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d) Die Losungen.

Die Koordinaten der zuniichst gesuchten Schmttpunkte D
sind die Wurzeln des Systems

L. 4y*[(b—x)?-}-y?] — [2ey — (b—X) b]*=0, Kurve.
und 2. x*—bx-}y? — (0, Grundkreis.

Die allgemeine Losung dieser Aufgabe stosst auf bedeutende
Schwierigkeiten.  Wir konnen die Ubereinstimmung mit dem
ersten Verfahren nur in Spezialfillen nachweisen.

1. Fir ein gleichseitiges Dreieck besitzt der Punkt D die

I b b
Koordinaten (_:f i \/)

Setzen wir diese Werte fir x und y in Gleichung (1)
unseres Systems oben ein, so wird
clzb\/§ und  ¢3=0.
Vergleiche damit die Félle A; und C, pag. 136.
2. Bei einem rechtwinkligen Dreieck sind die Koordinaten

b b
von D—("—Z—’?

Orts wieder ein, so wird c“— (1-}-V2). Fig. 10.
Vergleiche damit A., pag. 136.
3. Fiur ein unendlich kleines Dreieck hat Punkt D die
Koordinaten (b, 0). Die Einsetzung dieser Werte liefert
¢ =0, vergleiche damit C, pag. 136; siche Fig. 10.

)- Setzt man diese Werte gleichen

VL

§ 17.  Sechste Aufgnbe: Konstruktion eines gleichschenkligen
Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenkel
und Schenkelliéhe gegeben sind.

Gegeben: 1. b.
2. s+ hy — ¢ — konstant.
Bedingungen: 1. s+ h,= g,
2. s—h>0.
Bei einem unendlich kleinen, auf die Basis reduzierten
Dreieck ist s - hy, — h Minimum; denn s = L3 und h, =0.

2 ’ 2
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Ist das gleichschenklige Dreieck rechtwinklig, so ist s — hy=—0.
In jedem andern Fall ist s als Hypotenuse grosser als hy (Kathete).

§ 18. Erstes Lisungsverfahren: Bestimmung der Dreiecksspitzen B.

@) Konstruktion der Kwirve. Taf. I11, Fig. 11.

Es set OA =b die Basis des Dreiecks. Wir ziehen den
Grundkreis und um A den Hilfskreis mit dem Radius r = ¢. Ferner
zichen wir emen Strahl durch O, der den Grundkreis in Q
schneidet. Die Verbindungslinie AQ endlich schneide den Hilfs-
kreis in H und H;. Liegt nun () innerhalb des Hilfskreises,
dann trigt man die beiden Strecken QH und QH; von O aus
auf dem zugehorigen Strahl nach entgegengesetzten Seiten ab und
zwar die Strecke nach @ hin, welche den Punkt A nicht ent-
hilt. Man macht also

OP]_:QH und OPQZQH1

Bezichungen: 1. OP; + AQ=QH +AQ—=AH=c¢;

2. OP; —AQ=QH; —AQ=AH,=c.

Liegt der Punkt ) ausserhalb des Hilfskreises, so trigt
man beide Strecken nach @ hin ab. In diesem Fall gelten dann
die Relationen:

1. AQ —OP/=AQ —Q H =AH'=¢;
2. OPY —AQ =Q'H/—AQ =AH, =c.

Der geometrische Ort aller Punkte P i1st die Hilfskurve.
Fillt ein Kurvenpunkt P in die Mittelsenkrechte, so wird OP =
OB-sund AQ ~AD-=h , und man kann, wenn diese Werte

in den Relationen oben eingesetzt werden, eine Losung konsta-

tieren. Die Schnittpunkte der Kurve mit der Geraden x_—_%

ergeben somit die zunichst gesuchten Punkte B.

b) Ableitung der Kurvengleichung.

Es seien fir das gewohnte Koordinatensystem x und y die
Koordinaten eines Punktes P’; dann kann gesetzt werden:

0Py =\ +y% ()
Nun ist OPy =c¢ 4+ AQ" =c¢ | bsing, eingesetzt in («), und
man hat ¢ 4 bsing —\/x*> - y2, umgeformt

(4 y*+byf - (x* + y?) =0. (1)
Polargleichung: r= — bsing+ec. (2)
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Unsere Kurve ist die Kreiskonchoide. Die y-Axe ist Sym-

metrieaxe.
c<b, O 1st Knotenpunkt; die Konchoide besitzt eine

Schleife;
c=hb, O 1st Spitze und die negative y-Axe Riickkehr-

tangente;
c¢>Db, O ist konjugierter Punkt.

Fiir ¢=0 reduziert sich die Kurve auf den doppelt gelegten
Kreis x2 4 y*4 by =0.

¢) Die Lisungen.

Es handelt sich noch um die Bestimmung der Ordinaten der
Schnittpunkte B. Wir fithren zu diesem Zweck den Wert fir

xz_g—- in der Kurvengleichung (1) ein und erhalten:

b2 \? R
(#roy+5) —e (42 =o
Die Wurzeln dieser Gleichung sind die Ordinaten von B.
Die Auflosung vorliegender Gleichung fithrt auf eine kubische
Hilfsgleichung von der Form
Bl __ ok 2 ot 6
v3—}—6b (:3 c 5 - 9b 02-7{—20 _o.

Die Diskriminante dieser kubischen Gleichung wird

31/8 —
4= b"ls\/s V/32b% — 13b%¢2 - 4.
Es ist nun 4 =~ 0 nur in dem einen Fall, wenn

c = 0. (3)
Wir erhalten daher 2 Hauptfille fiir die Losungen:
A. 4=0 fir c=0.
Wir bekommen fiir y 4 zusammenfallende Wurzeln, niamlich

= —g—- als Ordinate der Spitze. Damit erhalten wir auch

4 zusammenfallende Dreiecke, welche rechtwinklig sind.
B. 4 =pos. fir ¢c==0.

Die kubische Hilfsgleichung besitzt nur eine und infolge
dessen die biquadratische Gleichung nur 2 reelle Wurzeln. Wir
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erhalten somit fir jeden Wert von e, 0 ausgenommen, nur
2 wirkliche Dreiecke. ,

Wie schon erwihnt, treten fiir ¢=0 4 zusammenfallende
rechtwinklige Dreiecke auf, welche auf der negativen Seite der
y-Axe liegen. Fingt nun ¢ zu wachsen an, so verschwinden
erstens 2 Dreiecke. Die andern 2 verwandeln sich in ein spitz-
winkliges und in ein stumpfwinkliges, und zwar wird fiar ein
wachsendes ¢ das spitzwinklige immer spitzwinkliger.

Far c:%(?—\/@) wird es gleichseitig. Das stumpfwink-

lige wird auch stumpfwinkliger und erreicht fir ¢ = b das

2
Maximum. Der Winkel an der Spitze wird 180°. Das Dreieck
reduziert sich auf die Basis. Wird ¢ > — so mmmt der Winkel

2
an der Spitze stetig ab. Fir ¢c=b\/2 wird das Dreieck recht-
winklig natirlich auf der positiven Seite der y-Axe. Fir jeden

Wert von ¢>b\/2 ist dann auch das auf der positiven Seite
der y-Axe liegende Dreieck spitzwinklig. Gleichseitig ist dieses

spitzwinklige Dreieck fiir den Spezialwert von ¢= —g— 2+V3).

§ 19. Zweites Lisungsverfahren: Bestimmung der Punkte D.
Bedingungen wie in § 17.
@) Konstruktion der Kurve. Ohne Figur.

Es sei O A —b die Basis des Dreiecks, Wir ziehen den
Grundkreis, die Mittelsenkrechte MM; und endlich noch einen
Hilfskreis um A mit dem Radius r=c. Ein durch A gezogener
Strahl schneide nun den Grundkreis in Q, die Mittelsenkrechte
m R und den Hilfskreis in H und H;. Schliesslich wird noch
durch O ein Strahl gezogen, der auch durch ) geht. Nun triagt
man auf dem Strahl OQ von O aus die Strecken RH und RH,
nach entgegengesetzten Seiten ab, macht also

OP; =RH und OP.=RH;,, so dass also
1. AR+OP;=AR +RH=AH=c¢ und ebenso
2. OPg —AR:RHl -—AR:AHl =C.

So darf es aber nur gemacht werden, wenn @ innerhalb

des Hilfskreises liegt. Liegt Q ausserhalb des Hilfskreises, so
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trigt man beide Strecken RH und RH; nach der gleichen Seite
und zwar nach Q hin ab. Der geometrische Ort aller Punkte
P ist die Hilfskurve.

Fillt ein Punkt derselben in den Grundkreis, so wird
OP=0Q-—hy und da AR=s1st, so wird nach den oben stehen-
den Relationen

einem Punkt D geworden; wir haben eine Losung. Die Schnitt-
punkte der Kurve mit dem Grundkreis sind wieder die zunichst
gesuchten Punkte D.

b) Ableitung der Kurvengleichung.
Wir erhalten nach analoger Methode wie friiher

> b\
(x* 4¥?) (y .5 ?) —c2y?=0. (4)
Polargleichung: rz—mic. (4a)
Die Hilfskurve ist die Konchoide des Nikomedes. Die y-Axe
ist die Symmetricaxe derselben und die Gerade y = — % die

Leitlinie. ¢ ist der auf einem Strahl durch O gemessene kon-
stante Abstand zweiler Kurvenpunkte von der Leitlinie.

Fuar (:>*g~ besitzt die Konchoide eine Schleife.

b

2

fir ¢=—- tritt sie mit Spitze auf in O;

» c<—g— wird O zum konjugierten Punkt;

» ¢=0 zerfillt die Kurve in die doppelte Leitlinie und
den konjugierten Punkt O.
¢) Die Lisungen.

Es handelt sich um die Bestimmung der Koordinaten der
Schnittpunkte D. Diese Koordinaten sind die Wurzeln des
Gleichungssystems: ‘

b 2
1. x2+4+y? (y + ?) —c2yr =0, cceeeenn Kurve.
/
2. x2—bx+4+y? =0,:-0c000n Grundkreis.
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Wir fithren den Wert von x aus (2) mn (1) ein und erhalten
211 9OKh2s2 D e ] 3__ 9 a2
y'+2by+ o0 ‘;b; == y'-’+b*—~—2“b(” y
1422
2 0 )
Die Wurzeln dieser Gleichung 4. Grades i y sind die
Ordinaten der Schnittpunkte D. Die kubische Hilfsgleichung
dazu erscheint in der Form
v ¢! (4bt — 2b%¢? 4 ¢t) v S (16b5 +15btc?—6b*ct 4-2¢%)
3bt 27 bt
Als Diskriminante erhilt man
i " (32b! —13b%c* + 4¢)
' 27 b
Es wird /=0 nur fir ¢ =0 wie beim ersten Verfahren.
Auch hier giebt es die beiden gleichen Hauptfille, nimlich
A, /=0 fir ¢e=0.
Wir erhalten wie beim ersten Verfahren 4 zusammen-
fallende rechtwinklige Dreiecke; denn in Gleichung (5) wird

0.

I
y = — T;— +mal.

B. /=pos. tir c==0.
Fir jeden von 0 verschiedenen Wert von ¢ liefert Gleichung
(5) 2 reelle Wurzeln und damit 2 reelle Dreiecke, also dasselbe
Ergebnis wie beim ersten Verfahren. Setzt man in Gleichung (5)
Spezialwerte ein
y=0  fir das unendlich kleine Dreieck,

y:j—g 5 » rechtwinklige »
Y::f:—}% » » gleichseitige »
so erhillt man die namlichen Werte fu1 ¢ wie auf Seite 143.
VIL

§ 20. Siebente Aufgabe: Konstruktion des gleichschenkligen
Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenlkel
und dem an die Basis angrenzenden Schenkelabschnitt gegeben sind.

(GGegeben: 1. b,
| 2. s*+tm=+c.
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