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A. Krebs.

Konstruktionen gleichschenkliger Dreiecke mit Hilfe

von Kurven höherer Ordnung.

EINLEITUNG.
§ 1. Ein gleichschenkliges Dreieck ist durch zwei Stücke

bestimmt. Als Bestimmungsstücke sollen in Betracht fallen
(Fig. 1):

1. Die Basis OA b.

2. Der Schenkel OB AB s.

3. Die Basishöhe B C lu,.
4. Die Schenkelhöhe AD hs.
5. Die durch die Schenkelhöhe erzeugten Schenkelabschnitte

OD m und DB n.
Im ganzen haben wir also sechs Bestimmungsstücke. In

allen Konstruktionsaufgaben, die wir lösen werden, soll die Basis
b das erste gegebene Stück sein. Als Zweites fügen wir die
Summe oder Differenz aus je zweien der übrigen fünf Be-

stimmungsgrössen hinzu.
Ein gleichschenkliges Dreieck hat für uns jetzt vier

Fundamentalpunkte. Zwei davon sind stets durch die Basis gegeben.
Ist von den andern zweien — es betrifft dies noch die Spitze B
und den Fusspunkt D der Schenkelhöhe — der eine bestimmt,
so ist das Problem gelöst. Jede Aufgabe gestattet daher eine

doppelte Lösungsart. Die Bestimmung des dritten festen Punktes
erfordert, wie wir bald sehen werden, die Konstruktion einer
Kurve höherer Ordnung. Sollte eine solche Hilfskurve nicht
näher bekannt sein, so erlauben wir uns, dieselbe nebenbei einer
mehr oder weniger eingehenden Untersuchung zu unterwerfen.

I.
§ 2. Erste Aufgabe: Ein gleichschenkliges Dreieck zu

konstruieren, wenn die Basis b und die Summe oder Differenz aus der
Basishöhe und dem an die Spitze grenzenden Schenkelabschnitt
gegeben sind.



hg

hj

Fig. 1 Fig. 2

Bl

Mi
Fig. 4

a 2



Tafel I

II C £ ^6^3-9
* G

Bi

b YI o<c

.^ :k• Dl
SDì

D2

y
V?t>

B3

Fig. 3 D3

Ml

ft

VI w
Q
\ X
•
\•
\
*
\
•
t
1

l i
ni z

tfS

Q'

-r •>.«*

\ v x
Bx

Fig. 5 ¦ n Ml I C=b_Vï
a

nc=o



M

Pi

Hi

B3

W
C=b

Fig. 6
Ml

Pa

/"

Ba
Dz

Dl

Hl

Fig. 7
Bt

BifI'III

I C.bVa"
2

II c o



Tafel n
M

Bi

C, b.

Da

D3
Pa

Dk
B*

Fig. 8

B3

Ml

£
.ai«

35

¦O

os

>•
se

ta



— 81 —

Gegeben 1. b;
2. hb + n -j- c konstant.

Die Lösung ist möglich unter der Bedingung, dass

1. hbfn>|,
Li

o
b ^t ^ b

2. > hb — 11 > — -g--
— _

Die Summe hb -f~ n erreicht das Minimum — bei einem un-
LI

endlich kleinen und bei einem rechtwinkligen Dreieck. Die
Differenz hb — n wird bei einem unendlich kleinen Dreieck zum

Minimum — und beim rechtwinkligen Dreieck zum Maxi¬

mum -y- Bei jedem andern Dreieck wird hb — n abs. < --r->
Lt Li

was nach einem planimetrischen Satze sofort ersichtlich ist, wenn
wir in Figur (1) D mit C verbinden.

§ 3. Erste Lösung. Bestimmung des Fusspunktes D der
Schenkelhöhe.

a) Wir konstruieren zu diesem Zweck folgenderweise eine
Hilfskurve. Es sei (siehe Fig. 31. Tafel I) OA=b die gegebene
Basis. Wir ziehen durch ihre Mitte C die Mittelsenkrechte
M Mi. Auf derselben wählen wir den festen Punkt E so, dass
C E c der gegebenen Summe oder Differenz ist. Wir ziehen

nun durch 0 einen Strahl, der die Mittelsenkrechte in R schneidet.
Auf diesem Strahl tragen wir von R aus nach beiden Seiten die
Strecke RE ab und bezeichnen die so gewonnenen Punkte mit
Pi und P>. Wird nun der Strahl OR um 0 gedreht, so beschreiben
die Punkte Pi und P2 die gesuchte Kurve. Dieselbe muss nach
Konstruktion in E einen Doppelpunkt haben. Für die Kurvenpunkte

P auf Strahlen, welche die Mittelsenkrechte zwischen

Doppelpunkt E und der Basis OA schneiden, gilt die Relation:
PiR -f- RC P2R -f- RC CE c.

Schneiden die Strahlen die Mittelsenkrechte oberhalb des

Doppelpunktes E, so entsprechen die darauf liegenden Kurvenpunkte

der Bedingung:
RC — RPi RC — RP2 CE c.

Bern. Mitteil. 1902. No. 1529.
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Kurvenpunkte endlich, deren Strahlen die Mittelsenkrechte
unterhalb der Basis O A schneiden, genügen der Relation :

RPt — RC RP> — RC EC c.

Die drei Relationen entsprechen den drei Bedingungen:
1. hb-f-n c;
2. hb — n c;
3. n — hb c.

Wir denken uns nun auf der Basis OA ein gleichschenkliges

Dreieck konstruiert. Ist dasselbe das gesuchte, d. h.

entspricht es den gestellten Bedingungen, so muss der Schnittpunkt
des Schenkels OB mit der Kurve Fusspunkt der Schenkelhöhe
sein. Nach Fig. 1 liegt der Fusspunkt D der Schenkelhöhe auf
einem um OA als Durchmesser gezogenen Kreise. Um unsere
Aufgabe mit Hilfe der konstruierten Kurve zu lösen, haben wir
also noch um OA als Durchmesser den besagten Kreis zu ziehen,
den wir fortan in allen unsern Konstruktionen den Grundkreis
nennen wollen. Die Schnittpunkte des Grundkreises mit der
Hilfskurve liefern die gesuchten Fusspunkte D der Schenkelhöhe.

b) Ableitung der Kurvengleichung.

Wir verwenden ein rechtwinkliges Koordinatensystem, wählen
0 zum Nullpunkt desselben und legen durch O A die positive x-Axe.
Es seien x und y die Koordinaten des Punktes Pj. Ferner

erinnern wir daran, dass Pi R -f- R C c und dass O C — ist.

Es ist nun PiR2 PiN2 + N R2; (a)
PiR =c — RC nach Konstruktion;

PiN -y —x;
NR =RC —y.

b
Nun verhält sich RC: y=-~-: x, woraus folgt, dass

2

bvRC= '
2x

Setzen wir die gefundenen Werte alle in (a) ein, so
erhalten wir

Ai.\A^y+(^_y2x/ \ 2 / ' V 2x
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vereinfacht
(X._|. y«) (b-2x)2- (2cx-by)2 0. (1)

Die Gleichung (1) stellt eine Kurve 4. Ordnung dar, die im

Nullpunkt einen Doppelpunkt hat. Sie ist aber keine ächte
Kurve 4. Ordnung; denn sie zerfällt in eine Kurve 3. Ordnung
und in eine Gerade. Es lässt sich nämlich der Faktor x
absondern und wegdividieren. Die y-Axe ist somit die Gerade.

Um den Faktor x wegdividieren zu können, bringen wir
(1) auf die Form

(2cx — by)2 — y2(b — 2x)2 x2 (b — 2x)2.
Wir zerlegen die linke Seite in zwei Faktoren, worauf wir

ohne weiteres die Gleichung durch 4x dividieren können. Wir
erhalten schliesslich für unsere Kurve 3. Ordnung die Gleichung

(x24-y2)(x — b) — x(c2 — i£-)-f-bcy=(). (2)

c) Die Eigenschaften der Kurve.

Die Kurve geht durch den Nullpunkt; denn die Gleichung
beginnt mit Gliedern ersten Grades.

/ b2\
Setzen wir Ui=bcy— x I c2 —l=(), so erhalten wir

4C2 b2
y -pr x als Gleichung der (3)

Tangente im Nullpunkt.

Für c — wird y 0; die Tangente fällt mit der x-Axe
2

zusammen.
Für c 0 wird x 0; die Tangente fällt mit der y-Axe

zusammen.
Um die Schnittpunkte der Kurve mit der x-Axe zu

bekommen, setzen wir y 0 und erhalten

b2\
—- I 0, woraus

X! 0, Punkt 0 (Kurve II):
x2 — -5- -f- c, Punkt J;

2

h
TTx3 — — c. » H.
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Die Punkte J und H sind gleich weit von C. dem Mittelpunkt

der Basis, entfernt.
Setzen wir x 0. so erhalten wir die Schnittpunkte der

Kurve mit der y-Axe:
by2- bcy 0;

yi=0, Punkt 0:
y2 c. » G.

Der 3. Schnittpunkt der Kurve mit der y-Axe liegt im
Unendlichen: denn der Koeffizient des Gliedes y3 ist 0.

Um die Schnittpunkte der Kurve mit der unendlich fernen
Geraden zu bestimmen, machen wir die Gleichung mit z homogen,
setzen dann z 0 und erhalten

U3 (x2-f y2)x 0:
1. x 0;
2. y + ix.

Wir finden somit, dass die Kurve durch die unendlich fernen
imaginären Kreispunkte der Ebene geht und dass sie in der
Richtung der y-Axe eine reelle Asymptote hat. Die Gleichung
dieser reellen Asymptote lautet, wie aus der Kurvengleichung
leicht zu ersehen ist.

x b: (4)

denn bestimmen wir die Schnittpunkte der Geraden x b mit
der Kurve, so erhalten wir in y nur eine Gleichung ersten Grades.

t 4 c2 — b2 „nämlich y Punkt 1:
4 c

folglich schneidet die Gerade x=b im Endlichen die Kurve umili

einem Punkt. Die übrigen zwei Schnittpunkte müssen, da die
Koeffizienten von y2 und y8 (• sind, im Unendlichen liegen.

Wir lösen die Gleichung nach y auf und erhalten

_ bc + y/cT(2^^-f(b"^x~)T4x2 (x—ÎÏT+b'x]y- " 2(b-x)
' '

vereinfacht

_ bc+ (2x b) v'c^l-bx—x7
2(b-x)

Aus diesem Ausdruck für y resultiert, dass die Kurve nicht
symmetrisch zur x-Axe liegt. Die Kurve ist überhaupt, vom
Spezialfall c 0 abgesehen, keine symmetrische Kurve: sie kann
durch keine Transformation symmetrisch gemacht werden.
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So lange c24-bx— x2 positiv ist, erhalten wir für y zwei
reelle und verschiedene Werte. Für einen negativen Radikanden
wird y imaginär. Für den Grenzfall verschwindet der Wurzel-
ausdrnck: die beiden Werte von y fallen zusammen, und die
Ordinate wird zur Tangente an die Kurve, wenn

c.2 -I- b x — x2 0, woraus
b + \ b24-4c2

x —-*-2 ;

für das positive Zeichen erhalten wir die Tangente WZ. Ordinate
im Berührungspunkt Z:

b(b-r-vV+4ca)
v — — —•• -

4 c °'
Für das neg. Zeichen im Ausdruck für x bekommen wir die

Tangente UV. Ordinate im Berührungspunkt V:
b (\/b2+4c2 — b)

y — -. pos.4 c

x>bIf-\/b24-4c2 |

9

J> —vV-f-4c9x<
so wird y imaginär.

Der absteigende Ast der Kurve, welcher die Asymptote
x b im Punkt T schneidet, kehrt dieser die konkave Seite zu.
Es muss daher die Kurve unterhalb des Berührungspunktes Z

der äussersten Tangente W Z einen Wendepunkt besitzen, von dem

aus sie der Asymptote wieder die konvexe Seite zuwendet.

Die Kurve hat in E einen Doppelpunkt, was nicht nur
aus der Konstruktion folgt, sondern auch analytisch ersichtlich
wird, wenn wir den Nullpunkt nach E verschieben vermittelst
der Transformationsformeln

x x -f—.

Die Gleichung der Kurve nach der Transformation lautet:'»

(x'2 -|- y'2) x' + -£- (x'2 - y'2) -f 2cx' y' 0. (5)
Lt

Der Nullpunkt ist nun Doppelpunkt; denn die Gleichung
beginnt mit Gliedern zweiten Grades.
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Für die Tangenten im Doppelpunkt erhalten wir die Gleichun

2^[+4?x,b

Die beiden Tangenten stehen senkrecht aufeinander; denn
1

es ist im
nio

Unsere Kurve ist eine rationale Kurve; denn sie besitzt einen

Doppelpunkt, also das mögliche Maximum. Wir können daher
die Koordinaten eines Punktes als rationale Funktionen eines
Parameters l darstellen. Wählen wir trigonometrische Funktionen
als Parameter, so erhalten wir, wenn wir Gleichung (5) zu Grunde
legen,

c sin 2 tp -{- -^- cos 2tp
Li

y' — I c sin 2 tp A~^-cos2tp I tgç>.

(7)

tp bedeutet den Winkel, den der Leitstrahl mit der positiven
x-Axe bildet.

Wir wollen nun untersuchen, welche Moditikationen die
Kurve erleidet, wenn wir c variieren lassen.

'¦ «=f
Die Gleichung (2) bekommt die Form

(x2 + y2)(x-l>H--^y ü. (8)

Die Kurve schneidet sowohl die x-Axe als auch die Asymptote
x b hn Punkte A(b,0).

Die x-Axe ist, wie schon oben erwähnt, im Nullpunkt
Tangente.

Die Gleichung nach y aufgelöst, ergiebt

_
b2 + (2x - b) \Jh2 + 4bx^£üg

y —_ 4(b—x)
h b

y wird reell, wenn x zwischen -=- (1—y 2) und -^-(l-\-\l'2\
2 2

variiert.

x='-£-(l — \J2) ist Tangente im Punkt V,

und x ^-(l-f-V/2) ist Tangente im Punkt Z.
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Der Doppelpunkt E rückt in den Grundkreis. Wird E zum

Nullpunkt des Koordinatensystems gewählt, so erhalten wir, wenn

wir in (5) c -,- setzen, als Gleichung der Kurve :

(x'2 + y'2) x' +~ (x'2 + 2x' y' - - y'2) 0. (9)

Die Gleichung der Doppelpunktstangenten lautet

y' (i±\/2)x'. (lü)
Gleichung (7) nimmt die Form an

x' -4v/2cos(2^-^

v' - -y \/2 cos \2tp- -Jj tg tp.

2. c ü.

Die Gleichung der Kurve lautet

(x2 + y2)(x- -b) 4-^ 0. (12)

Wir verlegen den Koordinatenursprung in den Doppelpunkt
E und erhalten als Kurvengleichung, wenn wir in (5) c — 0 setzen

(x'24-y'2)x'+|-(x'2-y'2) 0. (13)

Dies ist die Gleichung der Strophoide. Es ist der einzige
Spezialfall, in welchem die Kurve, wie schon angedeutet,
symmetrisch wird. Der Wendepunkt rückt ins Unendliche hinaus
und fällt in die Asymptote. Letztere ist ja wie bekannt eine

Wendetangente.
3. c oo.

Der Doppelpunkt liegt im Unendlichen in der Richtung der

y-Axe. Die Kurve selber besteht aus der y-Axe und der doppelt
gelegten unendlich fernen Geraden.

4. c negativ.

Setzen wir für c negative Werte ein, so erhalten wir der
Reihe nach dieselben Kurven wie für positive c; nur sind dieselben
immer Spiegelbilder der erstem in Bezug auf die x-Axe. Die
Kurven für positive und negative c liegen daher paarweise
symmetrisch zur x-Axe. Alle besitzen die gemeinschaftliche
Asymptote x==b.
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d. Die Lösungen der Konstruktionsaufgäbe.

Wir suchen die Punkte D. die Fusspunkte der Schenkelhöhe.

Dieselben sind, wie wir schon gezeigt haben, die Schnittpunkte

des Grundkreises mit der Kurve. Ein Kreis schneidet eine
Kurve dritter Ordnung in 6 Punkten. Da nun beide Kurven
durch den Nullpunkt und durch die imaginären Kreispunkte
der Ebene gehen, so fallen von vorneherein 3 Schnittpunkte
ausser Betracht. Es bleiben also noch 3 Schnittpunkte zu
bestimmen übrig. Als Gleichung der Kurve haben wir

(x2 + y2) (x-b) -x f c2- }-f) + bey 0 («)

und als Gleichung des Kreises
x2— bx-f-y2 0. (•/)

Wir h'isen Gleichung (ß) nach y auf und erhalten

y \J bx^^^2.
Diesen Wert setzen wir in («) ein: es giebt

bx(x — b) -x(c2 -^) ^bcV/bx —x2.

Quadriert, auf Null gebracht und den Faktor x wegdividiert
3b2+4c2 Ob* + -K)b2c2 + l(k-4 nX 2b— X" HW X -bc' °.-

Die Wurzeln dieser kubischen Gleichung sind die Abscissen
der Schnittpunkte D. Als Diskriminante der Gleichung erhalten
wir den Ausdruck:

'1 ^0C^w l— 27 bs -f 288b6 c2 - 992 b+ c4 --1024 b2 cG + 25(ics).
108 -64 b4

' '

/1 — positiv: die Gleichung besitzt eine reelle und zwei imaginäre
Wurzeln.

J 0: alle drei Wurzeln sind reell und zwei fallen zusammen.
J negativ : drei reelle und unter sich verschiedene Wurzeln.

Wir behandeln zuerst den mittlem Fall und untersuchen,
für welche Werte von c die Diskriminante verschwindet. Wir
setzen :

4 c2 i" und b2 rt und führen diese Werte im
Ausdruck für J ein. Bestimmen wir hierauf die Wurzeln der

Gleichung J 0, so finden wir, dass sich die Diskriminante
folgenderinassen in Faktoren zerlegen lässt:
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/^T087ï4417î(4c2--b2)2(16c4 + 72b2c2-27b4).

Es wird somit J 0, wenn
1. c=0;
9 b
2. c ?;
3- o-|^/6\/3-9.

In Bezug auf die Löungen unserer Aufgabe können wir
folgende drei Hauptfälle unterscheiden :

a ^ b
A. c>-.

Für sämtliche Dreiecke, die sich als Lösung ergeben, gilt
die Relation

hi, 4-n c.

B. c=4
Die Dreiecke entsprechen der Bedingung

hb + n + c + —

Von den beiden Grössen hb und n ist die eine 0.

„ b
C. c<y

Für die Dreiecke gilt hb — n + c.

b
A. c>-2

1. c> y^s-
Die Diskriminante ist positiv; wir erhalten nur eine reelle

Wurzel als Abscisse, d. h. der Grundkreis schneidet die Kurve
nur in einem reellen Punkt. Dieser Schnittpunkt liefert ein

spitzwinkliges Dreieck.

=W6^3 — 9. Taf. I, Fig. 3.

Die Diskriminante verschwindet. Es giebt 3 reelle Wurzeln,
wovon 2 zusammenfallen. Grundkreis und Kurve schneiden sich
in Di' und berühren sich in D2'. Es ist nun

Bern. Mitteil. 1902. No. 1530.
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27 b6 — 324 b4 c2 -f- 720b2 c4 + 04 c6

864 b83

Für Xi bekommen wir demnach den Ausdruck
3

Xl=2tHî! + ,v/74 0llCT.

wenn wir für c obigen Wert einsetzen.

3b2 + b2(6\'3-9) b l9 b.,„
X2 X:! 6b + 2

{2 * V 3)
2

V 3-

Setzen wir diese Werte in der Kreisgleichung ein. so
erhalten wir

Vl =bWl4\/3 -24;

y--> yB 1^/2^3-3.
Dem Schnittpunkt Di'(xiyj) entspricht das spitzwinklige

Dreieck OABi' und dem Berührungspunkt D2' (x2y2) das doppelt
gelegte stumpfwinklige Dreieck 0AB2'.

Um zu untersuchen, ob letzteres Dreieck eine besondere

Eigenschaft besitze, wie zu vermuten ist, berechnen wir zunächst
seine Basishöhe.

Wir können die Proportion aufstellen':

b /77^ T b b
hb:|\/2v/3-3 |:|v/3;

b
b=(TV/6v'3-9.hb

1 /~ —
Nun ist hb-f- n c -^ V /6\/3 — 9; folglich ist

c n
hb:=¥ "2-

Das Dreieck besitzt also die Eigentümlichkeit, dass der
äussere Schenkelabschnitt n das Doppelte der Basishöhe
beträgt. Für seine Fläche erhalten wir den Ausdruck

F,w Ä\/W3-9. (I*)OABo 12 \/6\3^
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Die Basishöhe des spitzwinkligen Dreiecks GAB/ lässt
sich aus der Proportion berechnen

hb: "V
raus

Es

14\/3

wird

-24 |
v,

b
hb -TT

demnach
FOAI

: (2\/3- 3)b,

¦ • b2.

/

v_
wo: 1/42^3-72

i 0,26864 •

14 Vi 8-
0.53'

-24
(28 •• ••b.

(15)

3. |-y/6v/3-9>c> b
•>

Die Diskriminante ist negativ. Wir erhalten 3 reelle und
unter sich verschiedene Wurzeln, daher auch 3 reelle Schnittpunkte

D und 3 reelle Lösungen. Der Schnittpunkt des

aufsteigenden Kurvenastes erzeugt ein spitzwinkliges Dreieck, in
welchem hi,-f-n c. Die zwei Schnittpunkte des absteigenden
Astes liefern zwei stumpfwinklige Dreiecke.

Im ersten ist hb 7> n, c pos.
Im zweiten ist hb <7 n, c neg.

B. c |.
Der Grundkreis schneidet die Kurve im Doppelpunkt

E(--y. -~-) und im Punkt A(b, 0). In E fallen 2 Schnittpunkte

zusammen, was der Fall sein muss, da die Diskriminante J 0
wird. Dieser Spezialfall liefert 3 reelle Lösungen:

1. Ein doppelt gelegtes rechtwinkliges Dreieck, für welches
b
2"'

2. Ein unendlich kleines, auf die Basis reduziertes Dreieck

OCA, weil der Fusspunkt der Schenkelhöhe auf A, also
in die Basis fällt, wodurch die Höhe hb 0 werden muss.

C. c < •!-: Taf. I. Fig. 3.

Die Lösungen sind dieselben wie in Fall A:1 mit dem

Unterschied, dass das zweite stumpfwinklige Dreieck seine Spitze
nach unten kehrt.

n 0 wird und hb
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Ist speziell c 0, so verschwindet die Diskriminante. Die
Kurve ist die Strophoide. Wir bekommen 3 Schnittpunkte, von
denen zwei Di und D2 symmetrisch zur x-Axe liegen. Der Schnittpunkt

D3 und damit der Fusspunkt der Schenkelhöhe des

bedingten Dreiecks fällt in den Nullpunkt. Der Schenkel muss
somit senkrecht auf der Basis stehen. Wir erhalten ein unendlich

grosses Dreieck, in welchem hb=--n °o ist.

Die Schnittpunkte Di (Ç, ^\/s) und D2 (~, — ~ \/'ò

erzeugen 2 kongruente, symmetrisch zur x-Axe gelegene

stumpfwinklige Dreiecke O A B. Im /\ O A B ist hi, n -~- : somit ist

1

sin a 7j-

a 30°.
Der Basiswinkel misst also 30°.
Aus der Proportion

finden wir

somit wird

b / b 3b
h": Tv'^y T

1
b i/ohb= (.-\3:

Foab-Foab1-^\/3- (16)

Für negative c gewinnen wir keine neuen Lösungen. Die
Dreiecke werden einfach in Bezug auf die x-Axe Spiegelbilder
derjenigen, die wir für positive c erhalten haben.

§ 4. Zweites Lösungsverfahren. Bestimmung der Spitze B

des gleichschenkligen Dreiecks.

Es gelten natürlich auch hier die Voraussetzungen des § 2.

a) Konstruktion der Hilfskurve.
Es sei (siehe Figur 5, Taf. I) O A b die gegebene Basis.

Wir ziehen durch C die Mittelsenkrechte MMt dazu und tragen
auf derselben von C aus hb + n c ab und erhalten den festen
Punkt E. Über OA schlagen wir ferner den Grundkreis. Nun
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ziehen wir durch O Strahlen, die den Grundkreis in Q schneiden.
Für jeden Strahl bestimmen wir nach den Gesetzen des

gleichschenkligen Dreiecks einen Punkt P so, dass

PQ PE.
Die Verbindungslinie aller Punkte P ist die gesuchte Kurve.

Sie ist also der geometrische Ort eines Strahlpunktes, der vom
Schnittpunkt Q des Strahls mit dem Grundkreis und einem festen
Punkt E, der Mittelsenkrechten gleichen Abstand hat. Die Schnittpunkte

der Kurve mit der Mittelsenkrechten, also mit der Ge-
b

raden x= ^- sind die gesuchten Dreiecksspitzen B; denn

E B — B Q n nach Konstruktion ;

BC hb: also
hb -f- n BC -f- BE CE — c nach Voraussetzung.

Liegt der Schnittpunkt B der Kurve mit der Mittelsenkrechten

zwischen C und E, so gilt beim Dreieck die Relation
hb 4" n c.

Fällt B auf E, so haben wir
hb 4 n c.

Liegt endlich B ausserhalb E, so gilt
hb — n c.

b) Ableitung der Kurvengleichuug.
Zu diesem Zweck legen wir das rechtwinklige Koordinatensystem

so, dass der Punkt 0 zum Nullpunkt und die Basis OA
samt deren Verlängerung zur positiven x-Axe wird. Die Koordinaten

des Punktes P seien x und y. Es ist nun

OQ+QP \f^+f; («}
O Q b cos tp ; I

Il b \2 1 sub. in (a):
QP PE y (x—§-) 4- (c-y)2;

wir erhalten

bcosç» 4 y/(x- Ay+ (c-y)2 \/x2 4- y2

quadriert man noch und bringt auf Null, so ist das Resultat

(x2+y2)(bx-2cy) + (c2-^X)x2+(c?4-^)y2 0. (17)
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c) Diskussion der Kurve.

Die Kurve hat im Nullpunkt einen Doppelpunkt; denn die

Gleichung beginnt mit Gliedern 2. Grades. Als Gleichung der

Tangenten im Nullpunkt erhalten wir
/8 b* —4 c* ,1Q,

>' + xV b-q^T- (18)

Spezialwerte: 1. Für c — 0 wird
y ±x\/3.

Die Doppelpunktstangenten bilden mit der x-Axe Winkel von
+ 60°.

2. Für c — ¦ wird

y -- + x.
Die beiden Tangenten bilden mit der x-Axe Winkel von 4- 45°.

v

3. Für c=-p-y3 wird

y 0, d.h. die beiden Doppelpunkts-
angenten fallen zusammen; die x-Axe wird Rückkehrtangente
ttnid dei' Nullpunkt Spitze.

4. 1 in- c > g
' y 3 wird y imaginär, d. h.

der Doppelpunkt wird zum isolierten Punkt.
Wir setzen y 0 und erhalten die Schnittpunkte der Kurve

mit der x-Axe

bx3 4- (c2 — -^jx2 0:

xi=x2 =0;
3 b2— 4 c2

Xi 4b

Die 8. Abscisse bleibt positiv, so lange c < -~- y 3. Sie
LI

wird also negativ, wenn der Doppelpunkt isolierter Punkt wird,
x 0 gesetzt, ergiebt die Schnittpunkte mit der y-Axe :

-2cyM-(c24--^)y2 0;

yi y2 --= 0;
b24-4c2

y:,^^3c—'
Die dritte Ordinate hat das Vorzeichen von c.
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Wir machen die Gleichung mit z homogen, setzen dann

z 0 und erhalten
Un U3 (x2 4- y2) (bx — 2cy) 0;

daraus folgt:
bx

h y "27;
2. y + ix.

Wir erhalten somit eine reelle und 2 imaginäre Asymptotenrichtungen.

Die Kurve geht durch die imaginären Kreispunkte
der Ebene.

Die reelle Asymptotenrichtung lässt sich konstruktiv leicht
bestimmen. Wir errichten über O E als Durchmesser einen Kreis,
welcher durch C gehen muss und den Grundkreis in Q schneidet.
Die Verbindungsgerade 0 Q ist die gesuchte Asymptotenrichtung.
Ist tp der Richtungswinkel derselben, so ist zu beweisen, dass

tg 9 Ty2 ~2c~ ' Sieh° Fig' 2' ^
Nach dem Sehnensatz ist im Kreis über O E :

p (c -p) i-v
und im Grundkreis:

-j 4 P y — P rv ; folglich

b2
c p — p2 -r p2, woraus

b2
1> 4c-

Setzen wir diesen Wert in (a) ein, so wird
b2 b b

tg^=4c:T=2"c
Die reelle Asymptotenrichtung ist identisch mit dem Strahl,

für welchen der Punkt P ins Unendliche fällt; dies geschieht, wenn
EQJ_ Strahl OQ.

Die Gleichung der Asymptote selbst wird
(7,2 4c2)2

bx — 2cv4~ AIU2 i a 2\ — 0?
- ' 4(b24-4c2)

b (b2 — 4c2la
v vi y ' C\Cl\y 2c r 8c(b2-f-4c2) l '

Die Asymptote schneidet die y-Axe bei positivem c auf der
positiven, bei negativem c auf der negativen Seite. Um sie zu
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konstruieren, bestimmen wir zuerst den Abschnitt auf der y-Axe.
Ist der Schnittpunkt mit der y-Axe gefunden, so zieht man durch
denselben eine Parallele zu 00/ (siehe Fig. 5, Taf. I). Der
Abschnitt auf der y-Axe ist konstruktiv leicht zu gewinnen, wenn
wir dem konstanten Glied in der Asymptotengleichung die
Form geben:

(b2 — 4c2)2 1 / \r -4c2
&"¦

8c(b24-4c-) Sc \yb2f4c2
Spezialwerte: 1. Für c 0 nimmt die Gleichung der

Asymptote die Form an
b

Die Asymptote steht senkrecht auf der x-Axe.

2. c-l
Asymptote: y x.

Sie geht in diesem Spezialfall durch den Nullpunkt und
bildet mit der x-Axe einen Winkel von 45°.

8- c ^-\ 3;

Asymptote : y —- x \/3 -|- \/3-

Die Asymptote bildet mit der x-Axe einen Winkel vo n 30°

4. c oo; dann wird auch

y oo. d. h. die Asymptote verläuft parallel
der x-Axe im Unendlichen.

Durchläuft c alle Werte von 0 bis oo. so dreht sich die

Asymptote um 90° von der Richtung der y-Axe zur Richtung
der x-Axe.

So lange der Nullpunkt Doppelpunkt oder Rückkehrpunkt
ist, besitzt die Kurve einen reellen Wendepunkt. Sie hat deren
drei, wenn der Nullpunkt isolierter Punkt wird.

Wir weisen noch darauf hin, dass die Kurve ebenfalls
rational ist.

Wir betrachten nun noch die verschiedenen Kurven, die
einem veränderlichen c entsprechen ; ihre Doppelpunktstangenten
haben wir bereits untersucht.
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b —
Ist c ^> -~- y 3, so wird der Nullpunkt isolierter Punkt.

Ist c<^~^-v3, » » » » Doppelpunkt.

Ist c -<y y/ 3, » » » » Rückkehrpunkt.

Im letztern Fall wird die Gleichung der Kurve:

(x2+y2)(x-\/3y)+by2 0 (20)

y 0 ist. wie wir schon gesehen haben, Rückkehrtangente.

Wenn c —, so lautet die Kurvengleichung :

(x2 +y2)(x-y)-|-(x2-y2) 0

oder [x24-y2—^ (x4-y)](x—y) 0; (21)

daraus folgt:
2

1. y x;
2. x2+y2-|x_Jiy=:0.

Die Kurve zerfällt also in einen Kreis und in eine Gerade,
welche diametral den Kreis schneidet. Die Gerade ist zugleich
noch Asymptote der Kurve.

Die Kreisgleichung in der Normalform lautet:
b \2 / b V b2

4/+ly 4/ 8

Die Koordinaten des Kreismittelpunktes G sind somit

-j-, -j- )• Der Punkt G fällt also in die Gerade y x und
.4 4

liegt in der Mitte zwischen O und E. Der Radius des Kreises

ist v ^\j2.
Wenn c 0, so heisst die Gleichung der Kurve :

(x2+y2)x-^(3x2-y2)=0. (22)

Die Kurve gleicht der Strophoide. Ihre Asymptote x

-j7 ist ebenfalls Wendetangente. Von der eigentlichen Strophoide

Bern. Mitteil. 1902. No. 1531.
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weicht sie darin ab, dass ihre Doppelpunktstangenten nicht senkrecht

aufeinander stehen; siehe Fig. 5.

Für negative c bekommen wir die gleichen Kurven wie für
positive c. Nur sind sie wieder Spiegelbilder der letztem in
Bezug auf die x-Axe. Durchläuft daher C alle Werte von
— oo bis -4- oo, so liegen die entstehenden Kurven paarweise
symmetrisch zur x-Axe. Die Grenzkurve, für welche c 0, steht
zwischen den Paaren.

Kurven-Schema :

1. c oo. Die Kurve besteht aus dem Null¬

punkt 0 und der zur x-Axe parallelen

unendlich fernen Geraden.

b /-s Der Nullpunkt ist solierter Punkt,
2 * 3 reelle Wendepunkte, Asymp¬

totenrichtungswinkel <; 30°.

b /-ö Nullpunkt ist Spitze, ein reeller
2 Wendepunkt, Asymptotenrich¬

tungswinkel 30°; siehe Fig. 5.

4. - b \/q Nullpunkt ist Doppelpunkt, ein
2 reellerWendepunkt, Asymptoten¬

richtungswinkel >> 30°.

aa) c>y\/6V/3—9-

bb) c ^\J$\j3-9-

cc) !_^/6v/3-9>c>

Schleife reicht nicht bis an die
Mittelsenkrechte.

Schleife berührt die Mittelsenkrechte.

b Schleife schneidet die Mittel-
2 senkrechte. Beide Schnittpunkte

liegen oberhalb der Basis OA.

b Kurve zerfällt in einen Kreis und
2 in eine Gerade, welche mit der

Asymptote zusammenfällt. Die
Asymptote bildet mit der x-Axe
einen Winkel von 45°.
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b ^ „ Wie cc, nur liegt ein Schnittpunkt
' 2 unterhalb der Basis. Asymptoten¬

richtungswinkel zwischen 45° und
90°.

ff) c 0. Kurve eine Art von Strophoide,
liegt symmetrisch zur x-Axe.
Asymptotenrichtungswinkel=900-

d) Die Lösungen der Konstruktionsaufgabe.

Wir haben die Schnittpunkte B der Mittelsenkrechten mit
der Kurve zu bestimmen. Wir bekommen im Maximum 3 Schnittpunkte,

also auch 3 Lösungen. Führen wir den Wert für x aus
b

der Gleichung der Mittelsenkrechten x -~- in der Kurven-
2

gleichling (17) ein, so erhalten wir

:w)$-*m*-™)$+{*+$)>
reduziert :

3
3b2 + 4c2 b2 b4-4b2c2 ,OQ.y9 sc"ya + T^—JP24r- °- (2a)

Die Wurzeln dieser Gleichung sind die Ordinaten der
Schnittpunkte B.

Die Diskriminante J dieser kubischen Gleichung lautet

J
h*

- (—27b8-f-288b6c2 - 992b4c4+ 1024b2c6-4-256c8).
Li • 04t C

™^^(4c2-b2)2(16e44-72b2c2-27b4).

Die Diskriminante verschwindet somit, wenn
1. b 0,

2. c c= — und

3. c y \J6\J3—9.

Fall (1) b 0 fällt ausser Betracht, da b nicht variieren
soll. Die Diskriminante wird demnach für 2 Spezialwerte von
c zu Null. Wir stossen somit auf das ganz gleiche Resultat wie
beim ersten Lösungsverfahren. Nach beiden Verfahren bekommen
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wir zusammenfallende Schnittpunkte und Lösungen für die Werte

c --y und c -Tj-y 6 y 3— 9. Allerdings verschwand die

Diskriminante im ersten Fall auch für den Wert c=0 (siehe pag. 89);
allein dort fielen bloss die Abscissen zweier Schnittpunkte
zusammen, die Ordinaten nicht; diese differierten im Vorzeichen;
daher gab es keinen Berührungspunkt. Im vorliegenden Fall,
wo wir die Ordinaten der Schnittpunkte B der Kurve mit der
Mittelsenkrechten suchen, kann daher für c 0 J nicht =0
werden.

Für b 0 zerfällt überdies die Kurve in die reelle Gerade

c

und in die Geraden absoluter Richtung.

Was nun die Lösungen betrifft, so haben wir die nämlichen
Hauptfälle mit denselben Unterfällen wie beim ersten Verfahren.

Ist 7>0, wobei c > -=- v/ 6y3— 9 sein muss, so erhalten

wir eine reelle Lösung.

Ist J <C 0, so giebt es 3 reelle und unter sich verschiedene
Lösungen.

Wenn J 0 ist, was zweimal eintrifft, so fallen 2 von den
3 reellen Lösungen zusammen.

Wir verzichten auf eine ausführliche Darstellung der
Lösungen. Wir wollen nur noch an einigen Spezialfällen zeigen,
dass die beiden Verfahren in ihren Ergebnissen übereinstimmen.

A2 0 ^-1/6^3-9.
Berechnen wir den zugehörigen Wert von y, so erhalten wir :

3b24-b2(6\/3—9)4-(2—\/3)12b2
yi - ,——

12b\j6\j3—9

b {y~\t) \/2V/3+3=:0-53728-"b
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8b*-r-b*(6\/3-9) + (2—v/3)6b
y2 y3 ¦

12bv/6\/3 —9bv/6vI

Nun ist j2 — y3 — -5- ; denn
o

b (V3 -1-) y/2\/3 4-3 A y/ey/s - 9.

Das spitzwinklige Dreieck hat also die Basishöhe hb 0,53728-"b
und das doppelt gelegte stumpfwinklige Dreieck die Basishöhe

c
hb -k- ; somit herrscht Übereinstimmung mit den Resultaten

o
nach den ersten Verfahren (vergi, pag. 13)

B. c=4
Wir bekommen als Ordinaten der Schnittpunkte B, d. h.

als Basishöhe der entsprechenden Dreiecke, folgende Werte:
4-b2 h

1. yi im AOAC m--|- 0;

2. y2 y3 für das doppelt gelegte rechtwinklige /\
OAE EC ^-- + ^- |- (vergi, damit pag. 91).

C2. c 0; Taf. I, Fig. 5.

Wir gehen aus von der Gleichung (23), multiplizieren c im
Nenner weg, setzen hierauf c 0 und erhalten

3b2 b4

-y --cT + 32^0

Der dritte Wert von y ist unendlich gross, da der Koeffizient
von y8 0 geworden ist. Wir bekommen daher auch hier für
das unendlich grosse Dreieck die Basishöhe hb oo und für die
2 stumpfwinkligen Dreiecke OABi und OAB2 die Basishöhe

hb =-(-—r \/3 wie beim ersten Verfahren (siehe pag. 92).



— 102 —

II.

§ 5. Zweite Aufgabe: Ein gleichschenkliges Dreieck zu
konstruieren, wenn die Basis und die Summe oder Differenz aus Schenkel

und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1.

2.

Bedingungen :

1.

b,
s + n 4 c konstant.

s4-n>^\/2,

2. s — n<-jj- \/2 pos.
Li

Im rechtwinkligen Dreieck ist n=0 und s -^-\/2. Wird
das Dreieck spitzwinklig, so wachsen sowohl s als auch n; also

muss s4"n^>-H"V2 sein. Für ein stumpfwinkliges Dreieck
2

ziehen wir den Grundkreis und finden, dass s4~n> -~- y72 wird
Lt

nach dem Satz: In einem Kreise gehört zu einem grössern

Bogen auch die grössere Sehne. -^r\JZ ist somit das Minimum,
2

das der Wert der Summe s-4-n annehmen kann.

Was die 2. Bedingung betrifft, so erreicht die Differenz
s — n einen maximalen Wert beim rechtwinkligen Dreieck, wo

s — n s — 0 ~ \/2 ist.
Lt

b —
Bei einem spitzwinkligen Dreieck ist nämlich s — n<^-y\/2

nach dem oben erwähnten Sehnensatz, und bei einem

stumpfwinkligen Dreieck ist -~- \J2 schon >¦ als s allein, umsomehr also
u

^-V/2>s—n.

§ 6. Erstes Lösungsverfahren. Bestimmung des Punktes D.

a) Konstruktion der Hilfskurve. Taf. I, Fig. 4.

Mache OA gleich der gegebenen Basis b. Ziehe die
Mittelsenkrechte MMi. Schlage um 0 einen Hilfskreis, dessen Radius



— 103 —

r O H gleich der gegebenen Konstanten c ist. Ziehe durch O

einen Strahl, welcher die Mittelsenkrechte in R und den Hilfskreis

in H und H' schneidet. Mache RP RH
und RP' RH'.

Dreht sich nun der Strahl OR um 0, so beschreiben die Punkte
P und P' die Kurve. Die Schnittpunkte dieser Kurve mit dem
Grundkreis liefern die gesuchten Fusspunkte D der Schenkelhöhe.

Es ist nämlich c OH= OR+-RH. OR entspricht
dem s; folglich muss RH RP den Schenkelabschnitt n
bedeuten. Dieser Schenkelabschnitt erstreckt sich in Wirklichkeit

nur von der Mittelsenkrechten bis zum Grundkreis. Wenn
also der Kurvenpunkt P auf den Grundkreis fällt, so ist RP —n,
OR s, und wir haben eine Lösung der Aufgabe.

Schneidet der Strahl eines Kurvenpunktes P die
Mittelsenkrechte innerhalb des Hilfskreises 0, so genügt P der
Bedingung OR4-RP s4-n OH c.

Für Kurvenpunkte P, deren entsprechende Strahlen die
Mittelsenkrechte ausserhalb des Hilfskreises 0 schneiden, gilt
die Relation: OR —RP s — n OH c.

Für alle Strahlen haben wir endlich noch Kurvenpunkte
P', welche der Relation entsprechen:

RP' — OR n - s OH' c.

Weil in einem gleichschenkligen Dreieck der an die Spitze
grenzende Schenkelabschnitt n niemals grösser, höchstens gleich
s werden kann, so kommt natürlich der Fall n — s c für die

Lösung unserer Aufgabe nicht in Betracht. Der Kurvenzweig,
auf dem die Punkte P' liegen, liefert daher keine Lösungen
unserer Aufgabe.

b) Ableitung der Kurvengleichung.

Wir wählen wieder 0 zum Nullpunkt eines rechtwinkligen
Koordinatensystems und legen durch OA die positive x-Axe. Es
seien x und y die Koordinaten eines Kurvenpunktes P, dessen

Strahl den Richtungswinkel tp habe. Dann ist

y OP • sirxtp; (a)

OP OH -2RP=c — 2RP;
somit y-(c- 2RP) sin tp (ß)
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Ziehe PNJ_MMi, so ist

PN
b
-§—x.

RP PN t —x
sub. in

COSÇ> cos^
G»);

wir erhalten

ex

G
y c

y (c cos tp -

b TT-

-x)2\
— sin ç

cos tp J

- b 4- 2 x) -}-
X

)•

vW;y2

(x24-y2)(b--x)2 —c2x2 :() •

In Polarkoordinaten: r
b

cos tp

(1)

+ c. (la)

Unsere Kurve ist somit die Konchoide des Nikomedes.

Die x-Axe ist Symmetrieaxe und die Asymptote x b L A
die Leitlinie.

c>b; der Nullpunkt ist Doppelpunkt:
c b; » » » Spitze;
c<]b; » » » isolierter Punkt.

Es bleibt nur noch nachzuweisen, dass nach der gewöhnlichen
Definition der Nikomedischen Konchoide

PV VP' c ist.

Nach Konstruktion ist
RP' —OR c.

Nun ist OR RV,
also RP'_RV VP'=c. (y)

Ferner ist nach Konstruktion
OR f-PR c;

für OR kann man RV setzen; also ist
RV4-RP PV c. (Ô)

Aus (y) und (d) folgt, dass

PV P'V c ist.
Wir haben also die Nikomedische Konchoide nicht mit Hilfe

der Leitlinie, sondern mit Hilfe der zwischen dem festen Punkt
0 und der Leitlinie gelegenen Mittelparallelen M Mi und einem
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Kreis konstruiert. Die Basis b des zu konstruierenden
gleichschenkligen Dreieckes ist der Abstand des festen Punktes 0 von
der Leitlinie AL.

c) Die Lösungen unserer Aufgabe.

Wir haben die Schnittpunkte D der Kurve mit dem Grundkreis

zu bestimmen. Die Koordinaten der Punkte D sind die
Wurzeln des Gleichungssystems:

1. (x2-(-y2) (x—b)2—c2x2 0; Gleichung der Kurve.
2. .r2 — bx-\-y2 =ö; » des Grundkreises.

Aus (2) folgt y \/x(b—x), sub. in (1); wir
erhalten bx(x —b)2—c2x2 0,
oder b(x — b)2 — c2x 0. (2)

Die Wurzeln dieser quadratischen Gleichung sind die
Abscissen der Schnittpunkte D. Wir erhalten statt 8 Schnittpunkte
nur zwei, weil beide Kurven durch die unendlich fernen imaginären

Kreispunkte der Ebene gehen, weil ferner zwei Schnittpunkte

in den Nullpunkt fallen und weil endlich y nur in der
2. Potenz vorkommt.

Gleichung (2) nach x aufgelöst giebt

- 2b2 + c2 + c\/4b24rc2"
X~2 2b '" '

Nun ist y \/x (b — x) ;

x darf also höchstens b werden ; sonst werden die Schnittpunkte

imaginai-. Dies folgt übrigens schon aus der Konstruktion.
Wir können daher im Ausdruck für x, den Spezialfall c 0

ausgenommen, nur das negative Zeichen der Wurzel brauchen. Es

wird somit der Ausdruck für die Abscisse von D

2b2-fc2-cv4b24c2 ,*,x ^t^ ; dann wird (o)
Lt D

y==±2b\/2cl(b2+c2)v/4b2+c2_(3b2c+c3))' (4)

Weil das Wurzelzeichen unter der Wurzel nur eindeutig

genommen werden darf, so erhalten wir für y 2 Werte, die sich

nur im Vorzeichen unterscheiden. Wir erhalten somit 2 reelle

Schnittpunkte D, welche symmetrisch zur x-Axe liegen. Dies

bedingt ferner als Lösungen 2 gleichschenklige Dreiecke, welche
Bern. Mitteil. 1902. No. 1532.
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kongruent sind und eine symmetrische Lage zur gemeinsamen
Basis b haben.

Bei variablem c erhalten wir folgende Hauptfälle unter
den Lösungen:

A. c>^-V/2-
i-i

Die Abscisse der Schnittpunkte D und Di ist < -5- Die
Lt

entstehenden Dreiecke sind somit spitzwinklig und genügen der
Bedingung:

s 4- n c.

1. Unterfall c > —^—2

Dei- Dreieckswinkel an der Spitze bei B ist <C 60°. Ist
speziell c oc, so fallen die Punkte D und Di zusammen in den

Nullpunkt. Es entstehen 2 unendlich grosse Dreiecke.

2. Unterfall c —- —^—

Es wird x -,- und y=+-ö-v3.
Die Dreiecke sind gleichseitig.

3. Unterfall ~ > c > % \J 2. Taf. I, Fig. 4.
LI Li

Spitzwinklige Dreiecke, deren Winkel an der Spitze zwischen
60° und 90° liegt.

B. c ~ V/2 Grenzfall.
2

Es wird x — und y 4 w-2 ' 2

Die Dreiecke sind rechtwinklig und erfüllen die Bedingung:

s4n c; n 0.

C c<|v/2-
Es wird x > — ; dies hat zur Folge, dass die Dreiecke

Lt

stumpfwinklig werden. Für dieselben gilt die Relation:
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Wird speziell c 0, so fallen die Schnittpunkte D und D '

zusammen auf A (b, 0), und da jeder doppelt zu nehmen ist, so
erhalten wir als Lösungen 4 unendlich kleine Dreiecke, die sich
auf die Basis reduzieren.

§ 7. Zweites Lösungsverfahren. Bestimmung der Punkte B.
Es gelten die Voraussetzungen des § 5.

a) Konstruktion der Hilfskurre. (Ohne Figur.) Mache OA der
gegeben Basis b. Ziehe den Grundkreis. Schlage ferner einen
Hilfskreis um 0, dessen Radius r O H — c, der gegebenen
Konstanten. Lege nun durch 0 einen Strahl, welcher den Grund-
kreis in Q und den Hilfskreis in H und Hi schneidet. Halbiere
die Strecken HQ und HiQ in den Punkten P und Pi. Lassen
wir den Strahl OQ um O sich drehen, so erzeugen die Punkte
P und Pi die gesuchte Kurve.

Es entspricht nun die Strecke OP, resp. OPi dem Schenkel

s; folglich muss die Strecke PQ, resp. PiQ dem Schenkelabschnitt

n entsprechen, da n gleich dem Abstand des

Schenkelendpunktes vom Grundkreis ist, gemessen auf dem zugehörigen
Strahl.

Die Kurve ist der geometrische Ort eines Strahlpunktes,
dessen Summe oder Differenz der Abstände vom Ursprung O

und dem Grundkreis eine Konstante ist.
Da OP dem Schenkel s und P dem Endpunkt desselben

entspricht, so haben wir in den Schnittpunkten der Kurve mit
der Mittelsenkrechten die gesuchten Punkte B. Die innere
Schleife liefert nur im Spezialfall c 0 Schnittpunkte.

b) Abteilung der Kurvengleichung.

Wir erhalten, indem wir analog wie früher vorgehen, die

b V c2
Gleichung: \U2 -f-y2 -1- xj -^ (x2 + y2) 0. (5)

Dies ist die Gleichung einer Kreiskonchoide.

-x- ist der Durchmesser des erzeugenden festen Kreises und
2

-~- der konstante Abstand der Kurvenpunkte vom Grundkreis, ge-
2

messen auf den zugehörigen Strahlen. Die x-Axe ist Symmetrieaxe.
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c ¦< b ; Nullpunkt ist Doppelpunkt,
c b; » » Spitze,

die positive x-Axe ist Rückkehrtangente.

c ^> b ; Nullpunkt ist isolierter Punkt.

In Polarkoordinaten lautet die Gleichung der Kurve:
b ic ,(.\r= — cospi-g- (6)

c) Die Lösungen der Aufgabe.

Wir ziehen die Mittelsenkrechte, da es sich um deren
Schnittpunkte B mit der Kurve handelt. Die Abscisse aller

dieser Punkte ist x • Führt man diesen Wert für x in der

Kurvengleichung (5) ein, so erhält man eine Gleichung in y,
deren Wurzeln die Ordinaten der Schnittpunkte B, der Spitzen
der gesuchten gleichschenkligen Dreiecke sind. Diese Gleichung
lautet :

c2y2 b2c2
v4 J- 0* 4 16

Die Gleichung, zunächst nach y2 aufgelöst, ergiebt

y2,ä _ c24c\/4b2H-c2
8

Da y nicht imaginär werden darf, so ist nur das positive
Zeichen der Wurzel zu gebrauchen mit Ausnahme des Spezialfalles

c 0; daraus folgt

y=±i^-+°vw. (7)

Man erhält demnach 2 Schnittpunkte, welche symmetrisch
zur x-Axe liegen. Dies bedingt als Lösungen im allgemeinen
2 kongruente symmetrisch zur Basis gelegene Dreiecke. Die
Lösungen sind spitzwinklig, rechtwinklig oder stumpfwinklig, je
nachdem

c|^\/2ist.
Das zweite Lösungsverfahren führt zu denselben Ergebnissen

wie das erste. (Vergleiche damit die Resultate auf pag. 106 und

107.) Wir verzichten darauf, die Übereinstimmung für Speziai-
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fälle nachzuweisen. Wir erlauben uns nur noch, die allgemeine
Formel für die Dreiecksfläche zu bringen. Es wird

_
b /c'+cy^bq^*A0B-XV 2 ^

3b
Speziell für c —^— entsteht ein gleichseitiges Dreieck; es

2

wird F=A\/ _ *- \^3.

III.
§ 8. Dritte Aufgabe : Konstruktion eines gleichschenkligen Dreiecks,

wenn die Basis und die Summe oder Differenz aus Schenkelhöhe

und dem an die Spitze angrenzenden Schenkelabschnitt gegeben sind*
Gegeben: 1. b;

2. h3 4 n + P konstant.

Bedingungen : 1. hs 4 n > ~iy;

2. hs-n<-7-brV/2.
Die Summe hs 4 n wird ein Mimimum bei einem unendlich

kleinen Dreieck; denn da ist hs =0 und n —, also h„ +n --y-
— 2

Die Differenz hs — n erreicht das Maximum bei einem

rechtwinkligen Dreieck, bei welchen h3 -~- v/2 un(1 n Oj also hs —

§ 9. Erstes Lösungsnerfahren: Bestimmung der Spitze B des gleich¬

schenkligen Dreiecks.

a) Konstruktion der Hilfskurve.
Es sei (siehe Figur 6, Tafel II) OA die gegebene Basis b.

Ziehe den Grundkreis. Schlage ferner um A einen Hilfskreis,
dessen Radius r AH c ist. Lege durch O einen Strahl,
welcher den Grundkreis in Q schneidet. Fälle von A aus ein Lot
auf diesen Strahl, das durch Q gehen muss und das den Hilfskreis

in H und Hi schneidet. Trage nun auf dem Strahl OQ



— 110 —

von Q aus die Strecke QH nach der entgegengesetzten Seite

von 0, die Strecke QHi nach der gleichen Seite ab und erhalte
so 2 Punkte P und Pi, so dass

AQ +QP AQ 4QH=AH =c
und QPi-QA QHi-QA AH1 c.

Lässt man den Strahl 0 Q um 0 sich drehen, so beschreiben
die Punkte P und Pi die gesuchte Kurve. Ziehen wir also in
einem Kreise durch den einen Endpunkt 0 eines Durchmessers

Strahlen, die den Kreis in Q schneiden, so ist unsere Kurve der
geometrische Ort solcher Strahlpunkte, für die die Summe oder
Differenz der Abstände des Punktes Q vom Kurvenpunkt P einerseits

und andererseits vom andern Endpunkt A des Durchmessers
eine Konstante ist.

Die Summe der Abstände entspricht der Relation:
hs-f-n c,

die Differenz dagegen der Bedingung:
hs — n + c.

Fällt ein Kurvenpunkt P auf die Mittelsenkrechte MMi, so
wird QP n und QA hg; folglich haben wir in den
Schnittpunkten der Kurve mit der Mittelsenkrechten die gesuchten
Punkte B, d. h. die Spitzen der gleichschenkligen Dreiecke.

b) Ableitung der Kurrengleichung.

Lage des rechtwinkligen Koordinatensystems wie früher.
x und y seien die Koordinaten des Punktes P; dann ist

(OQ + QP)2 x24y2; («)

OQ bcosy?; |

QP c-QA c-bsin^,} sub- in («)?

wir erhalten
(b cos tp -\- c — b sin tp)2 x2-T-y2;

bx by /-j-:—-4-c ,—
J =V/x'!-f-y2;

\/x2-f-y2 \/x2 + y2

[x2 + y24b(y-x)]2-c2(x2+y2) 0. (1)

Polargleichung: r b (cos^> — sintp) + c. (2)

Gleichung (1) ist die Gleichung einer Kreiskonckoide, deren

Symmetrieaxe mit der positiven x-Axe einen Winkel von —45°
bildet.
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c < b \l 2 ; der Nullpunkt ist Doppelpunkt ;

c=by/2; » » » Spitze;

c>b\/2; » » » isolierter Punkt.
Ist c 0, so lautet die Kurvengleichung:

(x2 + y2 + by-bx)2 0.

Die Kurve zerfällt in zwei aufeinanderfallende Kreise.
Die Gleichung eines Kreises in Normalform heisst

b Y / b \a b2

Y) +V + -2/ -2
Die Mittelpunktskoordinaten sind I--yj—-y]> und der Radius

des Kreises ist v ^r-\j2.
Lt

Um die Gleichung der Kurve in normaler Form zu erhalten,
führen wir eine negative Drehung der Axen um 45° aus. Es

ergeben sich daher folgende Transformationsformeln :

1. x x'cos^>-Uy'siny>;
2. y — x'siny + y'comp.

Weil siny cosç> -~- y 2, so erhalten wir
2

,' » „ ,„ ; ',., [ sub in der Kurvengleichung (1);
4. x--j-yJ x 24~y

es resultiert:
(x'24y'2 —bx'\/2)2-c2(x'2-f-y'2) 0. (4)

Der Durchmesser des erzeugenden festen Kreises ist also by 2.

Ziehen wir durch O Strahlen, welche den festen Kreis in V
schneiden, so liegen auf jedem Strahl zwei Kurvenpunkte U und
W, welche von V den konstanten Abstand c haben.

c) Die Lösungen der Aufgabe.

Wir ziehen die Mittelsenkrechte x -^ • denn ihre Schnitt-
2

punkte mit der Kurve liefern die Spitzen B der gesuchten
gleichschenkligen Dreiecke. Alle diese Schnittpunkte haben die Abscisse

x -~-; es bleibt daher nur noch die Bestimmung der Ordinaten

der Punkte B übrig. Zu diesem Zweck setzen wir den Wert

für x -^- in der Kurvengleichung (1) ein und erhalten
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1 <r> \ 2 V.2 2

y2 + by--^J -c2y2--^ 0. (5)

Die Gleichung 4. Grades liefert 4 Wurzeln; somit erhalten
wir 4 Schnittpunkte, was richtig ist, da eine Gerade eine Kurve
4. Ordnung in 4 Punkten schneiden kann.

Wir bringen (5) auf die Form

rt, - b2 —2c2 b3 b4-4b2c2
y4 + 2by3H g y ~~2~y + Jß °>

b
setzen y — z y, setzen ein und erhalten

T.4 01)â„2
z4-(b24c2)z3-fbc2z4- £^- 0. (ß)

Wir zerlegen die linke Seite in 2 Faktoren, wobei wir
unbestimmte Koeffizienten anwenden, und setzen

(z2 + pz + t)(z2-pz-fu)=0, (ß)
führen die angedeutete Multiplikation aus, vergleichen die
Koeffizienten von (a) und (ß), leiten eine Gleichung in p ab, setzen

2
p2 v 4~ -5- (b2 4" °2) und erhalten schliesslich folgende kubische

o
Hilfsgleichung :

4b4_4b2c24-c4 16b6-24b4c2 —15b2c4—2c6 ,kv3
3- v ~ 0.(6)

Die Diskriminante dieser Gleichung lautet:
4ps 7.2 „4

_7 Q2 — -A±^- AL2- (4c64-3b2c44-48b4c2—32b6).
Lti Lti

Diese Diskriminante verschwindet für folgende Werte -von c :
1. c 0

r
(7)2. 0 ^-^/3^13+ 16^2 4-3^13—16^2-1

0,787996 b

Demnach bekommen wir 3 Hauptfälle für unsere Lösungen:
A. c> 0,787996 ••-• b; J pos.

Die kubische Hilfsgleichung in v (6) besitzt eine reelle und
zwei imaginäre Wurzeln; folglich werden bei der biquadratischen
Gleichung (5) in y 2 Wurzeln reell und 2 Wurzeln imaginär.
Wir erhalten zwei reelle, verschiedene Lösungen. Laut
Konstruktion sind die Dreiecke spitzwinklig.

B. c - 0,787996 ••• - b; J 0.
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Die kubische Hilfsgleichung hat 3 reelle Wurzeln, wovon
2 gleiche. In diesem Fall besitzt die biquadratische Gleichung
4 reelle Wurzeln, wovon auch 2 gleiche. Wir bekommen 4 reelle
Lösungen, wovon 2 zusammenfallen. Die ungleichen Dreiecke
sind laut Konstruktion spitzwinklig, die zwei gleichen
stumpfwinklig.

C. c<0,787996--- b

J neg., wenn wir c 0 ausschliessen.
Die Wurzeln der Gleichung (6) sind alle reell und positiv.

Die Gleichung (5) hat folglich ebenfalls lauter reelle Wurzeln
und damit unsere Aufgabe 4 wirkliche Lösungen.

Spezialfälle :

1. c_|V2.
Die Gleichung (6) bekommt die Form

9
v3 — —^ b4v 0; die Wurzeln sind

12
Vi 0.

b2 t/Qv2 TV/3.

VB —-yY/3.
Die Gleichung (ß) lautet in diesem Fall

b2
Z2 4- bz - -g-

I (z2 — bz 4-0) 0.

Subtrahieren wir von den Wurzeln dieser Gleichung -y, so

erhalten wir schliesslich folgende Werte für y:
1. yi -y-, bedingt ein rechtwinkliges Dreieck.

o
b

2. y2 — y> » » » »

3. y3 b(-^yy3 — 1 bedingt ein stumpfwinkliges Dreieck.

4. y4 — b -y y 3 4" 1 )' * * spitzwinkliges »

2. c 0; _/ 0.

Gleichung (6) nimmt die Form an
Bern. Mitteil. 1902. No. 1533.
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4b4 16b6
—?;— V

27
Die Wurzeln sind:

4 2
vi g- b-; v2 —- v3 — -g-

b-.

Gleichung (/9) bekommt die Form

^ + bl/2.Z4yj(z» 4-b\/2.z 4- -^) 0.

Subtrahieren wir wieder von den Wurzeln dieser Gleichung

-jp so finden wir für y folgende Werte:
Li

1. yi y2 —- (v/2 — 1), bedingt ein doppeltgelegtes

stumpfwinkliges Dreieck.

2. y3 y4 — (t/2 -4- 1), bedingt 2 zusammenfallende

spitzwinklige Dreiecke.

Die Dreiecke, die wir für c 0 erhalten haben, besitzen

folgende zum teil schon aus der Konstruktion hervorgehende
Eigenschaften:

1. In jedem der beiden Dreiecke ist die Schenkelhöhe hs

gleich dem äussern Schenkelabschnitt n.

2. Die Schenkelhöhe hs des einen Dreiecks ist gleich dem
innern Schenkelabschnitt m des andern und umgekehrt.

3. Die Basiswinkel dieser Dreiecke messen 22 '/» °, resp. 67 7* "¦

Satz (1) folgt aus der Konstruktion. Satz (2) soll
analytisch bewiesen werden. Zu dem Zweck berechnen wir im
spitzwinkligen Dreieck OAB die drei Grössen s, hs und m. Wir
finden:

b
S^2 v/44-2\/2;

2. hs -^-y/2 4-\/2;

o b
3. m ^

Es muss nun im spitzwinkligen Dreieck das von den
3 Stücken b, hs und m begrenzte Dreieck OADi gleich dem
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stumpfwinkligen /\ 0 AB sein, vermehrt um das von den 3 Stücken

s, h» und n gebildete rechtwinklige /\ A BD; also A OADi
AOAB4AABD, sofern Satz (2) bestehen soll. Wir schreiben
für die Flächen dieser Dreiecke die halben Produkte aus Grundlinie

und Höhe, multiplizieren das 2 im Nenner weg und erhalten:

\\J^ß- 4v/2_r^=l- «*- "+(4sl^f
-T-\J2i -T-\j2; die Gleichung ist identisch

richtig, somit unsere Behauptung bewiesen.

Die Wahrheit von Satz (3) kann trigonometrisch leicht dar-

gethan werden.

Für die Flächeninhalte dieser zwei Dreiecke erhalten wir
folgende Ausdrücke:

FOAB T^-l)
FOABi=T(V/2 + 1)

3. c -Jj-
; siehe Figur 6, Tafel IL

2

Eine Lösung wird unendlich klein; denn die Gleichung (5)

wird für c -?j- und y 0 erfüllt.
2 J

§ 10. Zweites Lösungsverfahren. Bestimmung der Fusspunkte D der

Schenkelhohe. Voraussetzungen wie in § 8.

a) Konstruktion der Hilfskurve.

Es sei (siehe Fig. 7, Taf. II) OA b die gegebene Basis.
Ziehe den Grundkreis und die Mittelsenkrechte MMi. Schlage
ferner um A einen Hilfskreis, dessen Radius r AH c ist.
Ziehe nun durch O einen Strahl, welcher den Grundkreis in Q
und die Mittelsenkrechte in R schneidet. Fälle von A aus ein
Lot auf den Strahl, welches durch Q gehen muss und den Hilfskreis

in H und Hi schneidet. Jetzt trägt man auf dem Strahl
OQ von R aus die Strecke QH nach der gleichen, die Strecke
QHi nach der entgegengesetzten Seite von 0 ab, macht also



— 116 —

1. RPi QH, so dass die Relation gilt
RPi 4- AQ QH -f- AQ AH c.

2. RP2 QHi, so dass die Bedingung erfüllt wird
RP2 — AQ QHi — AQ AHi c.

Der geometrische Ort aller Punkte P bei sich drehendem
Strahl ist die Kurve. Die verschiedenen Punkte dieser Kurve
genügen einer der Relationen hs + n c.

Fällt ein Kurvenpunkt P in den Grundkreis, so wird
RP=BD=n und
QA DA hB; wir haben eine Lösung

der Aufgabe. Die Schnittpunkte der Kurve mit dem Grundkreis
liefern die Fusspunkte D der Schenkelhöhe der gesuchten Dreiecke.

b) Ableitung der Kurvengleichung.
Es seien in Fig. 7, Taf. II x und y die rechtwinkligen

Koordinaten des Kurvenpunktes P2. Es besteht nun die
Proportion :

op2: ok RP2 : CK;
die bezüglichen Werte eingesetzt,

v/5?4^:x=rp2:^=^; («)

RP2 c-(-AQ c4bsin^, sub. in («);
wir erhalten

\/x24-y2 : 2x (c4-bsiny) : (2x—b);
(x24-y2) : 2x (cy/x^F74-by) : (2x-b);

[(x2+y2) (b—2x) + 2bxy]2 — 4c2x2(x2+y2) 0. (9)

Polargleichung :

r=bsinc/> 4-^> r-c. (10)T zcostp — v '

c) Eigenschaften der Kurve.

Die Kurve ist von der 6. Ordnung. Sie besteht aus zwei
unendlichen Ästen, von denen der eine eine Schleife mit Doppelpunkt

in O besitzt. Der Nullpunkt ist 4facher Punkt; denn die
Gleichung beginnt mit Gliedern 4. Grades.

Als Gleichung der Tangenten im Nullpunkt erhalten wir:
v4 4vs 6b3—4c2 v2 4v b*—4c2
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Wir können diese Gleichung nur für Spezialfälle auflösen.
1. c 0.

Gleichung (11) bekommt die Form
y4 4y3 6y2 4y
X4 X8 X2 X '

T+1)-0-
y — x ist 4fach gelegte Tangente im Nullpunkt.
Für c 0 lautet nun die Kurvengleichung:

[(x24-y2)(b-2x) + 2bxy]2 0. (12)

Die Kurve zerfällt somit in zwei zusammenfallende Kurven
3. Ordnung. Die Gleichung eines Astes lautet

(b-2x)(x24-y2)42bxy 0. (12a)

Die Gerade y — x ist für jede der beiden Kurven 3.

Ordnung Rückkehrtangente; denn setzen wir in Gleichung (12a) für
y den Wert — x ein, so erhalten wir :

x3 0; der Nullpunkt ist also Spitze.

2 c-
b

2. c- 2-
Gleichung (11) nimmt die Form an

Zliiz! 5yl 4y
x4 "l- x3 "f" X2 "*" x

0. («)

X 0;
x

die x-Axe ist Tangente.

Dividieren wir in («) den Faktor -^- weg, so bleibt
x

4y2 5y
1 +^r 4-4=o. {ß)

Xs ' X" X

y 4
Setze — w s-,x 3

Die transformierte Gleichung lautet:
„ w 56

W X+27=°- (y)

Die Diskriminante dieser Gleichung wird J pos.; somit
besitzt Gleichung (ß) eine reelle und zwei imaginäre Wurzeln
und Gleichung (a) im ganzen 2 reelle und 2 imaginäre Werte
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y TAW. „._
b

für —• Für c"= --j- sind also 2 Nullpunktstangenten der Kurve
x

— 3 0. (Ô)

reell und 2 imaginär.
3. c b.

Gleichung (11) erhält die Form

iL 4. iz!. M lz
xt -r x3 -r X2 -r x

Die kubische Hilfsgleichung, die wir ableiten können, hat
eine reelle und zwei imaginäre Wurzeln; folglich besitzt
Gleichung (ô) 2 reelle und 2 imaginäre Wurzeln. Die Nullpunktstangenten

sind wieder zur Hälfte reell und zur Hälfte imaginär.
Überhaupt hat die Kurve, wie schon die Konstruktion

ergiebt, im Nullpunkt stets 2 reelle und 2 imaginäre Tangenten
mit Ausnahme des Falles, da c 0 ist.

Um die Schnittpunkte mit der y-Axe zu erhalten, setzen
wir in der Kurvengleichung (9) x 0 und erhalten

b2y4 0;
somit schneidet die y-Axe die Kurve 4 mal im Nullpunkt und, da
die Koeffizienten von y6 und y5 0 sind, noch 2 mal im Unendlichen.

Setzen wir y 0, so bekommen wir die Abschnitte auf der
x-Axe. Wir erhalten die Gleichung:

[x2(b—2x)]2-4c2x4 0.

1. x4 0; x 0 4mal;

2. (b-2x)2 c2; x -br±c.
Li

Die x-Axe schneidet die Kurve 6 mal im Endlichen, worunter
4mal im Nullpunkt.

Zur Bestimmung der Asymptotenrichtungen machen wir die
Kurvengleichung mit z homogen, setzen dann z 0 und erhalten

4x2(x24-y2)2 0;
1. x 0 2mal;
2. y + ix 2mal.

Die imaginären Kreispunkte der Ebene sind also Doppelpunkte

der Kurve. Ferner haben wir in

x 4 (13>

2 zusammenfallende reelle Asymptoten. Um dies zu zeigen,
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machen wir die Mittelsenkrechte x -=- zur y-Axe vermittelst
2 J

der Transformationsformeln :

b
X X 4--JJ-,

y y'-
Die Gleichung der Kurve wird:

^_2x'(x'2 + bx'+-^-+y'2)4-2by'(x' + A)]2-
4c2(x'2-f bx'-f-^-j (x,24-bx'+-b^- + y'2j 0. (14)

Wir projizieren die unendlich fernen Punkte in der Richtung
der y'-Axe auf die x'-Axe und setzen

y y„
x"und x' —Tj-
y '

Wir erhalten, wenn wir noch die Gleichung mit y"6 multiplizieren,

|_ 2x" (x"24bx"y" -f ¥Ç- f l) 4 2by" (x" + ^)J~
4c2y"2(x"24bx"y" U b-t x"24-bx"y"

b2v"2 \+ 4 +1) °- (15)

Die Schnittpunkte mit der y"-Axe: Setze x" 0, erhalte
I V.»

b4y"4-b2c2y"^-bj-y"24-lj 0,

woraus 1. y"4 0; y" 0 4mal.

2- y"=±^V^=^. (e)

Der Nullpunkt der projizierten Kurve ist Doppelpunkt,
dessen Tangenten in x" 0 zusammenfallen, und dafürx"=0
y"4 0 wird, so ist derselbe und damit auch der unendlich ferne

Punkt der Asymptote x --j- ein Selbstberührungspunkt. Die Kurve
2

hat also im Unendlichen einen Selbstberührungspunkt, und die

Mittelsenkrechte x -y- ist Selbstberührungsasymptote.
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Aus (e) folgt ferner, dass die Gerade x -jj- die Kurve im
2

Endlichen im allgemeinen in 2 Punkten schneidet, deren Ordinaten

bc / ï
y=±-2-Vb^? sind-

Die Schnittpunkte sind reell, wenn c < b,

imaginär, wenn ob
und liegen im Unendlichen, wenn c b.

Im letztern Fall ist der unendlich ferne Punkt der Kurve
ein Selbstberührungspunkt, in welchem die Mittelsenkrechte als

Asymptote die Kurve in 6 zusammenfallenden Punkten berührt,
also Inflexionsknoten zugleich.

Unsere Kurve ist also rational; denn sie besitzt
einen 4fachen Punkt im Nullpunkt 6 Doppelpunkte,
einen Selbstberührungspunkt =2 »

2 Doppelpunkte in den imaginären
Kreispunkten 2 »

also das Maximum von 10 Doppelpunkten.
Die Kurve hat, wie sich aus der Konstruktion ergiebt,

Wendepunkte und zwar, wenn
1. c>b 2 WP im rechten Ast;
2. b>c>0 4WP, nämlich 3 im rechten Ast und einen

im obern linken Ast;
3. c 0 1 WP im aufsteigenden Ast der doppelt

gelegten Kurve 3. Ordnung.
Für ein unendlich grosses c besteht die Kurve aus der

doppelt gelegten y-Axe und der unendlich fernen Geraden (linker
Ast) und aus der unendlich fernen Geraden samt dem Nullpunkt
als isoliertem Punkt (rechter Ast), zusammen also aus der doppelt
gelegten y-Axe, der doppelt gelegten unendlich fernen Geraden
und dem Nullpunkt als isoliertem Punkt.

Negative c erzeugen die gleichen Kurven wie positive c,
weil c quadratisch vorkommt.

d) Die Lösungen der Aufgabe.

Es handelt sich um die Schnittpunkte D der Kurve mit
dem Grundkreis. Die Koordinaten dieser Punkte D sind die
Wurzeln des Gleichungssystems:
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1. [(b-2x)(x24y2)4-2bxy]2-4c2x2(x2-fy2)=0, Kurve. ì

2.
*

x2- b x+y2 0, Grundkreis. (°)

Da die Kurve von 6. Ordnung ist, so wird sie vom Kreis
in 12 Punkten geschnitten. Von diesen Schnittpunkten absorbiert
der Nullpunkt 4, da er ein 4facher Punkt der Kurve ist. Weitere
4 werden absorbiert durch die imaginären Kreispunkte der Ebene,
welche der Kurve je doppelt angehören. Es bleiben somit 4

Schnittpunkte übrig; folglich kann unsere Aufgabe im Maximum
4 reelle Lösungen aufweisen. Wir erhalten mithin das gleiche
Ergebnis wie beim ersten Lösungsverfahren. Wir wollen die
Übereinstimmung in zwei Spezialfällen zeigen.

1. c 0, Taf. II, Fig. 7.

Das Gleichungssystem («) heisst nun:
1. (b-2x)(x2+y2) + 2bxy 0l
2. x2—bx+y2 =0} W

Wir lösen (2) nach y auf, setzen den Wert in (1) ein und
erhalten zur Bestimmung der Abscissen von D' folgende Gleichung
in x: 4b2x2(bx — x2) (b — 2x)2b2x2, woraus

x -b-(2 4y/2).
Für y erhalten wir den Ausdruck:

y ±^V2.
Da die Koordinaten doppelwertig auftreten, so müssen wir

2 Schnittpunkte haben. Den positiven Zeichen in den Wurzeln
entspricht der eine, den negativen der andere. Die beiden

Schnittpunkte sind somit

D' [4(2+Vä),.T\ß\ und K [x(2-v 2), --j- Vä)
Jeder der beiden Schnittpunkte ist indes noch doppelt zu zählen,
weil die Kurve 3. Ordnung doppelt gelegt ist.

Die Basishöhen der beiden Dreiecke werden aus der
Proportion bestimmt:

^-(2±V/2):-br- ±4v/2:hb;

hbl A(v/2-l), AOAB1;

hb2=-^-(\/2 4-i), A oabJ.
Bern. Mitteil. 1902. No. 1534.
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Diese Werte stimmen mit denjenigen auf pag. 114

vollständig überein.

2. c 4-y'2. Taf. II, Fig. 7.
2

Die Gleichung in x, deren Wurzeln die Abscissen der
Schnittpunkte D sind, bekommt folgende Form

64x4 - 128bx3-f-84b2x2 - 20b3x4-b4 0.

Die Wurzeln dieser Gleichung sind:

1. xi 0-f--^-, 3. x8 -j-\/3 4--jy-,

2. x2 0 + ~, 4. ^-lt/3+l
dann wird

1
b

l. yi=-2«
o b
8- y3 — T>

b
2- ?* —%>

b
4- y4=-T'

Dies sind die Koordinateri der Schnittpunkte D.

Als Basishöhe für die 4 Lösungen erhalten wir:

1. hb -J- i

Li
für A OABi;

2- hb
*

» A OAB3;

3. hb b -L-^3 - 1 für A OABa;

4. h„ —b/--~v/3 + l) » A OABi.

Diese Werte stimmen vollständig überein mit denjenigen
auf Seite 113.

IV.

§ 11. Vierte Aufgabe: Konstruktion eines gleichschenkligen Dreieckes,

wenn die Basis und die Summe oder Differenz der durch die
Schenkelhöhe erzeugten Schenkelabschnitte gegeben sind.

Gegeben: 1. b;
2. m 4- n + c konstant.
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Bedingungen: 1. m +n>-jj\/22

2. m-n<-f^-\/2.

Bei einem rechtwinkligen Dreieck wird m-f-n —-y 2, und

dies ist das Minimum. Wird das Dreieck spitzwinklig, so wird

m4-n s grösser als -jj-y2, und wird es stumpfwinklig, so wird
2

m allein schon grösser. Die Differenz m —n erreicht in --j-y 2
2

das Maximum beim rechtwinkligen Dreieck. Wird das Dreieck
stumpfwinklig, so nimmt die Differenz m—n an Wert ab bis

zum Grenzwert --j- Wird das Dreieck spitzwinklig, so nimmt
2

die Differenz m — n ab bis zu 0 (gleichseitiges Dreieck); dann
wird sie negativ, resp. n — m positiv bis zum Wert oo.

§ 12. Erstes Lösungsverfahren. Bestimmung der Punkte B.

a) Konstruktion der Hilfskurve (ohne Figur).
Es sei OA b die gegebene Basis. Wir ziehen den Grundkreis

und um 0 einen Hilfskreis mit der Konstanten c als Radius.
Nun legen wir durch O einen Strahl, der den Grundkreis in Q
und den Hilfskreis in H und Hi schneidet. Die Strecken QH
und QHi tragen wir von Q aus auf dem Strahl je nach der

entgegengesetzten Seite hin ab und erhalten die 2 Punkte Pi und
Pa; für diese gilt:

1. OQ + QP1 OQ-f-QH OH=c; Ì

2. QP2 — OQ QHi—OQ OHt c. [ W
Der geometrische Ort aller Punkte P bei sich drehendem

Strahl ist die gesuchte Kurve. Wir ziehen die Mittelsenkrechte
MMi. Fällt nun ein Kurvenpunkt in diese Gerade, so wird

QP BD n und QO DO m;
wir haben eine Lösung. Die Schnittpunkte der Kurve mit der
Mittelsenkrechten sind somit die gesuchten Punkte B.

b) Ableitung der Kurvengleichung.
Addieren wir und subtrahieren wir die Gleichungen bei (a),,

so erhalten wir
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1. QPi4-QP2 2c;
oder PiP2 2c; (ß)

2. 2OQ4QPi-QP2=0;
OQ QP2-OQ-QPi QP2-c;

2 OQ==OP2 —c. (y)
Ziehen wir nun um A einen Kreis mit dem Radius r b,

so wird dieser Kreis vom Strahl OP2 in V so geschnitten, dass

OV 20Q OP2 —c.
Der Punkt V hat also von P2 den Abstand c; da aber nach

(/?) PiP2 2c ist, so muss V auch von Pi den Abstand c haben.
Es haben somit die Kurvenpunkte jedes Strahls gleichen und
konstanten Abstand von einem festen Grundkreis. Unsere Kurve
ist die Kreiskonchoide. Die Gleichung derselben lautet:

(x24-y2—2bx)2— c2(x24-y2) 0. (1)
Die x-Axe ist Symmetrieaxe.
1. c>2b; Nullpunkt ist isolierter Punkt;
2. c 2b; » » Spitze, die positive x-Axe Rück¬

kehrtangente;
3. c<2b; » » Doppelpunkt.
Polargleichung :

i- 2bcos^4c. (2)

c) Die Lösungen der Aufgabe.

Wir bestimmen die Schnittpunkte B. Die Abscisse

derselben ist x -jj. Diesen Wert setzen wir in der Kurven-
Lt

gleichung (1) ein und erhalten
3b2 Y J b̂2

-c2 y2 + -r- -o,4 / V ' 4.
eine Gleichung in y, deren Wurzeln die Ordinaten der Schnittpunkte

B und zugleich die Basishöhen der gesuchten Dreiecke
sind. Diese Gleichung nach y aufgelöst, ergiebt

y + -jy- Y/3b24-2c2±2c\/4b24-c2. (3)

Dieser Ausdruck liefert für y 4 reelle oder 2 reelle und
2 imaginäre Werte. Bei variablem c erhalten wir daher
entweder 4 oder 2 reelle Lösungen, welche paarweise symmetrisch
sind. Für den Grenzfall erhalten wir 4 reelle Wurzeln, wovon
2 0 sind. Dieser Fall tritt ein, wenn
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3b24-2c2 —2cy/4b2-fc2 0, also

3b A
C —-jy- ISt.

Die Inhaltsformel der Dreiecke lautet:

F Ç ^- v/8b24-2c2+2c\/4b84-c2. (4>

Gruppierung der Lösungen:

A- c>¥-
Bei der innern Wurzel gilt nur das positive Zeichen. Wir

erhalten daher nur 2 reelle Lösungen und zwar 2 spitzwinklige
Dreiecke.

Für den Spezialfall c 2b wird die Basishöhe derselben

hb 4-
b

y ±T
B. c

\JllA-8\j2.
3b- 2

'

Die Wurzeln von. (3) sind:

yi -i-ira; y2 - -j^-V/lö; y3 yi 0.

Wir erhalten:
1. 2 symmetrische, spitzwinklige Dreiecke, bei denen s 2b,.

m —, n -j- b und die also die Bedingung erfüllen :

n — m c;
2. 2 unendlich kleine, auf die Basis reduzierte Dreiecke, für

welche m 2n und m4-n c ist.„3bC. c<-w-
1. c b.

Nach Gleichung (3) wird
b

y/5±2v/5;
für das positive Zeichen unter der Wurzel giebt es 2 symmetrische

spitzwinklige Dreiecke, für welche s ~jj (1 -4- y 5) und der Basis-
Lt

winkel 72° ist. Für das negative Zeichen sind die Dreiecke

stumpfwinklig; s= -jj- V 5 — 1); der Basiswinkel misst 36°.
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2. c Ay/2.

Es wird .y 4 -!?- \fl±3.
Wir erhalten
1. 2 spitzwinklige Dreiecke mit den Grössen s 2 c =-b y 2,

m Jl y^ und n Ç \J2;

2. 2 rechtwinklige Dreiecke.

3 c= b.ö. c 2

Es wird y ±^-v/l4±2y/l7;
4 spitzwinklige Dreiecke, paarweise symmetrisch.

Wird c noch kleiner als -jj-, so nähern sich die ungleichen

spitzwinkligen Dreiecke in der Grösse immer mehr und fallen
«ndlich zusammen für

4. c 0; y ±yy/3;
4 gleichseitige Dreiecke.

§ 13. Zweites Lösungsverfahren. Bestimmung der Punkte D.

a) Konstruktion der Hilfskurve. Taf. II. Fig. 8.

Es sei OA b die Basis des gleichschenkligen Dreieckes.
Wir ziehen den Grundkreis, die Mittelsenkrechte MMi und endlich

noch einen Hilfskreis um 0 mit dem Radius r c. Durch
O gehe nun ein Strahl, der den Grundkreis in Q, den Hilfskreis
in H und Hi und die Mittelsenkrechte in R schneidet. Auf
diesem Strahl tragen wir nun von R aus die Strecken QH und

QHi nach derselben Seite gegen O hin ab und erhalten die
2 Punkte Pt und P2. Der Punkt Pi genügt der Relation
OQ —RPi OQ — QH OH c, und für P2 gilt RP2 — OQ

QHi — OQ OHi c. Der geometrische Ort aller Punkte P
bei sich drehendem Strahl ist die Kurve. Ihre Schnittpunkte mit
dem Grundkreis ergeben die gesuchten Fusspunkte D der Schenkelhöhe;

denn fällt ein Kurvenpunkt P in den Grundkreis, so ist
QH RP BD n, und wir haben eine Lösung.
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b) Ableitung der Kurrengleichung.

Es seien durch OA die Abscissenaxe und durch 0 die
Ordinatenaxe gelegt. Sind x und y die rechtwinkligen Koordinaten

eines Kurvenpunktes Pi, so kann man setzen, wenn Pi N
J_MMi gezogen wird,

~~
(«)PiR v PiN2 + NR2;

PiR HQ OQ — OH bcos? - c,

PiN 2

NR RC-NC
Es giebt

by
2x y-

sub. in (a);

à /(b-2x)2 y2(b-2x)2b cos tp — c — V / -—.—— + 4x2

[(x24-y2)^-x
Polargleichung:

— bx2 — c2x2c2(x2-r-y2) 0.

2 cos $5

— b cos tp -j- c.

(5)

(6)

c) Diskussion der Kurvengleichung.
Die Kurve ist von der 6. Ordnung. Ihre Gleichung (5)

beginnt mit Gliedern 4. Grades; folglich ist der Nullpunkt 4facher
Punkt. Die Gleichung der Nullpunktstangenten lautet

x /b2 + 2c2 + 2c\/2b2 + c2
(7)

Es ist nun
A2 B2 b4 - 4b2 c2 b2 (b2 — 4c2).

So lange b>2c ist, ist auch A > B, und wir erhalten
4 reelle Wurzeln für y, daher auch 4 reelle Tangenten. Ist
b <C 2 c, so werden 2 Wurzeln und damit 2 Tangenten imaginär.
Wir erhalten mithin 2 Hauptfälle für die Tangenten im Nullpunkt.

b
A. C>"2-

2 Tangenten sind reell, 2 imaginär. Der 4fache Punkt im
Nullpunkt ist daher Doppelpunkt und konjugierter Punkt
zugleich; folglich muss die Kurve 2 Äste haben, was die Konstruktion
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auch bestätigt. Der eine Kurvenast geht durch den Nullpunkt,
der andere nicht.

B. c<-^-.
LA

4 reelle Tangenten; beide Kurvenzweige gehen durch den

Nullpunkt.

1. c ~, siehe Fig. 8, Taf. II.

Nach Gleichung (7) wird

yi,2 4x^3; y3 yi — 0.

Die Tangenten des 1. Astes bilden mit der x-Axe Winkel
von +60°; für den 2. Ast ist die x-Axe Rückkehrtangente
und der Nullpunkt Spitze.

2. -|->c>0.
4 reelle, unter sich verschiedene Tangenten; der Nullpunkt

ist Doppelpunkt für beide Kurven-Äste.
3. c 0.

Wir erhalten y + x je 2 mal.

Die beiden Äste fallen zusammen. Der Richtungswinkel
der Tangenten -r 45°. Die Kurve zerfällt in 2 zusammenfallende

Kurven 3. Ordnung, deren Gleichung die Form besitzt;

(x2 +y2)(^-x)-b2x2 0

oder (x2 4- y2) x - -£ (y2- x2) 0. (8)

Diese Kurve ist die Strophoide. Die Achse ihrer Schleife ist
gleich der halben Basis b.

Die Schnittpunkte mit der x-Axe: Setze y 0, erhalte
[(b —2x)x2 —2bx2]2 —4c2x4 0;

1. x4 0; 2. x=-y±c.
Die Schnittpunkte mit der y-Axe : Setze x 0,

erhalte y4 0.

4 Schnittpunkte fallen in den Nullpunkt, die andern 2 ins
Unendliche; denn die Koeffizienten von yB und y° sind Null.

Da y nur im 2. und 4. Grad vorkommt, so erhalten wir,
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wenn wir die Gleichung nach y auflösen, einen Ausdruck von
der Form

y + V/A+y'B, d. h. jedem endlichen Wert

von x entsprechen 4 Werte von y, die paarweise absolut gleich
sind. Die Kurve liegt also symmetrisch zur x-Axe.

Um die Schnittpunkte der Kurve mit der unendlich fernen
Geraden zu gewinnen, machen wir die Gleichung mit z homogen,
setzen dann z 0 und erhalten:

U„ -= U6 4x2 (x4 -f 2x2y2 -f y4) 0; daraus folgt
1. x2 0,

2 reelle, mit der y-Axe zusammenfallende Asymptotenrichtungen.
2. y + ix je 2mal.

Die imaginären Kreispunkte der Ebene sind Doppelpunkte
der Kurve.

Die Gerade x -y- (9)

ist Selbstberührungsasymptot..'; denn für x --y werden 4 Werte
Lt

von y unendlich gross. Transformieren wir die Gleichung
vermittelst der Formeln

x x'4--jj und y y',
projizieren nachher die unendlich ferne Gerade in der Richtung
der y-Axe auf die x-Axe mit Hilfe der Formeln

x" 1
X' —fr un(l y' —TT'y

J
y

so erhalten wir

— 2x" (x"2 4-bx" y"4- h*^" 4- 1

— 2b(x"2y"+bx"y"2+b-^
/ b2v"3- 4c2 x"2y" 4-bx" y"2 -f -^-J—

- 4c2 (x"2y" 4-bx"y"2 4- ^' j y" =0. (10)

Der Nullpunkt der transformierten Kurve ist Doppelpunkt.
Die Nullpunktstangenten, deren Gleichung

x"2 Q ig^
Bern. Mitteil. 1902.

'
No. 1535.



— 180 —

fallen zusammen, und da endlich für x" 0

y"4=0 wird,
so muss der Nullpunkt und damit auch der unendlich ferne Punkt

der Kurve Selbstberührungspunkt und die Gerade x -jy Selbst-

berührungsasymptote sein. Im unendlich fernen Selbstberührungspunkt

hangen die Kurvenäste zusammen.
Für c 0 wird die Mittelsenkrechte doppelt gelegte

Wendeasymptote.

Die Kurve ist rational; denn sie besitzt 10 Doppelpunkte,
wovon 6 im Nullpunkt (4facher Punkt), 2 im Selbstberührungspunkt

und 2 in den imaginären Kreispunkten der Ebene liegen.
Die Kurve hat im rechten Ast 4 Wende/tunkte, so lange

c > - - ist. Für c < -jj sinkt die Zahl derselben auf 2 herab.
Li Li

Für c 0 speziell liegen die beiden vereinigt im Unendlichen.
Dem rechten Kurvenast gehört jetzt nur noch einer an, da auch
der linke Ast — wie der rechte zur Strophoide geworden — einen

gewinnt.
Bei unendlich grossem c besteht die Kurve aus der doppelt

gelegten y-Axe, der doppelt gelegten unendlich fernen Geraden
und dem Nullpunkt als konjugiertem Punkt.

Negative c erzeugen dieselben Kurven wie positive, da c
nur quadratisch vorkommt.

d) Die Lösungen der Aufgabe.

Wie schon erwähnt, handelt es sich um die Bestimmung
der Schnittpunkte D. Die Koordinaten derselben sind die
Wurzeln des Systems:
1. [(b—2x)(x2 f y-) —2bx2]2 —4c2x*(x2 fy2)=0, Kurve;
2. x2 — bx -L y2 0, Grundkreis.

Wir lösen dieses System zunächst nach x auf und erhalten

2b2-f c24c\/4b24-c2-.2
8 b

als Ausdruck für die Abscisse des Punktes D.
Für die Ordinate finden wir

(H)

y + ||\/6b4-c4 + (2b2 — c2)c\/4bä-f c-- (12)
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x und y sind die Koordinaten von D, d. h. vom Fusspunkt der
Schenkelhöhe. Es besteht nun die Proportion:

v, •
b

•hb. y "2- • x-

Quadrieren wir die Glieder dieser Proportion, setzen hierauf
für x und y die Werte von (11) und (12) ein, reduzieren, so
bekommen wir, wenn wir zum Schluss die Quadratwurzel ausziehen :

hb — 4-i- V/3b24- 2c2 + 2cv/4b2-f< (13)

Dieser Wert stimmt vollkommen mit dem überein, den wir
nach dem ersten Verfahren gefunden haben (vergleiche Formel (3),

pag. 142). Beide Verfahren führen somit zu den gleichen Resultaten.

Es wird nicht mehr nötig sein, auf die Lösungen noch
näher einzutreten. Wir erlauben uns noch folgende Bemerkungen:

Für jede Abscisse giebt es 2 symmetrische Ordinaten, daher

auch 2 symmetrische Dreiecke. Für den Grenzfall c -y- wird

1. xi — b, bedingt 2 unendlich kleine Dreiecke OAC.

2. x2 r=> » 2 spitzwinklige Dreiecke.

T * ^ 3b • A1st c a> -q-> so wird
2

1. xi > b, die entsprechenden Ordinaten werden imaginär,
weil die Kurve den Kreis nicht mehr schneiden

kann; also liefert dieser Wert von x keine
reellen Lösungen mehr.

2. x2 < rr-T- Die entsprechenden Dreiecke werden umso

spitzwinkliger, je kleiner x2 ist.
3b

Nimmt dagegen der Wert von c successive von — bis 0

b
ab, so nimmt xi ab im Werte von b bis -j- und x2 zu im Werte

von -pr bis —r- Die dem xt entsprechenden Lösungen sind
16 4

stumpfwinklig zunächst, werden für c — -y \Jl\ rechtwinklig und

dann spitzwinklig. Die Dreiecke, die dem Wert von x2 zuge-
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hören, werden immer weniger spitzwinklig. Für c ==0 ist xi x2
und die Dreiecke fallen als gleichseitige zusammen.

§ 14, Fünfte Aufgabe: Ein gleichschenkliges Dreieck zu konstruieren.

von welchem die Basis und die Summe oder Differenz der beiden

Dreiecksholien gegeben sind.

Gegeben: 1. b;
2. In, 4 hs 4 c — konstant.

Bedingung: oo > hb 4 hs > 0; oo > hb — hs 0.

Für ein unendlich kleines Dreieck verschwinden beide

Höhen, also Summe und Differenz 0; für ein unendlich grosses
Dreieck ist hb oo und hs b, somit Summe und Differenz

°o. Die Differenz hb — hs wird ein zweitesmal zu Null, wenn
der Basiswinkel 60° misst. Ist er kleiner als 60°, so ist hh — hs

neg., ist er grösser als 60°, so ist hb — hs pos.

§ 15. Erstes Lösungsrerfahren. Bestimmung der Punkte B.

a) Konstruktion der Kurve. Taf. II, Fig. 9.

OA b sei die Basis des gleichschenkligen Dreiecks. Wir
ziehen den Grundkreis und die Mittelsenkrechte MMi. Auf MMi
tragen wir c von C aus nach E ab. Es gehe durch O ein

Strahl, der den Grundkreis in Q schneidet. Von E aus schlagen
wir nun mit dem Radius r A Q einen Kreisbogen, der den
Strahl OQ in Pi und P2 schneidet. Der geometrische Ort des

Punktes P ist die Hilfskurve. Dieselbe kann daher folgender-
massen definiert werden:

Zieht man durch O Strahlen, so ist die Kurve der
geometrische Ort eines Strahlenpunktes, der von einem festen Punkt
E der Mittelsenkrechten denselben Abstand hat wie der Strahl
selber vom festen Punkt A. Fällt ein Kurvenpunkt in die
Mittelsenkrechte, so ist

einerseits EC + PE h ;

andererseits ist EC+PE c + hs; folglich
hb c4hs, d. h. wir haben

eine Lösung vor uns. Die Schnittpunkte der Kurve mit der
Mittelsenkrechten ergeben daher die gesuchten Punkte B.
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b) Ableitung der Kurvengleichung.

Wir legen durch OA die x-Axe und durch 0 die y-Axe.
x und y seien die rechtwinkligen Koordinaten eines Kurvenpunktes

Pt. EN sei || A0 gezogen; dann ist

EPi y(x-^J-f(y-c)2; («)

E P i A Q b sin tp, in (a) eingesetzt, so giebt es

b sin tp V/ x y-
I -j- (y — c)2, umgeformt

(x2 4- y2) [(x - ~J+ (y - c)2] - b2y2 0. (1)

c) Diskussion der Kurvengleichung.

Die Kurve ist von 4. Ordnung und hat im Nullpunkt einen

Doppelpunkt. Die Gleichung der Tangenten im Nullpunkt lautet:
b2

(x24-y2)(vX-fc2J-b2y2 0;

/b2 + 4cr
^ ±XV3bt4^- (2)

Spezialfälle :

1. c 0;

y 4-K-y3; die Nullpunktstangenten bilden mit der

x-Axe Winkel von + 30°.

y 4x.
Richtungswinkel der Tangenten 4 45°. Die Tangente

y — x ist Wendetangente.

3. c A.y/2;

y ±x\/3, Richtungswinkel + 60°.

4. c Ay3;
x 0 2mal.

Die y-Axe ist Rückkehrtangente und der Nullpunkt Spitze.
b /-fr5. c>-jjV3.
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Die Tangenten werden imaginär, und der Nullpunkt wird
zum isolierten Punkt.

Schnittpunkte mit der y-Axe : Setze x 0 und erhalte

1. yi=y2=0 und 2. y3,4 c 4 -«- \J 3.

Schnittpunkte mit der x-Axe : Setze y — 0 und finde

1. xi x2 0 und 2. x3,i —- 4 ci.
2

So lange c von 0 verschieden ist, schneidet die Kurve die
x-Axe nur im Doppelpunkt 0. Ist c — 0, so werden auch die
beiden andern Schnittpunkte reell und fallen in den Punkt C,

welcher Doppelpunkt der Kurve wird.
Die imaginären Kreispunkte der Ebene sind Doppelpunkte

der Kurve; denn es ist
Un=(x2-|-_y2)2.T

Reelle Punkte hat die Kurve im Unendlichen nicht, daher
auch keine Asymptoten.

Die Kurve ist rational: denn sie hat 3 Doppelpunkte. Für
c 0 besitzt sie 4 Doppelpunkte und zerfallt, wie wir noch sehen

werden.
Für c 0 nimmt Gleichung (1) die Form an:

(x24y2)[(x-4)2+y2
das Gleichungspolynom lässt sich in 2 Faktoren zerlegen; wir
erhalten :

^-fr-^4^V/3)(x2-fy2-,f-^V/3) 0; (3)

daraus folgt

1- x2fy2-^-bIv/3 0

b2y2 0;

»der
b Y / b ./TA2 b2

r i4-t^=4 <»
(*)

Die Kurve zerfällt in 2 Kreise (ß) und (y), deren Mittel-

punktskoordinaten: \-r-> ^"^3) und (-j"> — j- V3 sind.
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Beide Kreise haben den Radius r --j- Beide Kreise schneiden
2

sich in 0 und C.

Für ein unendlich grosses c besteht die Kurve aus der
doppelt gelegten unendlich fernen Geraden und dem Nullpunkt
als isoliertem Punkt.

Negative c erzeugen die gleichen Kurven wie positive c;
nur liegen die Gebilde symmetrisch zueinander.

d) Die Lösungen.

Wir suchen die Spitzen B der gleichschenkligen Dreiecke.

Alle haben die Abscisse x =-• Setzen wir diesen Wert in der
2

Kurvengleichung (1) ein, so erhalten wir

y2 + ¥) (y2 - 2cy 4- c2) - b2y2 0. (5)

Die Wurzeln dieser Gleichung in y sind die Ordinalen der
Schnittpunkte B. Lösen wir (5) auf, so finden wir zunächst
folgende kubische Hilfsgleichung:

9b4 —24b2c24-16c4 27b6-972b4c24144b2c4-64c6
v4 —-; 0.

48 ' 864

Die Diskriminante letzterer Gleichung lautet

b4c2(64c6 - 144b2 c4 4 540b4c2 — 27b6)J 432
Es ist nun J 0, wenn

1. c 0,

±4V3(1+V)4:-2v/2).
(6)

Wir bekommen daher folgende Hauptfälle:

b J S 8

A. c>-£-'y 3(1-f \JA -2\]2).
Die Diskriminante der kubischen Hilfsgleichung ist positiv ;

die biquadratische Gleichung (5) besitzt folglich 2 reelle Wurzeln,
und wir erhalten 2 reelle Lösungen.

1. c>-^(l-fV2).
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Beide Dreiecke sind nach Konstruktion spitzwinklig. Das

kleinere davon ist gleichseitig, wenn speziell c b\/3.

2. c=-y-(l +\/2).
Li

Für diesen Wert von c wird Gleichung (5) erfüllt, wenn

wir für y den Wert -jj- einsetzen. Folglich haben wir hier unter
Li

den beiden Dreiecken ein rechtwinkliges.

3. c< A (1+1/2).

Ein Dreieck wird stumpfwinklig; das andere bleibt
spitzwinklig.

B. c -}Y3(l + V4-2y/2); J 0.

4 reelle Lösungen, wovon 2 zusammenfallen. Die Kurve
berührt die Mittelsenkrechte MMi. Ein Dreieck ist spitzwinklig,
die 3 andern stumpfwinklig, worunter 2 zusammenfallende.

C c<A Y 3(1 + ^4-2^2.
Die Diskriminante ist negativ; daher erhalten wir 4 reelle

Lösungen. So lange c von 0 verschieden ist, sind sämtliche
Dreiecke ungleich, und zwar sind 2 derselben stumpfwinklig,
eines spitzwinklig und das vierte stumpfwinklig, rechtwinklig

oder spitzwinklig, je nachdem c^-jj(y'2 —1) ist. Taf. II, Fig.9.
*A. Li

Für c 0 werden die 2 stumpfwinkligen Dreiecke unendlich

klein, d. h. sie reduzieren sich auf die Basis. Die 2

spitzwinkligen werden gleichseitig.

§ 16. Zweites Lösungsverfahren. Bestimmung der Fusspunkte D

der Schenkelhöhen. Die Voraussetzungen sind dieselben wie in § 14.

a) Konstruktion der Kurve. Taf. Ill, Fig. 10.

Es sei OA b die Basis des Dreiecks. Wir ziehen den
Grundkreis und die Mittelsenkrechte und machen auf der letztern
CE c konstant. Nun ziehen wir durch 0 einen Strahl,
welcher den Grundkreis in Q und die Mittelsenkrechte in R
schneidet. Wir verbinden A mit Q und tragen auf dieser Ver-
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bindungslinie die Strecke RE von A aus nach beiden Seiten ab,
so dass A Pi A P2 R E ist.

Der geometrische Ort aller Punkte P ist die Kurve. Fällt
ein Kurvenpunkt in den Grundkreis, so ist

1. RE AP AQ h8,
2. BE=c + kb; folglich

c 7 hb hs oder c hs + In, ; wir haben also eine Lösung vor
uns. Die Schnittpunkte der Kurve mit dem Grundkreis müssen
daher die Fusspunkte D der Schenkelhöhen der gesuchten Dreiecke

sein.

b) Ableitung der Kurvengleichung.

Wir legen das rechtwinklige Koordinatensystem in gewohnter
Weise. Sind x und y die Koordinaten eines Kurvenpunktes Pi,
so gilt

APi \/(b-x)2 + y2. («)
Nun ist APi c —CR. (ß)

Ferner ist tg tp -j-^ cotg (90° — tp) —, somit
Üb y

R C -—jj-^—, eingesetzt in (8) ergiebt
Jy

Ap 2cy—(b—x)b
j > eingesetzt in (a) führt

zur Kurvengleichung :

4y2[(b-x)2+y2]-[2cy-(b-x)b]2 0. (7)

c) Diskussion der Kurvengleichung.

Die Kurve ist von der 4. Ordnung. Verlegen wir den
Koordinatenanfangspunkt nach A durch Parallelverschiebung der
Axen, indem wir setzen

x x'+b und y y ',
so erhalten wir nach der Transformation und nach Weglassung
der Indizes folgende einfachere Kurvengleichung:

4y2(x2+y2)-(2cy + bx)2 0. (8)

A ist Doppelpunkt der Kurve; denn die Gleichung beginnt
mit Gliedern 2. Grades. Die Doppelpunktstangenten fallen
zusammen und bilden, da die Glieder 3. Grades fehlen, -eine

Selbstberührungstangente. Der Nullpunkt ist also Selbstberührungspunkt.
Bern. Mitteil. 1902. No. 1536.
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Die Gleichung der Selbstberührungstangente lautet:
b

(9)

Fig. 10.

y
Spezialfälle :

1. c 0;

-2"cX-

x 0.

2 c- b
2. c_ 2

; y -
3. c oc; y o.

Wächst also c von 0 bis oo, sso dreht sich die
Selbstberührungstangente um 90° aus der Richtung der y'-Axe in die

Richtung der x'-Axe.
Die x'-Axe schneidet die Kurve nur im Selbstberührungspunkt

A; die andern 2 Schnittpunkte fallen ins Unendliche, da
die Potenzen x3 und x4 nicht vorhanden sind.

Die Schnittpunkte der y'-Axe mit der Kurve liegen für
endliche Werte von c alle im Endlichen; es ist

y1,2 0 und ya,4 -f c.
Die Gleichung nach x aufgelöst, ergiebt

2bcy42y2\/b2+4c2-4y^
x— 4y2-b2

' l j
Jedem Wert von y entsprechen 2 verschiedene Werte von

x. Nur für y 0 fallen die Wurzeln zusammen. In diesem

einzigen Fall liegt die Kurve symmetrisch und zwar zu beiden
Axen. Jede Parallele zur x-Axe schneidet die Kurve im
Endlichen in 2 Punkten, den Fall ausgenommen, da der Nenner Null
wird. Die 2 Parallelen

müssen daher Asymptoten der Kurve sein. Der Maximalwert,
den y annehmen kann, ist

y -|-V/bMr4^-
Um die Schnittpunkte der Kurve mit der unendlich fernen

Geraden zu gewinnen, setzen wir nach bekanntem Verfahren
Un — 4y2(x2+ y2)=0; daraus folgt

1. y 0 2mal und 2. y 4 ix.
Wir haben somit 2 reelle, zur x-Axe parallele Asymptotenrichtungen

und 2 imaginäre. Die Kurve schneidet also die imagi-
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nären Kreispunkte der Ebene. Da nun y=^0 auch ein Faktor von
Us ist, so muss der unendlich ferne Punkt der x-Axe ein Doppelpunkt

der Kurve sein. Um die Art desselben zu untersuchen,
projizieren wir ihn in den Nullpunkt A und setzen zu diesem
Zwecke in Gleichung (8):

i a y'
x —7- und y -=+x' J x'

Wir erhalten, wenn wir nach der Transformation noch mit
x'4 multipliziert haben:

4y'2(l +y'2) — (2cy'x' + bx')2 0.

Der Nullpunkt ist Doppelpunkt. Die Gleichung der
Tangenten in demselben lautet

t i
b

y =±"2-x.
Die projizierte Kurve hat im Nullpunkt einen Knotenpunkt

mit 2 verschiedenen Tangenten; folglich ist der unendlich ferne
Punkt der x-Axe auch ein solcher Doppelpunkt. Die Tangenten
in demselben sind

y' yx' 4 -jj- x' oder

b

Diese Tangenten sind Asymptoten der Kurve, wie dies
schon die Gleichung (10) verraten hat.

Unsere Kurve gehört somit auch zu den rationalen Kurven;
denn sie besitzt einen Selbstberührungspunkt und einen Doppelpunkt,

was zusammen für 3 Doppelpunkte zählt.
Für c=0 besteht die Kurve, deren Gleichung nun die

Form hat
4y2(y2+x2) — b2x2 0, aus 2 kongruenten Ästen (12)

zwischen den Asymptoten y 4 -jj> siehe Fig. 10, Taf. HI.
Li

Für ein unendlich grosses c besteht die Kurve aus der

doppelt gelegten unendlich fernen Geraden und der doppelt
gelegten x-Axe. Asymptoten und Selbstberührungstangente laufen
parallel.

Nimmt c negative Werte an, so sind die entstehenden
Kurven Spiegelbilder derjenigen mit positivem c in Bezug auf
die x-Axe.
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d) Die Lösungen.

Die Koordinaten der zunächst gesuchten Schnittpunkte D
sind die Wurzeln des Systems

1. 4y2[(b —x)2 + y2] —[2cy —(b —x)b]2==0, Kurve,
und 2. x2 — b x + y2 0, Grundkreis.

Die allgemeine Lösung dieser Aufgabe stösst auf bedeutende
Schwierigkeiten. Wir können die Übereinstimmung mit dem
ersten Verfahren nur in Spezialfällen nachweisen.

1. Für ein gleichseitiges Dreieck besitzt der Punkt D die

Koordinaten I —, — y 3

Setzen wir diese Werte für x und y in Gleichung (1)

unseres Systems oben ein, so wird

ci by3 und c2 0.

Vergleiche damit die Fälle Ai und C, pag. 136.

2. Bei einem rechtwinkligen Dreieck sind die Koordinaten

von D -j-, -jj )• Setzt man diese Werte gleichen

b —
Orts wieder ein, so wird c -jj (1 + y 2). Fig. 10.

2
Vergleiche damit A2, pag. 136.

3. Für ein unendlich kleines Dreieck hat Punkt D die
Koordinaten (b, 0). Die Einsetzung dieser Werte liefert
c 0, vergleiche damit C, pag. 136 ; siehe Fig. 10.

VI.
§ 17. Sechste Aufgabe: Konstruktion eines gleichschenkligen

Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenkel

und Schenkelhöhe gegeben sind.

Gegeben: 1. b.
2. s 4 hs c konstant.

Bedingungen: 1. s 7 hs > - -,
2. s - hs > 0.

Bei einem unendlich kleinen, auf die Basis reduzierten

Dreieck ist s + h3 -jj- Minimum ; denn s —. und hs 0.
Lt Li
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Ist das gleichschenklige Dreieck rechtwinklig, so ist s — hs 0.
In jedem andern Fall ist s als Hypotenuse grösser als hs (Kathete).

§ 18. Erstes Lösungsverfahren: Bestimmung der Dreiecksspitzen B.

a) Konstruktion der Kurve. Taf. Ill, Fig. 11.

Es sei OA -b die Basis des Dreiecks. Wir ziehen den
Grundkreis und um A den Hilfskreis mit dein Radius r - c. Ferner
ziehen wir einen Strahl durch O, der den Grundkreis in Q
schneidet. Die Verbindungslinie AQ endlich schneide den Hilfskreis

in H und Hi. Liegt nun Q innerhalb des Hilfskreises,
dann trägt man die beiden Strecken QH und QHi von 0 aus
auf dem zugehörigen Strahl nach entgegengesetzten Seiten ab und
zwar die Strecke nach Q hin, welche den Punkt A nicht
enthält. Man macht also

OPi QH und OPa QHi.
Beziehungen: 1. OPi 4 AQ QH + AQ AH c;

2. OP2 —AQ QHi—AQ=AHi c.

Liegt der Punkt Q ausserhalb des Hilfskreises, so trägt
man beide Strecken nach Q hin ab. In diesem Fall gelten dann
die Relationen:

1. AQ' —OPi' AQ' —Q'H'=AH' c;
2. OP2' —AQ' Q'Hi' —AQ' AH1' c.

Der geometrische Ort aller Punkte P ist die Hilfskurve.
Fällt ein Kurvenpunkt P in die Mittelsenkrechte, so wird OP
OB-s und A Q - A D h und man kann, wenn diese Werte
in den Relationen oben eingesetzt werden, eine Lösung konstatieren.

Die Schnittpunkte der Kurve mit der Geraden x -y-
ergeben somit die zunächst gesuchten Punkte B.

b) Ableitung der Kurvengleichung.

Es seien für das gewohnte Koordinatensystem x und y die
Koordinaten eines Punktes P'2; dann kann gesetzt werden:

OPa'^x^TTT («)
Nun ist OPo' c 4 AQ' c + bsinç>, eingesetzt in (a), und

man hat c + b sin tp \ x2 + y2, umgeformt
(x2 + y2 + by)2-c2(x24y2) 0. (1)

Polargleichung: r= — bsin^4c. (2)
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Unsere Kurve ist die Kreiskonchoide. Die y-Axe ist Sym-

metrieaxe.
c < b, O ist Knotenpunkt; die Konchoide besitzt eine

Schleife;
c b, 0 ist Spitze und die negative y-Axe Rückkehr¬

tangente;

Ob, O ist konjugierter Punkt.
Für c 0 reduziert sich die Kurve auf den doppelt gelegten

Kreis x2 + y2 + by 0.

c) Die Lösungen.

Es handelt sich noch um die Bestimmung der Ordinaten der
Schnittpunkte B. Wir führen zu diesem Zweck den Wert für

x -y in der Kurvengleichung (1) ein und erhalten :

(y2 + by 4-x)- c2 (y2 + ~j 0.

Die Wurzeln dieser Gleichung sind die Ordinaten von B.
Die Auflösung vorliegender Gleichung führt auf eine kubische
Hilfsgleichung von der Form

6b2c2 — c4 9b2c4 + 2c6
¦v + jji- 0.

1 3 ' 27

Die Diskriminante dieser kubischen Gleichung wird
hc3 \/3j= "ÌQv°\/32b4 —13b2c2 + 4c4.

lo
Es ist nun J =.- 0 nur in dem einen Fall, wenn

c - 0. (3)

Wir erhalten daher 2 Hauptfälle für die Lösungen:
A. /1 0 für c 0.

Wir bekommen für y 4 zusammenfallende Wurzeln, nämlich

yr=—— als Ordinate der Spitze. Damit erhalten wir auch
2

4 zusammenfallende Dreiecke, welche rechtwinklig sind.

B. z/ pos. für c =|= 0.

Die kubische Hilfsgleichung besitzt nur eine und infolge
dessen die biquadratische Gleichung nur 2 reelle Wurzeln. Wir
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erhalten somit für jeden Wert von e, 0 ausgenommen, nur
2 wirkliche Dreiecke.

Wie schon erwähnt, treten für c=0 4 zusammenfallende

rechtwinklige Dreiecke auf, welche auf der negativen Seite der

y-Axe liegen. Fängt nun c zu wachsen an, so verschwinden
erstens 2 Dreiecke. Die andern 2 verwandeln sich in ein
spitzwinkliges und in ein stumpfwinkliges, und zwar wird für ein
wachsendes c das spitzwinklige immer spitzwinkliger.

Für c -jj-(2—\/3) wird es gleichseitig. Das stumpfwink-
2

lige wird auch stumpfwinkliger und erreicht für e -jj- das
2

Maximum. Der Winkel an der Spitze wird 180°. Das Dreieck

reduziert sich auf die Basis. Wird c > -y-, so nimmt der Winkel

an der Spitze stetig ab. Für c by2 wird das Dreieck
rechtwinklig natürlich auf der positiven Seite der y-Axe. Für jeden
Wert von c>by2 ist dann auch das auf der positiven Seite
der y-Axe liegende Dreieck, spitzwinklig. Gleichseitig ist dieses

spitzwinklige Dreieck für den Spezialwert von c -jj (2 + y13).

§ 19. Zweites Lösungsverfahren : Bestimmung der Punkte D.

Bedingungen wie in § 17.

a) Konstruktion der Kurve. Ohne Figur.
Es sei O A b die Basis des Dreiecks. Wir ziehen den

Grundkreis, die Mittelsenkrechte MMi und endlich noch einen
Hilfskreis um A mit dem Radius r=c. Ein durch A gezogener
Strahl schneide nun den Grundkreis in Q, die Mittelsenkrechte
in R und den Hilfskreis in H und Hi. Schliesslich wird noch
durch O ein Strahl gezogen, der auch durch Q geht. Nun trägt
man auf dem Strahl OQ von O aus die Strecken RH und RHi
nach entgegengesetzten Seiten ab, macht also

OPi=RH und OP2=RHi, so dass also
1. AR + OPi AR + RH AH c und ebenso
2. OP2—AR RHi—AR AHi c.

So darf es aber nur gemacht werden, wenn Q innerhalb
des Hilfskreises liegt. Liegt Q ausserhalb des Hilfskreises, so
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trägt man beide Strecken RH und RHi nach der gleichen Seite
und zwar nach Q hin ab. Der geometrische Ort aller Punkte
P ist die Hilfskurve.

Fällt ein Punkt derselben in den Grundkreis, so wird
OP OQ=hs und da AR—s ist, so wird nach den oben stehenden

Relationen
1. s-|-ha —c oder 2. h»—s c; somit ist der Punkt P zu

einem Punkt D geworden; wir haben eine Lösung. Die Schnittpunkte

der Kurve mit dem Grundkreis sind wieder die zunächst
gesuchten Punkte D.

b) Ableitung der Kurvengleickung.

Wir erhalten nach analoger Methode wie früher
bx2

(x2+y2)(vy + ^-J-c2y2-0. (4)

Polargleichung: r ^—- + c. (4a)
2 sin tp —

Die Hilfskurve ist die Konchoide des Nikomedes. Die y-Axe

ist die Symmetrieaxe derselben und die Gerade y jj die
2

Leitlinie, c ist der auf einem Strahl durch 0 gemessene
konstante Abstand zweier Kurvenpunkte von der Leitlinie.

Für c>-jj besitzt die Konchoide eine Schleife.
Li

für c —-^- tritt sie mit Spitze auf in 0;

» c<-~- wird 0 zum konjugierten Punkt;
Li

» c 0 zerfällt die Kurve in die doppelte Leitlinie und
den konjugierten Punkt O.

c) Die Lösungen.

Es handelt sich um die Bestimmung der Koordinaten der

Schnittpunkte D. Diese Koordinaten sind die Wurzeln des

Gleichungssystems :

1- (x2 + y2)(vy+-f-J-c2y2 0, Kurve.

2. x2 — bx + y2 =0, Grundkreis.
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Wir führen den Wert von x aus (2) in (1) ein und erhalten

i ov i 3b4 —2b2c2 + 2c4 b:i-2bc2
y4 + 2br H -j^-^ y-' H J5 y

\,i — 4b2c2
+ jL-^— l)- (5)

Die Wurzeln dieser Gleichung 4. Grades in y sind die
Ordinaten der Schnittpunkte D. Die kubische Hilfsgleichung
dazu erscheint in der Form

c4(4b4 — 2b2c2 + c4) cu(16bu4l5b4c2-6b2c442ce)yi ; _ y (1.
3 b4 27 b6

Als Diskriminante erhält man
c14(32b4- 13b2c2 + 4c4)

27b6 "" '

Es wird I 0 nur für c 0 wie beim ersten Verfahren.
Auch hier giebt es die beiden gleichen Hauptfälle, nämlich

A. J 0 für c 0.

Wir erhalten wie beim ersten Verfahren 4 zusammenfallende

rechtwinklige Dreiecke; denn in Gleichung (5) wird

y -j 4 mal.

B. I pos. für c =|= 0.

Für jeden von 0 verschiedenen Wert von c liefert Gleichung
(5) 2 reelle Wurzeln und damit 2 reelle Dreiecke, also dasselbe

Ergebnis wie beim ersten Verfahren. Setzt man in Gleichung (5)
Spezialwerte ein

y — 0 für das unendlich kleine Dreieck,

y 4 ~j" » » rechtwinklige »

y 4 -j- » » gleichseitige »

so erhält man die nämlichen Werte für c wie auf Seite 143.

VII.
§ 20. Siebente Aufgabe: Konstruktion des gleichschenkligen

Dreieckes, wenn die Basis und die Summe oder Differenz aus Schenkel

und dem an die Basis angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1. b,
2. s 4 m 4 c.

Bern. Mitteil. 1902. No. 1537.
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Bedingungen : 1. s + m>b \/ 2,

2. m — s < 4 -jj
Sie Summe s-|-m ist ein Minimum beim rechtwinkligen

Dreieck, und da ist s — m — - \ 2. in — s erreicht den

Maximalwert -j bei einem unendlich kleinen Dreieck und nimmt
Li

mit wachsendem hb stetig ab. So lange das Dreieck noch

stumpfwinklig ist, bleibt m — s noch positiv, m — s wird zu 0
beim rechtwinkligen und negativ beim spitzwinkligen Dreieck
und kann hier dann jeden Wert von 0 bis — oo annehmen.

§ 21. Erstes Lösungsverfahren: Bestimmung der Punkte B.

a) Konstruktion der Hilfskurve. Taf. Ill, Fig. 12.

Es, sei OA b die Basis des Dreiecks. Wir ziehen den

Grundkreis, die Mittelsenkrechte M Mi und einen Hilfskreis um
O mit dem Radius r c. Ein Strahl durch 0 schneide den

Grundkreis in Q und den Hilfskreis in H und Hi. Nun tragen
wir auf dem Strahl OQ von 0 aus die Strecken QH und QHi
jede nach beiden Seiten ab, machen also

OP1==OPb=QH und
0P2 0P4=QHi.

Für die Punkte Pi und P:i gilt die Relation:
1. OQ+OPi,3 OQ+ HQ OH^c, während die Punkte

Pa und P4 die Bedingung erfüllen: 2. OP.,,.-OQ QH]—QO
OHi=c. Dreht sich der Strahl OQ um O, so beschreiben

die Punkte Pi und P4 eine Kurve und die Punkte P3 und P2 das

Spiegelbild derselben in Bezug auf die y-Axe. Die Schnittpunkte
beider Kurven mit der Mittelsenkrechten ergeben die zunächst

gesuchten Punkte B; denn für einen solchen Kurvenpunkt P ist
OP —OB s und OQ OD m, und die oben stehenden

Relationen werden
m + s c oder s — ni — c. Wir haben eine Lösung.

b) Ableitung der Kurvengleichung.

Es seien x und y die rechtwinkligen Koordinaten eines

Kurvenpunktes P2 im gewohnten Koordinatensystem; dann gilt:
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0Pa=y/xMry"-~ (o)

Nun ist OP2 H,Q OQ fOH-beosç? + e, sub. in («)

bcosç- 4 c- V/x3 -f y3, umgeformt
(X2 + y2 __ bx)2 _C2 (X2 + y2) Q. (1)

Die Punkte dieser Kurve genügen der Relation
s — m 4 c-

Für die Relation : s + m c bekommt die Gleichung die

•etwas abweichende Form
(x2 + y2 4- bx)2 - c2(x2 -f y2) - 0. (2)

Die Kurven (1) und (2) sind symmetrisch zueinander
gelegen in Bezug auf die y-Axe. Die Gleichung der Kurve, die

alle Schnittpunkte B liefert, ist die unächte Kurve 8. Ordnung:
[(x2 4 y2 + bx)2 - c2(x2 + y2)] [(x2 + y2- bx)2

-c2(y2 + x2)] 0. (3)

Unser symmetrisches Kurvenpaar besteht aus 2 Kreis-
konchoiden. Für beide ist die x-Axe Symmetrieaxe. Bei positivem
bx liegt die Kurve mehr auf der negativen Seite, bei negativem

bx mehr auf der positiven Seite der x-Axe. Ist c b, so ist

für beide Konchoiden der Punkt 0 isolierter Punkt, Rückkehr-
punkt oder Doppelpunkt. Für c 0 zerfallt jede Konchoide in
2 sich deckende Kreise. Die beiden Kreispaare berühren sich
in 0 und haben in der y-Axe eine gemeinsame Tangente.

c) Die Lösungen.

Wir suchen zunächst die Schnittpunkte B der Kurve mit
•der Mittelsenkrechten. Dabei handelt es sich nur noch um die

Bestimmung der Ordinaten dieser Punkte. Lösen wir das
bekannte Gleichungssystem nach y auf, so finden wir

1. y ±-|- \/2c2-3b2 42cy'c2-2b2, wenn bx=pos. (4)

und 2. y 4-y- \J b2 + 2c2 f 2c \/c2 + 2b2, wenn bx=neg. (5)

Wir bekommen hier 2 gesonderte Lösungsgruppen.

Erste Gruppe für Formel (4).

3b
A. o--
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2 reelle Wurzeln für y für das positive Zeichen der innern
Wurzel; 2 symmetrische spitzwinklige Dreiecke.

B. ^>c>bv2.
4 reelle Wurzeln für y, welche paarweise absolut gleich

sind: 4 wirkliche Dreiecke, welche paarweise symmetrisch sind.

3b
1. c T.

y j ,2 4 -jj- \J 3 und y^ 0.

2 gleichseitige Dreiecke, bedingt durch das positive Zeichen
der innern Wurzel und 2 unendlich kleine, bedingt durch das

negative Zeichen der innern Wurzel.

2. -j1>c>by'2; Fig. 12, Taf. Ill, Kurve IL

Das positive Zeichen der innern Wurzel erzeugt 2

spitzwinklige, das negative Zeichen 2 stumpfwinklige Dreiecke. Mit
abnehmendem c werden die spitzwinkligen immer weniger
spitzwinklig und die stumpfwinkligen weniger stumpfwinklig.

3. e b\/2;

y 4-jy je 2 mal.

Die Kurve berührt von der negativen Seite her die

Mittelsenkrechte in den 2 Punkten (yj>-jj) und -y-, y-l- 4

rechtwinklige Dreiecke, welche paarweise sich decken und paarweise
symmetrisch sind.

C. c<b\/2.
Alle y-Werte sind imaginär, daher keine reellen Lösungen.

Alle Dreiecke der ersten Lösungsgruppe erfüllen die

Bedingung s + m c.

Für den Flächeninhalt derselben bekommen wir die
allgemeine Formel:

F -j- W2c2 — 3b2 4 2c \/c2 — 2b2. (6)
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Zweite Gruppe für Formel (5).

A. c > -jj- Fig. 12, Kurve I.
2

2 reelle Wurzeln für y und 2 imaginäre, letztere für das

negative Zeichen der innern Wurzel. 2 symmetrische
spitzwinklige Dreiecke, deren Basiswinkel > 60°.

u b
B. c<T.

4 reelle Wurzeln für y, daher 4 reelle Lösungen, welche
paarweise symmetrisch sind.

1. c==—-, Grenzfall.
Li

Für das positive Zeichen der innern Wurzel wird y 4 — \/3,

bedingt 2 gleichseitige Dreiecke. Für das negative Zeichen der

nmern Wurzel wird y 40, was 2 unendlich kleine Dreiecke
zur Folge hat.

2. ~>c>0.
2 spitzwinklige Dreiecke für das positive und 2

stumpfwinklige für das negative Vorzeichen der innern Wurzel. Mit
abnehmendem c nähern sich beide Formen dem rechtwinkligen
Dreieck.

3. c 0.

Die Kurve ist der doppelte gelegte Kreis x2 — bx + y2 =0,
welcher die Mittelsenkrechte in den Punkten I

-y-, -y- und

-jj, j-) schneidet; 4 rechtwinklige Dreiecke wie oben

unter B3.

Sämtliche Dreiecke dieser Gruppe genügen der Relation

s — m 4c.
Ihre Inhaltsformel lautet:

F ^- v/b2 + 2c242cy/2b2+c2. (7)
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§ 22. Zweites Lösungsverfahren: Bestimmung der Schnittpunkte D.

Die Voraussetzungen sind dieselben wie in § 20.

Wir referieren über diesen Fall in gedrängter Kürze.
Analog dem ersten Verfahren erhalten wir als Hilfskurve

eine unächte Kurve 8. Ordnung. Dieselbe hat die Form

[(x2+y2)(x + Ay_c2xaj |\x2 + y.2}^x_ b_J__cax2j=0_ (8)

Die Kurve besteht aus 2 Konchoiden des Nikomedes. Für
beide ist die x-Axe Synnnetrieaxe. Die Konchoide des Klammer-

ausdrucks links hat die Gerade x jj, diejenige des Klammer-
Lt

b
atisdrucks rechts die Gerade x — zur Leitlinie.

Bei den Lösungen handelt es sich um die Bestimmung der
Koordinaten der Schnittpunkte D der Konchoiden mit dem
Grundkreis. Für die Abscisse x erhalten wir die Bestimmungs-
gleichung

b^2
bx x + -j — c2x2 0; daraus folgt

_ c2±b2 + cy/c2 + 2b2

b^2
2 b

für das positive Zeichen im Ausdruck x 4; -jy wird

c2_bi + cV/cTir2b2
X= =2b ,9)

Alle diesbezüglichen Lösungen entsprechen der Relation:
s +m c.

Führen wir den Wert für x aus (9) in der Gleichung des
Grundkreises ein, so erhält man für die Ordinate y des Punktes D
den Ausdruck:

y^-t-A-v/Wc2 — 3b4— 2c442c(2b24c2)\/c2 — 2b2. (10)

Nun besteht die Proportion:

i. b
y : x hb : y

Setzen wir hierin für x und y die gefundenen Werte ein
und lösen nach hb auf, so finden wir:
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1 /
h„ 4-jj v/ 2c2 —3b3 4 2c\/c2 —2b2. (11)

Für das negative Zeichen im Ausdruck I x 4 -jy I. erlangt

die Abscisse x von D den Wert

c'+b'+cy'^+W« m2b j
und die Ordinate y den Wert

y 4-L Ob4 — 2b2c2 — 2c442c3 y'c2 + 2b2. (13)

Alle diesbezüglichen Lösungen erfüllen die Bedingung:
s — m 4 c-

Für die Basishöhe dieser Dreiecke finden wir auf ähnliche
Weise wie oben den Wert

h„ 4 ~ v/b2 + 2c2 + 2c\/c2 + 2b2. (14)

Vergleichen wir (11) mit (4) und (14) mit (5), so finden
wir vollkommene Übereinstimmung in den Ergebnissen beider
Auflösungsniethoden.

VIII.
§ 23. Achte j.ufgabe. Konstruktion eines gleichschenkligen Dreiecks,

wenn die Basis und die Summe oder Differenz aus Schenkelhöhe

und dem der Basis angrenzenden Schenkelabschnitt gegeben sind.

Gegeben: 1. b,
2. hs + m 4 c konstant.

Bedingungen : 1. b y 2 > (hs + m) > b;
2. b>(hs—m)> — b.

Im rechtwinkligen Dreieck ist hs + m by2 Maximum:

denn da ist hs m -jyy2. In diesem Fall ist nun hs + m

+ y/-jj|. Ist das Dreieck nicht rechtwinklig, so ist

h9 -|- m y7b y -y- + a + V/ I
-^ a j • Es ist aber bekannt-

« (v/ï+V/!)>(v/M+V/M)-



— 152 —

Bei einem unendlich grossen Dreieck ist hs — m b — 0
b Max. und bei einem unendlich kleinen Dreieck 0 — b

— b Min. Bei einem spitzwinkligen Dreieck ist hs — m — pos.,
bei einem rechtwinkligen 0 und bei einem stumpfwinkligen

neg.

§ 24. Erstes Lösungsverfahren. Bestimmung der Spitzen B.

a) Konstruktion der Kurve. Taf. IV, Fig. 13.

Es sei OA b die Basis des Dreiecks. Wir ziehen den

Grundkreis, die Mittelsenkrechte MMi und um A den Hilfskreis
mit dem Radius r c. Durch O werde nun ein Strahl gezogen,
der den Grundkreis in Q schneidet. Ferner werde durch A und
Q eine Gerade gelegt, welche den Hilfskreis in H und Hi
schneidet. Jetzt tragen wir auf dem Strahl OQ die Strecken
QH und QHi von 0 aus in gleicher oder ungleicher Richtung
ab und erhalten die Punkte T4 und T2. Gleiche Richtung ist
nötig, wenn Q ausserhalb des Hilfskreises liegt. Hat Q negative
Ordinate, so sind die Strecken nach Q hin abzutragen, im andern
Fall nach der entgegengesetzten Seite. Endlich trägt man noch
die Strecken QTL und QT2 von R aus auf den Strahl OQ ab in
der Richtung, wie T von Q aus liegt, und bekommt die Punkte
Pi und P2. Bei sich drehendem Strahl beschreiben die Punkte
P die Kurve. Die Schnittpunkte derselben mit der Mittelsenkrechten

sind die Spitzen B; denn in diesem Fall ist RP 0,
also auch QT 0; folglich fällt T auf Q; damit ist OT OQ= m,
QA ist hs, und eine der Relationen ist erfüllt:

hs 4 m c.

b) Ableitung der Kurvengleichung.

Es seien (—x, —y) die rechtwinkligen Koordinaten eines

Kurvenpunktes P2 im gewohnten System; dann ist

OPa y/x2+y2.
Nun ist OP2 P2R —OR=T2Q —OR=T2040Q —OR,

somit y/x2 + y2 T20 + OQ —OR. (a)
Ferner ist T20 QHt AQ + AHi bsin^ + c,

OQ bcosy>,
sub in («),

0R ^ry,xH=7,
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b
es giebt \/x2+y2 bsmç> + c + bcosp —\/x2+y2, umge-2x •

formt

[(x2 + y2) (x -A) + b x (x 4- y)] - c2x2 (x2 4- y2) 0. (1)

1)

itp
Polargleichung : r 9

- — b (cos tp + sin tp) 4 c. (2)

c) Eigenschaften der Kurve.

Vorliegende Kurve ist von der 6. Ordnung. Sie hat im
Nullpunkt einen 4fachen Punkt. Die Gleichung der Tangenten
im Nullpunkt lautet:

2h2 4c2 b2 4c2r_ 4xy8 + ^-^- x2y2 + 4x8y + H-^ x4 0. (3)

Spezialfälle: 1. c —0.

y4 — 4xy3 4 2x2y2 + 4x3y + x4 0, aufgelöst

y (l +\/2)x je 2mal.
Die Tangenten müssen paarweise zusammenfallen, da die

Kurve in 2 zusammenfallende Kurven 3. Ordnung zerfällt, deren

Gleichung (x2 + y2) Lx — iLJ + bx(x + y) 0 ist. (4)

Diese Kurve ist strophoidenartig, siehe Fig. 13, Kurve II.

2. c=4
V4 _ 4 x y8 + xa y2 + 4 xb y _ o

y 0; die x-Axe ist Tangente.
Die Gleichung der übrigen 3 reellen Tangenten lautet:

y3-4xy2 + x2y + 4x8 0.

3. c 4}v/2.

y4 — 4xy3 4 4x8y — x4 0.

Da y — x der Gleichung genügt, so ist y x Tangente.

Die Gleichung der übrigen 3 reellen Tangenten lautet:

y3 —3xy2 + x3 0.

4. C oo.
Bern. Mitteil. 1902. No. 1538.
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Die Kurve besteht aus der doppelt gelegten unendlich fernen
Geraden und der doppelt gelegten y-Axe und dem konjugierten
Punkt in 0. Die y-Axe ist doppelt gelegte Tangente; die
2 andern Nullpunktstangenten sind imaginai-.

Die x-Axe schneidet die Kurve im Nullpunkt 4mal; die

andern 2 Schnittpunkte liegen in den Punkten (—-jj-4c)Die
y-Axe schneidet die Kurve 4mal im Nullpunkt und 2mal im
Unendlichen.

Aus der Form der Gleichung geht hervor, dass die
imaginären Kreispunkte der Ebene Doppelpunkte der Kurve sind.

Ebenso sagt uns die Gleichung, dass die Gerade x -jj- doppelt
2

gelegte Asymptote ist. Die Natur des unendlich feinen Punktes
der Kurve wird durch Transformation bestimmt. Wir setzen

x x' + -j und y y' und erhalten

{[(x'+|)+y'.]X' + „(x'+4)(x'+| + /
Nun projizieren wir den unendlich fernen Punkt der Kurve

auf die x-Axe, indem wir setzen

1 x"
y' —,-,- und x'=—rr und erhalten:

y y

^ + by"x" + —^+ljx'
+ by"(x" 4 ^)(x''4-^ + l)J-c2y''2(x''24bx''y''

+ jy"2)(x"24bx"y" + ^y"2+l)=0. (5)

Der Nullpunkt der projizierten Kurve ist Doppelpunkt. Die
Gleichung der Doppelpunktstangenten lautet:

x"2 0: folglich fallen die beiden Tangenten mit der
y'-Axe zusammen. Da ferner für x"=0 y" 0 wird und zwar
4 mal, so muss der Nullpunkt Selbstberührungspunkt sein. Es
ist somit auch der unendlich ferne Punkt der Kurve Selbst-
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b
berührungspunkt und die Gerade x -y- Selbstberührungsasymptote.

Die Kurve ist also rational; denn sie besitzt 10 Doppelpunkte,,
nämlich 6 im 4fachen Punkt O, 2 im unendlich fernen Selbst-

berührungspunkt und 2 in den imaginären Kreispunkten der Ebene.

Für c — b fallen 5 Schnittpunkte der Geraden x —- mit

der Kurve ins Unendliche. In diesem Fall ist die Mittelsenkrechte

Selbstberührungswendeasgmptote und der unendlich ferne
Punkt der Kurve ein Selbstberührungspunkt mit einfachem

Inflexion sknoten.

Die Kurve ist keine symmetrische Kurve.

d) Die Lösungen.

Um die Schnittpunkte B zu bekommen, führen wir für x
den Wert x =- in der Kurvengleichung (1) ein und erhalten

LI

— ly + bcy^b2—c2
- — -• (6)J 2(b2—c2)

Für jeden Wert von c<by2 giebt es 2 reelle Werte für
y, also 2 reelle Lösungen. Die Hauptfälle sind folgende:

A. c>b\'2.
y wird imaginai-; keine reellen Lösungen.

c<by2; 2 reelle Lösungen.

— • 9 zusammenfallende rechtwinklige Dreiecke.

oo; ein unendlich kleines und ein unend-

b

B.

1. c b\'2.

.Vi y:
b

2=2~;
2. C b.

lieh
yi 0

grosses

und y2 ;

Dreieck.

3. C 4v'2;

- 4. c —
b
2 '

y —S-(2 + \/3.)

y'=-|-(*+v/7).
In beiden Fällen ein stumpfwinkliges und ein spitzwinkliges

Dreieck.

5. c 0: yi=y2 ——•
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2 zusammenfallende rechtwinklige Dreiecke OAB'. Fig. 13.

0. c -}(\/3 + l); ^ 4^3 und ya ±-|--\/3.

Das spitzwinklige Dreieck ist gleichseitig und das
stumpfwinklige Dreieck bat Basiswinkel von 30° und eine Schenkelhöhe

von lis -jj-
Lässt man c von b aus einmal wachsen bis c by2, das

andere Mal abnehmen bis c 0, so sind die Lösungen im 2. Fall
symmetrisch zu denjenigen im ersten Fall.

Setzt man y — y. so geht Gleichung (1) über in

[(x2 + y2)(^x-^-)+bx(x-y)]-c2x2(x2 + y2)=0. (7)

Die Kurve ist das Spiegelbild der erstem in Bezug auf
die x-Axe. Mit den Lösungen ist es dasselbe; dabei giebt es

für die Basishöhe den Ausdruck

b34bcy/2b2^c2
hb y= "2(b2-^) ,8)

Als Inhaltsformel des Dreiecks erhalten wir nach (6)

-b44b2c\/2b2-c2
4(b2 — c2)

' [)
§ 24. Zweites Lösungsverfahren : Bestimmung der Fusspunkte D

der Schenkelhöhen. Ohne Figur.

Diese Aufgabe kann elementar gelöst werden, wenn wir
aus den drei Grössen b, m und hs zuerst ein rechtwinkliges
Dreieck konstruieren wollen. Will man aber direkt das
gleichschenklige Dreieck gewinnen, bedarf es auch hier der Konstruktion
einer Kurve höherer Ordnung. Diese Hilfskurve wird eine Kreis-
konchoide, deren Gleichung:

(x2 + y2 + by)2 — c2 (x2 + y2) 0 ist (vergleiche VI (1), (10)

pag. 64).
Für die Koordinaten der Punkte D erhalten wir

b24c\/2b2—c2
x 2b

c2 7,2
und y 4 —jjj—, wobei nur das positive

(11)
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Zeichen verwendet werden darf. Das negative Zeichen entspricht
den Lösungen der Spiegelbildkurve in Bezug auf die x-Axe.

Setzt man in der Proportion:

y : hi, x : -y- für x und y die Werte von (11) ein.

so erhält man für hb den Wert-nach Formel (6); damit ist
nachgewiesen, dass beide Verfahren die gleichen Ergebnisse liefern.

Berechnen wir mit Hilfe von (11) in, denn m \; x2 + y2

und hs, denn hs y b2 — m2, so finden wir, dass bei jedem
spitzwinkligen Dreieck die Strecke m OD gleich ist der Grösse hs
bei dem zugehörigen stumpfwinkligen Dreieck und umgekehrt.
Bei allen Lösungen gilt die Relation

hs + m c, wenn c > b,
hs 4 m c, » c b und
hs — m c, » c <C b ist.

IX.
§ 26. Neunte Aufgabe: Konstruktion eines gleichschenkligen Dreieckes^

wenn die Basis und die Summe oder Differenz aus Schenkel

und Basishöhe gegeben sind.

Gegeben: 1. b,
2. s 4 hb 4 c konstant.

Bedingungen: 1. s4hb>-jj'

2. s—hb<-jy-
Die Summe ist das Minimum bei einem unendlich kleinen

Dreieck ; da ist s =- und hb 0. Umgekehrt ist die Differenz
2

bei einem unendlich kleinen Dreieck das Maximum und nimmt
stetig ab bis 0, wenn das Dreieck wächst und schliesslich
unendlich gross wird.

§ 27. Erstes Verfuhren. Bestimmung der Fusspunkte D.

a) Konstruktion der Hilfskurve. Taf. IV, Fig. 14.

Es sei OA b die Basis des Dreiecks. Wir ziehen den

Grundkreis und die Mittelsenkrechte, auf welcher wir von C aus
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die Konstante c nach E abtragen. Durch O laufe nun ein

Strahl, der den Grundkreis in Q und die Mittelsenkrechte in
R schneidet. Nun tragen wir die Strecke RE von O aus auf
dem Strahl OQ nach beiden Seiten ab und bekommen die beiden
Punkte Ti und T2. Schliesslich tragen wir noch die Strecken
RTi und RT2 auf dem Strahl OQ von Q aus ab und zwar in
der Richtung, in welcher von der Mittelsenkrechten aus die
Punkte T liegen. Die gewonnenen Punkte seien Pi und P_>,

welche bei sich drehendem Strahl die Kurve beschreiben.
Die Schnittpunkte derselben mit dem Grundkreis liefern die
zunächst gesuchten Punkte D; denn fällt ein Kurvenpunkt P in
den Grundkreis, so ist QP 0, also auch RT 0. Im letztem
Fall kommt T in die Mittelsenkrechte zu liegen, und es ist ferner
OT RE OB s und da auch RC —h, ist, so muss sich
eine der Bedingungen erfüllen:

s + hb c.

b) Ableitung der Kurrengleichung.

Wir legen in gewohnter Weise das Koordinatensystem.
x und y seien die Koordinaten des Kurvenpunktes Pi ; dann ist

oPi^v^T?;
OPt OQ—TlR=OQ-OR+OTi=y/x2+y2. («)

Nun ist OQ bcos$?,

b

2 cos tp

und OT, EC—RC=c ^tg^,

sub. in («), so

giebt es

b cos tp — -r r• c t— tg tp y x2 + y2, umgeformt
2 cos tp

' 2 nr v ' J ' °
[(x2 +y2)(2x-b)-2bx2]2-(by-2cx)2(x2 + y2) 0. (1)

Für ein negatives c bekommen wir die Spiegelbildkurve in
Bezug auf die x-Axe. In der Gleichung (1) ändert bloss das mit
c behaftete Glied Vorzeichen. Löst man Gleichung (1) auf. so
verschwindet das Glied b2y4; dann lässt sich der Faktor x in
allen Gliedern wegdividieren und wir erhalten:

<x2 4 y2)2 x- (x4- y4) b + (x2 - 3 y2)~
+ (x2 +y2)(by-cx)c 0. (2)
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° ö" ' ~ 2cost

' bcos2çb4(bsinw — 2ccosw)
Polargleichung: r= —=-^ —

-

itp

bcos2^
2cosç> ± (-ö-tg^-c • (2a)

c) Diskussion der Kurrengleichung.

Die Kurve ist von der 5. Ordnung und hat im Nullpunkt
einen Stachen Punkt." Die Gleichung der Nullpunktstangenten
lautet :

/ \'-> 913 I A ,.3 /' \- 1*2 /1 „2
0. (3)

/ y V 3 b2+ 4 e2 /yV y b2-4c2_
\ x / ^ x ^ 4bcV x J 4bc

Spezialfälle :

1. c 0: ^-x(x2-
4 -3y2) 0.

a) x 0.

ß) y +|-V/3.
Die Gleichung der Kurve selbst nimmt die Form an

(x2 + y2)[(x2 + y2)x-b(x2 -y2)] +(x2-3y2) -blX- 0. (4)

Diese Spezialkurve allein ist symmetrisch und zwar in
Bezug auf die x-Axe. Nach y aufgelöst erhalten wir

- + /3 b2 x — 8x3 4 b x y/9b2^16bx
y-^iy- 8(x + b)

9b
ist der Maximalwert, den x annehmen kann. Für

16
ou

diesen Grenzwert von x wird y + —-^ y0,6. Die Kurve bildet

eine Doppelschleife, welche ganz innerhalb des Grundkreises
liegt, denselben im Nullpunkt berührt und aus 2 kongruenten

Schleifen besteht, die sich im Punkt I =-, 0 ] schneiden.

a) y 0; die x-Axe ist Tangente.

ß) y x 2mal; diese Tangente ist eine Selbstberührungs-
tangente, welche die Kurve im Nullpunkt zudem noch schneidet.
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Alle Schnittpunkte der Geraden y x mit der Kurve fallen
daher in den Nullpunkt. Von den 3 Doppelpunkten, die im
3fachen Punkte 0 liegen, ist der eine also ein Selbstberührungspunkt.

Die 4 Doppelpunkte, welche die Kurve im Endlichen

hat, stecken für c --j alle im Nullpunkt.

Die x-Axe schneidet die Kurve in 0 3mal und 2mal in

den Punkten + c. Die y-Axe schneidet die Kurve 3mal in

0, einmal in (0, — c) und einmal im Unendlichen.
Die imaginären Kreispunkte der Ebene sind Doppelpunkte

der Kurve; diese ist somit rational; denn sie besitzt 6 Doppelpunkte,

4 im Endlichen und 2 im Unendlichen, so lange c endlich

ist.
Die Gerade x — b ist Wendeasymptote. (4)
Die Kurve hat Wendepunkte. Ist O Knotenpunkt, so

besitzt die Kurve einen Wendepunkt im Unendlichen. Ist 0
isolierter Punkt, so sind 3 Wendepunkte vorhanden, wovon 2 im
Endlichen sind.

Für ein unendlich grosses c besteht die Kurve aus der
y-Axe, der doppelt gelegten unendlich fernen Geraden und dem
isolierten Punkt in O.

d) Die Lösungen.

Wir suchen die Fusspunkte D der Schenkelhöhen zunächst.
Für die Koordinaten von D finden wir die Werte

16b3c2

(b2 + 4c2) m
4b2c(4c2-b2)und y + (b2 +4cy

- (6)

Das negative Zeichen gilt für die Lösungen der
Spiegelbildkurve. Wir bekommen für einen bestimmten Wert von c

nm- eine reelle Lösung; das rührt daher, weil s + h nicht kleiner

als -jj- und s — hb nicht grösser als -jj- werden kann. Wir be-
2 Li

kommen folgende Hauptfälle:
A \ b
A- C > -JJ-
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Alle Lösungen genügen der Bedingung: s 4 hb — c.

l. c>4}(l4V2); 0<x<±.
Das Dreieck ist spitzwinklig und wird speziell gleichseitig,

b
wenn c -;j (2 +y 3) ist.

1 _L. v/91, v — _2. c ->(14-V/2); x
h

Das Dreieck ist rechtwinklig.

3. -|-(l+\/2)>c>_b_; 4}<x<b.
Das Dreieck ist stumpfwinklig.

B. c -jj, Grenzfall ; x b.
2

Das Dreieck ist unendlich klein und genügt der Relation:
s 4hb c.

C c<|-
Die Dreiecke erfüllen die Bedingung: s — hb 0.

1. Jl(y/2-l)<c<-^; 4<x<b.
Das Dreieck ist stumpfwinklig.

2
2- c 4y-(v2-D; x=b

Das Dreieck ist rechtwinklig.

n-
2

3. ^-(y/2-l)>c>0; -^>x>0.
b —

Das Dreieck ist spitzwinklig und wird für c -jy(2 — y 3)

speziell gleichseitig.
4. c 0; x 0.

Das Dreieck ist unendlich gross, wie es bei A für c oo
wird.

Für die Basishöhe BC findet man nach bekannter
Proportion den Ausdruck:

4C2 U2

K 4-4+. (8)

Bern. Mitteil. 1902. No. 1539.
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Für die Lösungen der Spiegelbildkurve ist dieser Wert
negativ zu nehmen.

Für die Dreiecksfläche erhält man nach (8) die Formel
(4c2-b2)b

16 c
y '

§ 28. Zweites Verfahren. Bestimmung der Spitzen B.

Diese Aufgabe ist schon elementar ohne Mühe lösbar. Es

ist ja s2 -t- + hi,2. Berücksichtigt man, dass s + hb c, so

4 c2 b2
findet man hb =4 j- was mit (8) voll-

oc
kommen übereinstimmt. Die elementare Lösung auf konstruktivem
Wege erfordert 2 verschiedene Konstruktionen, je nachdem die
Summe oder Differenz von s und hb vorliegt. Soll die gleiche
Konstruktion beide Fälle einschliessen, so wird eine Hilfskurve
nötig. Ihre Gleichung lautet:

(x2 + y3)4x2 — (by —2cx)2 0. (10)

Wir haben dieselbe unter V (8), pag. 60, bereits kennen
gelernt. In unserm Fall hat die Kurve den Selbstbenihrungspunkt
in O.

Ihre Asymptoten sind x 4 -jy-
Bei den Lösungen handelt es sich um die Schnittpunkte B

der Mittelsenkrechten x —- mit der Kurve. Für die Ordinate

4c2—b2
von B finden wir den Wert y hb 5 (11)

8 c.

Dieser Wert stimmt mit (8) überein. Beide Verfahren
decken sich somit vollständig in ihren Resultaten.

X.
§ 29. Zehnte Aufgabe. Konstruktion eines gleichsclienkligen

Dreieckes, wenn die Basis und die Summe oder Differenz aus Basis¬

höhe und dem an die Basis angrenzenden Schenkelabschnitt

gegeben sind.

Gegeben: 1. b,
2. hb 4 in 4 c konstant.
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Bedingungen : 1. hi, 4' m > b,

2. hb — m go.
Die Stimine hb + m wird zum Minimum I) beim unendlich

kleinen Dreieck, wo m b und hb 0 ist. Die Differenz hb — m
wird 0 bei einem spitzwinkligen Dreieck, dessen Höhe

h„= j-y/2vÏ7- 2 ist.

Übersteigt hb diesen Wert, so ist die Differenz hi, — in pos.
Sinkt dagegen hb unter diesen Wert, so ist hi, — m lieg, und
wird für ein unendlich kleines Dreieck — b.

§ 30. Erstes Lösungsverfahren. Bestimmung- der Spitzen lj.

ti) Konstruktion der Hilfskurve.

Es sei OA b die Basis des Dreiecks. Ziehe den Grundkreis,

die Mittelsenkrechte und um 0 noch einen Hilfskreis mit
dem Radius r c. Ein Strahl durch 0 schneide nun den Grundkreis

in Q und den Hilfskreis in H und Hi. Schlage von C aus
einen Kreisbogen mit dem Radius r—QH und einen zweiten
Bogen mit dein Radius r QHi. Erhalte im Strahl 4 Schnittpunkte

Pi. P2, Ps und P4. Bei sich drehendem Strahl
beschreiben die Punkte P die Kurve. Fällt ein Kurvenpunkt P
in die Mittelsenkrechte, so ist QH CP CB hb, und da

ferner in diesem Fall O Q m ist, so lässt sich die Relation
aufstellen : hb 4 m O H c. Somit haben wir in den
Schnittpunkten der Kurve mit der Mittelsenkrechten die gesuchten
Spitzen B.

b) Ableitung der Kurvengleichung.

Lege in gewohnter Weise das Koordinatensystem, x und y
seien die Koordinaten des Kurvenpunktes Pi; dann gilt

CPi=\/(y-x)+y2. («)

Nun ist CPi QH OH — OQ c — bcos^, eingesetzt in (et)

ergiebt c — bcostp ¦•= i / I — xj + y2, umgeformt
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{(x2+y2) [y2 4 (y - x)"j - c2 (x2+y2)- b2 x2}"

— 4b2c2x2(x24y2) 0. (1)

Polargleichung: r -

4^jV/(2bcos^4-bsin^ ±2c)(2bcosç> —bsin^42c). (2)

c) Eigenschaften der Kurve.

Die Kurve ist von der 8. Ordnung und hat im Nullpunkt
einen 4fachen Punkt. Die Gleichung der Tangenten im. Nullpunkt
lautet :

y 4 —JL. - y/3b4 + 24b2c2 —16c4416b3c. (3)

1. 0<c< —; O ist Knotenpunkt; alle 4 Tangenten

sind reell.

2. -jy <[ c < yy ; O ist Doppelpunkt und isolierter Punkt;
2 Tangenten sind reell, 2 imaginär.

3. c > —jj- ; 0 ist isolierter Punkt ; alle 4 Tangenten
2

sind imaginär.

Die Kurve liegt zur x-Axe symetrisch; denn y kommt nur
in geraden Potenzen vor. Die Kurve hat nicht nur in 0, sondern
auch in den imaginären Kreispunkten der Ebene 4fache Punkte.
Für endliche Werte von c liegen keine Kurvenpunkte im Unendlichen;

die Kurve kann daher keine Asymptoten haben. Wir
betrachten nun die einzelnen Kurvenformen bei veränderlichem c.

1. c 0.
Die Kurve zerfällt in 2 zusammenfallende Kurven 4. Ordnung,

deren Gleichung die Form hat

(x2-fy2){y2+(y-xy}-b2x2 0. (4)

Die Kurve (4) besteht aus einer Doppelschleife mit
ungleichen Blättern. Die Tangenten in 0 sind y 4xy3. Die

y-Axe schneidet die Kurve 2 mal in O und 2 mal imaginär, die
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x-Axe 2mal in O und dann noch in x3 -jj- und xi 5-2 2
Bei wachsendem c wird die eine Doppelschleife grösser und die
andere kleiner und so geht es, bis c b/2 wird. Für diesen
Wert von c verliert die kleinere Doppelschleife die kleinere
Schleife, welche zu einer Spitze zusammenschrumpft.

2. c -L.
2

Die Gleichung der Kurve lautet nun
[(x2+y2)(x2+y2--bx) — b2x2]2 — b4x2(x2 + y2) 0. (5)

Die positive x-Axe ist Rückkehrtangente und die y-Axe
doppelt gelegte Wendetangente. 0 ist also Doppelinflexions-
knoten und Spitze. Alle Schnittpunkte der Axen mit der Kurve
sind reell und bleiben von da weg reell. In allgemeiner Form
sind die Schnittpunkte mit der x-Axe:

1. x 0, 4mal: 2. x —-fc; 3. x ?r + c.
2 - ' 2 -

Die Schnittpunkte mit der y-Axe:

1. y 0, 4mal; 2. y 4 1/ c2 — -^ 2mal.

Wächst nun c von -jy bis b, so verwandelt sich die Doppelschleife

in eine 4 fache Schleife. Die 2 grössern Schleifen dehnen
sich aus in der Richtung der x-Axe, die 2 kleinem längs der
y-Axe. Das kleinere innere Blatt löst sich los vom Nullpunkt,
nimmt Eiform an, schrumpft mehr und mehr zusammen und wird

/b
schliesslich zum isolierten Punkt in C I —, 0

3. c b.

Die Kurve besteht aus einer in sich geschlossenen Linie,
welche in der y-Axe 3 Doppelpunkte bildet, wovon einer in
O liegt. Ferner gehören zu ihr noch 2 isolierte Punkte 0 und
C. Die Gleichung der reellen Tangenten in 0 lautet

_

y ±x\/3.
Diese Spezialkurve ist rational; denn sie besitzt neben den

3 vierfachen Punkten noch 3 Doppelpunkte, was zusammen
für 21 Doppelpunkte zählt. Die 3 Doppelpunkte haben die
Koordinaten
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*j.<>). (0,^3) und (0,-^V'
Wächst c über 1) hinaus, so nähern sich die 2 Schleifen

längs der y-Axe der Mittelsenkrechten und um den Punkt C
bildet sich wieder ein isoliertes Blättchen. Für einen gewissen
Wert von c, den wir nicht ermitteln konnten, hängt sich das
kleinere innere Kurvenstück an den andern Kurvenzweig.
Wird c noch grösser, so bildet die Kurve 2 Blätter, die
sich teilweise überlagern und von denen das eine die Form der

3b
Kreiskonchoide hat. Für c 4j- hat das konchoidenähnliche

Li

Blatt in 0 eine Spitze mit der negativen x-Axe als Rückkehr-
tangente.

3 b
4. e > -9—Li

Die Kurve hat in 0 keine reellen Tangenten mehr. Der
Mittelpunkt ist 2fach isolierter Punkte. Die Kurve bildet
2 Blätter, die sich teilweise überlagern, was bei weiter
wachsendem c so bleibt.

Für ein unendlich grosses c besteht die Kurve aus dem

doppelt gelegten unendlich grossen Kreis und dem 2fach
isolierten Punkt in

d) Die Lösungen.

Es handelt sich um die Bestimmung der Spitzen B. Für
jeden Wert von c giebt es 4 Schnittpunkte B der Kurve mit
der Mittelsenkrechten. Wir bekommen also immer 4 reelle
Lösungen, welche nach Konstruktion paarweise symmetrisch
sind. Die allgemeine Lösung stösst auf Schwierigkeiten. Setzt

man jedoch in der Kurvengleichung (1) für x den Wert -jj und
2

für y Spezialwerte wie y 0, y —, y=.- —y3 etc. ein, so

kann man für besondere Lösungen den zugehörigen Wert von c
berechnen. Ehe wir die Hauptfälle bringen, bemerken wir noch,
dass ein Dreieckspaar immer spitzwinklig ist, das andere dagegen
jede beliebige Form annehmen kann.
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1. e 0; y lib 4^-v/—2 + 2y/Ï7, 2mal.

Alle 4 Dreiecke sind spitzwinklig, kongruent und fallen
paarweise zusammen und sind paarweise symmetrisch.

2. 0<c<(Vr2-l)-};
ein Paar symmetrischer Lösungen wird spitzwinkliger, das andere
Paar weniger spitzwinklig.

3. e. (\/2-l)-}.
Das zweite Paar wird rechtwinklig.

4. (\2-l)^-<c<b.
Das zweite Paar ist stumpfwinklig. Für c= -jj (y 3 — 1)

2
wird das erste Paar gleichseitig.

5. e b.

Das zweite Paar ist unendlich klein.

6. b<c<(\/2+ l)-jj.
Li

Das zweite Paar ist wieder stumpfwinklig.

7. c (\/2+ 1) — ; zweites Paar ist rechtwinklig.
Li

8. c >• (y 2+ 1)-jj; auch das zweite Paar ist spitzwinklig

und wird speziell für c=(v3 + l)-jr gleichseitig.

9. e oc.
Alle 4 Dreiecke sind unendlich gross.

§ 31. Zweites Lösungsverfahren. Bestimmung der Schnittpunkte ü.

Bedingungen wie in § 29.

Wir bekommen eine unächte Kurve 8. Ordnung als
Hilfskurve. Ihre Gleichung hat die Form

{4x2(x2+y2)-(2cx— by)2}{4x2-(x2 +y2)-(2cx+by)2} 0. (6)

Die Kurve (6) zerfällt in die 2 Kurven 4. Ordnung:
4x2(x2+y2) — (2cx-by)2 0 (7)

und 4x2(x2 + y2) - (2cx4by)2 0. (8)
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Die beiden Teilkurven sind Spiegelbilder voneinander in
Bezug auf beide Axen. Wir haben es daher im Grund nur mit
einer Kurve 4. Ordnung zu tun. Sie ist uns in der Form
begegnet in rXaü), pag. 85, und wurde beschrieben im V.
Abschnitt. Die Lösungen lassen sich ebenfalls nicht allgemein
bestimmen. Man kann nur für Spezialdreiecke die
zugehörigen Werte von c berechnen. Man findet ganz dieselben
Resultate wie oben. Zu jeder Teilkurve gehören zwei ungleiche
Lösungen mit Ausnahme des Falles, da c o ist, wo dieselben
zusammenfallen. Die Dreiecke, die zu den zwei Teilkurven
gehören, sind Spiegelbilder voneinander in Bezug auf the x-Axe.

In allen Fällen, da c <b ist, entsprechen die Dreiecke der
Relation: hb — m 4c. Ist c b, so gilt hb 4m 4t-- hst

c^>b, so finden wir die Bedingung erfüllt: hb4m 4c
(vergleiche § 29).

§ 32. Uebersichtliche Zusammenstellung der Resultate.

I.

Gegeben : b und In, 4 n c.

Lösungen :

1. c>yy/6v3—9; 1 reelles Dreieck;

2. c^^-V/6^—9: 3 reelle Dreiecke.

IL
Gegeben: b und s;t;n c.

Lösungen :

Für jeden Wert von c40 2 reelle, symmetrische Dreiecke.
Für c 0 4 reelle, zusammenfallende Dreiecke, die unendlich
klein sind.

III.
Gegeben : b und hs 4 n c-

Lösungen :

i / 3 3

1. c>|-y 3^13416^+3^13-16^2 —1; 2 reelle ver¬

schiedene Dreiecke ;
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2. o<-jy\/ obiger Ausdruck: 4 reelle, ver¬

schiedene Dreieck-Ke.

IV.
Gegeben: b und m4n=c.
Lösungen:

1. c>-y-; 2 reelle symmetrische Dreiecke:

Q \
2. c<-jj; 4 reelle, paarweise symmetrische Dreiecke.

V.

Gegeben: b und hb + hs=c.
Lösungen :

b '
1. c > -jj \ / 3 (1 + \/4 — 2 v 2): 2 reelle verschiedene Dreiecke.

2. c < do. 4 do.

VI.
Gegeben: b und s-fhs c.

Lösungen:
1. c>0; 2 reelle verschiedene Dreiecke;
2. c 0; 4 zusammenfallende rechtwinklige Dreiecke.

VII.

Gegeben : b und s + m c.

Lösungen:

1. c>-jj; 4 reelle, paarweise symmetrische Dreiecke;
—

ou _2. g->c>b\/2; 6 reelle, paarweise symmetrische Dreiecke;
Li

3. b\/2>c>-jj; 2 reelle, symmetrische Dreiecke ;
Li

4. c<-^-; 4 reelle, paarweise symmetrische Dreiecke.
Li

Bern. Mitteil. 1902. No. 1540.
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Vili.
Gegeben: b und hs4in=c.
Lösungen :

1. c>by2; keine reellen Dreiecke:
2. c<bv2; 2 reelle Dreiecke.

IX.

Gegeben: b und s4hb c.

Lösungen: Für jeden Wert von c 1 reelles Dreieck.

X.

Gegeben: b und lib4ni c.

Lösungen: Für jeden Wert von c 4 reelle, paarweise sym¬
metrische Dreiecke.

Nur bei einem Fall (VIII) kann es vorkommen, dass keine
reelle Lösung möglich ist. Als Bestimmungsgrösse tritt hier
hs 4 ni c auf. hs und in sind nun gerade die Dreiecksgrössen,
die bei endlicher Basis nicht unendlich werden können; das
Maximum für beide ist b.

Für Spezialdreiecke giebt es folgende Wertetafel für c:



Fälle unendlich kleines A. rechtwinkliges A gleichseitiges A unendlich

grosses A

I. hi, 4 n c
b

c T
b

C -jj- C ooC=4\/4~2^
IL s 4 n c 0 ^ 3 b

2
—: OO

in. h. 4 n c
b

'"Y
' ~> ^(^3 41) : OO

IV. in 4 n c
3 b

2 =4^ --0 OO

v. hb4hs c — 0 4^±1) 0 od. b y7 B OC

VI. a±h, c
b

""IT 0 od. =b\/2 ^(2±\/3) OO

VIL s 4 m c
b 3b
9" °d- "S-
Li Li

0 od. =b\/2 b
n

3 b" ~2
°d- T" oc

1 VIII. h, 4 m -- c b 0 od. =b\/2 -^-(^3 + 1) b

IX. s4hb c
b

2
-S (\/2 4i) 4} (24^) 0 dd. oo

X. hb 4 m c _b -^(^±1) 4}(V/3 + D oc
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Unter den 13 Kurven 4. Ordnung, die als Hilfskurven
auftreten, finden wir 6mal die Kreiskonchoide, 3mal die Konchoide
des Nikomedes und 3 mal die Kurve, die bei V (D gesucht) zum
erstenmal auftaucht; siehe Tafel III, Fig. 10. Als Spezialfall
für c 0 erscheint 2 mal die Strophoide, nämlich bei I und IV
(D gesucht). Andere Spezialfälle für c 0 sind strophoiden-
ähnlich wie I und VIII (B gesucht). Für c 0-zerfallen alle
Kurven mit Ausnahme von I (B gesucht), welche für den Wert

€ -jj degeneriert. Beim Zerfallen treten Kreise auf ausser
2

bei den Konchoiden noch bei V und I (B gesucht).
Im festen Eckpunkt 0 des Dreiecks besitzen alle Kurven

einen mehrfachen Punkt mit Ausnahme von L und V7. Bei I2
bewegt sich der mehrfache Punkt auf der Mittelsenkrechten, bei
V7 ist er konstant in A.

Als ein kleines Nebenresultat meiner Arbeit, die ich hiemit
abbreche, betrachte ich das, dass es mir gelungen ist, für die
zwei bekanntern Konchoiden neue Konstruktionsverfahren zu
finden.

Es bleibt mir nur noch die angenehme Pflicht, meinen
hochgeehrten Lehrern, den Herren Prof. Dr. Graf, Prof. Dr.
Hub er, dessen freundliche Ratschläge mir bei Fertigstellung
dieser Arbeit sehr wertvoll gewesen, Prof. Dr. Forster, Prof.
Dr. Moser und PD Dr. Grüner für das mir während meiner
Studienzeit stets entgegengebrachte Wohlwollen den herzlichsten
Dank auszusprechen.
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