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Wir fithren den Wert von x aus (2) mn (1) ein und erhalten
211 9OKh2s2 D e ] 3__ 9 a2
y'+2by+ o0 ‘;b; == y'-’+b*—~—2“b(” y
1422
2 0 )
Die Wurzeln dieser Gleichung 4. Grades i y sind die
Ordinaten der Schnittpunkte D. Die kubische Hilfsgleichung
dazu erscheint in der Form
v ¢! (4bt — 2b%¢? 4 ¢t) v S (16b5 +15btc?—6b*ct 4-2¢%)
3bt 27 bt
Als Diskriminante erhilt man
i " (32b! —13b%c* + 4¢)
' 27 b
Es wird /=0 nur fir ¢ =0 wie beim ersten Verfahren.
Auch hier giebt es die beiden gleichen Hauptfille, nimlich
A, /=0 fir ¢e=0.
Wir erhalten wie beim ersten Verfahren 4 zusammen-
fallende rechtwinklige Dreiecke; denn in Gleichung (5) wird

0.

I
y = — T;— +mal.

B. /=pos. tir c==0.
Fir jeden von 0 verschiedenen Wert von ¢ liefert Gleichung
(5) 2 reelle Wurzeln und damit 2 reelle Dreiecke, also dasselbe
Ergebnis wie beim ersten Verfahren. Setzt man in Gleichung (5)
Spezialwerte ein
y=0  fir das unendlich kleine Dreieck,

y:j—g 5 » rechtwinklige »
Y::f:—}% » » gleichseitige »
so erhillt man die namlichen Werte fu1 ¢ wie auf Seite 143.
VIL

§ 20. Siebente Aufgabe: Konstruktion des gleichschenkligen
Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenlkel
und dem an die Basis angrenzenden Schenkelabschnitt gegeben sind.

(GGegeben: 1. b,
| 2. s*+tm=+c.
Bern. Mitteil. 1902, No. 1537,
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Bedingungen: 1. s-4+m=hb\/2,
— i b
B T Seg b

Sie Summe s m ist ein Minimum beim rechtwinkligen

: ; b 5 : .
Dreieck, und da ist s—=m= V2. m —x erreicht den Maxi-

=

malwert —— be1 einem unendlich klemnen Dreieck und nimmt

2
mit wachsendem h;, stetig ab. So lange das Dreieck noch

stumpfwinklig ist, bleibt m — s noch positiv.. m —s wird zu 0
beim rechtwinkligen und negativ beim spitzwinkligen Dreieck
und kann hier dann jeden Wert von 0 bis — o annehmen.

§ 21. Erstes Losungsverfuhren: Bestimmuny der Punkte B.
w) Konstruktion der Hilfskurve. Taf. III, Fig. 12.

Es sei OA=Db die Basis des Dreilecks. Wir ziehen den
Grundkreis, die Mittelsenkrechte MM; und eimnen Hilfskreis um
O mit dem Radius r=—=¢. KEin Strahl durch O schneide den
Grundkreis in Q und den Hilfskreis in H und H;. Nun tragen
wir auf dem Strahl OQ von O aus die Strecken QH und QH,
jede nach beiden Seiten ab, machen also

OP, —=0P; —=QH und
0P, =0P, =QH,.

Fir die Punkte P; und P; gilt die Relation:

1. 0Q4-0P,s=0Q+HQ—=0OH:=—¢, wihrend die Punkte
P, und P; die Bedingung erfiillen: 2. OP,,-—0Q=QH,—QO
—OH;=c¢. Dreht sich der Strahl OQ um O, so beschreiben
die Punkte P; und P4 eine Kurve und die Punkte P; und P. das
Spiegelbild derselben in Bezug auf die y-Axe. Die Schnittpunkte
beider Kurven mit der Mittelsenkrechten ergeben die zunichst
gesuchten Punkte B; denn fiir einen solchen Kurvenpunkt P ist

OP=0B=s und OQ=0D=m, und die oben stehenden
Relationen werden

m-}s=c oder s—m=c. Wir haben emne Losung.

b) Ableitung der Kurvengleichung.

Es seien x und y die rechtwinkligen Koordinaten eines
Kurvenpunktes P> im gewohnten Koordinatensystem; dann gilt:



OP.= \/ x? - y2 (@)
Nun ist OP,=H,Q—=0Q + OH-=-bcos¢ |- ¢, sub. In (¢
beose 4 ¢ -= Vx* y?, umgeformt
(x4 v? — bx)* —c* (x> y7) =0, (1)
Die Punkte dieser Kurve geniigen der Relation
s—m=—=+c.
Fir die Relation: s+ m=c¢ bekommt die Gleichung die
etwas abweichende Form
(x4 32 bx) — (x4 y2) —0. 2)
Die Kurven (1) und (2) sind symmetrisch zueinander ge-
legen in Bezug auf die y-Axe. Die Gleichung der Kurve, die
alle Schnittpunkte B lefert, ist die uniichte Kurve 8. Ordnung:
[+ ¥ - hxP — 2(x2 + yI [ + y2 — bxp
—EP -0 @)
Unser symmetrisches Kurvenpaar besteht aus 2 Kreis-
konchoiden. Fiur beide ist die x-Axe Symmetrieaxe. Bei positivem
bx liegt die Kurve mehr auf der negativen Seite, bei negativem
o
<
fiir beide Konchoiden der Punkt O isolierter Punkt, Riickkehr-

punkt oder Doppelpunkt. Fir ¢=0 zerfillt jede Konchoide in
2 sich deckende Kreise. Die beiden Kreispaare beriihren sich
in O und haben in der y-Axe eine gemeinsame Tangente.

bx mehr auf der positiven Seite der x-Axe. Ist ¢ = b, so 1st

c) Die Lisungen.

Wir suchen zuniichst die Schnittpunkte B der Kurve mit
der Mittelsenkrechten. Dabei handelt es sich nur noch um die
Bestimmung der Ordinaten dieser Punkte. Losen wir das be-
kannte Gleichungssystem nach y auf, so finden wir

1. y:_—!-%ﬁ \/202—310'3 +2¢y/ 2 — 212, wenn bx=pos. (4)
and 2. y=+ ; \/b2+202t20 \ & 212, wenn bx=neg. (3)

Wir bekommen hier 2 gesonderte Losungsgruppen.
Erste Gruppe fiir Formel (4).

A ¢> 32—b
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2 reelle Wurzeln far y far das positive Zeichen der mnern
Wurzel; 2 symmetrische spitzwinklige Dreiecke.

B. ’Zb;cgb\/é.

4 reelle Wurzeln fiwr y, welche paarweise absolut gleich

sind: 4 wirkliche Dreiecke, welche paarweise symmetrisch sind.
3b
L=

Vip=1F %\,’fg und  y3:=100

2 gleichseitige Dreiecke, bedingt durch das positive Zeichen

der innern Wurzel und 2 unendlich kleine, bedingt durch das
negative Zeichen der mnern Wurzel.

2, %;>c>bVQ;ngz,ﬂmIH,Kmmau_

Das positive Zeichen der immern Wurzel erzeugt 2 spitz-
winklige, das negative Zeichen 2 stumpfwinklige Dreiecke. Mit
abnehmendem ¢ werden die spitzwinkligen immer weniger spitz-
winklig und die stumpfwinkligen weniger stumpfwinklig.

3. c:b\/?;
B =
y=%+-5 Je Zmal

Die Kurve beriihrt von der negativen Seite her die Mittel-

senkrechte in den 2 Punkten (“%’ %) und (_g,_gﬁ) 4 recht-

- e
winklige Dreiecke, welche paarweise sich decken und paarweise
symmetrisch sind.

C. e<by2

Alle y-Werte sind imaginir, daher keine reellen Lisungen.

Alle Dreiecke der ersten Losungsgruppe erfillen die Be-
dingung s 4+ m=—c.

Fiir den Flicheninhalt derselben bekommen wir die all-
gemeine Formel:

F:%E— \/2(;9 — 312 4 2¢\/ @ — 2. (6)
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Zwceite Gruppe fiir Formel (5).

A. c>%~ Fig. 12, Kurve 1.

2 reelle Wurzeln fiir y und 2 imaginire, letztere finr das
negative Zeichen der innern Wurzel. 2 symmetrische spitz-
winklige Dreiecke, deren Basiswinkel > 60°,

B. C?% '

4 reelle Wurzeln fir y, daher 4 reelle Losungen, welche
paarweise symmetrisch sind.

1. c:—gw, Grenzfall.

Fir das positive Zeichen der innern Wurzel wird y = jg V3,

bedingt 2 gleichseitige Dreiecke. Fiir das negative Zeichen der
mnern Wurzel wird y—-+0, was 2 unendlich kleine Dreiecke
zur Folge hat.

2. %>c>0.

2 spitzwinklige Dreiecke fiir das positive und 2 stumpf-
winklige fiir das negative Vorzeichen der innern Wurzel. Mit
abnehmendem ¢ nidhern sich beide Formen dem rechtwinkligen

Dreieck.
3. ¢=0.

Die Kurve ist der doppelte gelegte Kreis x> —bx -} y? =0,

welcher die Mittelsenkrechte in den Punkten (%, %) und

(—g—, h——g—) schneidet; 4 rechtwinklige Dreiecke wie ohen
unter Bs. |
Samtliche Dreiecke dieser Gruppe geniigen der Relation
B et == |
Thre Inhaltsformel lautet:

F:% \/b’3+202i2c\/‘2b9-{—c‘3. 0
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§ 22, Zweites Liosungsverfahren: Bestimmung der Schnittpunkte D.
Die Voraussetzungen sind dieselben wie mm § 20.
Wi referieren iiher diesen Fall in gedringter Kiirze.
Analog dem ersten Verfahren erhalten wir als Hilfskurve
eine unichte Kurve 8. Ordnung. Dieselbe hat die Form

/ 2 2
[(x‘h’ +v?) (x -+ %’) — ¢? x’] [(x2~i— y2) (‘( — g) — ("?’xz] =0. (8)

Die Kurve besteht aus 2 Konchoiden des Nikomedes. Fiunr
beide ist die x-Axe Symmetrieaxe. Die Konchoide des Klammer-

; ; B oo .
ausdrucks links hat die Gerade x=— - diejenige des Klammer-
i

) b .
ausdrucks rechts die Gerade X:—Q— zur Leitlinie.

Bei den Losungen handelt es sich um die Bestinmung der

Koordinaten der Schnittpunkte D der Konchoiden mit dem
Grundkreis. Fiir die Abscisse x erhalten wir die Bestimmungs-
gleichung

2
bx (x s —%) — ¢?x? = (; daraus folgt

2+ b2 4-c\/e? 4 2h?
2b ’

2

i, & . g b .

finr das positive Zeichen im Ausdruck ( X+ 5| wird
5 a—

. ¢?— Db+ c\/et— 212 \
X = 5T : (9)

Alle diesbeziiglichen Losungen entsprechen der Relation:
s-}-m=e.
Fihren wir den Wert fiir x aus (9) in der Gleichung des
Grundkreises ein, so erhilt man fir die Ordinate y des Punktes D
den Ausdruck:

y = 21b \/6b202—3b“%204i20(2b2$c‘3)\/02—‘2b2. (10)
Nun besteht die Proportion:
$ M=y i L3
yix=h:5-

Setzen wir hierin fir x und y die gefundenen Werte ein
und lésen nach hy, auf, so finden wir:
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/

hh:i%\/ 3D+ 2c\/E_2D (11)

2
Fiir das negative Zeichen im Ausdruck (x 55 -]%) erlangt
die Abscisse x von D den Wert
_ce?-b?+ Ve 212
X == 51,
und die Ordinate y den Wert
1

y="t 51 \/P—2bc 2t 2V 2B (13)

(12)

Alle diesbeziiglichen Losungen erfilllen die Bedingung:
s —m=—=-+-¢,
Fir die Basishohe dieser Dreiecke finden wir auf dhnliche
Weise wie oben den Wert

hy =+ 1)- \/1»2 +2¢24 2¢\/e® 2Dt (14)

Vergleichen wir (11) mit (4) und (14) mit (5), so finden
wir vollkommene Ubereinstimmung in den Ergebnissen beider
Auflosungsmethoden.

VIIL.

§ 23. Achte Aufgabe. Konstruktion eines gleichschenkligen Dreiecks,
wenn die Basis und die Summe oder Differenz aus Schenkelhihe
und -dem der Basis angrenzenden Schenkelabschnitt gegeben sind.

Gregeben: b,

2. hs 4- m = + ¢ = konstant.

Bedingungen: 1. b\/2> hs - m) > b;

2 b= (hy—m)> —bh.
Im rechtwinkligen Dreieck ist hy - m:=b\/2 = Maximum;

denn da ist hS:::m:—g—\/TZ. In diesem Fall ist nun hy | m

O i

:\/E{\/ —I;— -+ \/ %} Ist das Dreieck nicht rechtwinklig, so st
el /[ ) B

s-+m=VDb \ (75- -+a)+4 —~—a |- KEs 1st aber bekannt-
: b b
(VD W)



	

