die Schwierigkeit dieser Methode liegt in der Bestimmung
der oben erwihnten Bedingungen. Da diese ziemlich miihsam
und von keinem allgemeinen Interesse ist, so wollen wir sie
hier iibergehen und nur die Resultate uns merken. Sie lassen
sich in folgenden Satz zusammenfassen:

Adnt—1 L . : n-2p
Ist 7 > ——— y 80 haben siémtliche Funktionen J(’I‘)
Bu—Nm—4de

wo p eine positive ganze Zahl bedeutet, dasselbe Vorzeichen wie J ().

p bedeutet den Rest, den man erhilt, wenn wir n durch 4 divi-
dieren. Ist n ein Vielfaches von 4, so ist ¢« =4 zu setzen.

Macht man sich von ¢ unabhiingig, indem man seinen Grenz-

wert einsetzt oder es auf ein kleines Intervall beschriankt, so

erhalt man speziell :

(-1 )“Y fir £ =0 und x > in

I . 3
negativ fir ¢> —.

3 7T 4
(_1)k§ » p=2 » X > —~1 » » << %,
(—1)"7§v > u= 3 » x> ilnﬂ:—~—1 » > &= Z—

Aus der wohlbekannten Formel:

(h-1)T 42n11 m-z(“+]}'{),(n 1)} T4+ m—1)7(x)=0

und dem vorhin angefilhrten Satz iiber das Vorzeichen von
n—4

J und J folgt:
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2_
(—1)* Y ist far =0 und x> 4 1—2) stitiv fiir &< =

1

2
n 2__
(-—-l)kY » » ,u:2 » X> 4(n+2) 1 » » s>§;r,
7T —g
n .
(—I)kY > » u=1 » x> 22 —1 » » 8277;-
e e

Deshalb gilt der Satz:
4 (n4-2)?—

it

Ist © > 1—, so liegen die Nullstellen von J () in

den Intervallen (k -+ —é—) 7T und (k -+ -; w) resp. k 7t und (k —+ —i—) 7
je nachdem n gerade oder ungerade ist.

Ferner sieht man, dass zwei Funktionen, deren Parameter

sich um zwel unterscheiden, nur in den Intervallen —g— bis %
resp. 0 bis —4— gleiches Vorzeichen haben kénnen. Daher folgt
mit Hilfe der Relation
dJ n—1 n+l
2 = =J--J.

2__ ¢
Ist £ > 4("_';;?) , so liegen die Maxima und Minima rvon

] (r) in den Intervallen kn und (lc—[—-i—) 7T Tesp. (k+—21-) 7t und’

(k—}—ij—) 7z, je nachdem n gerade oder ungerade 1st.

n ist hier immer als ganzzahlig vorausgesetzt, doch lassen:
sich die hergeleiteten Sitze leicht auf Funktionen mit gebro-
chenem Index tibertragen.

Schatheitlin beschéftigt sich im weitern auch mit der Funktion-

Ia{(x)——m—}—h— J (x) —-cotgaJ(x)

sina 7w
Er stellt sie durch das Integral dar:
1

—2xcotgw
e 8%,

n 9“+1 n cos  20)-cos (x——é—— 1)
f 2™,
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Setzt man hier x = (k——%)n—f—s’, wo
0<<é < 7,

.80 geht das Integral in (—1)k§’(x) itber. Will man jedoch die-
selbe Substitution anwenden wie frither, namlich x=k = -} ¢,

n
s0 braucht man in den oben fir Y entwickelten Sitzen nur —7—25

von ¢ abzuziehen. Man erhilt dann z. B.:
4(n-F2)2—

7T

-den Intervallen k m und (Im Y, ) 7¢ 1esp. (Ic + é) 7¢ und (I.ijg) 7€

_je nachdem n gerade oder ungerade ist.

Ist v > . 80 liegen die Nullstellen von K(x) in

Diejenigen Félle, wo n < 4 —%— erfordern eine spezielle

Untersuchung, welche gestattet, die Nullstellen in etwas engere
‘Grenzen einzuschliessen. Schafheitlin findet dadurch:

0
Simtliche Nullstellen von J(x) liegen zwischen (k—l—%—) e und

0
(A—f—%) rt und die von K (x) zwischen (k—]— é) v und (L—}— g—) 7T
wo k alle positiven ganzen Zahlen mit Einschluss der Nuwll zu durch-
laufen hat.

Erhiht man die hier angegebenen Grenzen um . 80 he-

8
.l;ommt man die Intervalle. in welchen die Nullstellen von J(x) und

K( ) liegen. Die erste Nullstelle von K(a*) hegt swischen s und ?;.

Die Resultate fiir die Parameter 2, 3 und 4 stimmen mit den
allgyemeinen Sdtzen diberein, nur wird die Grenze fiir x auf folgende
Werte hembgesetzt

Fir J(x) und K(x) : x> H,2,
» J (x) » K(x) 1 x> 10,75,
4 4
» J(X) » K (x) : x>145 .
Diese hier angegebenen Grenzen sind immer noch ziemlich

weit; wir werden sehen, dass sie sich auf andere Weise be-
‘deutend enger ziehen lassen.



Zum Schlusse wollen wir noch einige Betrachtungen von-
Schafheitlin tiber die Funktion K (x) und ihre Nullstellen anfiihren..
Es lasst sich K(x) darstellen durch'):

K () == | () —log 5 }J(x)+2 8 (2 )5
=1
o

p n+2p nt2p
+§( 1) SR ),

wobel 1 die bekannte Gausssche Transzendente bedeutet. Wegen

dem auftretenden Logarithmus ist K (x) keine eindeutige Funktion
mehr, sondern besitzt unendlich viele Werte, wie der Logarithmus.
Schatheitlin bezeichnet denjenigen als Hauptwert, wofiir das Argu--

ment von x zwischen — «g- und - —g— liegt, entsprechend der

Bezeichnung beim Logarithmus. Die andern Werte unterscheiden
sich dann vom Hauptwert durch die additive Grosse — 2mi3 (o, ©),-
wenn x=ge’, wie aus der Summenformel ohne weiteres er-
sichtlich 1st.

Es lasst sich zeigen, dass diese Hauptwerte fiir keine kompleren
Grissen zu Null werden, sobald n =0, oder n= 1 ist.

Der Beweis stiitzt sich auf die - bekannte Formel von

Lommel ?) .
LI n n n+1
fxy(rx)y(sx)dx—r = {ry(sx)y(xx)—sy(rx)y(sx)}

wof)ei y ein partikuldres Integral der Besselschen Differential-
gleichung, und r und s zwei verschiedene Parameter bedeuten.
Wir treten jedoch nicht niher darauf ein, sondern verweisen auf
die Arbeit von Schafheitlin.?)

Wir stehen damit am Schlusse unseres ersten Abschnittes.
Wir haben in demselben alle uns bekannt gewordenen Publi-
kationen iiber die Zahl und Lage der Nullstellen der Besselschen

1) Programm des Sophien-Realgymnasiums, Berlin 1895.
2) Zur Theorie der Besselschen Funktion V, Math. Annalen 14.
%) Archiv der Mathematik und Physik. III. Reihe I.



— 110 —

Funktionen einer kurzen Besprechung unterworfen und vor allem
immer die bis dahin bekannten Resultate hervorgehoben. Im
folgenden wollen wir zeigen, wie man durch die konsequente
Anwendung einer von Sturm gegebenen Methode auf die Bessel-
sche Differentialgleichung in leichter und eleganter Weise die
gleichen Resultate ebenfalls erhilt, ja dass es damit gelingt, die

Nullstellen der Funktionen 3(&) und K (x) in noch engere Grenzen
-einzuschliessen.

II. Die Methode von Sturm.!)

Es sei die Differentialgleichung gegeben:
d2v dv
| de2 + L Ix +-NV=0.
M, L und N sind Funktionen von x und allfilligen Parametern.

Sie lisst sich in die Form bringen

d(K—%X)
d?v dK dV
-odel K Ix -+ iz dx + GV =0. (1a)
M
—dx
Es wird K=e " ; Gz—lg— :

Aus (la) sieht man, dass V und —%—;i nicht gleichzeitig ver-

schwinden diirfen in einem Punkt, in dem K nicht zu Null wird.

(1]

Denn alsdann miisste auch d—;—g— = 0 sein, und ebenso alle folgen-
-den Ableitungen der Funktion V, wie man durch fortgesetztes
Differenzieren sieht. V miisste eine Konstante sein, was der
Voraussetzung widerspricht. Daraus schliessen wir:

Die Funktion V hat keine reellen Doppelwurzeln; sie geht

_jedesmal, wenn sie den Wert 0 passiert, von positiven zu nega-

tiven Werten iiber, wenn Tx negativ ist, und umgekehrt im

.andern Fall.

) Liouville Journal. Vol. 1831.
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Wir setzen voraus, es seien K und G nicht Funktionen von
x allein, sondern ausserdem abhingig von einem willkiirlich
variablen Parameter m. Dann ist auch V von m abhingig. Wir
haben also:
K=K m); G=G(x,m), V=V(x, m).
Wi differentieren die Differentialgleichung nach m und
kombinieren die beiden Gleichungen auf folgende Weise:

(522
9% 4 GV =0 A
dx | o Tm
ov
*(x g)
dx oV G
dxdm T 0om Vo =0|—Vix
v (K55 v, ()
om ox dx—|—G-V§—H—l—dx—V dx-dm =
oV oG

— w2y A, _we My
(JVamdx Vamdx 0.

oV aV
(kD) el
ov 0x | v Ix e BG‘

om 0x dx-6m  om

Wir integrieren zwischen den Grenzen x, und x und erhalten

oV
e (k2
orV.al vy or

om Ox am
i G dV\2oK
[ 4 2
”C+/ {V om (B:r) Bm}dm @)
z;

C 1st der Wert der linken Seite fiir

X =X,.

Unter der Voraussetzung, dass sowohl x als m reelle
Variable bedeuten, lassen sich aus der vorstehenden Gleichung
(2) verschiedene Schliisse ziehen auf die reellen Nullstellen der
Funktion V. Wir werfen vorerst die Frage auf, unter welchen
Bedingungen die linke Seite negativ werde ?
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Dies ist sicher der Fall, wenn gleichzeitig:
1. C negativ und }

) y
2, 26, negativ und & im ganzen

Jdm

K - zu betrachtenden Intervall.
—— positiv ist.
Jm J

(Es diirfen natiirlich auch eine oder zwei dieser Grossen zu Null

werden.)
av) AY
oV av 3("9—5, o [Eax
Do K——M . —— —V—~_— "7 —_ V2 _ )
om 0x Jdm om A%
so i1st die Bedingung (1) gleichbedeutend mit der Forderung:
K5y
v soll mit wachsendem m zunehmen.

Sind die drei Bedingungen erfiillt, so bleibt der Ausdruck

oV
0 (K 0x

—V?

e 7 im 'ganzen Intervall negativ. Wir konnen

somit folgenden Satz aufstellen:

Nimmt innerhalb der Grenzen r, und x die Funktion K mit
wachsendem m zu und zugleich G ab, so nimmt der Wert von
v
K-
0

V 5
es an der untern Grenze zunimmt.

mit wachsendem m ebenfalls zu im ganzen Intervall, sobald

Wir denken uns fiir ein bestimmtes x und m die Gleichung
erfiillt:
V(x,m)=0.
Lassen wir die Variablen um dx resp. dm zunehmen, so
erhalten wir den Zuwachs:

Soll fiir die neuen Werte der Variablen der Wert der
Funktion ebenfalls Null sein, so muss der Zuwachs verschwinden.
Dies ist der Fall, wenn
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oV
dm = ox
dx ~ éV
om

Aus der Gleichung (2) folgt aber, dass, wenn V =20
oV
ax
bald die drei aufgestellten Bedingungen erfiillt sind. Folglich ist

A% ' : '
und o entgegengesetztes Vorzeichen besitzen miissen, so

£l positiv, also besitzen dm und dx gleiches Zeichen.
dx

Mit kontinwierlich wachsendem Parameter m wachsen auch die
Nullstellen der Funktion V (x,m).

Es sei auf der reellen Axe ein Intervall x, bis x, gegeben,
mnerhalb welchem die obigen Voraussetzungen gelten, und die
Funktion V p verschiedene Nullstellen besitzt. An der untern
Grenze bleibe V stets positiv, wenn wir den Parameter m von
m, bis m, wachsen lassen.

Die p-Nullstellen werden sich mit wachsendem m in posi-
tiver Richtung verschieben, und es muss ein bestimmtes m geben,
fur welches die grosste derselben ¢ mit x, zusammenfillt.

- Lassen wir m weiter wachsen, so ruckt o, ausser das Inter-

vall, das wir betrachten, und deshalb wird d1e Zahl der Null-
stellen von V (x, m),
die zwischen x, und x, zu liegen kommen, um eine vermindert.

Dieser Verlust wiederholt sich jedesmal. wenn mit wachsendem
m eine der Nullstellen von

V (x, m)
mit x, zusammenfillt. Deshalb ist die Differenz zwischen der Zahl

der Nullstellen von
Vr.m) und V(x.m)

m Intervall v, bis ¥, gleich der Zahl der Nullstellen von
v (Xga m):
wenn m von m, bis m, wdchst.

Wir wollen dlese Resultate auf die Besselschen Funktionen
anwenden. Ihre Differentialgleichung lautet:

d2
N e N e
Bern., Mitteil. 1904. Nr. 1579.



Setzen wir K=x

so erhalten wir die Form (1).

d@%g—kﬁ"yy—a ®)

dx X
Als Grenzen x, und x, wihlen wir 0 und oo, welche alle
positiven Wurzeln einschliessen. Innerhalb dieser Grenzen ge-
niigt die Differentialgleichung (3) allen drei frither aufgestellten
Bedingungen. Denn:
1. Nach der Gleichung

dJx) as, . sh
Ix M?J(x) — J (%), wird
Kﬂ X@ at1
dx _~dx ___ _I®
v J(x) T )

was an der untern Grenze x =0 in den Wert a lbergeht.

Betrachten wir a als den variablen Parameter m, so ist
sicher die erste Bedingung erfiillt.

0K 0x
2. e _E—O'
~ 2 .2
()
3 0G == X — negativ fiir positive a
" dm da — neg P )

Wir konnen somit die fiir die Funktionen V aufgestellten
Sitze ohne weiteres auf die Besselschen Funktionen anwenden
und erhalten:

a
R0
1. Der Wert des Quotienten m——;—-—x— ntmmt fiir jedes positive
- J ()
x mit wachsendem Parameter a zu.

a
2. Die reellen, positiven Wurzeln der Gleichung J (r) =
nehmen mit wachsendem Parameter a kontinuierlich zu.
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3. Es set N eine sehr grosse positive Zahl. Dann st die
Differenz zwischen der Zahl der Nullstellen von
a+2m

J (x) und J(x),
Adie in dem Intervall O bis N liegen. genau gleich der Zahl der Null-
stellen von b (N), wenn p von a bis a - 2m wichst.
Nach Poisson gilt fir grosse x

LA, 2 _ : 1\ =
- JN)= N SN o8 [N — (p -[——2—) —2—]
Wenn p von a bis a-2m geht, so passiert dieser Aus-
«druck den Wert Null m-mal. Deshalb kénnen wir sagen:
a-+2m

Die Funktion J(x) hat in dem Intervall O bis N, wo N eine
.sehr grosse positive Zahl bedeutet, genaw m-Nullstellen weniger als die
Funktion J (r) oder mit .andern Worten:

Es qibt auf der positiven X-Axe m-Intervalle, die von je zwei
.aufeinanderfolyenden Nullstellen der Funktion ‘.‘I(ar) gebildet werden,
annerhalb welchen keine Nullstelle der Funktionaflggr) liegt: in allen
dthrigen Intervallen liegt jedoch je eine Nullstelle dieser Funktion.

Aa .
Nun ist J(x)= \/ 2. $in X.
X

fl/‘ '
Die Nullstellen von J(x) fallen mit den Vielfachen von =
‘Zusammen.

Wir konnen alse obigen Satz etwas bestimmter fassen
und sagen:

Teilt man die positive Axe in oo viele Abschnitte von der Grisse r,
s0 qibt es unter diesen im ganzen m-Intervalle. in denen keine Null-
a+—§—
stelle von J(x) gelegen ist. wean a zwischen 2m und 2m -2 liegt.
a—f——l‘;
In allen dibrigen Intervallen befindet sich je eine Nullstelle von J(x).
Als Spezialfall erhalten wir den von Bocher auf elementarem
Wege bewiesenen Satz: Ist O < u <2, so legt zwischen swei auf-
a
einanderfolgenden Nullstellen von J (x) je eine und nur eine Nullstelle

ot
zon J{x).
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a
Aus der Summenformel von J(x) ersieht man, dass die
negativen Nullstellen der Funktion dem absoluten Werte nach mit den
positiven zusammenfallen, somit lassen sich alle obigen Sitze auch
auf die negativen Nullstellen anwenden.

Wir gehen nun iber zur Untersuchung der Besselschen
Funktion mat negativem Parameter.

J (x) i1st ebenfalls eine Lésung der Besselschen Differential-
gleichung und wenn wir auf diese Funktion die Sturmsche
Methode anwenden wollen, so haben wir nur -} a durch — a
zu ersetzen.

Es wird dann
K dVv- dJ(x)

ax o d T
1. VX= baX ——3ada—X WE.X)r
J(x) J(x)
was an der untern Grepnze x =0 in den Wert —a {ibergeht,.
dv
o | Max

also mit wachsendem a abnimmt. Somit wird

om V /i,
negativ und der Wert der Konstanten C in der Gleichung (2)
positiv.

0K X
2. dm _ da =1,
szaz)
g
3 i ( D ol e ositiv
" édm da —P )

Wir erhalten also in diesem Falle fir die linke Seite der
Gleichung (2) einen positiven Wert, und es wird

ds fiir —ja(x) = 0 negativ,
dx e
d. h. wenn der absolute Wert von a in der Funktion J(x) zunimmt.

so wird der Wert ihrer Nullstellen kleiner. Oder mit andern Worten =

Bewegt sich der Parameter von J (x) von einem beliebigen
Punkte der negativen reellen Axe aus nach links, so bewegen
sich auch die positiven Nullstellen der Funktion nach links. Er-
folgt die Bewegung des Parameters nach rechts, so ist dies auch
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fir die Nullstellen der Fall. Dieses ist aber genau das gleiche
Gesetz, das wir bereits fiir die Besselschen Funktionen mit posi-
“tivem Parameter gefunden haben. Wir dirfen comit die frithern
Siatze erweitern zu folgendem allgemeinem Gesetz:

Die positiven Nullstellen der Funktion J (x) bewegen sich immer
um gleichen Sinn wie der Parameter a, so lange er auf der reellen
Axe bleibt. '

Fir die negativen Nullstellen erfolgt die Bewegung natiir-
lich in entgegengeseiztem Sinn.

Aus diesem Gesetz lassen sich einige weitere Schliisse
ziehen.

0 1
1. Ueber die Lage der Nullstellen von J(x) und J(x).

T = \/

1

- g
d (%) = \/ — COSX.

P

- sin X.

T X

1z . ..
Die n'* Nullstelle von J(x) liegt bei1 nz und diejenmge
1

von J(x) bei 2n—1) % Folglich liegt die n* positive Null-

stelle von
1

"‘ : 1
J(x), wober — 5 % 5

) 1
zwischen nﬁj T und n .

Aus dem asymptotischen Wert
. g ’ 1\ =
J(x):\/ — ©0s (x—(a+—2~—) ?)

0
lassen sich die Grenzen noch enger ziehen. Z. B. wird J(x) fir

grosse X zu L
0 -2 7€
J(x) = — ¢o0s (X — T)’

welcher Wertﬁ verschwindet fiir

x = (4n—1) %,
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wenn n eine ganze Zahl bedeutet. Die n* positive Wurzel néhert
sich also dem Wert (4n—1) % -

Da, wie wir spiter sehen werden, das Intervall zwischen
lzwei aufeinanderfolgenden Nullstellen von 3 (x) kleiner als sz 1st,

. . 7L
so muss die Anndherung an den Grenzwert (4n—1) 4 Vou

oben erfolgen. Daher ist die nt Nullstelle grosser als (4n—1) —745,
so lange n endlich bleibt. Es folgt semit:

0
Die n'* Nullstelle von J(x) liegt zwischen (4dn—1) % und n 7.

Kennt man die erste derselben, so kann man die Grenzen
noch enger ziehen, so dass sie enger werden als die von Schaf-
heitlin gegebenen.

1
Wendet man die gleiche Betrachtungsweise auf J(x) an

und beriicksichtigt, dass das Intervall zwischen zwei aufeinander-
folgenden Nullstellen grosser als sz ist, so erhilt man den Satz:

1
Die nte Nullstelle von J (x) liegt zwischen nx und (4n-+1) —;E-
Liegt die erste Nullstelle bei 7z} ¢, so werden die Grenzen.
7t
nz--¢ und Hﬂ,‘—'[——é—

2. Ueber die Lage und Bealitit der Nullstellen von —.-Ia(a:)
Wenn m eine ganze Zahl 1st, so gilt
T = (D" ).
Die Nullstellen von J. (x) fallen also mit denJemgen von J (x) zu-

sammen. Riickt nun der Parameter a in J (x) von —m aus.

nach —(m--1), so muss nach einem frithern Satz die n* Null-
stelle von J(x) ebenfalls nach links riicken und zwar so weit,

m-1 .
bis sie mit der (n—1)t» Nullstelle von J (x) zusammenfiallt. Wir
erhalten somit den Satz: |

Ist m <a<m-+1, so liegt die n* Nullstelle der Funktion

—a . m4-1 m
J(x) zwischen der (n—1)" Nullstelle von J(x) und der n'*" von J(x).
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Aus dem allgemeinen Gesetz iiber die Verschiebung der
Nullstellen bei variablem Parameter ldsst sich auch die- Eristenz

a
und Zahl der komplexen Wurzeln von J(x) nachweisen.

Durchliuft der Parameter a von Null aus die negative
reelle Axe, so verschieben sich die positiven Nullstellen der

Funktion J (x) nach links, die negativen nach rechts und da sie
paarweise absolut gleich sind, so treffen sich je zwei im Null-
punkte, von wo aus sie ihre Wanderung auf der reellen Axe
nicht mehr fortsetzen konnen und somit auf das komplexe Zahlen-
feld ibertreten miissen. Dieser Prozess findet jedesmal statt,
wenn a eine negative ganze Zahl passiert, das erstemal ber —1.
Da sich zwei konjugiert komplexe Nullstellen nie wieder in zwei
reelle entgegengesetzte vereinigen konnen, so lange a seinen Weg
auf der negativen reellen Axe fortsetzt, so bekommen wir folgen-

den Satz:
Ist m<u<m + 1 (wobei m eine positive ganze Zahl),

so hat die Funktion J (’r) m-Paare komplexer Nullstellen.

Dieses Resultat stimmt mit den von Hurwitz gefundenen
Siatzen genau iiberein.

Die Tabelle, die sich am Schluss unserer Arbeit findet,
gibt uns ein anschauliches Bild iiber den Verlauf der reellen

Nullstellen von J(x) bei Variation des Parameters.
Wir verweisen auf das Schlusswort.

Ueber die Nullstellen von K (x).
Ein grosser Vorteil der Sturmschen Methode besteht darin,

dass wir alle Sitze iber die Nullstellen der Funktion J (x) ent-
weder wortlich oder mit geringen Modifikationen auf das zweite

partikulire Integral der Besselschen Differentialgleichung Ia{(x)
tibertragen koénnen.

K(x) und J(x) sind verwandte Funktionen und geniigen
deshalb -teilweise den gleichen Relationen. So gilt z. B.:

d fT (x) a At
Ix J(x) und analog
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dﬁ(x) a2 Ly :
T = K(x) —K(x) und es wird
LAK() i
dx o X K(X)
K (x) K (x)

was fir x=20 in den Wert 0 ibergeht. Somit gilt das Gesetz
tber die Verschiebung der Nullstellen bei Variation des Para-

a
meters a auch fir K (x), d. h.: Die positiven Nullstellen der Funktion
a
K(r) bewegen sich imwmer im gleichen Sinn wie der Parameter a.

Wie J(x) besitzt auch K(x) fiir ein grosses Argument einen
asymptotischen Wert, der durch einen einfachen Ausdruck dar-
gestellt wird. Es gilt:

a / .
K(*{):\/ nzx sin [x—(a+—;~) 125]

Somit erhalten wir den Satz:
Auf der positiven X-Axe gibt es m-Intervalle. die von je zwei

a
aufeinanderfolyenden Nullstellen der Funktion K (r) gebildet werden.
at2m
innerhall welchen keine Nullstelle der Funktion K(x) liegt. In allen
af-2m
iibrigen Intervallen befindet sich jedoch eine Nullstelle von K (x).
1

o " I —

2 /2
Ferner 1st K(x)=J(x) = \/ 2

——sin x und daraus folgt:
7 X

Teilt man die positive Axe in gleiche Abschnitte von der Grisse

sty S0 qibt es unter diesen im ganzen m-Intervalle, in denen keine

!

a4 — —
2]

Nullstelle von K z'-'f‘) gelegen ist, wenn
2m<<a<<2m+2. 1

8 — —
2]

In allen iibrigen Intervallen befindet sich je eine Nullstelle von K (%)
Diese Gesetze lassen sich auch mit Leichtigkeit aus der

Lommelschen Formel

a a+1 a catl 9
JEX)KE -Kx)JE)=——— ableiten.

7EX
a a atl
Fiar J(x) =0 miissen K(x) und J(x) immer gleiches Vor-

zeichen haben. Da J (x) zwischen zwe1 aufeinanderfolgenden
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Nullstellen von Ja (x) das Zeichen einmal wechselt, so muss auch

K(x) in diesem Intervall wenigstens einmal den Wert Null an-
nehmen. Da aber, wie wir spiter sehen werden, der Abstand

zweier aufeinanderfolgenden Nullstellen der Funktion K (x) etwas

grosser ist als der entsprechende Abstand bei der Funktion J(x),
so kann dies nur einmal geschehen. Deshalb der Satz:
Zwischen je zwei aufeinanderfolgenden Nullstellen der Funktion
a a
J(x) liegt stets eine und nur eine Nullstelle von K(x).
Aus der Definitionsgleichung

nan (cosasm J \) folgt, dass
K (x) =0, sobald
, Ty 9
(Otg a 75J(X) — m—

Vorzeichen von sina s

Nun hat aber ja(\) fir x=

und j(x) ist fiur kleine x stets positiv. Wir miissen 3 Fille

unterscheiden:

1. &= 2n;{—1; cotga = 0.

r~

2nt-7 ‘ ont 7
Die Nullstellen von K () fallen zusammen mit denjenigen von J (r).
2. cotga sz = positiv.
a a
Die nt Nullstelle von K (x) liegt vor der ni* Nullstelle von J(r)

—a

sowohl als derjenigen von J(x).
3. cotg a x = negativ.

a @
Die n* Nullstelle von K(r) liegt zwischen den entsprechenden

Nullstellen von T][(‘q:) und J ().
Aus den beiden asymptotischen Werten

3(X)= g;cos{x—(a+%)%}
|
J

K (x) = \/ sm{ (a i ;_) _g_ ,

Bern. Mitteil. 1904. Nr. 1580.
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folgt ferner, dass sich die héhern entsprechenden Wurzeln von

J(x) und K(x) um /;—L unterscheiden. Bei den kleinern ist die

Differenz grosser. Wi1 erhalten somit folgenden Satz:

Die Funktion k(m) hat auwf der 7eellen positiven xr-Are genau
so viele Nullstellen wie die Funktion J(:r) Die n' derselben ist um
einen bestimmten Betrag .1 kleiner als die n'¢ Nullstelle ron J (),

. : . R
wober _{ sich mit wachsendem n dem Werte 5= nihert.

Fe

Aus der bekannten Beziehung'

—m

K@) =1— 1" K (x)

folgt analog wie bei der J (x)-Funktion der Satz:

Ist m << a < m-+41 (wobel m eine positive ganze Zahl),
so liegt die n'* Nullstelle der Funktion 1_1(Er) zwischen der (n— 1)t
Nullstelle von m[":: E-’r) und der n¥*" von l’?(r\

Wahrend n Bezug auf die positiven Nullstellen der Funk-
tionen J (x) und K(x) die weitgehendste Analogie besteht, hort
dieselbe bei den negativen Nullstellen auf.

Das verschiedene Verhalten der beiden Funktionen in dieser
Beziehung lisst sich sehr einfach zeigen, indem wir das Argu-
ment X den Nullpunkt umkreisen lassen. Graf!) hat gezeigt,
~dass folgende Beziehungen gelten:

J(eimn ‘:):eimuaJ(X).

AN 21cosaszz-sinmza ¢ .
K(e“nnx)# - Slnaﬂ b ]— ‘{) I" lmﬁaK(X)’

wobel m eine ganze Zahl.
Durch das Umkreisen des Nullpunktes erhilt also J(x)

keinen additiven Zuwachs, wihrend K(x) elnen iumaginiren
Perodizitiatsmodul besitzt.

j (€™ x) verschwindet somit jedesmal, wenn J(x) zu Null
wird, wiahrend aus der zweiten Gleichung folgt, dass die Null-

1) Einleitung in die Theorie der Besselschen Funktion I. Art.
Bern 1898.
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stellen von K(e™”x) im allgemeinen nicht mit denjenigen vom

Ia{(x) zusammenfallen. Dies kann fiur reelle x nur dann statt--

finden, wenn gleichzeitig
cosasr-sinmma @

Ia{(x) und . J (x)
sin a 7z
verschwinden, was nur moglich, wenn
N 2n-1
2

Da aber die Beziehung gilt

2n+41 2n+41

2 aei _ 2
K(X) — ("_1) J (X)a

2n+41

2 imm . . .
so folgt, dass K(e x) fir jedes m unendlich viele reelle und’

dazu n-Paare konjugiert komplexe Wurzeln besitzt, welche mit
_2n41

2
denjemigen von J(x) zusammenfallen.
2n4-1

2
K (r) besitzt somit auch megative reelle Nullstellen.

2nt1

J a
Ist aber a von 5 verschieden, so kann K(r) ausser in den

frither bestimmten Stellen der positiven X-Axe fiir keinen reellen Wert

des Arqumentes zu Null werden.
2n+41

Da die negativen Nullstellen von K(x) nach fritherem
keine mehrfachen Nullstellen sein kénnen, so sind sie nicht ent-
standen durch das Zusammenfallen von konjugiert komplexen
Waurzelpaaren. Sie sind also nicht durch imaginire Aste unter-
einander verbunden, sondern treten als isolierte Punkte auf.

Wir lassen die Frage nach der Zahl und Lage der kom-

plexen Nullstellen von K (x) unbeantwortet und begniigen uns.
mit einer moglichst genauen Bestimmung der reellen Wurzeln.
Zu dem Zweck miissen wir uns nochmals dem Sturmschen
Theorem zuwenden und dasselbe in seine allgemeine Fassung:

bringen.
Setzen wir in der Differentialgleichung
Mﬁ%ﬂ
X 1 GV=0

dx
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V — L s
VK
s0 geht sie iber m
d*y
dxvg + H y = O?

wobei H von K und G abhingt.

Betrachten wir wieder y und H als Funktionen eines Para-
meters m, so konnen wir wie frither nachweisen, dass die Wurzeln
~der Gleichung y=10
mit wachsendem m abnehmen, sobald gleichzeitig

J 2y
L positiv und | ¢ 9x negativ
a 1n1 ] 8 1 y X ==X

1st. X, bedeutet die untere Grenze.

Wir denken uns im folgenden drei Differentialgleichungen
gegeben :

d2 T, r__r

T HHY =0

d2y” —y : g P 2
— + H'"y"" =0 | giltig von x, bis x,.
d2 -

T THy=0

H’ und H” sind voneinander unabhéingige Funktionen in
x, so dass aber im ganzen Intervall

H'’ > H'.
. |y ay
Ferner gelte: __‘_Z]X_ j< dx
yH sty y’ X=X}

Die Funktionen y und H der dritten Differentialgleichung
selen. ausser von X noch von einem variablen Parameter m ab-
hingig und zwar in der Weise, dass folgende Bedingungen er-
fallt sind:

I H(x, m)

' H(x, m)

2. H(x,m) nehme mit wachsendem Parameter innerhalb
der Grenzen m’ und m’’ kontinuierlich zu.

"2 E:’(?i) } wober m’’ > m’.

ms==m

1.

m=m'



g | _dy _ | 4y dy _ |y
. dx T dx : dx Tl dx
Y ézﬁll’ y’ x=x1 | y nf:z;}’ _V” X=x
Dann miussen nach fritherem die Wurzeln der Gleichung
=il

mit wachsendem m abnehmen.

Wihlen wir ein m, das zwischen m’ und m'’ gelegen 1st,
so muss jede zwischen x, und x, liegende Wurzel von

y=0
sicher kleiner sein als die entsprechende von
y' =0,
aber zugleich grosser als diejenige von
rr
y'=0.

Die drei letzten Bedingungen, welchen die Funktion H(t nm)
unterworfen ist, lassen sich aber leicht fiir jede beliebige Funktion
H(x) erfiillen, sobald in einem bestimmten Intervall der reellen
Axe die Beziehung gilt:

H" (x) > H(x) > H' (x).

Man kann immer auf beliebig viele Arten in die Funktion
H(x) einen Parameter m so unterbringen, dass die gestellten
Bedingungen erfillt sind. Deshalb konnen wir das Sturmsche
Theorem 1n folgenden Satz fassen:

Sind die drei Differentialgleichungen yegeben :

dz Fgph
Xa +H'y =0
Ty H"y" =0 ltiy zwisch d
X'* -+ = giltiy zwischen x, und 7,,
2
dyﬁ+Hy—O
die den Bedingungen geniigen, dass
1. H'>H>H’
dy” dy dy’
2. dx <| dx =|dx |
Y b= 1Y k= Y lxex

3. alle drei Funktionen y'', y und y' an der untern Grenze das
gleiche Vorzeichen besitzen,
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so liegt die n** Wurzel der Gleichuny
y=20
swischen den ne* Wurzeln von
y' =0 und 3y = 0.
Dabei sind die Funktionen H' und H' ganz willkiirliche, einzig
-der Bedingung unterworfen
H" > H’ fir jedes x.
Wir konnen sie also auch als Konstante betrachten. Die
allgemeinen Integrale der Differentialgleichung lauten dann
y = ' sinVH (x—c')
y'" == " sin\/H" (x—c¢"”
Die willkiirlichen Konstanten lassen sich immer so wihlen,
-dass die Bedingungen 2 und 3 erfillt sind.

Wihlen wir z. B. als untere Grenze x, eine Wurzel der
‘Gleichung y=20
und bezeichnen sie mit «, dann koénnen wir ¢’ und ¢’’ so be-
stimmen, dass « auch eine Nullstelle wird fur y"" und y’. Wir
setzen zu diesem Zweck
y = C'sin\{H (x —a)
v =" sin VH (x—a).
Es wird dann
dy"” | dy’ | _ dy

dx — dx —dx = =
; y” Xe=X1 y_'__ X=x: [ )’1 X==X1
Wihlen wir jetzt H' und H'' so, dass
H’'">H>H,
30 ist sicher, dass die auf « folgende Nullstelle «, von y durch
diejenigen von vy’ und y'’ eingeschlossen wird. Diese letztern

liegen aber bei a - \/%ﬁ und
7T¢
a+v"ﬁ77
Es muss somit die Beziehung gelten
7% o1
—— o, — e
\/HI = 1 - \/H”
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Die vorstehenden Entwicklungen wenden wir auf die
Besselsche Differentialgleichung an.
Setzen wir in derselben

Y——F=—
Vx
so geht sie in die Form iber

d?z a*—g

Es wird somit in diesem Falle
9 1

5 [,

X2
Es seien «, und « zwei aufeinanderfolgende Nullstellen der
Funktion -
== \,/EJ(X). o, >
Sobald der absolute Wert von a grosser als /2, so ist
H(e,) > H(e).
Wir wihlen nun

H"" = H(e,) und H' = H{(e).
Im Intervall von « bis «; gilt dann
H">H>=H'"
Wir konnen deshalb die oben abgeleitete Beziehung an-

wenden und schreiben
7r

T
a1 \/ al —
\/1—-— >oa—a>\ 1—— P :

2
o

Die richtige Differenz
A = o, —«a

erhalten wir, wenn wir an Stelle von « resp. «, einen Wert §
setzen, der zwischen « und e, gelegen und noch niher zu be-

stimmen 1st.
Die obige Formel ist noch richtig fir

‘ a == ——_l—_- %
Sie ergibt fir ./ den Wert =z.
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Ist dagegen der absolute Wert von a <C é, so wird
HIF é H g HI
und deshalb kehrt sich die Ungleichung um. Es gilt dann
. it it
At — af—L
1— ,,4<a1—-a< 1 — 2~5-
a” al

Deshalb konnen wir folgenden Satz aufstellen:

Die Differenz _I zwischen zwei aufeinanderfolgenden Nullstellen

, wobet & einen noch

a und o, von J(x) ist gleich \/1

nicher zu bestimmenden Wert zwischen a, und o bedeutet. FEs 1ist

JT
g __ 1
a 4

gz

: i
A2 je nachdem der absolute Wert von a = — st
< < 2

Das Intervall zwischen den grossen Wurzeln ndhert sich fiir
jedes endliche « dem Werte s

Genau das gleiche Gesetz gilt selbstverstindlich auch fir
die reellen Nullstellen der Funktionen K(x). Es 1st

T
—
Sy = \/1 — Ttz -
o1
a A
Weil die erste Nullstelle von K(x) vor derjenigen von J(x)
liegt, so 1ist g =g
und daher J, > fir endliche a.

Auch fiir die Abstinde der Maxima und Minima der beiden
Funktionen J(x) und K(x) lassen sich #hnliche Grenzwerte auf-
stellen, indem man die Differentialgleichung von

dI(x) dK (x)
dX resp. von ——a—X_“

aufstellt und auf sie das Sturmsche Theorem anwendet. Da
aber sowohl die Methode als auch die Resultate nichts Neues
bieten, so wollen wir von einer Ausfithrung absehen.
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Die oben abgeleitete Beziehung
T 7T

o e
1 a? — 1
Leems 2
|

gestattet uns, den Abstand von zwei aufeinanderfolgenden Null-

stellen der Funktionen 3 (x) resp. K(x) in zwei Grenzen ein-
zuschliessen. Diese sind fiir die ersten Nullstellen allerdings
ziemlich weit, werden aber fir die hohern immer enger, so
dass sie die betreffenden .# ziemlich genau bestimmen. Kennt
man daher die paar ersten Nullstellen, so lassen sich die hohern
mit Hilfe obiger Beziehung auf leichte Weise annihernd berech-
nen. Die Genauigkeit ist um so grosser, je kleiner a.

Dabei existiert aber der Ubelstand, dass man zur Berech-
nung der hohern Nullstellen immer auf die kleinern, ungenau
bestimmten zuriickgreifen muss. Diese Schwierigkeit kann man
auf folgende Weise umgehen.

Die n* Nullstelle ¢ von J (X) niahert sich dem Werte
J 1\ =

von unten. Wir setzen deshalb
. 1\ =
= (2“‘*3——2‘)@'—%

y, 1st gleich der Summe all derjenigen Betrige, um welche

und bestimmen Ny

e-/j‘u, = i
wenn g von n-}+1 bis oo liuft.
Also
N 1
S-St
M=n+1 # =n41 \/1 aa_z
&

Diese Summe lisst sich zwischen zwei Integrale fassen.

Es se1 allgemein

. Yu=1(x,)

und § =X —X

_ . [ 1 w
tendiere mit wachsendem p gegen den endlichen Grenzwert g,
so dass gilt

Bern. Mitteil. 1904. Nr. 1581.
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> o,
dymg

Ferner nehme y, mit wachsendem u ab.

2 0y ¥ ——-52.‘/#,

M =n+1 M=n+1
wobei J > 0>¢g

und im weitern gelten folgende zwei Beziehungen:

Es wird dann

n+41 =Bl
o0 oQ
N
f f(x—-dn)>62 Y
xn+1 u=n+1

Setzt man im letzten Integral fir x den Wert x {-J,, so
erhalten wir die Ungleichheit

In unserem Fall ist

y=—F——"1
Vi
X2
X, é‘
°° 1
M=t B
§n 1 — x24

Diese Werte in obiger Gleichung eingesetzt, ergibt

F § \/é‘2 (a”——))>2 (\/1_ 1 —1)

H=n+41 72

S

> ‘;1;* (§n+1 — \/é:: P o (a*— %))




DR -

Nun 1st aber

Deshalb die Beziehung

(s—VE-@=D)>u> 5 (5umy/2,- @)

Diese Formel gilt sowohl fiir die Nullstellen von J (x) als

a
fir die von K(x). Da man weder 6 noch § wund § e kennt, so
kann sie wiederum nur fir die Berechnung der gréssern Null-
stellen verwendet werden und zwar wie folgt:

Der Grenzwert von J_ ist gleich 7. Man kann daher ohne

grossen Fehler §~ =3 ] setzen.

Bei den grossern Nullstellen stehen § und § 41 Yon dem

gesuchten ¢, um ungefihr 3_2"” nach links und rechts ab, so dass

annihernd fiir j (x) gilt:

. 7T 3\ =
gnman -2— (2n—{—a——2—)§

) 7T 1\ 7

Dies eingesetzt ergibt:

|Cnra-i—fenta— i T
>’in>{(2n+a+%)%—\/(2n+a+—;—)3%2— a’—-%)}-

und da | o, — (2n 4 a— -}) = so folgt
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\/(2n—|—a—f-—-,i,— (a~—_ — 7
>(!“;> \/(21‘] -}_.a____g_)‘-’z;f__(a':__%_) -—I-_ 5

Die entsprechende Formel fir K(\) lautet:

\/(211 +a— —;—) oo (a* — _._) -
iy <2n+a—~zm>2%f—<aﬂ—~;>+%

Diese Formeln sind natiirlich nicht streng richtig und sind
zur Bestimmung der ersten und mit wachsendem a auch fir die

zweite und dritte Nullstelle nicht anwendbar. Immerhin haben
wir an Hand der Tabellen von Lommel konstatiert, dass sie noch

8

richtig sind fir die zweite Nullstelle von J(x). Die hohern Null-

stellen werden in so enge Grenzen eingeschlossen, dass fir die

meisten praktischen Zwecke die Resultate wohl geniigend genau
1

sind. So liefert z. B. die Formel €ir die 10. Nullstelle von J(x)
die Grenzen 32,1887 und
32,1890.
Exakte Werte wiirden wir dann erhalten, wenn es gelinge,
die & und & genau zu ermitteln.

Die Erfahrung hat uns gelehrt, dass die & sehr nahe zu-
sammenfallen mit den Nullbtellen von K(x) und umgekehrt die

&, mit den Nullstellen von J (x). Wir wissen aber nicht, wie
weit diese Ubereinstimmung geht und ob sie eventuell von der
zweiten Nullstelle an eine vollkommene ist.

In den beiliegenden Tabellen haben wir die Nullstellen «

und ¢, von j(x) und f{(x) als Funktionen des Parameters a
dargestellt.

Tabelle I entspricht somit der Gleichung
o = f(a)
und Tabelle II der entsprechenden
a, = f (a).
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Beide Funktionen f und f, besitzen unendlich viele vonein-

ander isolierte Aste, entsprechend den unendlich vielen reellen
Nullstellen. Von diesen haben wir nur je die 10 ersten dargestellt.
Jeder Ast erstreckt sich ins Unendliche. Der senkrechte Ab-
stand zwischen zwei benachbarten Asten entspricht der Grosse .4
und 1st zwischen

s -
2
1
und a = - >
kleiner als =,
1
fir a=+ o

wird er gleich z, und 1m tbrigen Teil der Ebene ist er grosser
als 7z. Zwischen den zwei ersten Asten ist er am grossten,
nihert sich aber immer mehr dem Werte sz, je weiter wir uns
von der a-Achse entfernen.

Die horizontalen punktierten Geraden veranschaulichen die
Beziehung
J(x) = (—1) J(x) resp.

K(x)=(—1)" K(x).

Wir haben absichtlich nur einige dieser Linien gezogen, um

die Anschaulichkeit des Kurvensystems zu heben.

Die einzelnen Aste der Funktion f liegen symmetrisch zur

a-Achse, weil zu jeder positiven Nullstelle von J(x) eine gleich
grosse negative gehort. Die Funktion f dagegen besitzt auf der

negativen Hilfte der Zahlenebene nur einzelne isolierte Punkte,
_ 2n4l

2
welche mit den Nullstellen von J(x) zusammenfallen.

Der Richtungskoeffizient der reellen Kurveniiste ist stets
positiv. Dies folgt schon aus dem Sturmschen Theorem; doch
ist sein Wert auch direkt bestimmt worden, wie Graf und Gubler
in ihrem schon oft ztierten Werk auf Seite 108 u. folg. nach-
welsen.

Es gilt nimlich, wenn

« =1f(a)
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d 2 ot dt
do 22 [Wors!
al[J@)]?d
a+1 2 ® a
oder da [J (a)]ZZ? f [Jt)]2t-dt
i 0

“Ca dt
[J(t)JZ‘T
o,
da

e giltig fiir positive a.
) tdt
0

Dieser Wert 1st immer positiv.

W . oda
Fir ¢ =0 wird ﬁ__*"
Fir a=—0 » %: 1

a[j (e)]?
Da der Nullpunkt eine n-fache Nullstelle der Funktion
j (x) ist, wenn
n<a<n+l,
so 1st in der Tabelle I die ganze positive a-Achse eigentlich
als der erste Kurvenast anzusehen.

Die komplexen Nullstellen von j (x) kénnten wir so veran-
schaulichen, dass wir eine dritte Achse, die 1-Achse einfithrten
und sie senkrecht zur ac-Ebene stellten. Die komplexen Aste
wiirden dann im Raume verlaufen. Das Bild wire folgendes:

Im Punkt — 1 der Tabelle I treten zwei rein imaginére
Aste in den Raum und vereinigen sich wieder im Punkte —2.
Zwischen —2 und —38 liegen 4 komplexe Aste, allgemein sind
die Punkte —n und —(n--1)

durch n-Paare konjugiert komplexer Kurveniste verbunden.

Legen wir durch dieses Raumgebilde an irgend einer Stelle
der a-Achse einen ebenen Schnitt parallel zur ei-Ebene, so er-
geben uns die Schnittpunkte sidmtliche reellen und imaginéren.

Nullstellen der Funktion 3 (x).
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Die entsprechenden Verhiltnisse fiir K(x) haben wir nicht
untersucht.

Zum Schlusse seli noch bemerkt, dass wir die Daten zur
Erstellung der beiden Tabellen aus den Beziehungen berechnet
haben, welche uns die Sturmsche Methode lieferte. Ein Ver-
gleich mit den Lommelschen Tabellen ergab eine geniigende
Ubereinstimmung.
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