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/

hh:i%\/ 3D+ 2c\/E_2D (11)

2
Fiir das negative Zeichen im Ausdruck (x 55 -]%) erlangt
die Abscisse x von D den Wert
_ce?-b?+ Ve 212
X == 51,
und die Ordinate y den Wert
1

y="t 51 \/P—2bc 2t 2V 2B (13)

(12)

Alle diesbeziiglichen Losungen erfilllen die Bedingung:
s —m=—=-+-¢,
Fir die Basishohe dieser Dreiecke finden wir auf dhnliche
Weise wie oben den Wert

hy =+ 1)- \/1»2 +2¢24 2¢\/e® 2Dt (14)

Vergleichen wir (11) mit (4) und (14) mit (5), so finden
wir vollkommene Ubereinstimmung in den Ergebnissen beider
Auflosungsmethoden.

VIIL.

§ 23. Achte Aufgabe. Konstruktion eines gleichschenkligen Dreiecks,
wenn die Basis und die Summe oder Differenz aus Schenkelhihe
und -dem der Basis angrenzenden Schenkelabschnitt gegeben sind.

Gregeben: b,

2. hs 4- m = + ¢ = konstant.

Bedingungen: 1. b\/2> hs - m) > b;

2 b= (hy—m)> —bh.
Im rechtwinkligen Dreieck ist hy - m:=b\/2 = Maximum;

denn da ist hS:::m:—g—\/TZ. In diesem Fall ist nun hy | m

O i

:\/E{\/ —I;— -+ \/ %} Ist das Dreieck nicht rechtwinklig, so st
el /[ ) B

s-+m=VDb \ (75- -+a)+4 —~—a |- KEs 1st aber bekannt-
: b b
(VD W)
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Ber emem unendlich grossen Dreieck ist hy —m—=b—0
=b=Max. und bei einem unendlich kleinen Dreieck =0—b =
—b=Min. Bei emmem spitzwinkligen Dreieck ist hy — m — pos.,
bei einem rechtwinkligen =0 und bei einem stumpfwinkligen
= neg.

§ 24. Ersies Losungsverfahren. Bestimmung der Spitzen B.
n) Konstruktion der Kurve. Taf. IV, Fig. 13.

Es sei’ OA=Db die Basis des Dreiecks. Wir ziehen den
Grundkreis, die Mittelsenkrechte MM; und um A den Hilfskreis
mit dem Radius r=¢. Durch O werde nun ein Strahl gezogen,
der den Grundkreis in @ schneidet. Ferner werde durch A und
Q eine Gerade gelegt, welche den Hilfskreils in H und H;
schneidet. Jetzt tragen wir auf dem Strahl OQ die Strecken
QH und QH; von O aus in gleicher oder ungleicher Richtung
ab und erhalten die Punkte T; und T. Gleiche Richtung ist
notig, wenn () ausserhalb des Hilfskreises liegt. Hat Q negative
Ordinate, so sind die Strecken nach Q hin abzutragen, 1im andern
Fall nach der entgegengesetzten Seite. Endlich trigt man noch
die Strecken QT; und QT> von R aus auf den Strahl OQ ab
der Richtung, wie T von @ aus liegt, und bekommt die Punkte
P; und Ps. Bei sich drehendem Strahl beschreiben die Punkte
P die Kurve. Die Schnittpunkte derselben mit der Mittelsenk-
rechten sind die Spitzen B; denn in diesem Fall 1st RP =0,
also auch QT = 0; folglich fillt T auf Q; damit ist OT =0Q=m,
QA ist =hs, und eine der Relationen ist erfiillt:

hs + m—c.

b) Ableitung der Kurvengleichung.
Es seien (—x, —y) die rechtwinkligen Koordmmaten eines
Kurvenpunktes P, im gewohnten System; dann ist
OP‘_) == \/X2 l- yz.

Nun ib‘t OP),::PQR—OR:TQQ—OR:Tz()»}-OQ——OR,
somit  \Vx*Fy?=Ty040Q—OR. (e

Ferner ist T.O=QH; =AQ 4 AH, =bhsing | ¢,

0OQ =bcosg,

. sub 1n («),
- 2 ] 2
O R’ - 2x \/X {' Yo ’
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es giebt Vx*Jy*=Dsing + ¢ beosp — 2‘—; Vxi4-y%, umge-
formt

[(X2+yJ(M~w) Fhx (x +- y)]—c (x4 y) =0, (1)

: b L .
Polargleichung: r= Booag. b(cos¢ + sing) + c. (2)

¢) Eigenschaften der Kurve.

Vorliegende Kurve ist von der 6. Ordnung. Sie hat 1mn
Nullpunkt emnen 4fachen Punkt. Die Gleichung der Tangenten
im Nullpunkt lautet: ' ' A

L - 2h —4¢? 4c- p
y“*ékxy3+—b2—‘ vi-+4xPy +— }\4-—-() (3)
Spezialfille: 1. ¢=0. |
yi—4xy? 4 2x%y? - 4x3y -} x* =0, aulgelost

y=( i\/ﬁ)x je 2mal.

Die Tangenten miissen paarweise zusammenfallen, da die

Kurve in 2 zusammenfallende Kurven 3. Ordnung zerfillt, deren

Gleichung  (x*>+y?) (h ) +bx (x4 y)=0 ist. 4)
Diese Kurve ist strophoidenartig, siehe Fig. 13, Kurve 11,
b
2, 0= ?

—4xy’ | x?y? -} 4xPy = 0.
y=0; die x- A\e ist Tangente.

Die Gleichung der iibrigen 3 reellen Tanwenten lautet:
y* —4xy? -+ x?y {437 =0.
—2V2
yi—4xy? 4 4x3y — xt=0.
' Da y =x der Gleichung geniigt, so 1st y = x Tangente.
Die Gleichung der iibrigen 3 reellen Tangenten lautet:
Y2 —3xy? 4 x2=0.

' 4, ¢c=oc0.
Bern. Mitteil. 1902. No. 1538.
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Die Kurve besteht aus der doppelt gelegten unendlich fernen
Geraden und der doppelt gelegten y-Axe und dem konjugierten
Punkt in O. Die y-Axe ist doppelt gelegte Tangente; die
2 andern Nullpunktstangenten sind imaginir. '

Die x-Axe schneidet die Kurve im Nullpunkt 4mal; die

5 T
y-Axe schneidet die Kurve 4mal im Nullpunkt und 2mal im
Unendlichen.

Aus der Form der Gleichung geht hervor, dass die ma-
gindren Kreispunkte der Ebene Doppelpunkte der Kurve sind.

: : : B :
andern 2 Schnittpunkte liegen in den Punkten (—— +c)- Die

; , ' b
Ebenso sagt uns die Gleichung, dass die Gerade x:—g—doppelt

gelegte Asymptote ist. Die Natur des unendlich fernen Punktes
der Kurve wird durch Transformation bestimmt. Wir setzen
h
2

(g e fsan(e e 5) (e 5 v)f

x=x"+4 und y=y’ und erhalten

.

o/ b\ b\
el 3 8] o

Nun projizieren wir den unendlich fernen Punkt der Kurve
auf die x-Axe, mmdem wir setzen

1 Xff
v 237'7 und x' = 7 und erhalten:

" L1132 EF gt f l-)gy”z rr
X" 4-by'x" i 41 ]x

/

: N/ r 3
-J[-by”(X” 1 ])X )(X” _l_ b?; —|—1)]—02y”2(x”2+bx”y”

—
b*

h?
+Iyrr2) (X’12+bxlfyfl+ 7 yff2_l_ 1)=0. (5)

Der Nullpunkt der projizierten Kurve 1st Doppelpunkt. Die
Gleichung der Doppelpunktstangenten lautet:

x'"2 = 0; folglich fallen die beiden Tangenten mit der
y'-Axe zusammen. Da ferner fir x"' =0 y”" =0 wird und zwar
4mal, so muss der Nullpunkt Selbstberithrungspunkt sein. Es

1st somit auch der unendlich ferne Punkt der Kurve Selbst-



[
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: b
berithrungspunkt und die Gerade X = =~ Selbstberiihrunysasymptote.

Die Kurve ist also rational; denn sie besitzt 10 Doppelpunkte,
nimlich 6 1m 4fachen Punkt O, 2 im unendlich fernen Selbst-
herithrungspunkt und 2 in den imaginéren Kreispunkten der Ebene.

Fir ¢="» fallen 5 Schnittpunkte der Geraden x:—g— mit

der Kurve ins Unendliche. In diesem Fall ist die Mittelsenk-
rechte Selbstberiihrungswendeasymptote und der unendhich ferne
Punkt der Kurve ein Selbstberithrungspunkt mit einfachem In-
flerionsknoten.

Die Kurve ist keine symmetrische Kurve.

d) Die Lisungen.
Um die Schnittpunkte B zu bekommen, fithren wir fir x

den Wert x =—- in der Kurvengleichung (1) ein und erhalten
__—b*+ bey/2bi—¢? ;
= 2 —cf) )

‘Fiir jeden Wert von ¢ Zb\{/2 giebt es 2 reelle Werte fiir
y. also 2 reelle Losungen. Die Hauptfiille sind folgende:
A, ec>hye
y wird 1magmir; keine reellen Lisungen.
B. ¢Zh\/2; 2 reelle Lisungen.

1. ¢=hy2.

b oa . : - :
Yi = Y2 = 5; 2 zusammentfallende rechtwinklige Dreiecke.
2. ¢=h.

yi1=0 und ys = oc; ein unendlich kleines und ein unend-
lich grosses Dreieck.

. by b o— /5

3. CE@V@; Yz—g(g—f‘\/&)
b : b =

4. C=75; Y=="7% EF V).

In beiden Fillen ein stumpfwinkliges und ein spitzwink-
liges Dreieck.

D, ¢e=0; yi=ys=—

| o
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2 zusammenfallende rechtwinklige Dreiecke OAB'. Fig. 13.

6. c:l—) V3+1); yi=++ l—’\/? und yy = il—? 3

2 — 2 6

Das spitzwinklige Dreieck ist gleichseitig und das stumpt-

winkhige Dreieck hat Basiswinkel von 30° und eine Schenkel-
b

hohe von h, = —.

2
Liisst man ¢ von b aus einmal wachsen bis ¢ = h\/2, das
andere Mal abnehmen bis ¢ = 0, so sind die Losungen im 2. Fall
symmetrisch zu denjenigen im ersten Fall.
Setzt man v = —y, so geht Gleichung (1) tber in

/

[(x'* v (x— 12)—) Fbx(x— y)]'— ¢x? (x2 -y = 0. (7)

Die Kurve ist das Spiegelbild der erstern in Bezug auf
die x-Axe. Mit den Losungen ist es dasselbe; dabei giebt es
fir die Basishohe den Ausdruck

b3+ bey/2b?—c?

hy=y=—= (b*—¢%) &
Als Inhaltsformel des Dreiecks erhalten wir nach (6)
—b*+b2eyV/2hE 2
g —b'thteyapi—¢ )

£(b* —c¥)

§ 24, Zweites Lisungsverfahren: Bestimmung der Fusspunkte D
der Schenkelhihen. Ohne Figur.

Diese Aufgabe kann elementar gelost werden, wenn wir
aus den drei Grossen b, m und hy zuerst ein rechtwinkliges
Dreieck konstruieren wollen. Will man aber direkt das gleich-
schenklige Dreieck gewinnen, bedarf es auch hier der Konstruktion
emer Kurve hoherer Ordnung. Diese Hilfskurve wird eine Kreis-
konchoide, deren Gleichung:

x24y*+by)? —e? (x*}-y*) =0 ist (vergleiche VI (1), (10)

pag. 64). "
Fir die Koordinaten der Punkte D erhalten wir
b2+ c\/2h2—¢2
X = 2h ‘
e (11)
und y = j!j~—2T, wobel nur das positive J
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Zeichen verwendet werden darf. Das negative Zeichen entspricht
den Losungen der Spiegelbildkurve in Bezug auf die x-Axe.

Setzt man in der Proport.ion'

y:hy=x: fir x und y die Werte von (11) ein.

)
so erhalt man fir h, den Wert- nach Formel (6); damit ist nach-
gewlesen, dass beide Verfahren die gleichen Ergebnisse liefern.
Berechnen wir mit Hilfe von (11) m, denn m==\'x% - y*

und h, denn h, =\/b*—m?, so finden wir, dass bei jedem spitz-
winkligen Dreieck die Stlecke m=0D glelch 1st der Grosse he
bei dem zugehorigen stumpfwinkligen Dreieck und umgekehrt.
Bei allen Losungen gilt die Relation

hy +m=e¢, wenn ¢ > b,

hy m—m=¢, » c¢=Db und

hy—m=¢, » c¢<b ist.

IX.

§ 26. Neunte Aufgabe: Konstruktion eines gleichschenkligen Dreieckes..
wenn die Basis und die Summe oder Differenz aus Schenkel
und Basishihe gegeben sind.

Gegeben: 1. b,

2. s+ hy==-1 ¢ = konstant.
Bedingungen: 1. s-+h,= })) ;

2, s—hp< g .

Die Summe 1st das Minimum bel einem unendlich kleinen

Dreieck; da 1st s = % und hy, = 0. Umgekehrt ist die Differenz.

bei einem unendlich kleinen Dreieck das Maximum und nimmnrt
stetig ab bis 0, wenn das Dreieck wichst und schliesslich un-
endlich gross wird.

§ 27. Erstes Verfahren. Bestimmung der Fusspunkte D.
n) Konstruktion der Hilfskurve. 'Taf. IV, Fig. 14.

Es sei OA=Db die Basis des Dreiecks. Wir ziehen den
Grundkreis und die Mittelsenkrechte, auf welcher wir von C aus.



	

