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§ 5. Zweite Aufgabe: Ein gleichschenkliges Dreieck zu kon-
struieren, wenn die Basis und die Summe oder Differenz aus Schenkel
und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1. b,

2. s+ n=-+ ¢ = konstant.
Bedingungen :

s - n> \/2
2. s—n< & \/2::pos

Im rechtwinkligen Dreleck i1st n=0 und s = \/ 2. Wird

das Dreieck spitzwinklig, so wachsen sowohl s als a,uch n; also

muss s+n>§\/§ sein. Fiar em stumpfwinkliges Dreieck

zichen wir den Grundkreis und finden, dass s +n> g\/ 2 wird

nach dem Satz: In einem Kreise gehoért zu einem grossern

Bogen auch die grissere Sehne. %\/Q 1st somit das Minimum,
das der Wert der Summe s-}n annehmen kann.

Was die 2. Bedingung betrifft, so erreicht die Differenz
s —1n emen maximalen Wert beim Iechtwmkhgen Dreieck, wo

b——n-—b—O————\/Z 1st.

Bei emnem spitzwinkligen Dreieck ist ndmlich s —n < % V2
nach dem oben erwihnten Sehnensatz, und bei einem stumpt-

winkligen Dreieck ist % \/2 schon > als s allein, umsomehr also
}22— \/§ > s—n.

§ 6. Erstes Lisungsverfahren. Bestimmung des Punktes D.
@) Konstruktion der Hilfskurve. Taf. I, Fig. 4.

Mache OA gleich der gegebenen Basis b. Ziehe die Mittel-
senkrechte MM;. Schlage um O einen Hilfskreis, dessen Radius
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r=0H gleich der gegebenen Konstanten c ist. Ziehe durch O
emen Strahl, welcher die Mittelsenkrechte in R und den Hilfs-
kreis in H und H’ schneidet. Mache RP = RH

und RP"=RH'".
Dreht sich nun der Strahl OR um O, so beschreiben die Punkte
P und P’ die Kurve. Die Schnittpunkte dieser Kurve mit dem
Grundkreis liefern die gesuchten Fusspunkte D der Schenkel-
hohe. Es ist nimlich ¢ = OH = OR + RH. OR entspricht
dem s; folglich muss RH = RP den Schenkelabschnitt n
bedeuten. Dieser Schenkelabschnitt erstreckt sich in Wirklich-
keit nur von der Mittelsenkrechten bis zum Grundkreis. Wenn
also der Kurvenpunkt P auf den Grundkreis fillt, so ist RP==n,
OR = s, und wir haben eine Losung der Aufgabe.

Schneidet der Strahl eimnes Kurvenpunktes P die Mittel-
senkrechte mnerhalb des Hilfskreises O, so geniigt P der Be-
dingung OR+RP=s-}n=0H=c.

Fir Kurvenpunkte P, deren entsprechende Strahlen die
Mittelsenkrechte ausserhalb des Hilfskreises O schneiden, gilt
die Relation: OR—RP=s—n=0H=c¢.

Far alle Strahlen haben wir endlich noch Kurvenpunkte
P’, welche der Relation entsprechen:

RP"  —-0OR=n—s=0H"=c.

Weil in emem gleichschenkligen Dreieck der an die Spitze
grenzende Schenkelabschnitt n niemals grosser, hiochstens gleich
s werden kann, so kommt natiirlich der Fall n —s=¢ fir die
Losung unserer Aufgabe nicht in Betracht. Der Kurvenzweig,
auf dem die Punkte P’ liegen, liefert daher keine Losungen
unserer Aufgabe.

b) Ableitung der Kurvengleichuny.

Wir wihlen wieder O zum Nullpunkt eines rechtwinkligen
Koordinatensystems und legen durch OA die positive x-Axe. Es
selen X und y die Koordinaten eines Kurvenpunktes P, dessen
Strahl den Richtungswinkel ¢ habe. Dann ist

OP=0H —-2RP =¢—2RP;
somit F m= (C — QRP) sin Qoo (p’)



— 104 —

Ziehe PN | MM,, so ist

b
PN == ‘g— — X,
b
s
RP = PN — » sub. 1 (B);
cos ¢ Cos ¢ :
b
- —x)2
wir erhalt = _—E——L) D
rhalten y ((, cong sin ¢
y=(ccos ¢ —b}-2x) -}i";
_ex g
Vo
(x*4v¥) (b—x)—e2x?=0 - (1)
In Polarkoordinaten: Pre== b +F ¢ (la)
cos ¢ '

Unsere Kurve ist somit die Konchoide des Nikomedes.
Die x-Axe ist Symmetrieaxe und die Asymptote x=h= LA
die Leitlinie.
¢ >b; der Nullpunkt ist Doppelpunkt:
c=h; » » »  Spitze;
c<b; » » » 1solierter Punkt.
Es bleibt nur noch nachzuweisen, dass nach der gewohnlichen
Definition der Nikomedischen Konchoide
PY =¥ =g 38t
Nach Konstruktion ist

RP'—OR =c.
Nun 1st OR=RYV,
also RPF—RV=VP —=c. ()
Ferner 1st nach Konstruktion
OR-FPR—¢;
fir OR kann man RV setzen; also ist _
RV+RP=PV=c. (d)

Aus (y) und (J) folgt, dass
PV=P'V=c ist.
‘Wir haben also die Nikomedische Konchoide nicht mit Hilfe
der Leitlinie, sondern mit Hilfe der zwischen dem festen Punkt
O und der Leitlinie gelegenen Mittelparallelen MM; und einem
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Kreis konstruiert. Die Basis b des zu konstruierenden gleich-
- schenkligen Dreieckes ist der Abstand des festen Punktes O von
der Leitlinie AL.

¢) Die Lisungen unserer Aufgabe.

Wir haben die Schnittpunkte D der Kurve mit dem Grund--
kreis zu bestimmen. Die Koordinaten der Punkte D sind die
Wurzeln des Gleichungssystems :

1. (x24y?) (x —b)P*—c?x®2=0; Gleichung der Kurve.

2. r’—brty* =0; » des Grundkreises.

Aus (2) folgt ¥ o= \/x (b —x), sub. in (1); wir er-
halten bx(x —b)*—c?x2=0,

oder b(x—b)*—ec?x=0. (2)

Die Wurzeln dieser quadratischen Gleichung sind die Ab-
scissen der Schnittpunkte D. Wir erhalten statt 8 Schnittpunkte
nur zwel, weil beide Kurven durch die unendlich fernen imagi-
niaren Kreispunkte der Ebene gehen, weil ferner zwei Schnitt-
‘punkte in den Nullpunkt fallen und weil endlich y nur in der
2. Potenz vorkommt.

Gleichung (2) nach x aufgelost giebt
2b? J-c?4c\/4b2 - c?
= 21 '

Nun ist y=\/x(b—x);
x darf also hochstens=b werden; sonst werden die Schnitt-
punkte imaginér. Dies folgt iibrigens schon aus der Konstruktion.
Wir konnen daher im Ausdruck fir x, den Spezialfall ¢ =0 aus-
genommen, nur das negative Zeichen der Wurzel brauchen. Es
wird somit der Ausdruck fir die Abscisse von D
K_2b3-+~c*-—c\/4b2+ c?
i 2b

y=i% 2c] (b2 | e)VIR @ —@Bbieted) | (@)

Weil das Wurzelzeichen unter der Wurzel nur eindeutig
genommen werden darf, so erhalten wir fir y 2 Werte, die sich
nur im Vorzeichen unterscheiden. Wir erhalten somit 2 reelle
Schnittpunkte D, welche symmetrisch zur x-Axe liegen. Dies
bedingt ferner als Losungen 2 gleichschenklige Dreiecke, welche

Bern. Mitteil. 1902, No. 15632,

; dann wird (43)
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kongruent sind und eine symmetrische Lage zur gemeinsamen
Basis b haben.

Bei variablem ¢ erhalten wir folgende Hauptfille unter
den Losungen:

A. C>%\/§.

Die Abscisse der Schnittpunkte D und D; 1st <—l2)— Die

entstehenden Dreiecke sind somit spitzwinklig und geniigen der
Bedingung:
s --n—-c.
3b

1. Unterfall ¢ > S

Der Dreieckswinkel an der Spitze ber B st < 60°. Ist
speziell ¢ = oo, so fallen die Punkte D und D, zusammen in den
Nullpunkt. Es entstehen 2 unendlich grosse Dreiecke.
3b
D]

-

Es wird x = —2— und y= i% V3.

2. Unterfall ¢ ==

Die Drelecke sind gleichseitig.

3h b = Z . ;
5~ >¢ > 5 vV 2. Taf. I, Fig. 4.
Spitzwinklige Dreiecke, deren Winkel an der Spitze zwischen
60° und 90° liegt.

3. Unterfall

B. e= % \/2 = Grenzfall.
Es wird x = g und y =+ }2)-

Die Dreiecke sind rechtwinklig und erfillen die Bedingung:

stn=c¢; n=0.
C. c<l§—\/§-

: b : . .
Es wird x> —-; dies hat zur Folge, dass die Drelecke
-

stumpfwinklig werden. Fiir dieselben gilt die Relation:
S—1n=c.
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Wird speziell ¢=0, so fallen die Schnittpunkte D und D!
zusammen auf A (b,0), und da jeder doppelt zu nehmen ist, so
erhalten wir als Losungen 4 unendlich kleine Dreiecke, die sich
auf die Basis reduzieren.

§ 7. Zuweites Lisungsverfahren. Bestimmung der Punkte B.

Es gelten die Voraussetzungen des § 5.

a) Konstruktion der Hilfskurve. (Ohne Figur.) Mache O A = der
gegeben Basis b. Ziehe den Grundkreis. Schlage ferner einen
Hilfskreis um O, dessen Radius r=OH ==¢, der gegebenen
Konstanten. Lege nun durch O einen Strahl, welcher den Grund-
kreis in Q und den Hilfskreis in H und H; schneidet. Halbiere
die Strecken HQ und H;Q in den Punkten P und P;. Lassen
wir den Strahl OQ um O sich drehen, so erzeugen die Punkte
P und P; die gesuchte Kurve. |

Es entspricht nun die Strecke OP, resp. OP; dem Schen-
kel s; folglich muss die Strecke P(Q, resp. P1Q dem Schenkel-
abschnitt n entsprechen, da n gleich dem Abstand des Schenkel-
endpunktes vom Grundkreis ist, gemessen auf dem zugehorigen
Strahl. ‘

Die Kurve ist der geometrische Ort eines Strahlpunktes,
dessen Summe oder Differenz der Abstéinde vom Ursprung O
und dem Grundkreis eine Konstante ist.

Da OP dem Schenkel s und P dem Endpunkt desselben
entspricht, so haben wir in den Schnittpunkten der Kurve mit
der Mittelsenkrechten die gesuchten Punkte B. Die innere
Schleife liefert nur im Spezialfall ¢ =0 Schmittpunkte.

b) Abteilung der Kurvengleichung.

Wir erhalten, indem wir analog wie friher vorgehen, die
’ 2 g
Gleichung: (Xa +yi— —12)— x) - % (x*+4-vy?) =0. (5)

Dies ist die Gleichung einer Kreiskonchoide.

b . , : |
5 1st der Durchmesser des erzeugenden festen Kreises und

;— der konstante Abstand der Kurvenpunkte vom Grundkreis, ge-

messen auf den zugehorigen Strahlen. Die x-Axe ist Symmetrieaxe.
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¢<<b; Nullpunkf ist Doppelpunkt,
c::b; » » Spitze,

die positive x-Axe ist Riickkehrtangente.
¢ > b; Nullpunkt ist isolierter Punkt.

In Polarkoordinaten lautet die Gleichung der Kurve:

b c .
=5 cosqoiwz—- (6)

¢) Die Lisungen der Aufgabe.

Wir ziehen die Mittelsenkrechte, da es sich um deren
Schnittpunkte B mit der Kurve handelt. Die Abscisse aller
dieser Punkte ist x=g- Fithrt man diesen Wert fiir x in der
Kurvengleichung (5) ein, so erhilt man emme Gleichung in vy,
deren Wurzeln die Ordinaten der Schnittpunkte B, der Spitzen
der gesuchten gleichschenkligen Dreiecke sind. Diese Gleichung
lautet:

i Oy bie*
v 4 16
Die Gleichung, zunichst nach y* aufgelost, ergiebt
§ c*+c\/4b*|-¢?
- 8

Da y nicht imaginir werden darf, so ist nur das positive
Zeichen der Wurzel zu gebrauchen mit Ausnahme des Spezial-
talles ¢ =0; daraus folgt

1 c®}c\4bifc? -
W Ry LIS g

Man erhilt demnach 2 Schnittpunkte, welche symmetrisch
zur x-Axe liegen. Dies bedingt als Losungen im allgemeinen
2 kongruente symmetrisch zur Basis gelegene Dreiecke. Die
Losungen sind spitzwinklig, rechtwinklig oder stumpfwinklig, je
nachdem

= (),

c % % V2 ist.

Das zweite Losungsverfahren fiihrt zu denselben Ergebnissen
wie das erste. (Vergleiche damit die Resultate auf pag. 106 und
107.) Wir verzichten darauf, die Ubereinstimmung fiir Spezial-
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falle nachzuweisen. Wir erlauben uns nur noch, die allgemeine
Formel fiir die Dreiecksfliche zu bringen. KEs wird

b /et4c\4bif-c?
Fopos=7 \/ 2 )
Speziell fir ¢ = h entsteht ein gleichseitiges Dreieck; es
. b /T VAR g
wird F= T 5 = % \/3'
1.

§ 8. Dritte Aufgabe: Konstruktion eines gleichschenkligen Drei-"
ecks, wenn die Basis und die Summe oder Differenz aus Schenkelhihe
und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1. b;

2. hy +n = + ¢ = konstant.

Bedingungen: 1. hy+n> —12)— ;

B, hs—anrg\/é.
Die Summe h, +n wird ein Mimimum bei einem unendlich

kleinen Dreieck; denn da ist hy =0 und n= %, alsoh, +n= %

Die Differenz hy — n erreicht das Maximum bei einem recht-

winkligen. Dreieck, bei welchen h; =%\/§ und n =0, also h, —
Lo |
= ? \/2.

§ 9. Erstes Lisungsverfahren: Bestimmung der Spitze B des gleich-
schenkligen Dreiecks.

a) Konstruktion der Hilfskurve.

Es sei (siehe Figur 6, Tafel II) OA die gegebene Basis b
Ziehe den Grundkreis. Schlage ferner um A emen Hilfskreis,
dessen Radius r=AH=c ist. Lege durch O einen Strahl, wel-
cher den Grundkreis in () schneidet. Félle von A aus ein Lot
auf diesen Strahl, das durch Q gehen muss und das den Hilfs-
kreis in H und H; schneidet. Trage nun auf dem Strahl OQ



	

