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fälle nachzuweisen. Wir erlauben uns nur noch, die allgemeine
Formel für die Dreiecksfläche zu bringen. Es wird

_
b /c'+cy^bq^*A0B-XV 2 ^

3b
Speziell für c —^— entsteht ein gleichseitiges Dreieck; es

2

wird F=A\/ _ *- \^3.

III.
§ 8. Dritte Aufgabe : Konstruktion eines gleichschenkligen Dreiecks,

wenn die Basis und die Summe oder Differenz aus Schenkelhöhe

und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind*
Gegeben: 1. b;

2. h3 4 n + P konstant.

Bedingungen : 1. hs 4 n > ~iy;

2. hs-n<-7-brV/2.
Die Summe hs 4 n wird ein Mimimum bei einem unendlich

kleinen Dreieck; denn da ist hs =0 und n —, also h„ +n --y-
— 2

Die Differenz hs — n erreicht das Maximum bei einem

rechtwinkligen Dreieck, bei welchen h3 -~- v/2 un(1 n Oj also hs —

§ 9. Erstes Lösungsnerfahren: Bestimmung der Spitze B des gleich¬

schenkligen Dreiecks.

a) Konstruktion der Hilfskurve.
Es sei (siehe Figur 6, Tafel II) OA die gegebene Basis b.

Ziehe den Grundkreis. Schlage ferner um A einen Hilfskreis,
dessen Radius r AH c ist. Lege durch O einen Strahl,
welcher den Grundkreis in Q schneidet. Fälle von A aus ein Lot
auf diesen Strahl, das durch Q gehen muss und das den Hilfskreis

in H und Hi schneidet. Trage nun auf dem Strahl OQ
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von Q aus die Strecke QH nach der entgegengesetzten Seite

von 0, die Strecke QHi nach der gleichen Seite ab und erhalte
so 2 Punkte P und Pi, so dass

AQ +QP AQ 4QH=AH =c
und QPi-QA QHi-QA AH1 c.

Lässt man den Strahl 0 Q um 0 sich drehen, so beschreiben
die Punkte P und Pi die gesuchte Kurve. Ziehen wir also in
einem Kreise durch den einen Endpunkt 0 eines Durchmessers

Strahlen, die den Kreis in Q schneiden, so ist unsere Kurve der
geometrische Ort solcher Strahlpunkte, für die die Summe oder
Differenz der Abstände des Punktes Q vom Kurvenpunkt P einerseits

und andererseits vom andern Endpunkt A des Durchmessers
eine Konstante ist.

Die Summe der Abstände entspricht der Relation:
hs-f-n c,

die Differenz dagegen der Bedingung:
hs — n + c.

Fällt ein Kurvenpunkt P auf die Mittelsenkrechte MMi, so
wird QP n und QA hg; folglich haben wir in den
Schnittpunkten der Kurve mit der Mittelsenkrechten die gesuchten
Punkte B, d. h. die Spitzen der gleichschenkligen Dreiecke.

b) Ableitung der Kurrengleichung.

Lage des rechtwinkligen Koordinatensystems wie früher.
x und y seien die Koordinaten des Punktes P; dann ist

(OQ + QP)2 x24y2; («)

OQ bcosy?; |

QP c-QA c-bsin^,} sub- in («)?

wir erhalten
(b cos tp -\- c — b sin tp)2 x2-T-y2;

bx by /-j-:—-4-c ,—
J =V/x'!-f-y2;

\/x2-f-y2 \/x2 + y2

[x2 + y24b(y-x)]2-c2(x2+y2) 0. (1)

Polargleichung: r b (cos^> — sintp) + c. (2)

Gleichung (1) ist die Gleichung einer Kreiskonckoide, deren

Symmetrieaxe mit der positiven x-Axe einen Winkel von —45°
bildet.
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c < b \l 2 ; der Nullpunkt ist Doppelpunkt ;

c=by/2; » » » Spitze;

c>b\/2; » » » isolierter Punkt.
Ist c 0, so lautet die Kurvengleichung:

(x2 + y2 + by-bx)2 0.

Die Kurve zerfällt in zwei aufeinanderfallende Kreise.
Die Gleichung eines Kreises in Normalform heisst

b Y / b \a b2

Y) +V + -2/ -2
Die Mittelpunktskoordinaten sind I--yj—-y]> und der Radius

des Kreises ist v ^r-\j2.
Lt

Um die Gleichung der Kurve in normaler Form zu erhalten,
führen wir eine negative Drehung der Axen um 45° aus. Es

ergeben sich daher folgende Transformationsformeln :

1. x x'cos^>-Uy'siny>;
2. y — x'siny + y'comp.

Weil siny cosç> -~- y 2, so erhalten wir
2

,' » „ ,„ ; ',., [ sub in der Kurvengleichung (1);
4. x--j-yJ x 24~y

es resultiert:
(x'24y'2 —bx'\/2)2-c2(x'2-f-y'2) 0. (4)

Der Durchmesser des erzeugenden festen Kreises ist also by 2.

Ziehen wir durch O Strahlen, welche den festen Kreis in V
schneiden, so liegen auf jedem Strahl zwei Kurvenpunkte U und
W, welche von V den konstanten Abstand c haben.

c) Die Lösungen der Aufgabe.

Wir ziehen die Mittelsenkrechte x -^ • denn ihre Schnitt-
2

punkte mit der Kurve liefern die Spitzen B der gesuchten
gleichschenkligen Dreiecke. Alle diese Schnittpunkte haben die Abscisse

x -~-; es bleibt daher nur noch die Bestimmung der Ordinaten

der Punkte B übrig. Zu diesem Zweck setzen wir den Wert

für x -^- in der Kurvengleichung (1) ein und erhalten
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1 <r> \ 2 V.2 2

y2 + by--^J -c2y2--^ 0. (5)

Die Gleichung 4. Grades liefert 4 Wurzeln; somit erhalten
wir 4 Schnittpunkte, was richtig ist, da eine Gerade eine Kurve
4. Ordnung in 4 Punkten schneiden kann.

Wir bringen (5) auf die Form

rt, - b2 —2c2 b3 b4-4b2c2
y4 + 2by3H g y ~~2~y + Jß °>

b
setzen y — z y, setzen ein und erhalten

T.4 01)â„2
z4-(b24c2)z3-fbc2z4- £^- 0. (ß)

Wir zerlegen die linke Seite in 2 Faktoren, wobei wir
unbestimmte Koeffizienten anwenden, und setzen

(z2 + pz + t)(z2-pz-fu)=0, (ß)
führen die angedeutete Multiplikation aus, vergleichen die
Koeffizienten von (a) und (ß), leiten eine Gleichung in p ab, setzen

2
p2 v 4~ -5- (b2 4" °2) und erhalten schliesslich folgende kubische

o
Hilfsgleichung :

4b4_4b2c24-c4 16b6-24b4c2 —15b2c4—2c6 ,kv3
3- v ~ 0.(6)

Die Diskriminante dieser Gleichung lautet:
4ps 7.2 „4

_7 Q2 — -A±^- AL2- (4c64-3b2c44-48b4c2—32b6).
Lti Lti

Diese Diskriminante verschwindet für folgende Werte -von c :
1. c 0

r
(7)2. 0 ^-^/3^13+ 16^2 4-3^13—16^2-1

0,787996 b

Demnach bekommen wir 3 Hauptfälle für unsere Lösungen:
A. c> 0,787996 ••-• b; J pos.

Die kubische Hilfsgleichung in v (6) besitzt eine reelle und
zwei imaginäre Wurzeln; folglich werden bei der biquadratischen
Gleichung (5) in y 2 Wurzeln reell und 2 Wurzeln imaginär.
Wir erhalten zwei reelle, verschiedene Lösungen. Laut
Konstruktion sind die Dreiecke spitzwinklig.

B. c - 0,787996 ••• - b; J 0.
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Die kubische Hilfsgleichung hat 3 reelle Wurzeln, wovon
2 gleiche. In diesem Fall besitzt die biquadratische Gleichung
4 reelle Wurzeln, wovon auch 2 gleiche. Wir bekommen 4 reelle
Lösungen, wovon 2 zusammenfallen. Die ungleichen Dreiecke
sind laut Konstruktion spitzwinklig, die zwei gleichen
stumpfwinklig.

C. c<0,787996--- b

J neg., wenn wir c 0 ausschliessen.
Die Wurzeln der Gleichung (6) sind alle reell und positiv.

Die Gleichung (5) hat folglich ebenfalls lauter reelle Wurzeln
und damit unsere Aufgabe 4 wirkliche Lösungen.

Spezialfälle :

1. c_|V2.
Die Gleichung (6) bekommt die Form

9
v3 — —^ b4v 0; die Wurzeln sind

12
Vi 0.

b2 t/Qv2 TV/3.

VB —-yY/3.
Die Gleichung (ß) lautet in diesem Fall

b2
Z2 4- bz - -g-

I (z2 — bz 4-0) 0.

Subtrahieren wir von den Wurzeln dieser Gleichung -y, so

erhalten wir schliesslich folgende Werte für y:
1. yi -y-, bedingt ein rechtwinkliges Dreieck.

o
b

2. y2 — y> » » » »

3. y3 b(-^yy3 — 1 bedingt ein stumpfwinkliges Dreieck.

4. y4 — b -y y 3 4" 1 )' * * spitzwinkliges »

2. c 0; _/ 0.

Gleichung (6) nimmt die Form an
Bern. Mitteil. 1902. No. 1533.
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4b4 16b6
—?;— V

27
Die Wurzeln sind:

4 2
vi g- b-; v2 —- v3 — -g-

b-.

Gleichung (/9) bekommt die Form

^ + bl/2.Z4yj(z» 4-b\/2.z 4- -^) 0.

Subtrahieren wir wieder von den Wurzeln dieser Gleichung

-jp so finden wir für y folgende Werte:
Li

1. yi y2 —- (v/2 — 1), bedingt ein doppeltgelegtes

stumpfwinkliges Dreieck.

2. y3 y4 — (t/2 -4- 1), bedingt 2 zusammenfallende

spitzwinklige Dreiecke.

Die Dreiecke, die wir für c 0 erhalten haben, besitzen

folgende zum teil schon aus der Konstruktion hervorgehende
Eigenschaften:

1. In jedem der beiden Dreiecke ist die Schenkelhöhe hs

gleich dem äussern Schenkelabschnitt n.

2. Die Schenkelhöhe hs des einen Dreiecks ist gleich dem
innern Schenkelabschnitt m des andern und umgekehrt.

3. Die Basiswinkel dieser Dreiecke messen 22 '/» °, resp. 67 7* "¦

Satz (1) folgt aus der Konstruktion. Satz (2) soll
analytisch bewiesen werden. Zu dem Zweck berechnen wir im
spitzwinkligen Dreieck OAB die drei Grössen s, hs und m. Wir
finden:

b
S^2 v/44-2\/2;

2. hs -^-y/2 4-\/2;

o b
3. m ^

Es muss nun im spitzwinkligen Dreieck das von den
3 Stücken b, hs und m begrenzte Dreieck OADi gleich dem
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stumpfwinkligen /\ 0 AB sein, vermehrt um das von den 3 Stücken

s, h» und n gebildete rechtwinklige /\ A BD; also A OADi
AOAB4AABD, sofern Satz (2) bestehen soll. Wir schreiben
für die Flächen dieser Dreiecke die halben Produkte aus Grundlinie

und Höhe, multiplizieren das 2 im Nenner weg und erhalten:

\\J^ß- 4v/2_r^=l- «*- "+(4sl^f
-T-\J2i -T-\j2; die Gleichung ist identisch

richtig, somit unsere Behauptung bewiesen.

Die Wahrheit von Satz (3) kann trigonometrisch leicht dar-

gethan werden.

Für die Flächeninhalte dieser zwei Dreiecke erhalten wir
folgende Ausdrücke:

FOAB T^-l)
FOABi=T(V/2 + 1)

3. c -Jj-
; siehe Figur 6, Tafel IL

2

Eine Lösung wird unendlich klein; denn die Gleichung (5)

wird für c -?j- und y 0 erfüllt.
2 J

§ 10. Zweites Lösungsverfahren. Bestimmung der Fusspunkte D der

Schenkelhohe. Voraussetzungen wie in § 8.

a) Konstruktion der Hilfskurve.

Es sei (siehe Fig. 7, Taf. II) OA b die gegebene Basis.
Ziehe den Grundkreis und die Mittelsenkrechte MMi. Schlage
ferner um A einen Hilfskreis, dessen Radius r AH c ist.
Ziehe nun durch O einen Strahl, welcher den Grundkreis in Q
und die Mittelsenkrechte in R schneidet. Fälle von A aus ein
Lot auf den Strahl, welches durch Q gehen muss und den Hilfskreis

in H und Hi schneidet. Jetzt trägt man auf dem Strahl
OQ von R aus die Strecke QH nach der gleichen, die Strecke
QHi nach der entgegengesetzten Seite von 0 ab, macht also
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1. RPi QH, so dass die Relation gilt
RPi 4- AQ QH -f- AQ AH c.

2. RP2 QHi, so dass die Bedingung erfüllt wird
RP2 — AQ QHi — AQ AHi c.

Der geometrische Ort aller Punkte P bei sich drehendem
Strahl ist die Kurve. Die verschiedenen Punkte dieser Kurve
genügen einer der Relationen hs + n c.

Fällt ein Kurvenpunkt P in den Grundkreis, so wird
RP=BD=n und
QA DA hB; wir haben eine Lösung

der Aufgabe. Die Schnittpunkte der Kurve mit dem Grundkreis
liefern die Fusspunkte D der Schenkelhöhe der gesuchten Dreiecke.

b) Ableitung der Kurvengleichung.
Es seien in Fig. 7, Taf. II x und y die rechtwinkligen

Koordinaten des Kurvenpunktes P2. Es besteht nun die
Proportion :

op2: ok RP2 : CK;
die bezüglichen Werte eingesetzt,

v/5?4^:x=rp2:^=^; («)

RP2 c-(-AQ c4bsin^, sub. in («);
wir erhalten

\/x24-y2 : 2x (c4-bsiny) : (2x—b);
(x24-y2) : 2x (cy/x^F74-by) : (2x-b);

[(x2+y2) (b—2x) + 2bxy]2 — 4c2x2(x2+y2) 0. (9)

Polargleichung :

r=bsinc/> 4-^> r-c. (10)T zcostp — v '

c) Eigenschaften der Kurve.

Die Kurve ist von der 6. Ordnung. Sie besteht aus zwei
unendlichen Ästen, von denen der eine eine Schleife mit Doppelpunkt

in O besitzt. Der Nullpunkt ist 4facher Punkt; denn die
Gleichung beginnt mit Gliedern 4. Grades.

Als Gleichung der Tangenten im Nullpunkt erhalten wir:
v4 4vs 6b3—4c2 v2 4v b*—4c2
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Wir können diese Gleichung nur für Spezialfälle auflösen.
1. c 0.

Gleichung (11) bekommt die Form
y4 4y3 6y2 4y
X4 X8 X2 X '

T+1)-0-
y — x ist 4fach gelegte Tangente im Nullpunkt.
Für c 0 lautet nun die Kurvengleichung:

[(x24-y2)(b-2x) + 2bxy]2 0. (12)

Die Kurve zerfällt somit in zwei zusammenfallende Kurven
3. Ordnung. Die Gleichung eines Astes lautet

(b-2x)(x24-y2)42bxy 0. (12a)

Die Gerade y — x ist für jede der beiden Kurven 3.

Ordnung Rückkehrtangente; denn setzen wir in Gleichung (12a) für
y den Wert — x ein, so erhalten wir :

x3 0; der Nullpunkt ist also Spitze.

2 c-
b

2. c- 2-
Gleichung (11) nimmt die Form an

Zliiz! 5yl 4y
x4 "l- x3 "f" X2 "*" x

0. («)

X 0;
x

die x-Axe ist Tangente.

Dividieren wir in («) den Faktor -^- weg, so bleibt
x

4y2 5y
1 +^r 4-4=o. {ß)

Xs ' X" X

y 4
Setze — w s-,x 3

Die transformierte Gleichung lautet:
„ w 56

W X+27=°- (y)

Die Diskriminante dieser Gleichung wird J pos.; somit
besitzt Gleichung (ß) eine reelle und zwei imaginäre Wurzeln
und Gleichung (a) im ganzen 2 reelle und 2 imaginäre Werte
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y TAW. „._
b

für —• Für c"= --j- sind also 2 Nullpunktstangenten der Kurve
x

— 3 0. (Ô)

reell und 2 imaginär.
3. c b.

Gleichung (11) erhält die Form

iL 4. iz!. M lz
xt -r x3 -r X2 -r x

Die kubische Hilfsgleichung, die wir ableiten können, hat
eine reelle und zwei imaginäre Wurzeln; folglich besitzt
Gleichung (ô) 2 reelle und 2 imaginäre Wurzeln. Die Nullpunktstangenten

sind wieder zur Hälfte reell und zur Hälfte imaginär.
Überhaupt hat die Kurve, wie schon die Konstruktion

ergiebt, im Nullpunkt stets 2 reelle und 2 imaginäre Tangenten
mit Ausnahme des Falles, da c 0 ist.

Um die Schnittpunkte mit der y-Axe zu erhalten, setzen
wir in der Kurvengleichung (9) x 0 und erhalten

b2y4 0;
somit schneidet die y-Axe die Kurve 4 mal im Nullpunkt und, da
die Koeffizienten von y6 und y5 0 sind, noch 2 mal im Unendlichen.

Setzen wir y 0, so bekommen wir die Abschnitte auf der
x-Axe. Wir erhalten die Gleichung:

[x2(b—2x)]2-4c2x4 0.

1. x4 0; x 0 4mal;

2. (b-2x)2 c2; x -br±c.
Li

Die x-Axe schneidet die Kurve 6 mal im Endlichen, worunter
4mal im Nullpunkt.

Zur Bestimmung der Asymptotenrichtungen machen wir die
Kurvengleichung mit z homogen, setzen dann z 0 und erhalten

4x2(x24-y2)2 0;
1. x 0 2mal;
2. y + ix 2mal.

Die imaginären Kreispunkte der Ebene sind also Doppelpunkte

der Kurve. Ferner haben wir in

x 4 (13>

2 zusammenfallende reelle Asymptoten. Um dies zu zeigen,
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machen wir die Mittelsenkrechte x -=- zur y-Axe vermittelst
2 J

der Transformationsformeln :

b
X X 4--JJ-,

y y'-
Die Gleichung der Kurve wird:

^_2x'(x'2 + bx'+-^-+y'2)4-2by'(x' + A)]2-
4c2(x'2-f bx'-f-^-j (x,24-bx'+-b^- + y'2j 0. (14)

Wir projizieren die unendlich fernen Punkte in der Richtung
der y'-Axe auf die x'-Axe und setzen

y y„
x"und x' —Tj-
y '

Wir erhalten, wenn wir noch die Gleichung mit y"6 multiplizieren,

|_ 2x" (x"24bx"y" -f ¥Ç- f l) 4 2by" (x" + ^)J~
4c2y"2(x"24bx"y" U b-t x"24-bx"y"

b2v"2 \+ 4 +1) °- (15)

Die Schnittpunkte mit der y"-Axe: Setze x" 0, erhalte
I V.»

b4y"4-b2c2y"^-bj-y"24-lj 0,

woraus 1. y"4 0; y" 0 4mal.

2- y"=±^V^=^. (e)

Der Nullpunkt der projizierten Kurve ist Doppelpunkt,
dessen Tangenten in x" 0 zusammenfallen, und dafürx"=0
y"4 0 wird, so ist derselbe und damit auch der unendlich ferne

Punkt der Asymptote x --j- ein Selbstberührungspunkt. Die Kurve
2

hat also im Unendlichen einen Selbstberührungspunkt, und die

Mittelsenkrechte x -y- ist Selbstberührungsasymptote.
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Aus (e) folgt ferner, dass die Gerade x -jj- die Kurve im
2

Endlichen im allgemeinen in 2 Punkten schneidet, deren Ordinaten

bc / ï
y=±-2-Vb^? sind-

Die Schnittpunkte sind reell, wenn c < b,

imaginär, wenn ob
und liegen im Unendlichen, wenn c b.

Im letztern Fall ist der unendlich ferne Punkt der Kurve
ein Selbstberührungspunkt, in welchem die Mittelsenkrechte als

Asymptote die Kurve in 6 zusammenfallenden Punkten berührt,
also Inflexionsknoten zugleich.

Unsere Kurve ist also rational; denn sie besitzt
einen 4fachen Punkt im Nullpunkt 6 Doppelpunkte,
einen Selbstberührungspunkt =2 »

2 Doppelpunkte in den imaginären
Kreispunkten 2 »

also das Maximum von 10 Doppelpunkten.
Die Kurve hat, wie sich aus der Konstruktion ergiebt,

Wendepunkte und zwar, wenn
1. c>b 2 WP im rechten Ast;
2. b>c>0 4WP, nämlich 3 im rechten Ast und einen

im obern linken Ast;
3. c 0 1 WP im aufsteigenden Ast der doppelt

gelegten Kurve 3. Ordnung.
Für ein unendlich grosses c besteht die Kurve aus der

doppelt gelegten y-Axe und der unendlich fernen Geraden (linker
Ast) und aus der unendlich fernen Geraden samt dem Nullpunkt
als isoliertem Punkt (rechter Ast), zusammen also aus der doppelt
gelegten y-Axe, der doppelt gelegten unendlich fernen Geraden
und dem Nullpunkt als isoliertem Punkt.

Negative c erzeugen die gleichen Kurven wie positive c,
weil c quadratisch vorkommt.

d) Die Lösungen der Aufgabe.

Es handelt sich um die Schnittpunkte D der Kurve mit
dem Grundkreis. Die Koordinaten dieser Punkte D sind die
Wurzeln des Gleichungssystems:
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1. [(b-2x)(x24y2)4-2bxy]2-4c2x2(x2-fy2)=0, Kurve. ì

2.
*

x2- b x+y2 0, Grundkreis. (°)

Da die Kurve von 6. Ordnung ist, so wird sie vom Kreis
in 12 Punkten geschnitten. Von diesen Schnittpunkten absorbiert
der Nullpunkt 4, da er ein 4facher Punkt der Kurve ist. Weitere
4 werden absorbiert durch die imaginären Kreispunkte der Ebene,
welche der Kurve je doppelt angehören. Es bleiben somit 4

Schnittpunkte übrig; folglich kann unsere Aufgabe im Maximum
4 reelle Lösungen aufweisen. Wir erhalten mithin das gleiche
Ergebnis wie beim ersten Lösungsverfahren. Wir wollen die
Übereinstimmung in zwei Spezialfällen zeigen.

1. c 0, Taf. II, Fig. 7.

Das Gleichungssystem («) heisst nun:
1. (b-2x)(x2+y2) + 2bxy 0l
2. x2—bx+y2 =0} W

Wir lösen (2) nach y auf, setzen den Wert in (1) ein und
erhalten zur Bestimmung der Abscissen von D' folgende Gleichung
in x: 4b2x2(bx — x2) (b — 2x)2b2x2, woraus

x -b-(2 4y/2).
Für y erhalten wir den Ausdruck:

y ±^V2.
Da die Koordinaten doppelwertig auftreten, so müssen wir

2 Schnittpunkte haben. Den positiven Zeichen in den Wurzeln
entspricht der eine, den negativen der andere. Die beiden

Schnittpunkte sind somit

D' [4(2+Vä),.T\ß\ und K [x(2-v 2), --j- Vä)
Jeder der beiden Schnittpunkte ist indes noch doppelt zu zählen,
weil die Kurve 3. Ordnung doppelt gelegt ist.

Die Basishöhen der beiden Dreiecke werden aus der
Proportion bestimmt:

^-(2±V/2):-br- ±4v/2:hb;

hbl A(v/2-l), AOAB1;

hb2=-^-(\/2 4-i), A oabJ.
Bern. Mitteil. 1902. No. 1534.
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Diese Werte stimmen mit denjenigen auf pag. 114

vollständig überein.

2. c 4-y'2. Taf. II, Fig. 7.
2

Die Gleichung in x, deren Wurzeln die Abscissen der
Schnittpunkte D sind, bekommt folgende Form

64x4 - 128bx3-f-84b2x2 - 20b3x4-b4 0.

Die Wurzeln dieser Gleichung sind:

1. xi 0-f--^-, 3. x8 -j-\/3 4--jy-,

2. x2 0 + ~, 4. ^-lt/3+l
dann wird

1
b

l. yi=-2«
o b
8- y3 — T>

b
2- ?* —%>

b
4- y4=-T'

Dies sind die Koordinateri der Schnittpunkte D.

Als Basishöhe für die 4 Lösungen erhalten wir:

1. hb -J- i

Li
für A OABi;

2- hb
*

» A OAB3;

3. hb b -L-^3 - 1 für A OABa;

4. h„ —b/--~v/3 + l) » A OABi.

Diese Werte stimmen vollständig überein mit denjenigen
auf Seite 113.

IV.

§ 11. Vierte Aufgabe: Konstruktion eines gleichschenkligen Dreieckes,

wenn die Basis und die Summe oder Differenz der durch die
Schenkelhöhe erzeugten Schenkelabschnitte gegeben sind.

Gegeben: 1. b;
2. m 4- n + c konstant.


	

