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II.

§ 5. Zweite Aufgabe: Ein gleichschenkliges Dreieck zu
konstruieren, wenn die Basis und die Summe oder Differenz aus Schenkel

und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1.

2.

Bedingungen :

1.

b,
s + n 4 c konstant.

s4-n>^\/2,

2. s — n<-jj- \/2 pos.
Li

Im rechtwinkligen Dreieck ist n=0 und s -^-\/2. Wird
das Dreieck spitzwinklig, so wachsen sowohl s als auch n; also

muss s4"n^>-H"V2 sein. Für ein stumpfwinkliges Dreieck
2

ziehen wir den Grundkreis und finden, dass s4~n> -~- y72 wird
Lt

nach dem Satz: In einem Kreise gehört zu einem grössern

Bogen auch die grössere Sehne. -^r\JZ ist somit das Minimum,
2

das der Wert der Summe s-4-n annehmen kann.

Was die 2. Bedingung betrifft, so erreicht die Differenz
s — n einen maximalen Wert beim rechtwinkligen Dreieck, wo

s — n s — 0 ~ \/2 ist.
Lt

b —
Bei einem spitzwinkligen Dreieck ist nämlich s — n<^-y\/2

nach dem oben erwähnten Sehnensatz, und bei einem

stumpfwinkligen Dreieck ist -~- \J2 schon >¦ als s allein, umsomehr also
u

^-V/2>s—n.

§ 6. Erstes Lösungsverfahren. Bestimmung des Punktes D.

a) Konstruktion der Hilfskurve. Taf. I, Fig. 4.

Mache OA gleich der gegebenen Basis b. Ziehe die
Mittelsenkrechte MMi. Schlage um 0 einen Hilfskreis, dessen Radius
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r O H gleich der gegebenen Konstanten c ist. Ziehe durch O

einen Strahl, welcher die Mittelsenkrechte in R und den Hilfskreis

in H und H' schneidet. Mache RP RH
und RP' RH'.

Dreht sich nun der Strahl OR um 0, so beschreiben die Punkte
P und P' die Kurve. Die Schnittpunkte dieser Kurve mit dem
Grundkreis liefern die gesuchten Fusspunkte D der Schenkelhöhe.

Es ist nämlich c OH= OR+-RH. OR entspricht
dem s; folglich muss RH RP den Schenkelabschnitt n
bedeuten. Dieser Schenkelabschnitt erstreckt sich in Wirklichkeit

nur von der Mittelsenkrechten bis zum Grundkreis. Wenn
also der Kurvenpunkt P auf den Grundkreis fällt, so ist RP —n,
OR s, und wir haben eine Lösung der Aufgabe.

Schneidet der Strahl eines Kurvenpunktes P die
Mittelsenkrechte innerhalb des Hilfskreises 0, so genügt P der
Bedingung OR4-RP s4-n OH c.

Für Kurvenpunkte P, deren entsprechende Strahlen die
Mittelsenkrechte ausserhalb des Hilfskreises 0 schneiden, gilt
die Relation: OR —RP s — n OH c.

Für alle Strahlen haben wir endlich noch Kurvenpunkte
P', welche der Relation entsprechen:

RP' — OR n - s OH' c.

Weil in einem gleichschenkligen Dreieck der an die Spitze
grenzende Schenkelabschnitt n niemals grösser, höchstens gleich
s werden kann, so kommt natürlich der Fall n — s c für die

Lösung unserer Aufgabe nicht in Betracht. Der Kurvenzweig,
auf dem die Punkte P' liegen, liefert daher keine Lösungen
unserer Aufgabe.

b) Ableitung der Kurvengleichung.

Wir wählen wieder 0 zum Nullpunkt eines rechtwinkligen
Koordinatensystems und legen durch OA die positive x-Axe. Es
seien x und y die Koordinaten eines Kurvenpunktes P, dessen

Strahl den Richtungswinkel tp habe. Dann ist

y OP • sirxtp; (a)

OP OH -2RP=c — 2RP;
somit y-(c- 2RP) sin tp (ß)
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Ziehe PNJ_MMi, so ist

PN
b
-§—x.

RP PN t —x
sub. in

COSÇ> cos^
G»);

wir erhalten

ex

G
y c

y (c cos tp -

b TT-

-x)2\
— sin ç

cos tp J

- b 4- 2 x) -}-
X

)•

vW;y2

(x24-y2)(b--x)2 —c2x2 :() •

In Polarkoordinaten: r
b

cos tp

(1)

+ c. (la)

Unsere Kurve ist somit die Konchoide des Nikomedes.

Die x-Axe ist Symmetrieaxe und die Asymptote x b L A
die Leitlinie.

c>b; der Nullpunkt ist Doppelpunkt:
c b; » » » Spitze;
c<]b; » » » isolierter Punkt.

Es bleibt nur noch nachzuweisen, dass nach der gewöhnlichen
Definition der Nikomedischen Konchoide

PV VP' c ist.

Nach Konstruktion ist
RP' —OR c.

Nun ist OR RV,
also RP'_RV VP'=c. (y)

Ferner ist nach Konstruktion
OR f-PR c;

für OR kann man RV setzen; also ist
RV4-RP PV c. (Ô)

Aus (y) und (d) folgt, dass

PV P'V c ist.
Wir haben also die Nikomedische Konchoide nicht mit Hilfe

der Leitlinie, sondern mit Hilfe der zwischen dem festen Punkt
0 und der Leitlinie gelegenen Mittelparallelen M Mi und einem
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Kreis konstruiert. Die Basis b des zu konstruierenden
gleichschenkligen Dreieckes ist der Abstand des festen Punktes 0 von
der Leitlinie AL.

c) Die Lösungen unserer Aufgabe.

Wir haben die Schnittpunkte D der Kurve mit dem Grundkreis

zu bestimmen. Die Koordinaten der Punkte D sind die
Wurzeln des Gleichungssystems:

1. (x2-(-y2) (x—b)2—c2x2 0; Gleichung der Kurve.
2. .r2 — bx-\-y2 =ö; » des Grundkreises.

Aus (2) folgt y \/x(b—x), sub. in (1); wir
erhalten bx(x —b)2—c2x2 0,
oder b(x — b)2 — c2x 0. (2)

Die Wurzeln dieser quadratischen Gleichung sind die
Abscissen der Schnittpunkte D. Wir erhalten statt 8 Schnittpunkte
nur zwei, weil beide Kurven durch die unendlich fernen imaginären

Kreispunkte der Ebene gehen, weil ferner zwei Schnittpunkte

in den Nullpunkt fallen und weil endlich y nur in der
2. Potenz vorkommt.

Gleichung (2) nach x aufgelöst giebt

- 2b2 + c2 + c\/4b24rc2"
X~2 2b '" '

Nun ist y \/x (b — x) ;

x darf also höchstens b werden ; sonst werden die Schnittpunkte

imaginai-. Dies folgt übrigens schon aus der Konstruktion.
Wir können daher im Ausdruck für x, den Spezialfall c 0

ausgenommen, nur das negative Zeichen der Wurzel brauchen. Es

wird somit der Ausdruck für die Abscisse von D

2b2-fc2-cv4b24c2 ,*,x ^t^ ; dann wird (o)
Lt D

y==±2b\/2cl(b2+c2)v/4b2+c2_(3b2c+c3))' (4)

Weil das Wurzelzeichen unter der Wurzel nur eindeutig

genommen werden darf, so erhalten wir für y 2 Werte, die sich

nur im Vorzeichen unterscheiden. Wir erhalten somit 2 reelle

Schnittpunkte D, welche symmetrisch zur x-Axe liegen. Dies

bedingt ferner als Lösungen 2 gleichschenklige Dreiecke, welche
Bern. Mitteil. 1902. No. 1532.
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kongruent sind und eine symmetrische Lage zur gemeinsamen
Basis b haben.

Bei variablem c erhalten wir folgende Hauptfälle unter
den Lösungen:

A. c>^-V/2-
i-i

Die Abscisse der Schnittpunkte D und Di ist < -5- Die
Lt

entstehenden Dreiecke sind somit spitzwinklig und genügen der
Bedingung:

s 4- n c.

1. Unterfall c > —^—2

Dei- Dreieckswinkel an der Spitze bei B ist <C 60°. Ist
speziell c oc, so fallen die Punkte D und Di zusammen in den

Nullpunkt. Es entstehen 2 unendlich grosse Dreiecke.

2. Unterfall c —- —^—

Es wird x -,- und y=+-ö-v3.
Die Dreiecke sind gleichseitig.

3. Unterfall ~ > c > % \J 2. Taf. I, Fig. 4.
LI Li

Spitzwinklige Dreiecke, deren Winkel an der Spitze zwischen
60° und 90° liegt.

B. c ~ V/2 Grenzfall.
2

Es wird x — und y 4 w-2 ' 2

Die Dreiecke sind rechtwinklig und erfüllen die Bedingung:

s4n c; n 0.

C c<|v/2-
Es wird x > — ; dies hat zur Folge, dass die Dreiecke

Lt

stumpfwinklig werden. Für dieselben gilt die Relation:
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Wird speziell c 0, so fallen die Schnittpunkte D und D '

zusammen auf A (b, 0), und da jeder doppelt zu nehmen ist, so
erhalten wir als Lösungen 4 unendlich kleine Dreiecke, die sich
auf die Basis reduzieren.

§ 7. Zweites Lösungsverfahren. Bestimmung der Punkte B.
Es gelten die Voraussetzungen des § 5.

a) Konstruktion der Hilfskurre. (Ohne Figur.) Mache OA der
gegeben Basis b. Ziehe den Grundkreis. Schlage ferner einen
Hilfskreis um 0, dessen Radius r O H — c, der gegebenen
Konstanten. Lege nun durch 0 einen Strahl, welcher den Grund-
kreis in Q und den Hilfskreis in H und Hi schneidet. Halbiere
die Strecken HQ und HiQ in den Punkten P und Pi. Lassen
wir den Strahl OQ um O sich drehen, so erzeugen die Punkte
P und Pi die gesuchte Kurve.

Es entspricht nun die Strecke OP, resp. OPi dem Schenkel

s; folglich muss die Strecke PQ, resp. PiQ dem Schenkelabschnitt

n entsprechen, da n gleich dem Abstand des

Schenkelendpunktes vom Grundkreis ist, gemessen auf dem zugehörigen
Strahl.

Die Kurve ist der geometrische Ort eines Strahlpunktes,
dessen Summe oder Differenz der Abstände vom Ursprung O

und dem Grundkreis eine Konstante ist.
Da OP dem Schenkel s und P dem Endpunkt desselben

entspricht, so haben wir in den Schnittpunkten der Kurve mit
der Mittelsenkrechten die gesuchten Punkte B. Die innere
Schleife liefert nur im Spezialfall c 0 Schnittpunkte.

b) Abteilung der Kurvengleichung.

Wir erhalten, indem wir analog wie früher vorgehen, die

b V c2
Gleichung: \U2 -f-y2 -1- xj -^ (x2 + y2) 0. (5)

Dies ist die Gleichung einer Kreiskonchoide.

-x- ist der Durchmesser des erzeugenden festen Kreises und
2

-~- der konstante Abstand der Kurvenpunkte vom Grundkreis, ge-
2

messen auf den zugehörigen Strahlen. Die x-Axe ist Symmetrieaxe.
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c ¦< b ; Nullpunkt ist Doppelpunkt,
c b; » » Spitze,

die positive x-Axe ist Rückkehrtangente.

c ^> b ; Nullpunkt ist isolierter Punkt.

In Polarkoordinaten lautet die Gleichung der Kurve:
b ic ,(.\r= — cospi-g- (6)

c) Die Lösungen der Aufgabe.

Wir ziehen die Mittelsenkrechte, da es sich um deren
Schnittpunkte B mit der Kurve handelt. Die Abscisse aller

dieser Punkte ist x • Führt man diesen Wert für x in der

Kurvengleichung (5) ein, so erhält man eine Gleichung in y,
deren Wurzeln die Ordinaten der Schnittpunkte B, der Spitzen
der gesuchten gleichschenkligen Dreiecke sind. Diese Gleichung
lautet :

c2y2 b2c2
v4 J- 0* 4 16

Die Gleichung, zunächst nach y2 aufgelöst, ergiebt

y2,ä _ c24c\/4b2H-c2
8

Da y nicht imaginär werden darf, so ist nur das positive
Zeichen der Wurzel zu gebrauchen mit Ausnahme des Spezialfalles

c 0; daraus folgt

y=±i^-+°vw. (7)

Man erhält demnach 2 Schnittpunkte, welche symmetrisch
zur x-Axe liegen. Dies bedingt als Lösungen im allgemeinen
2 kongruente symmetrisch zur Basis gelegene Dreiecke. Die
Lösungen sind spitzwinklig, rechtwinklig oder stumpfwinklig, je
nachdem

c|^\/2ist.
Das zweite Lösungsverfahren führt zu denselben Ergebnissen

wie das erste. (Vergleiche damit die Resultate auf pag. 106 und

107.) Wir verzichten darauf, die Übereinstimmung für Speziai-
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fälle nachzuweisen. Wir erlauben uns nur noch, die allgemeine
Formel für die Dreiecksfläche zu bringen. Es wird

_
b /c'+cy^bq^*A0B-XV 2 ^

3b
Speziell für c —^— entsteht ein gleichseitiges Dreieck; es

2

wird F=A\/ _ *- \^3.

III.
§ 8. Dritte Aufgabe : Konstruktion eines gleichschenkligen Dreiecks,

wenn die Basis und die Summe oder Differenz aus Schenkelhöhe

und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind*
Gegeben: 1. b;

2. h3 4 n + P konstant.

Bedingungen : 1. hs 4 n > ~iy;

2. hs-n<-7-brV/2.
Die Summe hs 4 n wird ein Mimimum bei einem unendlich

kleinen Dreieck; denn da ist hs =0 und n —, also h„ +n --y-
— 2

Die Differenz hs — n erreicht das Maximum bei einem

rechtwinkligen Dreieck, bei welchen h3 -~- v/2 un(1 n Oj also hs —

§ 9. Erstes Lösungsnerfahren: Bestimmung der Spitze B des gleich¬

schenkligen Dreiecks.

a) Konstruktion der Hilfskurve.
Es sei (siehe Figur 6, Tafel II) OA die gegebene Basis b.

Ziehe den Grundkreis. Schlage ferner um A einen Hilfskreis,
dessen Radius r AH c ist. Lege durch O einen Strahl,
welcher den Grundkreis in Q schneidet. Fälle von A aus ein Lot
auf diesen Strahl, das durch Q gehen muss und das den Hilfskreis

in H und Hi schneidet. Trage nun auf dem Strahl OQ


	

