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A. Krebs.

Konstruktionen gleichschenkliger Dreiecke mit Hilfe

von Kurven höherer Ordnung.

EINLEITUNG.
§ 1. Ein gleichschenkliges Dreieck ist durch zwei Stücke

bestimmt. Als Bestimmungsstücke sollen in Betracht fallen
(Fig. 1):

1. Die Basis OA b.

2. Der Schenkel OB AB s.

3. Die Basishöhe B C lu,.
4. Die Schenkelhöhe AD hs.
5. Die durch die Schenkelhöhe erzeugten Schenkelabschnitte

OD m und DB n.
Im ganzen haben wir also sechs Bestimmungsstücke. In

allen Konstruktionsaufgaben, die wir lösen werden, soll die Basis
b das erste gegebene Stück sein. Als Zweites fügen wir die
Summe oder Differenz aus je zweien der übrigen fünf Be-

stimmungsgrössen hinzu.
Ein gleichschenkliges Dreieck hat für uns jetzt vier

Fundamentalpunkte. Zwei davon sind stets durch die Basis gegeben.
Ist von den andern zweien — es betrifft dies noch die Spitze B
und den Fusspunkt D der Schenkelhöhe — der eine bestimmt,
so ist das Problem gelöst. Jede Aufgabe gestattet daher eine

doppelte Lösungsart. Die Bestimmung des dritten festen Punktes
erfordert, wie wir bald sehen werden, die Konstruktion einer
Kurve höherer Ordnung. Sollte eine solche Hilfskurve nicht
näher bekannt sein, so erlauben wir uns, dieselbe nebenbei einer
mehr oder weniger eingehenden Untersuchung zu unterwerfen.

I.
§ 2. Erste Aufgabe: Ein gleichschenkliges Dreieck zu

konstruieren, wenn die Basis b und die Summe oder Differenz aus der
Basishöhe und dem an die Spitze grenzenden Schenkelabschnitt
gegeben sind.
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Gegeben 1. b;
2. hb + n -j- c konstant.

Die Lösung ist möglich unter der Bedingung, dass

1. hbfn>|,
Li

o
b ^t ^ b

2. > hb — 11 > — -g--
— _

Die Summe hb -f~ n erreicht das Minimum — bei einem un-
LI

endlich kleinen und bei einem rechtwinkligen Dreieck. Die
Differenz hb — n wird bei einem unendlich kleinen Dreieck zum

Minimum — und beim rechtwinkligen Dreieck zum Maxi¬

mum -y- Bei jedem andern Dreieck wird hb — n abs. < --r->
Lt Li

was nach einem planimetrischen Satze sofort ersichtlich ist, wenn
wir in Figur (1) D mit C verbinden.

§ 3. Erste Lösung. Bestimmung des Fusspunktes D der
Schenkelhöhe.

a) Wir konstruieren zu diesem Zweck folgenderweise eine
Hilfskurve. Es sei (siehe Fig. 31. Tafel I) OA=b die gegebene
Basis. Wir ziehen durch ihre Mitte C die Mittelsenkrechte
M Mi. Auf derselben wählen wir den festen Punkt E so, dass
C E c der gegebenen Summe oder Differenz ist. Wir ziehen

nun durch 0 einen Strahl, der die Mittelsenkrechte in R schneidet.
Auf diesem Strahl tragen wir von R aus nach beiden Seiten die
Strecke RE ab und bezeichnen die so gewonnenen Punkte mit
Pi und P>. Wird nun der Strahl OR um 0 gedreht, so beschreiben
die Punkte Pi und P2 die gesuchte Kurve. Dieselbe muss nach
Konstruktion in E einen Doppelpunkt haben. Für die Kurvenpunkte

P auf Strahlen, welche die Mittelsenkrechte zwischen

Doppelpunkt E und der Basis OA schneiden, gilt die Relation:
PiR -f- RC P2R -f- RC CE c.

Schneiden die Strahlen die Mittelsenkrechte oberhalb des

Doppelpunktes E, so entsprechen die darauf liegenden Kurvenpunkte

der Bedingung:
RC — RPi RC — RP2 CE c.

Bern. Mitteil. 1902. No. 1529.
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Kurvenpunkte endlich, deren Strahlen die Mittelsenkrechte
unterhalb der Basis O A schneiden, genügen der Relation :

RPt — RC RP> — RC EC c.

Die drei Relationen entsprechen den drei Bedingungen:
1. hb-f-n c;
2. hb — n c;
3. n — hb c.

Wir denken uns nun auf der Basis OA ein gleichschenkliges

Dreieck konstruiert. Ist dasselbe das gesuchte, d. h.

entspricht es den gestellten Bedingungen, so muss der Schnittpunkt
des Schenkels OB mit der Kurve Fusspunkt der Schenkelhöhe
sein. Nach Fig. 1 liegt der Fusspunkt D der Schenkelhöhe auf
einem um OA als Durchmesser gezogenen Kreise. Um unsere
Aufgabe mit Hilfe der konstruierten Kurve zu lösen, haben wir
also noch um OA als Durchmesser den besagten Kreis zu ziehen,
den wir fortan in allen unsern Konstruktionen den Grundkreis
nennen wollen. Die Schnittpunkte des Grundkreises mit der
Hilfskurve liefern die gesuchten Fusspunkte D der Schenkelhöhe.

b) Ableitung der Kurvengleichung.

Wir verwenden ein rechtwinkliges Koordinatensystem, wählen
0 zum Nullpunkt desselben und legen durch O A die positive x-Axe.
Es seien x und y die Koordinaten des Punktes Pj. Ferner

erinnern wir daran, dass Pi R -f- R C c und dass O C — ist.

Es ist nun PiR2 PiN2 + N R2; (a)
PiR =c — RC nach Konstruktion;

PiN -y —x;
NR =RC —y.

b
Nun verhält sich RC: y=-~-: x, woraus folgt, dass

2

bvRC= '
2x

Setzen wir die gefundenen Werte alle in (a) ein, so
erhalten wir

Ai.\A^y+(^_y2x/ \ 2 / ' V 2x
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vereinfacht
(X._|. y«) (b-2x)2- (2cx-by)2 0. (1)

Die Gleichung (1) stellt eine Kurve 4. Ordnung dar, die im

Nullpunkt einen Doppelpunkt hat. Sie ist aber keine ächte
Kurve 4. Ordnung; denn sie zerfällt in eine Kurve 3. Ordnung
und in eine Gerade. Es lässt sich nämlich der Faktor x
absondern und wegdividieren. Die y-Axe ist somit die Gerade.

Um den Faktor x wegdividieren zu können, bringen wir
(1) auf die Form

(2cx — by)2 — y2(b — 2x)2 x2 (b — 2x)2.
Wir zerlegen die linke Seite in zwei Faktoren, worauf wir

ohne weiteres die Gleichung durch 4x dividieren können. Wir
erhalten schliesslich für unsere Kurve 3. Ordnung die Gleichung

(x24-y2)(x — b) — x(c2 — i£-)-f-bcy=(). (2)

c) Die Eigenschaften der Kurve.

Die Kurve geht durch den Nullpunkt; denn die Gleichung
beginnt mit Gliedern ersten Grades.

/ b2\
Setzen wir Ui=bcy— x I c2 —l=(), so erhalten wir

4C2 b2
y -pr x als Gleichung der (3)

Tangente im Nullpunkt.

Für c — wird y 0; die Tangente fällt mit der x-Axe
2

zusammen.
Für c 0 wird x 0; die Tangente fällt mit der y-Axe

zusammen.
Um die Schnittpunkte der Kurve mit der x-Axe zu

bekommen, setzen wir y 0 und erhalten

b2\
—- I 0, woraus

X! 0, Punkt 0 (Kurve II):
x2 — -5- -f- c, Punkt J;

2

h
TTx3 — — c. » H.
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Die Punkte J und H sind gleich weit von C. dem Mittelpunkt

der Basis, entfernt.
Setzen wir x 0. so erhalten wir die Schnittpunkte der

Kurve mit der y-Axe:
by2- bcy 0;

yi=0, Punkt 0:
y2 c. » G.

Der 3. Schnittpunkt der Kurve mit der y-Axe liegt im
Unendlichen: denn der Koeffizient des Gliedes y3 ist 0.

Um die Schnittpunkte der Kurve mit der unendlich fernen
Geraden zu bestimmen, machen wir die Gleichung mit z homogen,
setzen dann z 0 und erhalten

U3 (x2-f y2)x 0:
1. x 0;
2. y + ix.

Wir finden somit, dass die Kurve durch die unendlich fernen
imaginären Kreispunkte der Ebene geht und dass sie in der
Richtung der y-Axe eine reelle Asymptote hat. Die Gleichung
dieser reellen Asymptote lautet, wie aus der Kurvengleichung
leicht zu ersehen ist.

x b: (4)

denn bestimmen wir die Schnittpunkte der Geraden x b mit
der Kurve, so erhalten wir in y nur eine Gleichung ersten Grades.

t 4 c2 — b2 „nämlich y Punkt 1:
4 c

folglich schneidet die Gerade x=b im Endlichen die Kurve umili

einem Punkt. Die übrigen zwei Schnittpunkte müssen, da die
Koeffizienten von y2 und y8 (• sind, im Unendlichen liegen.

Wir lösen die Gleichung nach y auf und erhalten

_ bc + y/cT(2^^-f(b"^x~)T4x2 (x—ÎÏT+b'x]y- " 2(b-x)
' '

vereinfacht

_ bc+ (2x b) v'c^l-bx—x7
2(b-x)

Aus diesem Ausdruck für y resultiert, dass die Kurve nicht
symmetrisch zur x-Axe liegt. Die Kurve ist überhaupt, vom
Spezialfall c 0 abgesehen, keine symmetrische Kurve: sie kann
durch keine Transformation symmetrisch gemacht werden.
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So lange c24-bx— x2 positiv ist, erhalten wir für y zwei
reelle und verschiedene Werte. Für einen negativen Radikanden
wird y imaginär. Für den Grenzfall verschwindet der Wurzel-
ausdrnck: die beiden Werte von y fallen zusammen, und die
Ordinate wird zur Tangente an die Kurve, wenn

c.2 -I- b x — x2 0, woraus
b + \ b24-4c2

x —-*-2 ;

für das positive Zeichen erhalten wir die Tangente WZ. Ordinate
im Berührungspunkt Z:

b(b-r-vV+4ca)
v — — —•• -

4 c °'
Für das neg. Zeichen im Ausdruck für x bekommen wir die

Tangente UV. Ordinate im Berührungspunkt V:
b (\/b2+4c2 — b)

y — -. pos.4 c

x>bIf-\/b24-4c2 |

9

J> —vV-f-4c9x<
so wird y imaginär.

Der absteigende Ast der Kurve, welcher die Asymptote
x b im Punkt T schneidet, kehrt dieser die konkave Seite zu.
Es muss daher die Kurve unterhalb des Berührungspunktes Z

der äussersten Tangente W Z einen Wendepunkt besitzen, von dem

aus sie der Asymptote wieder die konvexe Seite zuwendet.

Die Kurve hat in E einen Doppelpunkt, was nicht nur
aus der Konstruktion folgt, sondern auch analytisch ersichtlich
wird, wenn wir den Nullpunkt nach E verschieben vermittelst
der Transformationsformeln

x x -f—.

Die Gleichung der Kurve nach der Transformation lautet:'»

(x'2 -|- y'2) x' + -£- (x'2 - y'2) -f 2cx' y' 0. (5)
Lt

Der Nullpunkt ist nun Doppelpunkt; denn die Gleichung
beginnt mit Gliedern zweiten Grades.
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Für die Tangenten im Doppelpunkt erhalten wir die Gleichun

2^[+4?x,b

Die beiden Tangenten stehen senkrecht aufeinander; denn
1

es ist im
nio

Unsere Kurve ist eine rationale Kurve; denn sie besitzt einen

Doppelpunkt, also das mögliche Maximum. Wir können daher
die Koordinaten eines Punktes als rationale Funktionen eines
Parameters l darstellen. Wählen wir trigonometrische Funktionen
als Parameter, so erhalten wir, wenn wir Gleichung (5) zu Grunde
legen,

c sin 2 tp -{- -^- cos 2tp
Li

y' — I c sin 2 tp A~^-cos2tp I tgç>.

(7)

tp bedeutet den Winkel, den der Leitstrahl mit der positiven
x-Axe bildet.

Wir wollen nun untersuchen, welche Moditikationen die
Kurve erleidet, wenn wir c variieren lassen.

'¦ «=f
Die Gleichung (2) bekommt die Form

(x2 + y2)(x-l>H--^y ü. (8)

Die Kurve schneidet sowohl die x-Axe als auch die Asymptote
x b hn Punkte A(b,0).

Die x-Axe ist, wie schon oben erwähnt, im Nullpunkt
Tangente.

Die Gleichung nach y aufgelöst, ergiebt

_
b2 + (2x - b) \Jh2 + 4bx^£üg

y —_ 4(b—x)
h b

y wird reell, wenn x zwischen -=- (1—y 2) und -^-(l-\-\l'2\
2 2

variiert.

x='-£-(l — \J2) ist Tangente im Punkt V,

und x ^-(l-f-V/2) ist Tangente im Punkt Z.
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Der Doppelpunkt E rückt in den Grundkreis. Wird E zum

Nullpunkt des Koordinatensystems gewählt, so erhalten wir, wenn

wir in (5) c -,- setzen, als Gleichung der Kurve :

(x'2 + y'2) x' +~ (x'2 + 2x' y' - - y'2) 0. (9)

Die Gleichung der Doppelpunktstangenten lautet

y' (i±\/2)x'. (lü)
Gleichung (7) nimmt die Form an

x' -4v/2cos(2^-^

v' - -y \/2 cos \2tp- -Jj tg tp.

2. c ü.

Die Gleichung der Kurve lautet

(x2 + y2)(x- -b) 4-^ 0. (12)

Wir verlegen den Koordinatenursprung in den Doppelpunkt
E und erhalten als Kurvengleichung, wenn wir in (5) c — 0 setzen

(x'24-y'2)x'+|-(x'2-y'2) 0. (13)

Dies ist die Gleichung der Strophoide. Es ist der einzige
Spezialfall, in welchem die Kurve, wie schon angedeutet,
symmetrisch wird. Der Wendepunkt rückt ins Unendliche hinaus
und fällt in die Asymptote. Letztere ist ja wie bekannt eine

Wendetangente.
3. c oo.

Der Doppelpunkt liegt im Unendlichen in der Richtung der

y-Axe. Die Kurve selber besteht aus der y-Axe und der doppelt
gelegten unendlich fernen Geraden.

4. c negativ.

Setzen wir für c negative Werte ein, so erhalten wir der
Reihe nach dieselben Kurven wie für positive c; nur sind dieselben
immer Spiegelbilder der erstem in Bezug auf die x-Axe. Die
Kurven für positive und negative c liegen daher paarweise
symmetrisch zur x-Axe. Alle besitzen die gemeinschaftliche
Asymptote x==b.
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d. Die Lösungen der Konstruktionsaufgäbe.

Wir suchen die Punkte D. die Fusspunkte der Schenkelhöhe.

Dieselben sind, wie wir schon gezeigt haben, die Schnittpunkte

des Grundkreises mit der Kurve. Ein Kreis schneidet eine
Kurve dritter Ordnung in 6 Punkten. Da nun beide Kurven
durch den Nullpunkt und durch die imaginären Kreispunkte
der Ebene gehen, so fallen von vorneherein 3 Schnittpunkte
ausser Betracht. Es bleiben also noch 3 Schnittpunkte zu
bestimmen übrig. Als Gleichung der Kurve haben wir

(x2 + y2) (x-b) -x f c2- }-f) + bey 0 («)

und als Gleichung des Kreises
x2— bx-f-y2 0. (•/)

Wir h'isen Gleichung (ß) nach y auf und erhalten

y \J bx^^^2.
Diesen Wert setzen wir in («) ein: es giebt

bx(x — b) -x(c2 -^) ^bcV/bx —x2.

Quadriert, auf Null gebracht und den Faktor x wegdividiert
3b2+4c2 Ob* + -K)b2c2 + l(k-4 nX 2b— X" HW X -bc' °.-

Die Wurzeln dieser kubischen Gleichung sind die Abscissen
der Schnittpunkte D. Als Diskriminante der Gleichung erhalten
wir den Ausdruck:

'1 ^0C^w l— 27 bs -f 288b6 c2 - 992 b+ c4 --1024 b2 cG + 25(ics).
108 -64 b4

' '

/1 — positiv: die Gleichung besitzt eine reelle und zwei imaginäre
Wurzeln.

J 0: alle drei Wurzeln sind reell und zwei fallen zusammen.
J negativ : drei reelle und unter sich verschiedene Wurzeln.

Wir behandeln zuerst den mittlem Fall und untersuchen,
für welche Werte von c die Diskriminante verschwindet. Wir
setzen :

4 c2 i" und b2 rt und führen diese Werte im
Ausdruck für J ein. Bestimmen wir hierauf die Wurzeln der

Gleichung J 0, so finden wir, dass sich die Diskriminante
folgenderinassen in Faktoren zerlegen lässt:
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/^T087ï4417î(4c2--b2)2(16c4 + 72b2c2-27b4).

Es wird somit J 0, wenn
1. c=0;
9 b
2. c ?;
3- o-|^/6\/3-9.

In Bezug auf die Löungen unserer Aufgabe können wir
folgende drei Hauptfälle unterscheiden :

a ^ b
A. c>-.

Für sämtliche Dreiecke, die sich als Lösung ergeben, gilt
die Relation

hi, 4-n c.

B. c=4
Die Dreiecke entsprechen der Bedingung

hb + n + c + —

Von den beiden Grössen hb und n ist die eine 0.

„ b
C. c<y

Für die Dreiecke gilt hb — n + c.

b
A. c>-2

1. c> y^s-
Die Diskriminante ist positiv; wir erhalten nur eine reelle

Wurzel als Abscisse, d. h. der Grundkreis schneidet die Kurve
nur in einem reellen Punkt. Dieser Schnittpunkt liefert ein

spitzwinkliges Dreieck.

=W6^3 — 9. Taf. I, Fig. 3.

Die Diskriminante verschwindet. Es giebt 3 reelle Wurzeln,
wovon 2 zusammenfallen. Grundkreis und Kurve schneiden sich
in Di' und berühren sich in D2'. Es ist nun

Bern. Mitteil. 1902. No. 1530.
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27 b6 — 324 b4 c2 -f- 720b2 c4 + 04 c6

864 b83

Für Xi bekommen wir demnach den Ausdruck
3

Xl=2tHî! + ,v/74 0llCT.

wenn wir für c obigen Wert einsetzen.

3b2 + b2(6\'3-9) b l9 b.,„
X2 X:! 6b + 2

{2 * V 3)
2

V 3-

Setzen wir diese Werte in der Kreisgleichung ein. so
erhalten wir

Vl =bWl4\/3 -24;

y--> yB 1^/2^3-3.
Dem Schnittpunkt Di'(xiyj) entspricht das spitzwinklige

Dreieck OABi' und dem Berührungspunkt D2' (x2y2) das doppelt
gelegte stumpfwinklige Dreieck 0AB2'.

Um zu untersuchen, ob letzteres Dreieck eine besondere

Eigenschaft besitze, wie zu vermuten ist, berechnen wir zunächst
seine Basishöhe.

Wir können die Proportion aufstellen':

b /77^ T b b
hb:|\/2v/3-3 |:|v/3;

b
b=(TV/6v'3-9.hb

1 /~ —
Nun ist hb-f- n c -^ V /6\/3 — 9; folglich ist

c n
hb:=¥ "2-

Das Dreieck besitzt also die Eigentümlichkeit, dass der
äussere Schenkelabschnitt n das Doppelte der Basishöhe
beträgt. Für seine Fläche erhalten wir den Ausdruck

F,w Ä\/W3-9. (I*)OABo 12 \/6\3^
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Die Basishöhe des spitzwinkligen Dreiecks GAB/ lässt
sich aus der Proportion berechnen

hb: "V
raus

Es

14\/3

wird

-24 |
v,

b
hb -TT

demnach
FOAI

: (2\/3- 3)b,

¦ • b2.

/

v_
wo: 1/42^3-72

i 0,26864 •

14 Vi 8-
0.53'

-24
(28 •• ••b.

(15)

3. |-y/6v/3-9>c> b
•>

Die Diskriminante ist negativ. Wir erhalten 3 reelle und
unter sich verschiedene Wurzeln, daher auch 3 reelle Schnittpunkte

D und 3 reelle Lösungen. Der Schnittpunkt des

aufsteigenden Kurvenastes erzeugt ein spitzwinkliges Dreieck, in
welchem hi,-f-n c. Die zwei Schnittpunkte des absteigenden
Astes liefern zwei stumpfwinklige Dreiecke.

Im ersten ist hb 7> n, c pos.
Im zweiten ist hb <7 n, c neg.

B. c |.
Der Grundkreis schneidet die Kurve im Doppelpunkt

E(--y. -~-) und im Punkt A(b, 0). In E fallen 2 Schnittpunkte

zusammen, was der Fall sein muss, da die Diskriminante J 0
wird. Dieser Spezialfall liefert 3 reelle Lösungen:

1. Ein doppelt gelegtes rechtwinkliges Dreieck, für welches
b
2"'

2. Ein unendlich kleines, auf die Basis reduziertes Dreieck

OCA, weil der Fusspunkt der Schenkelhöhe auf A, also
in die Basis fällt, wodurch die Höhe hb 0 werden muss.

C. c < •!-: Taf. I. Fig. 3.

Die Lösungen sind dieselben wie in Fall A:1 mit dem

Unterschied, dass das zweite stumpfwinklige Dreieck seine Spitze
nach unten kehrt.

n 0 wird und hb
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Ist speziell c 0, so verschwindet die Diskriminante. Die
Kurve ist die Strophoide. Wir bekommen 3 Schnittpunkte, von
denen zwei Di und D2 symmetrisch zur x-Axe liegen. Der Schnittpunkt

D3 und damit der Fusspunkt der Schenkelhöhe des

bedingten Dreiecks fällt in den Nullpunkt. Der Schenkel muss
somit senkrecht auf der Basis stehen. Wir erhalten ein unendlich

grosses Dreieck, in welchem hb=--n °o ist.

Die Schnittpunkte Di (Ç, ^\/s) und D2 (~, — ~ \/'ò

erzeugen 2 kongruente, symmetrisch zur x-Axe gelegene

stumpfwinklige Dreiecke O A B. Im /\ O A B ist hi, n -~- : somit ist

1

sin a 7j-

a 30°.
Der Basiswinkel misst also 30°.
Aus der Proportion

finden wir

somit wird

b / b 3b
h": Tv'^y T

1
b i/ohb= (.-\3:

Foab-Foab1-^\/3- (16)

Für negative c gewinnen wir keine neuen Lösungen. Die
Dreiecke werden einfach in Bezug auf die x-Axe Spiegelbilder
derjenigen, die wir für positive c erhalten haben.

§ 4. Zweites Lösungsverfahren. Bestimmung der Spitze B

des gleichschenkligen Dreiecks.

Es gelten natürlich auch hier die Voraussetzungen des § 2.

a) Konstruktion der Hilfskurve.
Es sei (siehe Figur 5, Taf. I) O A b die gegebene Basis.

Wir ziehen durch C die Mittelsenkrechte MMt dazu und tragen
auf derselben von C aus hb + n c ab und erhalten den festen
Punkt E. Über OA schlagen wir ferner den Grundkreis. Nun
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ziehen wir durch O Strahlen, die den Grundkreis in Q schneiden.
Für jeden Strahl bestimmen wir nach den Gesetzen des

gleichschenkligen Dreiecks einen Punkt P so, dass

PQ PE.
Die Verbindungslinie aller Punkte P ist die gesuchte Kurve.

Sie ist also der geometrische Ort eines Strahlpunktes, der vom
Schnittpunkt Q des Strahls mit dem Grundkreis und einem festen
Punkt E, der Mittelsenkrechten gleichen Abstand hat. Die Schnittpunkte

der Kurve mit der Mittelsenkrechten, also mit der Ge-
b

raden x= ^- sind die gesuchten Dreiecksspitzen B; denn

E B — B Q n nach Konstruktion ;

BC hb: also
hb -f- n BC -f- BE CE — c nach Voraussetzung.

Liegt der Schnittpunkt B der Kurve mit der Mittelsenkrechten

zwischen C und E, so gilt beim Dreieck die Relation
hb 4" n c.

Fällt B auf E, so haben wir
hb 4 n c.

Liegt endlich B ausserhalb E, so gilt
hb — n c.

b) Ableitung der Kurvengleichuug.
Zu diesem Zweck legen wir das rechtwinklige Koordinatensystem

so, dass der Punkt 0 zum Nullpunkt und die Basis OA
samt deren Verlängerung zur positiven x-Axe wird. Die Koordinaten

des Punktes P seien x und y. Es ist nun

OQ+QP \f^+f; («}
O Q b cos tp ; I

Il b \2 1 sub. in (a):
QP PE y (x—§-) 4- (c-y)2;

wir erhalten

bcosç» 4 y/(x- Ay+ (c-y)2 \/x2 4- y2

quadriert man noch und bringt auf Null, so ist das Resultat

(x2+y2)(bx-2cy) + (c2-^X)x2+(c?4-^)y2 0. (17)
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c) Diskussion der Kurve.

Die Kurve hat im Nullpunkt einen Doppelpunkt; denn die

Gleichung beginnt mit Gliedern 2. Grades. Als Gleichung der

Tangenten im Nullpunkt erhalten wir
/8 b* —4 c* ,1Q,

>' + xV b-q^T- (18)

Spezialwerte: 1. Für c — 0 wird
y ±x\/3.

Die Doppelpunktstangenten bilden mit der x-Axe Winkel von
+ 60°.

2. Für c — ¦ wird

y -- + x.
Die beiden Tangenten bilden mit der x-Axe Winkel von 4- 45°.

v

3. Für c=-p-y3 wird

y 0, d.h. die beiden Doppelpunkts-
angenten fallen zusammen; die x-Axe wird Rückkehrtangente
ttnid dei' Nullpunkt Spitze.

4. 1 in- c > g
' y 3 wird y imaginär, d. h.

der Doppelpunkt wird zum isolierten Punkt.
Wir setzen y 0 und erhalten die Schnittpunkte der Kurve

mit der x-Axe

bx3 4- (c2 — -^jx2 0:

xi=x2 =0;
3 b2— 4 c2

Xi 4b

Die 8. Abscisse bleibt positiv, so lange c < -~- y 3. Sie
LI

wird also negativ, wenn der Doppelpunkt isolierter Punkt wird,
x 0 gesetzt, ergiebt die Schnittpunkte mit der y-Axe :

-2cyM-(c24--^)y2 0;

yi y2 --= 0;
b24-4c2

y:,^^3c—'
Die dritte Ordinate hat das Vorzeichen von c.
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Wir machen die Gleichung mit z homogen, setzen dann

z 0 und erhalten
Un U3 (x2 4- y2) (bx — 2cy) 0;

daraus folgt:
bx

h y "27;
2. y + ix.

Wir erhalten somit eine reelle und 2 imaginäre Asymptotenrichtungen.

Die Kurve geht durch die imaginären Kreispunkte
der Ebene.

Die reelle Asymptotenrichtung lässt sich konstruktiv leicht
bestimmen. Wir errichten über O E als Durchmesser einen Kreis,
welcher durch C gehen muss und den Grundkreis in Q schneidet.
Die Verbindungsgerade 0 Q ist die gesuchte Asymptotenrichtung.
Ist tp der Richtungswinkel derselben, so ist zu beweisen, dass

tg 9 Ty2 ~2c~ ' Sieh° Fig' 2' ^
Nach dem Sehnensatz ist im Kreis über O E :

p (c -p) i-v
und im Grundkreis:

-j 4 P y — P rv ; folglich

b2
c p — p2 -r p2, woraus

b2
1> 4c-

Setzen wir diesen Wert in (a) ein, so wird
b2 b b

tg^=4c:T=2"c
Die reelle Asymptotenrichtung ist identisch mit dem Strahl,

für welchen der Punkt P ins Unendliche fällt; dies geschieht, wenn
EQJ_ Strahl OQ.

Die Gleichung der Asymptote selbst wird
(7,2 4c2)2

bx — 2cv4~ AIU2 i a 2\ — 0?
- ' 4(b24-4c2)

b (b2 — 4c2la
v vi y ' C\Cl\y 2c r 8c(b2-f-4c2) l '

Die Asymptote schneidet die y-Axe bei positivem c auf der
positiven, bei negativem c auf der negativen Seite. Um sie zu
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konstruieren, bestimmen wir zuerst den Abschnitt auf der y-Axe.
Ist der Schnittpunkt mit der y-Axe gefunden, so zieht man durch
denselben eine Parallele zu 00/ (siehe Fig. 5, Taf. I). Der
Abschnitt auf der y-Axe ist konstruktiv leicht zu gewinnen, wenn
wir dem konstanten Glied in der Asymptotengleichung die
Form geben:

(b2 — 4c2)2 1 / \r -4c2
&"¦

8c(b24-4c-) Sc \yb2f4c2
Spezialwerte: 1. Für c 0 nimmt die Gleichung der

Asymptote die Form an
b

Die Asymptote steht senkrecht auf der x-Axe.

2. c-l
Asymptote: y x.

Sie geht in diesem Spezialfall durch den Nullpunkt und
bildet mit der x-Axe einen Winkel von 45°.

8- c ^-\ 3;

Asymptote : y —- x \/3 -|- \/3-

Die Asymptote bildet mit der x-Axe einen Winkel vo n 30°

4. c oo; dann wird auch

y oo. d. h. die Asymptote verläuft parallel
der x-Axe im Unendlichen.

Durchläuft c alle Werte von 0 bis oo. so dreht sich die

Asymptote um 90° von der Richtung der y-Axe zur Richtung
der x-Axe.

So lange der Nullpunkt Doppelpunkt oder Rückkehrpunkt
ist, besitzt die Kurve einen reellen Wendepunkt. Sie hat deren
drei, wenn der Nullpunkt isolierter Punkt wird.

Wir weisen noch darauf hin, dass die Kurve ebenfalls
rational ist.

Wir betrachten nun noch die verschiedenen Kurven, die
einem veränderlichen c entsprechen ; ihre Doppelpunktstangenten
haben wir bereits untersucht.
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b —
Ist c ^> -~- y 3, so wird der Nullpunkt isolierter Punkt.

Ist c<^~^-v3, » » » » Doppelpunkt.

Ist c -<y y/ 3, » » » » Rückkehrpunkt.

Im letztern Fall wird die Gleichung der Kurve:

(x2+y2)(x-\/3y)+by2 0 (20)

y 0 ist. wie wir schon gesehen haben, Rückkehrtangente.

Wenn c —, so lautet die Kurvengleichung :

(x2 +y2)(x-y)-|-(x2-y2) 0

oder [x24-y2—^ (x4-y)](x—y) 0; (21)

daraus folgt:
2

1. y x;
2. x2+y2-|x_Jiy=:0.

Die Kurve zerfällt also in einen Kreis und in eine Gerade,
welche diametral den Kreis schneidet. Die Gerade ist zugleich
noch Asymptote der Kurve.

Die Kreisgleichung in der Normalform lautet:
b \2 / b V b2

4/+ly 4/ 8

Die Koordinaten des Kreismittelpunktes G sind somit

-j-, -j- )• Der Punkt G fällt also in die Gerade y x und
.4 4

liegt in der Mitte zwischen O und E. Der Radius des Kreises

ist v ^\j2.
Wenn c 0, so heisst die Gleichung der Kurve :

(x2+y2)x-^(3x2-y2)=0. (22)

Die Kurve gleicht der Strophoide. Ihre Asymptote x

-j7 ist ebenfalls Wendetangente. Von der eigentlichen Strophoide

Bern. Mitteil. 1902. No. 1531.
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weicht sie darin ab, dass ihre Doppelpunktstangenten nicht senkrecht

aufeinander stehen; siehe Fig. 5.

Für negative c bekommen wir die gleichen Kurven wie für
positive c. Nur sind sie wieder Spiegelbilder der letztem in
Bezug auf die x-Axe. Durchläuft daher C alle Werte von
— oo bis -4- oo, so liegen die entstehenden Kurven paarweise
symmetrisch zur x-Axe. Die Grenzkurve, für welche c 0, steht
zwischen den Paaren.

Kurven-Schema :

1. c oo. Die Kurve besteht aus dem Null¬

punkt 0 und der zur x-Axe parallelen

unendlich fernen Geraden.

b /-s Der Nullpunkt ist solierter Punkt,
2 * 3 reelle Wendepunkte, Asymp¬

totenrichtungswinkel <; 30°.

b /-ö Nullpunkt ist Spitze, ein reeller
2 Wendepunkt, Asymptotenrich¬

tungswinkel 30°; siehe Fig. 5.

4. - b \/q Nullpunkt ist Doppelpunkt, ein
2 reellerWendepunkt, Asymptoten¬

richtungswinkel >> 30°.

aa) c>y\/6V/3—9-

bb) c ^\J$\j3-9-

cc) !_^/6v/3-9>c>

Schleife reicht nicht bis an die
Mittelsenkrechte.

Schleife berührt die Mittelsenkrechte.

b Schleife schneidet die Mittel-
2 senkrechte. Beide Schnittpunkte

liegen oberhalb der Basis OA.

b Kurve zerfällt in einen Kreis und
2 in eine Gerade, welche mit der

Asymptote zusammenfällt. Die
Asymptote bildet mit der x-Axe
einen Winkel von 45°.
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b ^ „ Wie cc, nur liegt ein Schnittpunkt
' 2 unterhalb der Basis. Asymptoten¬

richtungswinkel zwischen 45° und
90°.

ff) c 0. Kurve eine Art von Strophoide,
liegt symmetrisch zur x-Axe.
Asymptotenrichtungswinkel=900-

d) Die Lösungen der Konstruktionsaufgabe.

Wir haben die Schnittpunkte B der Mittelsenkrechten mit
der Kurve zu bestimmen. Wir bekommen im Maximum 3 Schnittpunkte,

also auch 3 Lösungen. Führen wir den Wert für x aus
b

der Gleichung der Mittelsenkrechten x -~- in der Kurven-
2

gleichling (17) ein, so erhalten wir

:w)$-*m*-™)$+{*+$)>
reduziert :

3
3b2 + 4c2 b2 b4-4b2c2 ,OQ.y9 sc"ya + T^—JP24r- °- (2a)

Die Wurzeln dieser Gleichung sind die Ordinaten der
Schnittpunkte B.

Die Diskriminante J dieser kubischen Gleichung lautet

J
h*

- (—27b8-f-288b6c2 - 992b4c4+ 1024b2c6-4-256c8).
Li • 04t C

™^^(4c2-b2)2(16e44-72b2c2-27b4).

Die Diskriminante verschwindet somit, wenn
1. b 0,

2. c c= — und

3. c y \J6\J3—9.

Fall (1) b 0 fällt ausser Betracht, da b nicht variieren
soll. Die Diskriminante wird demnach für 2 Spezialwerte von
c zu Null. Wir stossen somit auf das ganz gleiche Resultat wie
beim ersten Lösungsverfahren. Nach beiden Verfahren bekommen
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wir zusammenfallende Schnittpunkte und Lösungen für die Werte

c --y und c -Tj-y 6 y 3— 9. Allerdings verschwand die

Diskriminante im ersten Fall auch für den Wert c=0 (siehe pag. 89);
allein dort fielen bloss die Abscissen zweier Schnittpunkte
zusammen, die Ordinaten nicht; diese differierten im Vorzeichen;
daher gab es keinen Berührungspunkt. Im vorliegenden Fall,
wo wir die Ordinaten der Schnittpunkte B der Kurve mit der
Mittelsenkrechten suchen, kann daher für c 0 J nicht =0
werden.

Für b 0 zerfällt überdies die Kurve in die reelle Gerade

c

und in die Geraden absoluter Richtung.

Was nun die Lösungen betrifft, so haben wir die nämlichen
Hauptfälle mit denselben Unterfällen wie beim ersten Verfahren.

Ist 7>0, wobei c > -=- v/ 6y3— 9 sein muss, so erhalten

wir eine reelle Lösung.

Ist J <C 0, so giebt es 3 reelle und unter sich verschiedene
Lösungen.

Wenn J 0 ist, was zweimal eintrifft, so fallen 2 von den
3 reellen Lösungen zusammen.

Wir verzichten auf eine ausführliche Darstellung der
Lösungen. Wir wollen nur noch an einigen Spezialfällen zeigen,
dass die beiden Verfahren in ihren Ergebnissen übereinstimmen.

A2 0 ^-1/6^3-9.
Berechnen wir den zugehörigen Wert von y, so erhalten wir :

3b24-b2(6\/3—9)4-(2—\/3)12b2
yi - ,——

12b\j6\j3—9

b {y~\t) \/2V/3+3=:0-53728-"b
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8b*-r-b*(6\/3-9) + (2—v/3)6b
y2 y3 ¦

12bv/6\/3 —9bv/6vI

Nun ist j2 — y3 — -5- ; denn
o

b (V3 -1-) y/2\/3 4-3 A y/ey/s - 9.

Das spitzwinklige Dreieck hat also die Basishöhe hb 0,53728-"b
und das doppelt gelegte stumpfwinklige Dreieck die Basishöhe

c
hb -k- ; somit herrscht Übereinstimmung mit den Resultaten

o
nach den ersten Verfahren (vergi, pag. 13)

B. c=4
Wir bekommen als Ordinaten der Schnittpunkte B, d. h.

als Basishöhe der entsprechenden Dreiecke, folgende Werte:
4-b2 h

1. yi im AOAC m--|- 0;

2. y2 y3 für das doppelt gelegte rechtwinklige /\
OAE EC ^-- + ^- |- (vergi, damit pag. 91).

C2. c 0; Taf. I, Fig. 5.

Wir gehen aus von der Gleichung (23), multiplizieren c im
Nenner weg, setzen hierauf c 0 und erhalten

3b2 b4

-y --cT + 32^0

Der dritte Wert von y ist unendlich gross, da der Koeffizient
von y8 0 geworden ist. Wir bekommen daher auch hier für
das unendlich grosse Dreieck die Basishöhe hb oo und für die
2 stumpfwinkligen Dreiecke OABi und OAB2 die Basishöhe

hb =-(-—r \/3 wie beim ersten Verfahren (siehe pag. 92).


	

