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G. Sidler.

(Eingereicht den 15. September 1902.)

Zur Theorie des Kreises, u. a.

1. Die Paare konjugierter Durchmesser einer Ellipse bilden
ein involutorisches Strahlsystem. Wird daher durch den Mittelpunkt

O einer gegebenen Ellipse ein beliebiger anderer
Kegelschnitt gelegt, so gehen die Sehnen dieses letztern, welche die
zweiten Schnittpunkte je eines Paares konjugierter Durchmesser
der gegebenen Ellipse mit diesem Kegelschnitte verbinden, durch
einen nämlichen Punkt. Nimmt man für diesen zweiten
Kegelschnitt einen Kreis, so lässt sich auf diesen Satz eine einfache

Lösung gründen der
Aufgabe: Gegeben nach Grösse und Richtung zwei

konjugierte Durchmesser AA' und BB' einer Ellipse: man
finde die Richtungen der Axen.

Lösung1). Wir ziehen (Fig. 1) die Geraden BA'und BA,
und durch den Mittelpunkt O der Ellipse parallel zu diesen
Geraden die Strahlen Oy und Od, so liegt auf diesen Strahlen
ein zweites Paar konjugierter Durchmesser der gegebenen Ellipse.
Wir legen nun durch O einen beliebigen Kreis, so werde dieser

von O A und O B noch in a und ß, und von O y und O ò noch in
j-undd getroffen. Die Kreissehnen aß und rd mögen sich in
J schneiden, und es sei u v der durch J gehende Durchmesser
des Kreises, so liegen die Axen der gegebenen Ellipse auf Ou
und Ov.

Um auch die Grösse der Axen zu erhalten, ziehe man
durch B zu 0 ^4 eine Parallele, welche O u in T schneide, und
schlage über OT als Durchmesser einen Halbkreis. Die durch
B senkrecht zu O u gelegte Gerade treffe diesen Halbkreis in k,
und die durch B parallel zu O u gelegte Gerade schneide O k
in 1, so stellen O k a und 01 b die gesuchten Grössen der
beiden Halbaxen dar.

Vgl.: L. Bippert: Archiv der Math. Neue Folge III, p. 54.
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2. Suchen wir den Hilfsatz, auf den die obige Lösung sich

stützt, auch zu beweisen, ohne die Theorie der involutorischen
Strahlbüschel heranzuziehen. Der folgende Beweis scheint mir
einfach genug, um im mathematischen Unterrichte unserer
Gymnasien Verwendung zu finden.

Satz: Durch den Mittelpunkt O einer gegebenen
Ellipse werde ein beliebiger Kreis gelegt. Ein variables
Paar konjugierter Durchmesser der Ellipse schneide diesen
Kreis loieder in a und ß, so geht die Gerade aß durch einen
festen Punkt J.

Beweis (Fig. 2): Die halben Axen der gegebenen Ellipse
seien OA a und OB b; wir nehmen dieselben zu Koordi-
natenaxen, und es sei die Gleichung irgend eines durch den

Mittelpunkt O der Ellipse gehenden Kreises
x2 ~f~ y2 — u x ~V y y-

Wir betrachten zunächst zwei ausgezeichnete Paare
konjugierter Durchmesser der Ellipse; 1) die beiden Axen und 2) die
beiden einander gleichen konjugierten Durchmesser. Die Axen
der Ellipse mögen den Kreis wieder in a und ß schneiden, so
hat man Oa — u, O ß — \; die Kreissehne orß geht durch den

Mittelpunkt M des Kreises.

Ergänzen wir nun AOB zum Rechteck AOBC, und A OB',
wo OB' — b, zum Rechteck AOB'C, so liegen auf den Strahlen
OC und OC die zwei einander gleichen konjugierten
Durchmesser der Ellipse; es mögen dieselben den Kreis wieder in y
und in ô schneiden, so ist Bogen a ô' a y, und daher steht die
Kreissehne y d» senkrecht zum Kreisdurchmesser a M ß.

Der Strahl Oy hat die Gleichung y - x, und die Gleichung
a

des Kreises gibt für den Punkt y

b2\' + -?)
a(au-fbv) b (a u + b v)

b2\ bv
14 5- =uH Wir finden somit:

a2 / a

Punkt r...x- a,+b,
und wenn wir b in —b umsetzen:

Punkt^..x^^^ya2 -f b2

hb

b(au —bv)
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Der Schnittpunkt J von a ß und y d ist die Mitte von y 3,

und wir erhalten somit für die Koordinaten von J
x'-fx" _

a2u _y'-f-y" b2v
Funkt J...x_^ 2 - a*+b2 ' y_ 2 '~ a2-f b2

'

Bezeichnen wir mit p den Winkel A OC, so ist tgç> =—.
und die Koordinaten von J nehmen die Form an

Punkt J • • • x u (cos tp)2, y v (sin ^)2.

Wir behaupten nun, jede durch den Punkt J gehende
Gerade schneide den Kreis M in zwei solchen Punkten «' und ß',
dass auf den Strahlen Oa'unO ß' zwei konjugierte Durchmesser
der gegebenen Ellipse liegen.

In der Tat, betrachten wir zuerst eine beliebige Gerade
A x -{- B y C, so haben wir für die Schnittpunkte dieser
Geraden mit dem Kreise M die Relationen

l+-4 — (u-r-v^-i und — A + B^.
X2 X \ X / x x

Somit c(i + |1) (a+B-^)(u+ vX), d.h.:

(Bv-C)^ + (AvfBu)X + (Au-C) 0.

Wenn somit (x', y') und (x",y") die beiden Schnittpunkte
darstellen, so haben wir

y^ y" _ Au — C

x' "x"~Bv- C
Nun soll die Gerade Ax-f-By C durch den obigen

Punkt J gehen, so ist C== Aucos^-j-Bvsinc"-2, und der Ausdruck
y' y" (Au — Bv)sinw2 „von —¦ -A-tj wird -7= -.—{ -L-i — tstp2, d. h. wir erhalten
x x (Bv—Au)cosç52

iL tL- _^
x' "x" aa'

Die Strahlen O a' und 0 ß' haben also die Richtungen von
zwei konjugierten Durchmessern der gegebenen Ellipse, w. z. z.

3. Als weitere Beispiele des Satzes, dass wenn durch
den Scheitel eines involutorischen Strahlsystems irgend ein
Kegelschnitt gelegt wird, die Sehnen, welche die zweiten
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Schnittpunkte dieses Kegelschnittes mit je einem Strahlenpaare

verbinden, durch einen festen Punkt gelten, wählen wir:

A) Ziehen wir durch irgend einen Punkt eines gegebenen
Kegelschnittes Strahlen parallel zu den Paaren konjugierter
Durchmesser dieses Kegelschnittes, so gehen die Verbindungsgeraden

der Punkte, too dieser Kegelschnitt durch ein solches

Strahlenpaar wieder geschnitten wird, durch den Alittel-
punkt des gegebenen Kegelschnittes.

B) Ziehen lair durch einen Punkt P eines Kegelscliuittes
zwei zueinander senkrechte Strahlen, die diesen Kegelschnitt
wieder in « und ß schneiden, so geht die Gei'ade aß, wenn
jener rechte Winkel um den Scheitel P sich dreht, durch
einen festen Punkt J.

Wir können den Beweis von B auch analog führen wie
beim Satze in 2):

x2 v2
Ein Punkt der Ellipse —^ -j-~==l sei P (acosf, bsinç>).

3 Ï)

Legen wir durch P erst Parallele zu den Axen, welche die Ellipse
wieder in P" und P' schneiden (Fig. 3), so ist die Gerade P'P"
ein Durchmesser und hat die Gleichung

P' P" • • • x b sin tp -f- y a cos tp — 0.

Legen wir jetzt durch P die Tangente und die Normale,
so fällt die entsprechende Gerade a ß mit der Normalen P u v
zusammen, und wir haben, wenn wir a2— bli c2 schreiben:

P u v • • • x a sin f — y b cos tp — c2 sin tp cos tp.

Für den Schnittpunkt J von P'P" und Puv erhalten wir
aus diesen Gleichungen

T c2acosf c2bsiny>

a2+b2' y=~ a2+b2'
Verschieben wir die Koordinatenaxen parallel zu sich selber

und legen dieselben durch P, so gehen die Koordinaten von J
über in

J...

c2a coste 2 ab2 cos tp

Xl==lrTpr-aC0S^ aH4^
c2bsin</> 2a2bsintp

yi --aH:b^-b3m^== a^+b2-'
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Irgend eine durch J gelegte Gerade hat jetzt die Gleichung
m{(a2 + b2)x4-2ab2cos^j —(a2-fb2)y—2a2bsiny> 0,

y 1 2ab(mbcosçe— asince)
woraus —- m + — ^-^

Die gegebene Ellipse hat in unserm neuen Koordinaten
system die Gleichung

b2x2-j-a2y2 + 2xab2cosç>-j-2ya2bsinc0=O,

i2~-j — • asint/>4-bcosc/> 4-b2 0.

,2
>2

woraus
X* ' X \ X ' ' ' /

Für die Schnittpunkte a und ß der Ellipse mit jener
Geraden kommt also

(a2-l-b2) — m — a sin ce 4-b cos c>

a-£ + —^:Vjl Ax ¦ *—v+ba=0 dh:x* m b cos tp — a sin tp

v2 y-~ • ab(macosçe4-bsinf) — (a24-b2) (masince—bcostp)

— a b (m a cos tp -f- b sin tp) — 0.

y y"Für die Richtungskoeffizienten ~ und der Strahlen P a

y' y"und P ß gewinnen wir somit ~ ¦ ~- — — 1. Diese Strahlen

stehen also zueinander senkrecht w. z. z.

Der in B auftretende Punkt J liegt also auf der Nor-
malen des Punktes P und ist der Schnittpunkt dieser
Normalen mit dem zu OP in Bezug auf die .Axen symmetrischen
Durchmesser P' P". Oder J ist zu P harmonisch in Bezug
auf die Schnittpunkte u und v der Normalen von P mit
den beiden Axen des gegebenen Kegelschnittes. — Bei der
Parabel ist nach Grösse und Richtung P J 2 P u, wenn u der
Schnittpunkt der Normalen von P mit der Axe der Parabel.

Wenn P in einen Scheitel A des Kegelschnittes fällt, so
ist J zu A in Bezug auf O m harmonisch, wo m das Krümmungszentrum

des Scheitels A und O den Mittelpunkt des Kegelschnittes
darstellt.

Bezeichnen wir also die den Scheiteln A und B einer
gegebenen Ellipse entsprechenden Punkte J mit A und B (Fig. 4),
so ergibt sich uns die folgende Konstruktion dieser Punkte:
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Wir ergänzen AOB zum Rechteck AOBC und fällen aus C

auf AB das Lot Cs, so schneidet dieses die Axen in den
Krümmungszentren m und n der Scheitel A und B. Ziehen wir
nun durch den Fusspunkt s dieses Lotes eine Gerade parallel
zu OC, so schneidet diese die Axen in den gesuchten Punkten
A und B. Denn 0 C wird von den Strahlen s (COBB) harmonisch
geschnitten und daher haben wir auch (m O, A A — — 1 und
(n O, B /-?)=, — 1, w. s. s.

Zu irgend einem Punkte P der Stammellipse erhält man
jetzt den zugehörigen Punkt J auch wie folgt: Die Figur
AOBP klappen wir um AO in AOB'P' um, so sind AJ und
BJ respektive parallel zu AP' und B'P' und auch der Strahl
OP' geht durch J. Da PJ die Normale der Ellipse APB im
Punkte P, so liegt im obigen auch eine neue Konstruktion der
Normalen einer Ellipse in einem gegebenen Punkte.

Kehren wir zu den ursprünglichen durch O gehenden Koordi-
natenaxen zurück, so erhalten wir aus den Koordinaten von J

Ort von J -r-r-ïx —a2 ¦ b2 \a»4-ba
und ferner, wenn £', r\ die rechtwinkligen Koordinaten des Punktes
P darstellen:

Strahl OJ — £-¦
y n

Wenn also P die gegebene Ellipse umläuft, so beschreibt
.7 eine konzentrische ähnliche und ähnlich liegende Ellipse,
deren Scheitel A und B wir oben konstruiert haben. Diese

Ellipse beschreibt J mit entgegengesetzt gleicher
Winkelgeschwindigkeit wie P die Stammellipse, so dass die
Anomalien von J stets entgegengesetzt gleich den Anomalien
von P sind.

Aus der letzten Beziehung folgt auch: Wenn der Strahl
PJ von einer Axe der Stammellipse reflektiert wird, so ist
der reflektierte Strahl parallel zur Normalen der
Ortsellipse von J im Punkte J.

Wenn also auf der Stammellipse der Punkt P so liegt
(Fig. 5), dass die Normale von P mit jeder Axe einen Winkel

45° bildet (oder P ein Berührungspunkt der Stammellipse mit
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•dem umschriebenen Quadrat ist), so ist PJ im Punkte J die

Tangente der Ortsellipse von J. Wenn nun P auf der Stammellipse

sich unendlich wenig bewegt, so macht J eine unendlich
kleine Bewegung auf der Ortsellipse von J und beschreibt also
ein Tangentenelement der letztern, d. h. ein Element der Geraden
PJ. Der Punkt J ist also jetzt das Krümmungszentrum des

Punktes P der Stammellipse, und wir gewinnen den Satz: Die
Ortsellipse von J ist der Evolute der Stammellipse
umschrieben. Die Berührungspunkte sind zugleich die gemeinsamen

Berührungspunkte beider Kurven mit dem denselben
umschriebenen Quadrate und sind die Krümmungszeniren
derjenigen Punkte der Stammellipse, wo letztere von dem

ihr umschriebenen Quadrate berührt wird.
Um die genannten Punkte zu erhalten, ergänzen wir AOB

2U111 Rechtecke AOBC, und es möge der um 0 mit dem Radius
OC beschriebene Kreis die Axen in D und E schneiden, so ist
die Gerade D E eine Seite des der gegebenen Ellipse umschriebenen
Quadrates. Füllen wir nun von D auf 0 0 das Lot D K, so ist
Dreieck O D K kongruent Dreieck OCA und daher O K O A.
Es liegt somit K auf dem Hauptkreise der gegebenen Ellipse
und D K ist die Tangente des Hauptkreises im Punkte K. Füllen
wir also aus K das Lot K L auf O A, so trifft dieses die Gerade
D E in ihrem Berührungspunkte P mit der Stammellipse. Machen
wir jetzt LP' — LP, so schneidet der Strahl OP' die in
P auf D E errichtete Senkrechte P u v im Krümmungszentrum J
von P oder im Berührungspunkte der Ortsellipse A J B von
J mit der Evolute m J n der Stammellipse.

Für zwei beliebige sich entsprechende Punkte P und J ist

-~nKT ,-> a r^-r-ti- Ziehen wir also J A parallel zu P' A und
OP' OA OB r
JB parallel zu P'B', so erhalten wir wieder respektive auf OA
und OB die Scheitel A und B der Ortsellipse von J.

Bezeichnen wir mit £, ij die rechtwinkligen Koordinaten des

Punktes P, so sind die entsprechenden Koordinaten von J:

T _a2-b2 t _
a2—b2

X—aa+b2'-' y~" a3-f-b2
* ^'

Bern. Mitteil. 1902. No. 1548.
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oder j...x==__.£ y ___!__.,
wo e die Exzentrizität des Stammkegelschnittes darstellt.

Sei nun P (|, rf) ein beliebiger Punkt der Ebene, so

stellen diese Formeln eine Abbildung einer beliebigen Figur
der Ebeiie in eine invers ähnliche Figur dar. Auf dem

2e
Strahle O P sei nach Grösse und Richtung 0 Q -^ j- • O P,

und J sei in Bezug auf die x-Axe der Symmetriepunkt von Q,

so ist J das Bild des Punktes P.
Einem durch O gehenden Halbstrahle entspricht der von

der Y-Axe reflektierte Halbstrahl. Der Koordinatendrsprung 0
und die unendlich fernen Punkte der x-Axe und der Y-Axe
entsprechen sich selber; die unendlich ferne Gerade und die
beiden Axen entsprechen sich selber, und zwar entsprechen der
positiven und der negativen x-Axe wieder je die positive und
die negative x-Axe, hingegen der positiven Y-Axe die negative
Y-Axe und umgekehrt.

Legen wir durch den Punkt P (ir, ri) einen Kegelschnitt,
dessen Exzentrizität e, und dessen Haupt- und Nebenaxe
respektive auf der X- und der Y-Axe liegen, so ist der P
entsprechende Punkt J der gemeinsame Punkt aller Sehnen dieses

Kegelschnittes, die von P aus unter einem rechten Winkel
erscheinen und wenn P diesen Kegelschnitt umläuft, so umhüllt
der Strahl P J die Evolute dieses Kegelschnittes. Die Normale
im Punkte P dieses Kegelschnittes möge die Axen in u und v
schneiden, so ist J harmonisch zu P in Bezug auf die Strecke uv.

Ein besonderer Fall tritt ein, wenn der Stammkegelschnitt
eine gleichseitige Hyperbel. Dann fällt das Bild jedes Punktes
der Ebene ins Unendliche und wir erhalten die Sätze: Legen
wir durch irgend einen Punkt P einer gleichseitigen Hyperbel
zioei zueinander senkrechte Strahlen, so ist die Verbindungsgerade

der Punkte, wo diese die Hyperbel wieder schneiden,
parallel zur Normalen des Punktes P. Die von den Axen
begrenzte Strecke irgend einer Normalen einer gleichseitigen
Hyperbel wird vom Fusspunkt dieser Normalen halbiert.
Schlagen wir daher um einen Punkt P einer gleichseitigen
Hyperbel mit dem Radius PO einen Kreis, der die Axen
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wieder in u und in v schneidet, so ist die Gerade uPv die
Normale dieser Hyperbel im Punkte P.

In den Endpunkten P und P' eines Durchmessers sind die
Normalen einander parallel. Ziehen loir daher in einer
gleichseitigen Hyperbel parallel zu irgend einem Durchmesser,
der die Hyperbel reell schneidet, ein System von Sehnen,
oder ein solches System von einander parallelen Sehnen,
welche je die beiden Aeste der Kurve schneiden, so erscheinen
diese Sehnen von zioei reellen Punkten P und P' aus je
unter rechten Winkeln; diese Punkte P und P' liegen auf
der betreffenden Hyperbel, bilden die Endpunkte eines
Durchmessers derselben, und die Normalen in diesen Punkten sind
parallel zu dem bezüglichen Sehnensystem. Beschreibt man
daher um jene Sehnen als Durchmesser Kreise, so bilden
diese Kreise ein Kreisbüschel, das die Punkte P und P' zu
Grundpunkten hat. Betrachten wir dagegen ein System
paralleler Sehnen einer gleichseitigen Hyperbel, welche je
nur den einen Ast der Hyperbel schneiden, so sind die Punkte
P und P' imaginär, und die um diese Sehnen als Durchmesser

beschriebenen Kreise bilden ein Kreisbüschel der
zioeiten Art, dessen Nullpunkte die Punkte S und S' sind,
100 die zu diesen Sehnen paralleler Tangenten die Hyperbel
berühren. Oder: In einem Kreisbüschel ist der Ort der
Endpunkte eines Systems von einander parallelen Durch--
messern eine gleichseitige Hyperbel. Wenn das Büschel der
ersten Art, so sind die Grundpunkte P und P' des Büschels
die Endpunkte eines Durchmessers dieser Hyperbel, und die
Normalen in diesen Punkten sind parallel zu jenen
Kreisdurchmessern; inachen wir daher auf einer dieser
Normalen Pu Pv P 0, wo 0 die Mitte vonPP', so gehen
durch 0 und respektive u und v die Axen der Hyperbel.
Ist aber das Kreisbüschel der zioeiten Art, so sind die
Nullpunkte S und S' des Büschels die Endpunkte eines
Durchmessers der betreffenden Hyperbel, und die Normalen in S~

und in S' stehen senkrecht zu jenen Kreisdurchmessern;
machen wir wieder aufeiner dieser Normalen Su— Sv — S 0,
wo 0 die Mitte von SS', so gehen durch 0 und respektive-
durch u und v die Axen der Hyperbel.
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