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horen, werden immer weniger spitzwinklig. Fir ¢ =0 ist x; = x»
und die Dreiecke fallen als gleichseitige zusammen.

V.

§ 14. Fiinfte Aufgabe: Ein gleichschenkliges Dreieck zu konstruieren.
von welchem die Basis und die Swumme oder Differenz der beiden
Dreieckshihen gegeben sind.

Gegeben: 1. b;
2. hy + hy = - ¢ = konstant.

Bedingung: ooShy 4 he>0; oo = hy—hi = 0.

Far ein unendlich kleines Dreieck verschwinden beide
Hohen, also Summe und Differenz — 0; fir ein unendlich grosses
Dreieck ist h, = oo und hy == b, somit Summe und Differenz
— oo, Die Differenz h, — hs wird ein zweitesmal zu Null, wenn
der Basiswinkel 60° misst. Ist er klemner als 60° so ist h, —h,
= neg., 1st er grosser als 60°% so 1st hy, —hy, = pos.

§ 15. Erstes Lisungsverfuhren. Bestimmung der Punkte B,

a) Konstruktion der Kurve. Taf. II, Fig. 9.

OA — b sei die Basis des gleichschenkligen Dreiecks. Wir
ziehen den Grundkreis und die Mittelsenkrechte MM;. Auf MM,
tragen wir ¢ von C aus nach E ab. Es gehe durech O ecin
Strahl, der den Grundkreis in Q schneidet. Von E aus schlagen
wir nun mit dem Radius r — AQ emen Kreishogen, der den
Strahl OQ 1in P; und P, schneidet. Der geometrische Ort des
Punktes P ist die Hilfskurve. Dieselbe kann daher folgender-
massen definiert werden:

Zieht man durch O Strahlen, so ist die Kurve der geo-
metrische Ort eines Strahlenpunktes, der von einem festen Punkt
E der Mittelsenkrechten denselben Abstand hat wie der Strahl
selber vom festen Punkt A. Fillt ein Kurvenpunkt in die Mittel-
senkrechte, so ist

einerseits EC+PE=h;
andererseits ist EC+ PE—c¢ + hy; folglich
hy =c¢ -+ hs, d. h. wir haben
eine Losung vor uns. Die Schnittpunkte der Kurve mit der
Mittelsenkrechten ergeben daher die gesuchten Punkte B.



— 133 —

by - Ableitung der Kurvengleichung.

Wir legen durch OA die x-Axe und durch O die y-Axe.
"x und y seien die rechtwinkligen Koordinaten eines Kurven-
punktes Pi. EN sel || AO gezogen; dann ist

EPI—-\/ X—"—°) —l—(y—c) ) (O()
EP,—AQ=bsing, in («) eingesetzt, so giebt es

bsing — \/(x — £)2+ (y —c¢)?, umgeformt
(x*-|-y%) [(X — L) +(y —¢)? ] — bfy*=0. (1)

¢) Diskussion der Kurvengleichunyg.
Die Kurve ist von 4. Ordnung und hat im Nullpunkt einen
" Doppelpunkt. Die Gleichung der Tangenten im Nullpunkt lautet:

iy (U o) =iy =0,

Spezialfille:
1. ¢=0;

et —g—\/g; die Nullpunktstangenten bilden mit der
x-Axe Winkel von +- 30°.

b
2 f= ? 4
Richtungswinkel der Tangenten — + 45° Die Tangente
y = — x 1st Wendetangente.

y =+ x\/3, Richtungswinkel — + 60°.

b 5
— 9 \/3 ]
x=—0 2mal.

Die y-Axe ist Riickkehrtangente und der Nullpunkt Spitze.
H. c>—12)—\/§.
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Die Tangenten werden imaginir, und der Nullpunkt wird
zum isolierten Punkt.

Schnittpunkte mit der y-Axe: Setze x =0 und erhalte

1. yi=y:2=0 und 2. y“—c—f— V3.

Schnittpunkte mit der x-Axe: Setze ymO und finde

1. x{=X2=0 und 2. x3(=— 12) el

So lange ¢ von 0 verschieden ist, schneidet die Kurve die
x-Axe nur im Doppelpunkt O. Ist ¢=0, so werden auch die
beiden andern Schnittpunkte reell und fallen in den Punkt C,
welcher Doppelpunkt der Kurve wird.

Die imaginiren Kreispunkte der Ebene sind Doppelpunkte
der Kurve; denn es ist

Un = (x*4-y%)"

Reelle Punkte hat die Kurve im Unendlichen nicht, daher
auch keine Asymptoten.

Die Kurve ist rational; denn sie hat 3 Doppelpunkte. Fir
¢ =0 besitzt sie 4 Doppelpunkte und zerfillt, wie wir noch sehen
werden.

Fir ¢ =0 nimmt Gleichung (1) die Form an:

(x +y2)[(x~-—)4y|—b y=0;

das Gleichungspolynom lisst sich in 2 Faktoren zerlegen; wir
erhalten:

(sry = e (e -2 VE) =0 )

daraus folgt

: 2 § s 2 b2
oder (x — —}) -I- < —- }T\/e}) = () ]

nd ) ( by (-#ix/ﬁ = W
u - L—"4:)—I“ y 4: 4'—4 }/

Die Kurve zerfillt in 2 Kreise (8) und (y), deren Mittel-
v (Db b —> b b ) .
punktskoordinaten: (Z—, —4—\/31 und (—4—-, = 5 \/3) sind.

(4)



— 135 —

ro| o

Beide Kreise haben den Radius r —
sich in O und C.

Fiar em unendlich grosses c¢ besteht die Kurve aus der
doppelt gelegten unendlich fernen Geraden und dem Nullpunkt
als 1soliertem Punkt.

. Beide Kreise schneiden

Negative c¢ erzeugen die gleichen Kurven wie positive c;
nur liegen die Gebilde symmetrisch zueinander.

d) Die Lisungen.
Wir suchen die Spitzen B der gleichschenkligen Dreiecke.

Alle haben die Abscisse x—i- Setzen wir diesen Wert 1n der

2
Kurvengleichung (1) ein, so erhalten wir
b2 . . , _
(v + ) (2 — 20y + e — bry* —o. )

Die Wurzeln dieser Gleichung in y sind die Ordinaten der
Schnittpunkte B. Lésen wir (5) auf, so finden wir zunichst
folgende kubische Hilfsgleichung:
9b* —24b*c*4 16¢* v 27b®—972b'c* 4 144 b2t —64c®

3__ i
v I ! 861 0
Die Diskriminante letzterer Gleichung lautet
bte?(64¢8 — 144b*ct + 540bte® — 27h°)
=
432
Es ist nun /=0, wenn
1. ¢=0,
3 3 6
2. c:i%\/3(1+\/4——2\/2). ©)

Wir bekommen daher folgende Hauptfille:

A. c>%\/3(1+\/z _2y3).

Die Diskriminante der kubischen Hilfsgleichung ist positiv;
die biquadratische Gleichung (5) besitzt folglich 2 reelle Wurzeln,
und wir erhalten 2 reelle Losungen.

1. c>% 14+V2).
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Beide Dreiecke sind nach Konstruktion spitzwinklig. Das
kleinere davon ist gleichseitig, wenn speziell ¢ =hy/3.

2, c.—_—g_u +V2).

Fir diesen Wert von ¢ wird Gleichung (5) erfallt, wenn

wir fir y den Wert JQ)— einsetzen. Folglich haben wir hier unter
den beiden Dreiecken ein rechtwinkliges.

3. ¢ <% (1 - %8y,

Ein Dreieck wird stumpfwinklig; das andere bleibt spitz-
winklig.

B. c:% \/3(1+\3/Z—2\?§); A4=0.

4 reelle Losungen, wovon 2 zusammenfallen. Die Kurve
beriihrt die Mittelsenkrechte MM,. Ein Dreieck ist spitzwinklig,
die 3 andern stumpfwinklig, worunter 2 zusammenfallende.

b 3_ 3__
C. e<—+ \/3(1+\/4—2\/2.

Die Diskriminante ist negativ; daher erhalten wir 4 reelle
Losungen. So lange ¢ von 0 verschieden ist, sind simtliche
Dreiecke ungleich, und zwar sind 2 derselben stumpfwinklig,
eines spitzwinklig und das vierte stumpfwinklig, rechtwinklig
oder spitzwinklig, je nachdem c%—g—(\/ﬁ — 1) ist. Taf. II, Fig. 9.

Fiir ¢=0 werden die 2 stumpfwinkligen Dreiecke unend-
lich klein, d. h. sie reduzieren sich auf die Basis. Die 2 spitz-
winkligen werden gleichseitig.

§ 16. Zuweites Lisungsverfahren. Bestimmung der Fusspunkte D
der Schenkelhihen. Die Voraussetzungen sind dieselben wie in § 14.
a) Konstruktion der Kurve, Taf. III, Fig. 10.

Es set OA=D0b die Basis des Dreiecks. Wir ziehen den
Grundkreis und die Mittelsenkrechte und machen auf der letztern
CE = ¢ — konstant. Nun ziehen wir durch O einen Strahl,
welcher den Grundkreis in @ und die Mittelsenkrechte in R
schneidet. Wir verbinden A mit @ und tragen auf dieser Ver-



bindungslinie die Strecke RE von A aus nach beiden Seiten ab,
so dass AP, = AP, —=RE ist.
Der geometrische Ort aller Punkte P ist die Kurve. Fallt

ein Kurvenpunkt in den Grundkreis, so ist

1. RE=AP =AQ=h,,

2. RE=cX hy; folglich
¢ f hy =h, oder ¢ =h, + h,; wir haben also eine Losung vor
uns. Die Schnittpunkte der Kurve mit dem Grundkreis miissen

daher die Fusspunkte D der Schenkelhohen der gesuchten Drei-
ecke sein.

by Ableitung der Kurvengleichung.

- Wir legen das rechtwinklige Koordinatensystem in gewohnter
Weise. Sind x und y die Koordinaten eines Kurvenpunktes P,
so gilt

AP, =\/(b—xF [y~ (@)
Nun 1st AP, =¢—CR. ()
Ferner 1st tgo — %% — cotg (90° — ¢) — B , somit
B(e w, eingesetzt in (8) ergiebt
ARq=— 2cy _O(; —x)b , eingesetzt in (&) fihrt
zur Kurvengleichung:
4y*[(b—x)*+4-y*] —[2cy — (b —x)b]* =0. (7)

¢) Diskussion der Kurvengleichunyg.

Die Kurve 1st von der 4. Ordnung. Verlegen wir den
Koordinatenanfangspunkt nach A durch Parallelverschiebung der
Axen, indem wir setzen

x=x"+b und y=y’,
so erhalten wir nach der Transformation und nach Weglassung
der Indizes folgende einfachere Kurvengleichung:
193 (x*4-y?) — ey +bx)* = 0. ®)

A 1st Doppelpunkt der Kurve; denn die Gleichung beginnt
mit Gliedern 2. Grades. Die Doppelpunktstangenten fallen zu-
sammen und bilden, da die Glieder 3. Grades fehlen, ‘eine Selbst-

beriithrungstangenie. Der Nullpunk! ist also Selbstberiihrungspunkt.
Bern. Mitteil. 1902. No. 1536.



Die Gleichung der Selbstberiihrungstangente lautet:
b

y=—g;% ©)
Spezialfille:
1. o= x=0. Fig. 10.
2. c:%; y=—xX

3. c=oc; y=0.

Wichst also ¢ von 0 bis oo, so dreht sich die Selbst-
berithrungstangente um 90° aus der Richtung der y’-Axe in die
Richtung der x’-Axe.

Die x’-Axe schneidet die Kurve nur im Selbstberiithrungs-
punkt A; die andern 2 Schnittpunkte fallen ins Unendliche, da
die Potenzen x® und x* nicht vorhanden sind.

- Die Schnittpunkte der y’-Axe mit der Kurve liegen fir
endliche Werte von ¢ alle im Endlichen; es ist
Yi,2=— 0 und hEX! :i C.
Die Gleichung nach x aufgeldst, ergiebt
X_2bcyi2y2\/b" —1—402—4y?.
- 4y% —b?

Jedem Wert von y entsprechen 2 verschiedene Werte von
X. Nur fir y=0 fallen die Wurzeln zusammen. In diesem
einzigen Fall liegt die Kurve symmetrisch und zwar zu beiden
Axen. Jede Parallele zur x-Axe schneidet die Kurve im End-
lichen in 2 Punkten, den Fall ausgenommen, da der Nenner Null
wird. Die 2 Parallelen

(10)

b
y=tg (1)

miissen daher Asymptoten der Kurve sein. Der Maximalwert,
den y annehmen kann, ist

y= 5 VI [ 4c.
Um die Schnittpunkte der Kurve mit der unendlich fernen
Geraden zu gewinnen, setzen wir nach bekanntem Verfahren
Un = 4y%(x? 4-y*) = 0; daraus folgt
1. y=02mal wund 2. y=+1x.
Wir haben somit 2 reelle, zur x-Axe parallele Asymptoten-
richtungen und 2 imaginire. Die Kurve schneidet also die imagi-
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niren Kreispunkte der Ebene. Da nun y=0 auch ein Faktor von
Us ist, so muss der unendlich ferne Punkt der x-Axe ein Doppel-
punkt der Kurve sein. Um die Art desselben zu untersuchen,
p10]1z1e1en wir 1hn in den Nullpunkt A und setzen zu dlesem

Zwecke in Gleichung (8):
1 ’
X=— und y:—z%,—-

Wir erhalten, wenn wir nach der Transformation noch mit

x'¢ multipliziert haben:
4y"2(14-y"?) — @ey's' 4bx) =0.

Der Nullpunkt ist Doppelpunkt. Die Gleichung der Tan-

genten 1n demselben lautet
¥ et —g— x’.

Die projizierte Kurve hat im Nullpunkt einen Knotenpunkt
mit 2 verschiedenen Tangenten; folglich ist der unendlich ferne
Punkt der x-Axe auch ein solcher Doppelpunkt. Die Tangenten
in demselben sind

y = yx’ i"g' " oder
b

y e -2f.

Diese Tangenten sind Asymptoten der Kurve, wie dies
schon die Gleichung (10) verraten hat.

Unsere Kurve gehort somit auch zu den rationalen Kurven;
denn sie besitzt einen Selbstberiihrungspunkt und einen Doppel-
punkt, was zusammen fir 3 Doppelpunkte zéhlt.

Fir c=0 besteht die Kurve, deren Gleichung nun die

Form hat
4y2(y? +x2) — hEgt=1, aus 2 kongruenten Asten (12)

zwischen den Asymptoten y —+ -?, siehe Fig. 10, Taf. 111

Fiir ein unendlich grosses c¢ besteht die Kurve aus der
doppelt gelegten unendlich fernen Geraden und der doppelt ge-
legten x-Axe. Asymptoten und Selbstberiihrungstangente laufen
parallel.

Nimmt ¢ negative Werte an, so sind die entstehenden
Kurven Spiegelbilder derjenigen mit positivem ¢ in Bezug auf
die x-Axe.
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d) Die Losungen.

Die Koordinaten der zuniichst gesuchten Schmttpunkte D
sind die Wurzeln des Systems

L. 4y*[(b—x)?-}-y?] — [2ey — (b—X) b]*=0, Kurve.
und 2. x*—bx-}y? — (0, Grundkreis.

Die allgemeine Losung dieser Aufgabe stosst auf bedeutende
Schwierigkeiten.  Wir konnen die Ubereinstimmung mit dem
ersten Verfahren nur in Spezialfillen nachweisen.

1. Fir ein gleichseitiges Dreieck besitzt der Punkt D die

I b b
Koordinaten (_:f i \/)

Setzen wir diese Werte fir x und y in Gleichung (1)
unseres Systems oben ein, so wird
clzb\/§ und  ¢3=0.
Vergleiche damit die Félle A; und C, pag. 136.
2. Bei einem rechtwinkligen Dreieck sind die Koordinaten

b b
von D—("—Z—’?

Orts wieder ein, so wird c“— (1-}-V2). Fig. 10.
Vergleiche damit A., pag. 136.
3. Fiur ein unendlich kleines Dreieck hat Punkt D die
Koordinaten (b, 0). Die Einsetzung dieser Werte liefert
¢ =0, vergleiche damit C, pag. 136; siche Fig. 10.

)- Setzt man diese Werte gleichen

VL

§ 17.  Sechste Aufgnbe: Konstruktion eines gleichschenkligen
Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenkel
und Schenkelliéhe gegeben sind.

Gegeben: 1. b.
2. s+ hy — ¢ — konstant.
Bedingungen: 1. s+ h,= g,
2. s—h>0.
Bei einem unendlich kleinen, auf die Basis reduzierten
Dreieck ist s - hy, — h Minimum; denn s = L3 und h, =0.

2 ’ 2



	

