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A. Bohren.

(Eingereicht den 6. Oktober 1902.)

Uber das Airysche Integral.

Als mathematischen Ausdruck der Intensitit der einzelnen
Farben im Regenbogen findet Airy') das nach ihm benannte
Integral :

oe T
A :fcos 5 (x*—mx)dx.
0

Airy wertet dasselbe schon fiar die Argumente m==—5,6 bis
m = -}- 5,6 aus, allerdings noch auf umstindlichem Wege. In-
folge der Bedeutung, die dem Integral in der mathematischen
‘Optik zukommt, ist in erster Linie nach einfachern Auswertungs-
methoden gesucht worden. Stokes?) bedient sich folgender

Formeln
1 1

A=223m) * [Rcos (ga— —11) —+ Ssin (goﬂ-%)],
1-5-7-11 1.5-7-11-13-17-19.23

‘worln R=—=1 — 12720 -+ 1.2.3-4(729)" —F -
1.5 - 1.3.5.7-11-13-17
1.72¢ 1.2.3(72¢)*
1
und sﬁzﬂ;(%l)“

mit deren Hilfe er ausgedehnte Tafeln berechnet.

Die Wurzelwerte der Gleichung A =0 ergeben sich nach
thm aus

) Transact. of the Cambridge phil. soc. 1838. pag. 379.
) Stokes, Math. and phys. papers Cambridge 1883. II vol. p. 332.



© 0,028145 0,26510 0,129402
w e e =y (4n—1 T
wo n=1,23,4..
und fiir die Maxima und Minima rechnet er nach einer dhnlichewr
Formel die 50 ersten entsprechenden Werte von m aus. Fiar
Ausfithrung von Intensititsberechnungen') sind die Zahlenwerte-
des Integrals geniigend bekannt; die vorliegende Mitteilung be--
fasst sich auch nicht mit der Beschaffung neuer Zahlenwerte;
aber es ist vielleicht von Interesse, zu sehen, wie auch dieses.-
Integral durch Besselsche Funktionen einfach darstellbar ist.

Setzt man
Do}—n—()ﬁ-—mx\
L[
II :f e— o) (xa_mx)dx,
0
o 1
so 1st fcos—(x —mx)dx '-m§(I+II).

0

—lj—l»(xs——-mx)

Fiar das Integral dx wihle man folgenden Inte--

grationsweg: Die Begrenzung eines Kreissektors (mit dem Centrum
O, dem Radius R), der durch die x-Axe und eine Gerade, die:
mit derselhen einen Winkel von 30° bildet, begrenzt ist.

Das Integral, iiber diesen Weg erstreckt, ist nach Cauchy = 0.
Lings des Bogens verschwindet es, wenn R unendlich gross wird;:
somit ist

ooi (x3—mx) i it (x®—mx) .
e ? dx= [ e? dx lings OB, wenn B un--

0
endlich weit vorausgesetzt wird.
int

ooizl(n;d mxeb) —l-]-l—
— e dx

1) Pernter, die Farben des Regenbogens. Sitzungsberichte d. Aka-
demie Wien 1896, p. 135.
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Entwickeln wir nach Potenzen von m, so erhalten wir eine

konvergente Reihe von der Form
lTl’ \

~ me6 5

me"zf( 1) . F(1—+—1) “~e ? x'dx

r==0

Jr-1
oo T, 1 ST S o 3 1 l(%)
L I o S

lﬂ r
T E I L L
50 ist/ e? e 2(—1)1' 2 Tl 2
6 r= (é‘i)_ re—+1)
Setzt man 1in

Il-—-l\ . n—1

I‘(a)-l‘(a{— %) . I"(a+ o ) == (2%)—2_n'a“+%1‘(na)
1

a——— und n=3, so 1st

r(": 1)1"(‘—;—3) (-_-H);zﬁ:s""% r+41)

1

1 o0 2 in

2a 7w\ 3 l—g (—1)" "7\ ime ©

8“2_. d ) el L5
(Y (3 +1)

Zerlegen wir die Reihe in 3 Partialreihen, entsprechend

den Werten von r, die durch 3 dividiert, die Reste 1, 0, — 1

ergeben, so folgt
1

2,;F (g_)-——e %i (—1)* )[(%);%]31—{-1

und

32 i=0 I (A1) - r(x 1+

2 RS (—1)* EF
T [ 7w i3 st 7z \*m
2 (3) S )

32 i=0 r(},+§> (A1)
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=1

(VR e et
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i=1

Das Integral Il erhdlt man aus I, indem man 1 durch —i
ersetzt. Fithrt man die Besselsche Funktion

(X. )n+2}.

J(X) 2( T (a—{—it—l—l) r+1)

ein, und bedenkt man, dass cos Z = so ergibt sich

6 27
§(I+II)__

& 4 ® 4 B
_m(m)?]3 m\ 2 g m\ ]|
—§<‘J) {J[”("g*) 1+i[(5)]]

Spezialfille
=0 fcosuf—cﬁdx—— 5 .3)
2 L T
0 2332 3
1 1
3

o0 '§' -
m =3 f cos—(x —3x)dx——— [J (7) {—J(n)]
0 ete.

Wenn auch die vorliegenden Ausdriicke nicht so einfach
sind wie die, die bei der Darstellung der Fresnelschen Integrale
durch Besselsche Funktionen auftreten, so sind sie doch von
einigem Interesse.
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