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Wir führen den Wert von x aus (2) in (1) ein und erhalten

i ov i 3b4 —2b2c2 + 2c4 b:i-2bc2
y4 + 2br H -j^-^ y-' H J5 y

\,i — 4b2c2
+ jL-^— l)- (5)

Die Wurzeln dieser Gleichung 4. Grades in y sind die
Ordinaten der Schnittpunkte D. Die kubische Hilfsgleichung
dazu erscheint in der Form

c4(4b4 — 2b2c2 + c4) cu(16bu4l5b4c2-6b2c442ce)yi ; _ y (1.
3 b4 27 b6

Als Diskriminante erhält man
c14(32b4- 13b2c2 + 4c4)

27b6 "" '

Es wird I 0 nur für c 0 wie beim ersten Verfahren.
Auch hier giebt es die beiden gleichen Hauptfälle, nämlich

A. J 0 für c 0.

Wir erhalten wie beim ersten Verfahren 4 zusammenfallende

rechtwinklige Dreiecke; denn in Gleichung (5) wird

y -j 4 mal.

B. I pos. für c =|= 0.

Für jeden von 0 verschiedenen Wert von c liefert Gleichung
(5) 2 reelle Wurzeln und damit 2 reelle Dreiecke, also dasselbe

Ergebnis wie beim ersten Verfahren. Setzt man in Gleichung (5)
Spezialwerte ein

y — 0 für das unendlich kleine Dreieck,

y 4 ~j" » » rechtwinklige »

y 4 -j- » » gleichseitige »

so erhält man die nämlichen Werte für c wie auf Seite 143.

VII.
§ 20. Siebente Aufgabe: Konstruktion des gleichschenkligen

Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenkel

und dem an die Basis angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1. b,
2. s 4 m 4 c.

Bern. Mitteil. 1902. No. 1537.
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Bedingungen : 1. s + m>b \/ 2,

2. m — s < 4 -jj
Sie Summe s-|-m ist ein Minimum beim rechtwinkligen

Dreieck, und da ist s — m — - \ 2. in — s erreicht den

Maximalwert -j bei einem unendlich kleinen Dreieck und nimmt
Li

mit wachsendem hb stetig ab. So lange das Dreieck noch

stumpfwinklig ist, bleibt m — s noch positiv, m — s wird zu 0
beim rechtwinkligen und negativ beim spitzwinkligen Dreieck
und kann hier dann jeden Wert von 0 bis — oo annehmen.

§ 21. Erstes Lösungsverfahren: Bestimmung der Punkte B.

a) Konstruktion der Hilfskurve. Taf. Ill, Fig. 12.

Es, sei OA b die Basis des Dreiecks. Wir ziehen den

Grundkreis, die Mittelsenkrechte M Mi und einen Hilfskreis um
O mit dem Radius r c. Ein Strahl durch 0 schneide den

Grundkreis in Q und den Hilfskreis in H und Hi. Nun tragen
wir auf dem Strahl OQ von 0 aus die Strecken QH und QHi
jede nach beiden Seiten ab, machen also

OP1==OPb=QH und
0P2 0P4=QHi.

Für die Punkte Pi und P:i gilt die Relation:
1. OQ+OPi,3 OQ+ HQ OH^c, während die Punkte

Pa und P4 die Bedingung erfüllen: 2. OP.,,.-OQ QH]—QO
OHi=c. Dreht sich der Strahl OQ um O, so beschreiben

die Punkte Pi und P4 eine Kurve und die Punkte P3 und P2 das

Spiegelbild derselben in Bezug auf die y-Axe. Die Schnittpunkte
beider Kurven mit der Mittelsenkrechten ergeben die zunächst

gesuchten Punkte B; denn für einen solchen Kurvenpunkt P ist
OP —OB s und OQ OD m, und die oben stehenden

Relationen werden
m + s c oder s — ni — c. Wir haben eine Lösung.

b) Ableitung der Kurvengleichung.

Es seien x und y die rechtwinkligen Koordinaten eines

Kurvenpunktes P2 im gewohnten Koordinatensystem; dann gilt:
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0Pa=y/xMry"-~ (o)

Nun ist OP2 H,Q OQ fOH-beosç? + e, sub. in («)

bcosç- 4 c- V/x3 -f y3, umgeformt
(X2 + y2 __ bx)2 _C2 (X2 + y2) Q. (1)

Die Punkte dieser Kurve genügen der Relation
s — m 4 c-

Für die Relation : s + m c bekommt die Gleichung die

•etwas abweichende Form
(x2 + y2 4- bx)2 - c2(x2 -f y2) - 0. (2)

Die Kurven (1) und (2) sind symmetrisch zueinander
gelegen in Bezug auf die y-Axe. Die Gleichung der Kurve, die

alle Schnittpunkte B liefert, ist die unächte Kurve 8. Ordnung:
[(x2 4 y2 + bx)2 - c2(x2 + y2)] [(x2 + y2- bx)2

-c2(y2 + x2)] 0. (3)

Unser symmetrisches Kurvenpaar besteht aus 2 Kreis-
konchoiden. Für beide ist die x-Axe Symmetrieaxe. Bei positivem
bx liegt die Kurve mehr auf der negativen Seite, bei negativem

bx mehr auf der positiven Seite der x-Axe. Ist c b, so ist

für beide Konchoiden der Punkt 0 isolierter Punkt, Rückkehr-
punkt oder Doppelpunkt. Für c 0 zerfallt jede Konchoide in
2 sich deckende Kreise. Die beiden Kreispaare berühren sich
in 0 und haben in der y-Axe eine gemeinsame Tangente.

c) Die Lösungen.

Wir suchen zunächst die Schnittpunkte B der Kurve mit
•der Mittelsenkrechten. Dabei handelt es sich nur noch um die

Bestimmung der Ordinaten dieser Punkte. Lösen wir das
bekannte Gleichungssystem nach y auf, so finden wir

1. y ±-|- \/2c2-3b2 42cy'c2-2b2, wenn bx=pos. (4)

und 2. y 4-y- \J b2 + 2c2 f 2c \/c2 + 2b2, wenn bx=neg. (5)

Wir bekommen hier 2 gesonderte Lösungsgruppen.

Erste Gruppe für Formel (4).

3b
A. o--
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2 reelle Wurzeln für y für das positive Zeichen der innern
Wurzel; 2 symmetrische spitzwinklige Dreiecke.

B. ^>c>bv2.
4 reelle Wurzeln für y, welche paarweise absolut gleich

sind: 4 wirkliche Dreiecke, welche paarweise symmetrisch sind.

3b
1. c T.

y j ,2 4 -jj- \J 3 und y^ 0.

2 gleichseitige Dreiecke, bedingt durch das positive Zeichen
der innern Wurzel und 2 unendlich kleine, bedingt durch das

negative Zeichen der innern Wurzel.

2. -j1>c>by'2; Fig. 12, Taf. Ill, Kurve IL

Das positive Zeichen der innern Wurzel erzeugt 2

spitzwinklige, das negative Zeichen 2 stumpfwinklige Dreiecke. Mit
abnehmendem c werden die spitzwinkligen immer weniger
spitzwinklig und die stumpfwinkligen weniger stumpfwinklig.

3. e b\/2;

y 4-jy je 2 mal.

Die Kurve berührt von der negativen Seite her die

Mittelsenkrechte in den 2 Punkten (yj>-jj) und -y-, y-l- 4

rechtwinklige Dreiecke, welche paarweise sich decken und paarweise
symmetrisch sind.

C. c<b\/2.
Alle y-Werte sind imaginär, daher keine reellen Lösungen.

Alle Dreiecke der ersten Lösungsgruppe erfüllen die

Bedingung s + m c.

Für den Flächeninhalt derselben bekommen wir die
allgemeine Formel:

F -j- W2c2 — 3b2 4 2c \/c2 — 2b2. (6)
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Zweite Gruppe für Formel (5).

A. c > -jj- Fig. 12, Kurve I.
2

2 reelle Wurzeln für y und 2 imaginäre, letztere für das

negative Zeichen der innern Wurzel. 2 symmetrische
spitzwinklige Dreiecke, deren Basiswinkel > 60°.

u b
B. c<T.

4 reelle Wurzeln für y, daher 4 reelle Lösungen, welche
paarweise symmetrisch sind.

1. c==—-, Grenzfall.
Li

Für das positive Zeichen der innern Wurzel wird y 4 — \/3,

bedingt 2 gleichseitige Dreiecke. Für das negative Zeichen der

nmern Wurzel wird y 40, was 2 unendlich kleine Dreiecke
zur Folge hat.

2. ~>c>0.
2 spitzwinklige Dreiecke für das positive und 2

stumpfwinklige für das negative Vorzeichen der innern Wurzel. Mit
abnehmendem c nähern sich beide Formen dem rechtwinkligen
Dreieck.

3. c 0.

Die Kurve ist der doppelte gelegte Kreis x2 — bx + y2 =0,
welcher die Mittelsenkrechte in den Punkten I

-y-, -y- und

-jj, j-) schneidet; 4 rechtwinklige Dreiecke wie oben

unter B3.

Sämtliche Dreiecke dieser Gruppe genügen der Relation

s — m 4c.
Ihre Inhaltsformel lautet:

F ^- v/b2 + 2c242cy/2b2+c2. (7)
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§ 22. Zweites Lösungsverfahren: Bestimmung der Schnittpunkte D.

Die Voraussetzungen sind dieselben wie in § 20.

Wir referieren über diesen Fall in gedrängter Kürze.
Analog dem ersten Verfahren erhalten wir als Hilfskurve

eine unächte Kurve 8. Ordnung. Dieselbe hat die Form

[(x2+y2)(x + Ay_c2xaj |\x2 + y.2}^x_ b_J__cax2j=0_ (8)

Die Kurve besteht aus 2 Konchoiden des Nikomedes. Für
beide ist die x-Axe Synnnetrieaxe. Die Konchoide des Klammer-

ausdrucks links hat die Gerade x jj, diejenige des Klammer-
Lt

b
atisdrucks rechts die Gerade x — zur Leitlinie.

Bei den Lösungen handelt es sich um die Bestimmung der
Koordinaten der Schnittpunkte D der Konchoiden mit dem
Grundkreis. Für die Abscisse x erhalten wir die Bestimmungs-
gleichung

b^2
bx x + -j — c2x2 0; daraus folgt

_ c2±b2 + cy/c2 + 2b2

b^2
2 b

für das positive Zeichen im Ausdruck x 4; -jy wird

c2_bi + cV/cTir2b2
X= =2b ,9)

Alle diesbezüglichen Lösungen entsprechen der Relation:
s +m c.

Führen wir den Wert für x aus (9) in der Gleichung des
Grundkreises ein, so erhält man für die Ordinate y des Punktes D
den Ausdruck:

y^-t-A-v/Wc2 — 3b4— 2c442c(2b24c2)\/c2 — 2b2. (10)

Nun besteht die Proportion:

i. b
y : x hb : y

Setzen wir hierin für x und y die gefundenen Werte ein
und lösen nach hb auf, so finden wir:
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1 /
h„ 4-jj v/ 2c2 —3b3 4 2c\/c2 —2b2. (11)

Für das negative Zeichen im Ausdruck I x 4 -jy I. erlangt

die Abscisse x von D den Wert

c'+b'+cy'^+W« m2b j
und die Ordinate y den Wert

y 4-L Ob4 — 2b2c2 — 2c442c3 y'c2 + 2b2. (13)

Alle diesbezüglichen Lösungen erfüllen die Bedingung:
s — m 4 c-

Für die Basishöhe dieser Dreiecke finden wir auf ähnliche
Weise wie oben den Wert

h„ 4 ~ v/b2 + 2c2 + 2c\/c2 + 2b2. (14)

Vergleichen wir (11) mit (4) und (14) mit (5), so finden
wir vollkommene Übereinstimmung in den Ergebnissen beider
Auflösungsniethoden.

VIII.
§ 23. Achte j.ufgabe. Konstruktion eines gleichschenkligen Dreiecks,

wenn die Basis und die Summe oder Differenz aus Schenkelhöhe

und dem der Basis angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1. b,
2. hs + m 4 c konstant.

Bedingungen : 1. b y 2 > (hs + m) > b;
2. b>(hs—m)> — b.

Im rechtwinkligen Dreieck ist hs + m by2 Maximum:

denn da ist hs m -jyy2. In diesem Fall ist nun hs + m

+ y/-jj|. Ist das Dreieck nicht rechtwinklig, so ist

h9 -|- m y7b y -y- + a + V/ I
-^ a j • Es ist aber bekannt-

« (v/ï+V/!)>(v/M+V/M)-


	

