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0. Spiess.

Die Grundbegriffe

der

Iterationsrechnung.

Einleitung.

Die erste mathematische Operation, die der Mensch ausfiihrte,
war die Addition. -

Indem die Addition wiederholt auf dieselbe Grisse angewandt
wurde, entstand ein neuer Begriff, die Multiplikation.

Die Wiederholung oder «lleralion» der Multiplikation fiihrte
weiter zur Exponentialfunktion, der einfachslen Transzendenten.

Von da an verliess man den Weg, durch Ileration einer bekannten
Funktion zu <hoheren» Funktionen aufzusteigen, indem man in der
Summen- und Integralrechnung eine ergiebige Quelle zur Auffindung
neuer Funklionen entdeckte. In der That, die einfache Operation des
Integrierens auf einen algebraischen Ausdruck angewandt, hat die Ent-
stehung einer ganz neuen Funklion von merkwiirdigen Eigenschaflen
zur Folge. Indem man dieses Prinzip auf alle bekannten und die neu
gefundenen Funktlionen anwandle, wurde die Analysis durch eine un-
geahnte Menge neuer Funktlionen hevolkert.

Nun liegt aber der Gedanke nahe, auch den alten Weg von neuem
zu betreten, und zu versuchen, ob nicht die [teration ganz allgemein
ein Mittel zur Auffindung neuer Funktionen abgeben kiénne. Die
Untersuchung lehrt, dass diese Operalion der Inlegration an Frucht-
harkeit vollig ebenbiirtig ist.

Wenden wir nimlich eine beliebige Funktion n-mal auf sich
selbst an, so slellt der erhaltene Ausdruck in seiner Abhingigkeit
von n eine neue Funktlion dar, die ich die Iteralfunktion der ur-
spriinglichen Funktion heisse. Diese ist allerdings zunichst nur fiir
ganzzahlige Werte von n bestimmt. Um zu fiir alle Werle ihres.
Arguments definierlen Funklionen zu gelangen, bielen sich dann zwei
Wege dar.
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Der erste Weg ist der hislorische. Man geht von der nur fiir
ganzzahliges n abhgeleileten Formel aus und sucht an Hand einer geeig-
neten Definition ihre Bedeutung fir den Fall, dass n negativ oder
gebrochen wird. Auf diese Weise erhieltl man z. B. aus der ganz-
zahligen Polenz die Exponentialfunktion.

Die andere Methode zieht es vor, das Unendlichkleine gleich am
Anfang einzufiihren. Iteriert man ndmlich einen Ausdruck von der
Form & df(8), worin d unendlich klein ist, n mal. und lisst dann
n so ins Unendliche wachsen, dass n-dJ endlich bleibt, so konvergiert
der erhaltene Ausdruck im allgemeinen gegen eine Funktion von
n-d =x, welche eben die Ileralfunktion ist. So fiihrt z. B. die Ite-
ration von - - & direkt auf ’

lim (14-0)". &= &.0™
X

n=— —

J
Durch diese beiden Methoden zerfillt der [Ierationscaleil in

zwei ziemlich selbstindige Zweige. Der eine hal mehr algebraischen,
der andere mehr funklionen-theorelischen Charakter.

Es ist von Nulzen, die durch Iteration gefundenen Funktionen
nach ihrer Entstehung in Stufern verschiedener Ordnung einzuleilen.
Kennen wir bereits simtliche Funktionen der n*" Stufe, so wird der
Umfang der nédchst hoheren Stufe folgendermassen festgelegt. Zunichst
bestimmen wir zu allen Funkiionen n'®* Stufe ihre Iteralfunktionen.
Wenden wir dann diese (und ihre Inversen) auf sich selbst und auf
simlliche Funktionen der unteren Stufen in endlicher Anzahl und in
allen moglichen Kombinationen an, so erhallen wir eine Gesamtheit von
Funktionen, die wir in Erweiterung des bekannten, fiir die Algebra
aufgestellten Begriffs, fiiglich einen «Korper> heissen diirfen.

Dieser Korper heisst «zur (n--1)*" Stufe gehorig» und enthilt
offenbar simtliche zu den unteren Stufen gehirigen Korper. Nehmen
wir diese letzleren alle weg, so bleiben die Funktionen der (n-}-1)t»
Stufe ibrig.

Die bisher bekannten Funktionen gehiren hichstens den 4 ersten
Stufen an. ) |
7 Die erste Stufe enthélt nur eine einzige Funktion von einer
Variablen, nimlich f(§) =& +}-a, die Addition. Ich heisse sie hier
« Protofunktion».

Die zweile Stufe enthidll zunichst die durch Anwendung von
Multiplikation und Division gebildeten rationalen Funktionen, sodann
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deren Inverse, die algebraischen Funktlionen. Sie heissen hier zu-
sammen Dewterofunktionen.
Die dritte Stufe der Tritofunktionen enlspringl durch llerieren
der Deulero-Stufe. Dahin gehiren vor allem die Abel’schen Funktionen.
Die nichst folgende Telra-Stufe ist beinahe noch gar nicht unter-
sucht.  Hieher sind woll die aus Iteration von a¥ entspringende

. | . ; dx —x?
Funktion, ferner Funktionen wmf@--\—, e ~ dx elc. zu rechnen,

doch existiert wohl noch kein Beweis. dass sie nicht doch noch am
Ende dem Korper der Tritofunktionen angehiren.

Es zeigl sich ndmlich sofort eine Schwierigkeil. Gleichwie
nicht jedes Integral einer algebraischen Funklion nolwendig trans-
zendent sein muss, sondérn algebraisch bleiben kann, so fiihrt auch
nicht die Iteration einer jeden Funktion immer zu einer hioheren

1
LIS

Stufe. So z. B. liefert 193 die Iteralfunktion §4h—n’ die in Bezug
auf n wiederum linear ist.

Es ist daher hei jeder Iteration zu priifen, ob die erhaltene neue
Funktion nicht elwa zur selben Stufe zuriickfiihrt. Daher ist auch
gar nicht vorauszusehen, ob Pentafunktionen existieren oder nicht,
und wir stehen so vor der interessanlen Moglichkeit, dass die Mannig-
faltigkeil analytischer Verhiiltnisse einer ihnlichen Beschrinkung unter-
liegt, wie sie bei ridumlichen Beziehungen durch den Mangel einer
vierten Dimension eintritt.

Man sieht nun bald, dass die Funktionen, die wir durch Iteration
erhalten konnen, im wesentlichen zusammenfallen mit denen, die das
Integralprinzip liefert. Man findet weiler, dass der Grund dazu in einer
merkwiirdigen Analogie liegt, die zwischen der Summen- und Integral-
rechnung einerseits und dem Iterationscalciil anderseils herrscht, eine
Analogie, die man fiiglich als Dualismus bezeichnen darf.

Schon usserlich entspricht der Summenrechnung eine end-
liche Iterationsrechnung, dem Inlegrationscalciil eine infinilesimale
«Iteralrechnung». Wie das Integrieren durch das Differenzieren auf-
gehoben wird, so steht dem Itlerieren eine inverse (Operation gegen-
liber, die ich Revertieren heisse. Deutlicher wird der Dualismus im
Lauf dieser Arbeit hervortreten. Am Kklarsien tritt er bei der infini-
tesimalen Iteralion (die hier nicht mehr behandelt werden konnte) zu
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Tage. Dort lisst sich nimlich beweisen, dass die Funklion von
n-d=x, die man durch Iterieren von
E-0-1(9)
in der oben geschilderten Weise erhilt, genau die Inverse ist, von
der Funktion, die durch [ntegrieren von
dx
1(x)

So fiihrt z. B. die Funktion f(é‘):\/f:éz— bheim ersten VYer-
fahren auf den Sinus, heim zweiten auf den Arcussinus. Beide Rech-
nungsarten unterstilzen und erginzen sich also.

Die Iteration behandelt also die ¥Fragen der Summen- und Inte-
gralrechnung von einer andern Seile. Indem die bekannien Probleme
vom Standpunkt der Iteration aus neu zu beleuchten sind, eriffnet sich
ein weiles Arbeitsfeld. Es schien mir nun angemessen, vor der Be-
handlung der hioheren Teile der Theorie die einfachen Begriffejund
formalen Operalionen der gewohnlichen Ilerationsrechnung in elemen-
tarer Weise darzulegen und an leichten Beispielen zu erldutern, Dies
ist in vorliegender Arbeil geschehen. Da es sich hier vorliufig nur
um die formalen Beziehungen handelt, so ist auf Schwierigkeiten, wie
sie bei der wirklichen Ausfiihrung durch Mehrdeutigkeit, Unstetigkeit
etc. eintrelen konnen, keine Riicksichl genommen. Dabei verbot der
nolwendige Rahmen der Arbeil aufl einzelne Probleme niher einzu-
gehen. Aus demselben Grunde musste auch die infinilesimale Iteration,
die einer slrengeren Behandlung bedarf, weggelassen werden.

Bevor ich beginne, will ich einige Bezeichnungen, die ich be-
stindig brauchen werde, schon hier auseinandersetlzen.

Sind ¢(&), f(§) Funktionen, so bezeichne ich ihre Inversen durch
einen iiber das Funktionszeichen gesetzten Strich, also mit ¢(&), 1(£).
Es ist also immer ff(&)=:1f(£)=¢& Ebenso, wenn n simultane,
unabhingige Funktionen der n Variablen &, &,-.-& vorgelegt sind

n

== fk (:L:la gga e §n) (k = 1: 27 e [l), (A)
so bezeichne ich die n Funktiogen, die durch Auflésung dieses Sysleis

nach den & entstehen, mit f, [,,---1, so dass also

enlsteht.

fl (fl kyl wrs & yn), f'_n g fn) =y, ['k (fl,’ . e ln) = ¥, ist.

Ein solches System von n unabhingigen Funklionen von n

Variablen nenne ich kurz ein «n-System». und verwende fiir dasselbe
stall der Schreibweise (A) oft auch die folgende:
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Fppo oY) = oo B (00 5, (B)
wo der lelzle eingeklammerle Ausdruck (& ---&) meist weggelassen
wird. Soll in dieses Syslem ein zweites

(gpl Se— Pn) (;—‘1 PO gn)
substituiert werden, so deule ich dies durch einen dazwischen gestelllen
Strich | an, also in diesem Fall durch

(f1 e fn) (§1 T é:n) ‘ (901 e Scn) (;:1 v ‘E‘:n)
oder kiirzer E (fl —_ fn) ‘ (spl . W S‘On)‘

Die Substitution ist so auszufiihren, dass an Stelle von & _ im
ersten System ¢, (- - - &) geselzl wird. Das Resullat der Substitution
wird geschrieben:

(fL' te fn) (951' T (Ign) (§1 *e ‘_E,,)-

Diese Schreibweise ermoglicht, mehrfache Substitutionen von
Funktionensystemen durch blosses Aneinanderreihen von Klamimern
auszudriicken. Die Grissen, in welche substituiert wird, bezeichne ich
durchweg durch die Buchstaben & 1, L, so dass, wenn die [ noch
andere Variable enthalten, nie ein Zweifel iiber den Ort, wo substituiert

werden soll, eintritt.

§ 1.
Es sei f(&) eine Funklion von & Indem wir (&) an Stelle von
& setzen und dies n mal wiederholen, d. h. f(&) ilerieren, so erhalten
wir einen Ausdruck, der den Swubstituenten & und die [Iterations-
variable n enthill. Ich bezeichne ihn mit
T
Dieser Ausdruck, als Funktion von & betrachtel, heissl «iterierte
Funktion n'" Ordnung», als Funklion von n betrachtel aber «[Iteral-
funktion» oder kurz «die Iterale» von f(&).
Beide Begriffe verhallen sich zueinander wie Potenz und
Exponentialfunktion, in welche sie iibergehen, wenn f(§) —a-§ ist.
Sind allgemein » unabhingige Funktionen f, f,,- .., der Va-
riablen &, &, - - &, gegeben, oder Kurz ein «»-System», und selzen
wir hierin wiederholl f_ (& .- &) fir & ein, so erhalten wir » Iteral-
funktionen, die ich mit
J‘l‘ (f,++ - 1), 1‘; (o)) ee-o J;’, ('fl. o)
bezeichne. Die Funklionen [ selbst heissen in Bezug auf ihre Ilerale
«Stammfunktionen».
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Fiir das lterationszeichen J gelien die Regeln

B 0 [ ) = B 1.
a | b c b
‘]ki(']kl"k):('];"lk)“i' 2.

Es gilt also fir das Iterieren wie fir das Addieren das commutative
und das associative Geselz.

Zuniichst ist das Symbol J" nur fiir ganzzahlige Werle von n
definiert. Wir konnen aber die Bedeutung sofort auf heliebiges n
erweilern, wenn wir J"f (&) als diejenige Funktion von n und § defi-
nieren, fir welche die Beziehungen 1. und 2. gelten und welche fiir
ganzzahlige n die n' Iterierte von f(&) ist.

Nach dieser Feststellung, die fiir Funktionensysieme ganz ent-
sprechend ist, ergiebt sich leicht die Bedeulung von J" fiir negative
und gebrochene n. Es ist nimlich
[ P—— v 0 1 e - . e
J f(‘; =5, Jk (f1 tet fp) :‘;Ek: '}k (fl' .t f},’) = fka el nf(g):‘lnf(é')

1
Weiler bedeutel Ju f(£) diejenige Funktion, deren ntc Iterierle die ge-
1

gebene Funktion [(&) ist. Speziell fir f(£) = & ist J» (£) eine
cyclische Funktion. So ist
1 15 13 1 i Y
g ;',2,3":, ,_.— '\/2-

14§ §438 i

Fiir die Iterale von (%) gilt offenbar die Relation

S =11
oder, wenn wir von nun an statt n x als Iterationsvariable wihlen,

J

und dieselbe nach Obigem als beliebig reelle Grosse ansehen, — falls
wir noch J*f(§) == ¢(x) selzen
(x4 1) =T¢(x). 3.

Ebenso geniigt J: (f,- - - f,) = ¢, (x) der Relation
¢ (3) =1 g (x—1), ¢,(x—1),- -+ ¢, x—=1)|, (k=1--.n). 4.
Umgekehrt, sind (¢, - - - ¢,) Losungen der Gleichung (4), so sind
sie zugleich die Iteralfunktionen der (f,---pf,). Selzen wir nimlich
auf den rechten Seilen von (4) fir ¢, (x—1) den Wert ein, derjaus

(4) folgt, wenn x—1 fiir x geselzt wird, und fahren so fort, so folgt
wirklich

¢ () =d(f - --1,) -5 (k=1,2...p).
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wenn die willkiirlichen Grossen ¢, (0), ¢,(0), « -+ ¢,(0) resp. gleich
$pe ¢+ 5, gesetzt werden. Diese letzleren kann man als Konstanten
oder allgemeiner als Funklionen von X mit der Periode 1 ansehen.
Da aber die lelzlere Annahme in den wenigslen Fillen auf die weilere
Rechnung einen Einfluss iibt, so kdnnen wir hier davon abstrahieren
und sagen:

Satz I.  Die Iteralfunktionen etnes r-Systems (f,---[.) sind
durch dasselbe vollig bestimmt bis auf die Anfanys-
werte ¢, (0),+++-¢, (0).  Letztere kinnen helicbigen
Konstanten gleichgesetzt werden.

Das System (4) kann iibrigens auch als Differenzengleichung
aufgefasst werden, woraus sich ergiebt, dass die Losung von (4) so-
wohl als Problem der Summen- wie der Iterationsrechnung aufgefasst
werden kann. Nun kann :man aber jede beliebige Differenzengleichung
auf ein simullanes Syslem von Gleichungen erster Ordnung zuriick-
fiihren. Es kann daher jedes Problem der Summenrechnung auch als
Problem der Iterationsrechnung aufgefusst werden.

Eine Gleichung G|@(x-k), ¢(x-}-k—1),+ - o(\)] == (5)
wird man allerdings haupltsiichlich in der Differenzenrechnung behandeln.
Man kann ihr aber, dem in der Einleitung erwihnten Dualismus gemiiss,
eine andere Gestalt geben, in der sie speziell zu einer Aufgabe der
[terationsrechnung wird. '

Wir selzen nimlich in (5) x =¢(&), wo ¢ die Inverse von ¢
ist.  Dann wird also ¢ ¢ (§)=E  Selzen wir ferner _

¢(14-¢)=1(3), (6)
so folgl sofort:
(&) = L1+W(1+sﬂ )= ¢ @249l
Fr(E) = 08 +¢9.

Schreiben wir noch zur Bequemlichkeit J*f () == *(¥). so wird

unsere Gleichung () transformiert in

G, 170, 1(8), & (7)
Diese Gleichung stellt die Aufgabe. aus einer Relution zwischen
den verschiedenen Iterierten einer Funktion diese Funktion selhst zu
finden. Aus der Gleichung (6), die man auch schreiben kann
¢ (x41) =Te (),

sieht man, dass ¢(x) einfach die Iteralfunktion von f($) isl.
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Analog konnen wir auch simullane Differenzengleichungen, z. B.
Glyp(x4k), wx4h), g (x),p®]=0 o
Hig (k) m(xby), g (0, i) =0 Y
umformen. Wir setzen nimlich ¢ (x)=_§&, (x) =1 und beslimmen
zwei Funktionen f(§, n), g(§, n) so, dass
g (x4-1) ="1lq (0, wXx)], w(x+1)=gly(x), w(x)|,
was, wie wir sehen werden (Satz VIl), aul unendlich viele Arten mog-
lich ist. Dann ergiebt sich offenbar wieder, dass «, s die Ileralen
von f und g sind, d. h. es wird

g A-K) =] (1, g) (&) =1V )

w(s-h) =5 (1, 8) & n) = g™ (& ),
wodurch die Gleichungen 7a eine (7) analoge Gestalt annehmen.
Ist endlich eine partielle Differenzengleichung vorgelegt
G!{r[-(x—l—-k, y—’—h)? e (P(Xa y)i =0, (8)
so wihlen wir eine beliebige Iunktion s(x,y), die elwa einer
Gleichung geniigl T
H !‘,z,h(x--‘l--ko, y-—}—hu), ceeah(x,y)| =0, (9)
setzen alsdann ¢(x,¥) == & w(x,y) =1, also x == ¢ (&), ¥y = (&)
und bestimmen zwei Funktlionen f. g, so dass

¢ 4-q, ) =1, ) elgy L) =1,(& )

(14, w) =g ) (e, 140 = gy (& ).
Dann ergiebl sich ohne weileres

92+, 1) =1(1,9); f(y 8) == ¢ (¢, 24

wE4-g, 1) =g,g); g, (f, 8) = (g, 2-}-0).

Allgemein erhilt man fiir die lterierten von (f, g), (f, g,)

ek-to, ) =17 (,0) (&) =15 ¢(g, b v) =] (f,8) Gp) = 1"
(K, A-g, v) = 126, 8) (£, 1) =8""; w(g,h - v) = J3°(f g,) (£4) = g, °’
worin natirlich k, h, k,, h, ganze Zahlen bedeuten. Es wird dann z. B.
e(k+x, hy) = (kfg, h4-1) =PV (E 1), 85" & )] ete.

Selzen wir diese Werle in (8), (9) ein, so verwandeln sich diese
Differenzengleichungen in Relationen zwischen den Iterierten von (f, g),
(f,8,), und umgekehrt- kann jede solche Relation durch Einfiihrung
der Funktionen ¢, 1 in eine Differenzengleichung verwandell werden.

Alle solche Relationen zwischen [terierten verschiedener Ordnung

fasse ich unter dem Namen Iteralgleichungen zusammen. Das Problem.
Bern. Mitteil. 1901. No. 1514.
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-

das eine  Ileralgleichung stellt, ist von hohem Inleresse. Da die
Liosungen eine oder mehrere willkiirliche Konslanlen involvieren, so
sind die Funktionen [ oft ganz verschiedener Natur, besilzen aber
trolzdem ein und dieselbe Iteralfunktion ¢(x). Sind algebraische
Liosungen vorhanden, so gehiren diese meistens zu einer merk-
wiirdigen Klasse von algebraischen Funktionen, fiir die ich den Namen
«korpertreue Funktionen» gebrauche. Ich begniige mich, ein ein-
faches Beispiel zu rechnen.
Beispiel. Die Funktion (&) soll aus der Gleichung
[1(§) =5 19—
bestimmt werden.
Stalt (10) kinnen wir auch schreiben
21— 1% == &2 (21— &?), woraus
Vell—fF = ~\/2f—
Hiernach erkennt man sofort die Richtigkeil der beiden Gleich-

ungern: B
rHyer—r _[(§+\/2f—§2) ]
2 o 2

— __ 11
—yetr—e [ (E—Ver—&) T (1)
2 o 2

Nimmt man beiderseits die Logarithmen, so erkennt man, dass

der Ausdruck )
c o912y
mg<,+\/aé &) )

log ( ;:)/2i——:i)

sich nicht &ndert, wenn {($) an die Stelle von & geselzt wird., Definiert
man daher (&) durch die Gleichung

(+V§Ff)

log

lug( \/2f-._.____) =B

so ist diese Bedingung offenbar erfiilit, d. h. es gill dann

- (H-\/‘ﬁ‘rr:ﬁ) ()g( \/zr )
log (f_ \-/—22—”—“fg> - ( ﬂ—f)

(10)

= (. (12)

(13)
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Wir haben dann in f eine Losung unserer lleralgleichung (10),
sobald wir noch zeigen konnen, dass aus (12) riickwirls wieder (10)
sich als notwendige Folge ergiebt.

Die Gleichung (12) fiir  wird einfacher, wenn wir die Expunenten
nehmen und selzen

f—yer—g }
- ‘/22 ==y, also f(¥) = (E—y)t-y2 (14)

Es ergiebt sich dann y aus der Gleichung
yo=E—y. (15)

Nehmen wir statt G, so folgt (§-y)C=y, d. h. es ver-

iy
lauscht sich einfach y mit (§—y). Da aber f(&) nach (14) in beiden
syminetrisch ist, so sieht man, dass zu reciproken Werlen von C das-
selbe f (&) gehirt.

Fur rationale Werte von C wird f(&) algebraisch. Z.B. wird fiir

C=oc; y=1 1§ = 14H(E—1)?
y=0 ()=
i &2
; - = o
e = (8 =3 (15a)
i4yE—1
— 1 — ¥V - & ____c.R
S (&) =
 — 141448

=2

: 1(§) = S4BEHIT(EH)VIH4E

Man iberzeugt sich leichl, dass diese Funktionen die Gleichung
(10) befriedigen.

Es bleibt nun noch der Nachweis zu leisten, dass die Gleichung
(12) oder die beiden Gleichungen (13), (15) zusammen wieder auf
die Relationen (11) und somit (10) zuriickfiihren. Aus (13) zieht man
cunidchst die beiden Gleichungén '

f+\/2ff-—ij~: ( EVer— ) (‘):

2 2
r—yern—p¢ ( —\2—& )}'(E’
2 o 2
wo (&) Kkonstant oder von & abhingig sein kann. Es ist also zu
zeigen, dass y =2 ist. Addieren wir beide Gleichungen, fiihren y
ein und fir f seinen Werl aus (14), so erhallen wir:
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(Fey) oy = (£ §) ¥, (16)
Diese Gleichung muss fiir y dieselben Werle liefern wie (15).
Eliminieren wir (§—y) mit Hilfe von (15), so resulliert:
y2 -yl = yr () yr(@)-C, (162)
Diese Gleichung wird erfiillt fiir y=0, y=1, d. h. fiir T=&2
und f=1-4(§—1)% welches beides Lisungen von (10) sind.
Schliessen wir diese Werle von y aus und selzen y2-J-y2“==u(y), s
folgt

w(y) = w() (5)) = (y[ (b)] ) = w( ) -

Diese Gleichung kann dann nur beslehen, wenn 7(5)22 isl.

Bestimmen wir endlich noch die gemeinsame Iteralfunktion ¢(x)
aller der f(&). Sie ist die vollstindige Losung der, (10) entsprechen-
den, Differenzengleichung

?(XJ=~%~'¢(X——1)"”—-¢(X—2) - ¢(x—1)+%¢(x—2)2-
Man findet ohne Miihe
¢(x) =a" 7, (17)
worin «,  willkiirliche Konstanten bedeuten. Indem wir diese aus
e(\), e(x-+1), ¢(x-42) eliminieren, sodann x =0, ¢(0)=2§
99(1)-—f(_;,), ¢(2) =1T[(5) selzen, erhalten wir wieder die (xluclluﬂgen
(11). Zugleich ergiebt sich
log «
log 8
Alle die aus (14) und (15) folgenden Funklionen f(&) fiihren
also durch Iteration auf dieselbe Funktion (17), wobei nur die Werle
der Konstanten «, # wechseln.
Wir kehren nun zu unserer allgemeinen Theorie zuriick.

§ 2.
Die Theorie der lteration stiilzl sich wesenllich auf das folgende
Fundamentaltheorem.
Ist F(¥)=gfo(&), so folgt JF(§=¢() ¢(3),
d. h. wenn die Iterale von { hekanntl ist, so ist es auch die von F.
Auf Funktionen mehrerer Variablen angewandt, lautel das Princip:

Al
—_— Ue
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Satz I1. B
Ist (P, F, 0 F)=(¢,...0)(...T)(¢;...9,)
wid hezeichnen wir das Heralsystem von ([ ... 1)
(&--.8) hurz mit (f.... [Y, so gilt
(Foo o B Y = (oo )(f ... 1) (0,...¢)
Die Iteration von (F,...F ) ist dadurch auf die von (f,...l)
zuriickgefiihrt. Der Beweis des Satzes ergiebt sich durch den blossen
Anblick.

In dem einfachsten Fall, in dem [, =& -1, f,=§,,...f =§&
ist, lautel der Satz II speziell: ‘

«Ist szq)k{ 1+Sp1("l' ”Sn)’ o "sﬁn } (k =1-... n),
s0 isl das Iteralsystem der F.. (A)

L(Fp o Fy=y{xtengpg) (k=1

Im Fall einer einzigen Funktion F heisst dies:

caus F(§) =¢(14-¢@E) folgt FFE=g¢[x+¢@].

Der Salz II nimmt im Fall der infinitesimalen [teration eine be-
sonders einfache Gestall an und hat alsdann ein duales Gegensliick in
einem bekannten Salz der Integralrechnung, der im Fall einer einzigen
Variablen so laulet:

«Ist das Integral von f(£)-d& bekannt, so ist es auch das von

fp(§)- dg(&) =F(®) - d&»

In der Thal spielt dieser Satz in der Integralrechnung die gleiche
Rolle wie der obige Satz II im Iieratlionscalciil.

Die Spezialisierung (A) fiihrt uns nun zu einem neuen wichtigen
Begriff.

Ist ndmlich ein n-System gegeben (¢, ---¢ ) (& - &), sobilden
wir die folgenden n?® Funktionen.

{1 -+ 5”1 %"‘il}-—f” 391{591’1+sz n}zf](,z)s
'91{51’ 902’..‘1+;;11}: iﬂ'

90_2{ l"ll‘;;!, (‘:2 .y ;n}zi-él)’ 902{;1’ 1“'_9;2’ o ;n}sz)r

90215;1’ EQ’ 1+ ¢ }:ff)“' (21)
n{q -{‘QI’ ;0 ¢ }_H (o ¢ {(P BERE .;n}:ff)
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Alsdann liefert die Iteration der Systeme (11" .. 1), (7. . . 1

n .

die n* neuen Funktionen
Pe { x+};1, $2’ o -;})-n}’ (pk{gl‘)f x+;;2’ o q;n}’
(k=1-.--n), (22)

> .cpk-{ Py Py x—f—cpn
von denen je n mit dem Index k Spezialwerle der einen Funktion

von n Variablen
(fk (xli sz vy Xn) sind. (23)

Die Gleichungen (21) lehren also eine Operation, durch welche
man von den gegebenen (¢,...¢,) (X,...X,) zu neuen Funktionen f
gelangt, durch deren Iteration Spezialwerte der ¢ wieder erzeugt
werden.

Im Fall einer einzigen Funktion ¢(x) giebt es nur eine solche
Funktion

[(S)==qQ+¢3), (24)
deren Iterale offenbar q(x-{—rf{,‘f‘), also wieder ¢ (x) selbst isL.

Diese Operation ist also der Iteralion gerade enlgegengeselzt
und verhdlt sich za ihr, wie das Differenzenbilden zum Summieren.
[ch nenne sie daher Heversion und das Resultat der Reversionen nach
den verschiedenen Variablen, die Funklionen f, partielle Reverse.

Es ist von Yorleil, hier einige Bezeichnungen einzufiihren.

Ich nenne die Funktionen ¢, ¢,, ...«  eines n-Systems homo-
log, und dem entsprechend die partiellen Reverse nach derselben
Variablen, also z. B. ;

(1) P () __ PR
=00, ... I =@, (14q 0, ...)...

(1 : PP
fn :([“(1 +'fp CPQ-, oo )
homologe Reverse
und ihre [teralfunktionen

(x4, @,.00) 0l P (X, .)
homologe [teralfunktionen.
Dagegen sollen die Reverse ein und derselben Funktion nach
den verschiedenen Variablen, als z. B.

=049, ¢--0) =0 (¢ 19 ), -

(1) - -
I =‘r’"k(9‘91""1+§0n)
associerte Reverse heissen.
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2

Alle die n* Iteralfunktionen in (22) heissen iibrigens noch
partiell, da sie simtlich Spezialwerle der n Funktionen (¢,...¢)
(x;...x) in (23) sind. Diese letztern bilden das totale Iteralsystem

n

zu dem fotalen Reverssystem (21).

Ausser den in (21) definierlen Funktionen f werden wir aber
auch die folgenden Ausdriicke

o (1t¢, 1oy @)y o (1o, 149, 1405 .0 0, ele
als partielle Reverse bezeichneﬁ, dieselben aber von den bisher be-
sprochenen einfachen Reversen durch das Beiworl «gemischt» unter-
~ scheiden. Demgemiss werden auch die Funktionen

ﬁﬁk(x +901a X, +¥)v coo Sok(x +§017 2+9ﬁ2’ 2+§03a i ) elc.

gemischte Iteralfunktionen heissen.

Endlich werden wir gelegentlich auch Ausdriicke wie cp(g; -+-a)
gpk(?al+a, g;, b, ....), worin a, b Konstanten sind, als Reverse von
¢ in elwas allgemeinerem Sinn bezeichnen, da sie von den oben
definierten nicht wesentlich verschieden sind.

Nach diesen notwendigen Festsiellungen wollen wir nun die
Eigenschaften unseres neuen Begriffs niher untersuchen.

§ 3.
Substituieren wir von 2 associerlen Revers-Systemen

(- )= .0) @te, ¢peegs
(8 .- . 8)=A¢,.--¢) (g, b40,...0)

das erste in das zweile, oder das zweile 1n das erste, so ist das
Resultat beidemal dasselbe, nimlich

(@ -+ -9, (a 1‘9"17 b +902, ‘l’n
Zwei Funktionen oder Funktmnensysl_eme, die bei der Substitution

ineinander das commutative Gesetz befolgen, heisse ich commutativ.
Da nun also
fg,...g) =g/ .. .10) (K==1,,..0) (25)
so haben wir den ‘
Satz I1l.  Associerte partielle Revers-Systeme sind commutativ.
Dieser Salz entspricht dualistisch der bekannten Relation
‘4& zlﬂ F(§ )= Andé_ F(S, 7).

.
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Es gill nun aber auch der umgekehrle Salz, nimlich

Satz V.  Sind zwet n-Systeme (I...0), (g ...8 ) kommu-~
tativ, so sind sie associerte, partielle Reverse eines

7] i .
und desselben Funktionensystems (¢, . .q )(X,..X ).

Beweis. Sind die beiden Systeme commulativ, so gilt
... r)@g...g)=(@g...g)({...1)
Substituieren wir beide Seilen in (f,...f) und bezeichnen all-
gemein ein n-fach iteriertes System mit (f,...f)", so folgt suc-
cessive
d...12 @ . 8)=(...T)(@& ...8)(...0)=(g,..g)(..[)

(f...T)% .. . 8)= (g,--g) ..
Allgemein haben wir fiir zwei ganze Zahlen x,, X,
(M 1) (g8 =(g ---8) (f...0)" (26)

S it
"D1(x1’ a5 §1' e ‘Sn)’ (D._,(xl, Xo :1 i En)’ iR (Dn(xl‘ 51 :: 5 bn)'
so gelten offenbar die beiden Gleichungen
((D], tt (Dn) (Xl_l_l: xe_l; :.":1 . ;:n) :(f[° : fn) ((D[' * (Dn)(xp x-_); ':flt‘sn)
(D @) (Kip X 13 B o =18 10 1 B (v D By Rl & oeeE e
Setzen wir nun fir & ... & willkirliche Funktionen von n—2
neuen Grissen X, X,...X,, so gehen die Funklionen @ iber in
Funktionen (y,...¢ ) der n Grissen X, \,...x und die beiden
obigen Gleichungen werden zu den folgenden:
(g eeagy) K41, Xy oo X)) = (T . ) (g0 o) (%0 .. X))
(o) (Sp X1, 00 x) = (8. .- &) (- -q,) (X...X).
Bei der Wahl der genannlen willkiirlichen Funktionen hat man
nur darauf zu achlen, dass die ¢, ...q ~von einander unabhiingig
werden, d. h., dass ihre Funktionaldeterminante nicht verschwindet.
Dann kann man ndmlich das System (¢,...¢ ) (x;...X ) umkehren
und selzen:
X1=f]‘1(§1. t gn)’ th: 2 (-El‘ tT En)’ rww s Ny = {[‘n(;:l' v '::-n)’
wodurch wir die Funktionen f und g in der Thal als partielle Reverse
der ¢ dargestellt erhalten. Zugleich sieht man, dass infolge der Will-

kiirlichkeit der in (27) eingefiihrten Funktionen von x,...x unend-
lich viele solcher Funklionen ¢ existieren, sobald n > 2.

Bezeichnen wir diese n Funklionen von x, x, und den &

(27)
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Satz V. Sind w n-Systeme (7., 17), (.02, @™ ()
gegeben, von denen je zwei zueinander Lo:)nfmtati-v
sind, so hilden die n® Funktionen f ein totales Revers-
System, d. h. es lisst sich dann ein bis auf n willkiir-
liche Kons.trmten villig hestimmtes System (¢, . .. @n)
(X,...X ) finden, fiir welches die Gleichungen (21)

gelten.
Beweis. Wir bestimmen zunichst die n partiellen Ileralsysteme
WXL {2 (@)X - p(n) n)y Xn
(PRSP ) RN ¢ e N 1) RS v

Bilden wir von diesen n Syslemen das Substitutionsprodukt, so
ist dieses nach der Annahme wenigslens fiir ganzzahlige x,...x_ von
der Reihenfolge der FFakloren unabhingig und stellt also ein ganz be
stimmles System von n Funktionen der n Variablen x ...x vor, das
wir schreiben

(@) ee @) (oo x )= (o V(7 B Y2 (™ (™ (28)

n

Diese Funklionen enthalten noch die Substituenten &, . . & , welche
als willkiirliche Konstanlen betrachtet werden konnen. Da allgemein

0 _— .-- . - . = 3
(€....0)°=(&....&) isl, so sieht man sofort, dass

(@ er. @) (0,0, 0000 =(&...§) wird, d. h.
S=e¢0...0), H=0,(0,...0),... 3 =¢(0,...0). (29)
Es bleiben also die Anfangswerle der Funklionen ¢ beliebig.

Aus der Formel (28) zieht man noch die beiden folgenden
(0,0 ) (x, 0. 0)=(' ... ),
A9y - eﬂn) (0.cox) =" )™ (30)
(@« v 9) (5, . X))
== (¢ ) (o 0) | (yy - ) (0% 0) | (gy . )(0..%). (B1)
Es isl also das totale Iteralsystem das Subsutunonspmdukl der
n associerlen partiellen Iteralsysieme.

Satz VI. Zu jedem n-System (f ...f) kinnen (falls 'n> 1)
unendlich —viele Systeme (¢, ... ¢ ) so bestimmi
werden, dass f,f, ...{ homologe partielle Reverse
eines jeden sind.

Bern. Mitteil. 1901. No. 1515.
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Bewels. Bezeichnen wir fiir den Augenblick das Ileralsystem

der (f,...0) mit (@ ...D)(x;5 & ...5), so gil

(ml' tt (Dn) (xlﬂl—l; -El e gn) :(rl : 'rn) ((Dl st u)n) (xl; ‘;'cl T ':i'-:n)'

Setzen wir hierin fiir &....§ beliebige Funktlionen der neuen
Variablen x,,. . . . X ein und bezeichnen die so transformierten (@, ...d )

mit (- - @) (Xe.. X)),
so geht das obige Gleichungssystem iiber in

(- 0) (L X o X)) = (.. D) (@ ... 0) (X ... X)),
womit der Satz bewiesen isl. — Der Nulzen dieses Salzes ergiebt sich

aus folgender Bemerkung. Bilden wir ndmlich von den so gefundenen
Funktionen ¢ die Reverse nach den Yariablen x,,...x , so erhallen
wir nach Satz IIl lauter zu (f ...f) kommulalive Sysleme. Das
giebt das
Corollar:  Zw jedem gegebenen n-System (f ...f) kann, falls
n>> 1 ist. eine unendliche Anzahl kommutativer
Systeme (g,...8,) gefunden werden.

Wir wollen nach dieser Methode ein Beispiel rechnen, indem

wir die Awufgabe 16sen, zu den beiden linearen Funktionen
fi==a&-}by f,=c&4-dy (32)
die allyemeine Form der zw ihnen kommutativen Funktionen g, g, zu
hestimmen.

Wir suchen Grossen 4, u, w der Arl, dass die Gleichung besteht
AfAufy=w@§-|un)
und zwar findet man leicht
A=¢, u—=w—a; *—@-|d)ow+t@d—he)=0.
Nehmen wir die beiden Werte w©,, w, von w fiir verschieden

an, bezeichnen wir ferner die parliellen Iteralfunktionen von f, f,
mit @(x), ¥P(x), so hat man die Beziehungen

cO(x)|-(w,—a) PX) = 0] (¢iH (0,—a)y)
cD(X) + (v, —a) Fx) = o, (c §+(w, —a) 7).

Wir setzen nun fir &, # willkirliche Funktionen einer neuen -
Yariablen y ein, setzen also eiwa

(33)
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¢S+ (w,—a)y="P), ¢S4 (w,—a)n == Q(y)
und schreiben fir @, ¥ jelzt ¢(x,y) und i (x,y), so gilt:
cy (X, Y)Hw,—a) P (x,y) = wf . P(y)

e (x,9) (@, — a)  (%,¥) ==} Q(¥). (34)
Wir berechnen nun die Ausdriicke
g = qly 14y g,= (g, 14y, (35)

welches die gesuchlen Funktionen sind. Zunichst hemerken wir durch

Elimination von x aus (33), dass der Ausdruck
1

(e (%, 1)+ (0, —a) v (x,)] “’gl'”l
[eq(x, y)+((0 —a) P (X.1)] Top log w,
bloss Funktion von y ist, so dass wir umgekehrt y gleich einer will-

kiirtichen Funktion £(C(y, w)) selzen kionnen. Aus (34) ziehen
wir dann

ey (X, ¥+ 1)4-(w, —a)w(x,y--1)

Py P(y-[— U {cr/:(\,y)—l—(w —a) (X, y)} P(yp—i(—l)

Selzen wir in dlesel und der analogen Gleichung fiir «,Fy,

G(y) an Stelle von Pg(yi;ﬂ wQ%(—;l)

X :}; (‘.Ss 7})1 ¥ == .QC(;:, 7{) = ;,!F}-(E;('f)
und bedenken die Gleichungen (35), so erhalten wir
cg, + (o, a)g,—-lcc{—(w ———a)n}[*(lp)
Cg1+( 2 a)gg_‘{ :+((dz_—a)n}G(U’)'

Berechnen wir hieraus g,, g, und schreiben fiir

G £2(t)
¢ (w,—w,)
g1(§, ) =(‘“2_3){C§+(w1-—3) rq}FC(gﬁ)
_ __(wl—a){cg—[—(w?—a)f,‘ FGC(ER
g5 ) = — ¢ { eé- (@, —a)y J FC(E )
+c { C§+(§02-—a)n } GC (&,

Cly, ) =

» machen wir ferner

F )
¢ {w,—w 1)’

wieder F(t), G t). so erhallen wir endlich:

(36)

" log [
. . [¢ &4 (0, —a) 5] !
worin Gy = bedeutet.

6 & (0;— )1 Ty




— 124 —

F, G sind villig willkirliche Funktionen. Die Formeln (36) ent-
halten die vollstindige Losung unserer Aufgabe fiir den Fall un-
gleicher Wurzeln w.

Die Funktionen [, f, g,g, bilden zusammen ein (olales Revers-
system, das die totalen Ileralen ¢ (xy), v (xy) hat.

Setzt man fir F, G beliebige Konstanlten A, B, so erhilt man
eine partikulare Losung des Problems, aus der man also die allge-
meine findet, indem man die Konstanten durch willkiirliche Funktionen
des Ausdrucks C (&, v,) erselzt. Diese Funklion C(£+) hat die Eigen-
schaft, sich nicht zu &ndern, wenn man an Stelle von &, 5 resp. f, (£7),
f, (§7) selzt. Da sie demnach fiir alle Iterierten von (f,f,) sich gleich
bleibt, nenne ich sie eine Coiferante von (I, f,).

Solche Coileranten gibt es zu jedem System (f,---f ). Man kann
sie in der angegebenen Weise erhallen, indem man aus je zwei
Iteralfunktionen die Ilerationsvariable eliminiert. Sie spielen in dem
Problem, die kommultativen Funktionen zu finden, eine Hauptrolle, in-
dem sie dazu dienen, aus partikularen Losungen mit willkiirlichen
"Konslanten allgemeinere Losungen herzustellen.

Zum Schluss dieses Paragraphen folge noch eine Bemerkung
zuv Theorie der Reverse. Es gelte nimlich zwischen den Funklionen
(f;-+-f) eines n-Systems und den n Funktionen ¢, -..¢ der r Vari-

ablen x, --.x_ein Gleichungssystem der Form

(@, ) 1 X x)=(...0) (@, ...¢) (x,...x) (387)
Ist nun r=n, so sind, wie wir gesehen haben, [ ... durch
diese Gleichungen als parlielle Reverse der ¢ ..-¢ -eindeulig
bestimmt und konnen durch Einfihrung der Inversen der ¢ aus diesen
leicht dargestelll werden. )
Ist aber r<{nm, so sind die ¢, .- ¢, nicht von einander unab-
hingig, es existieren vielmehr n—r Relationen zwischen ihnen, die
wir etwa schreiben Konnen

Py == _G1 @yt =Gl e ) =G (- - @)
Fiihren wir diese Ausdricke fir ¢, -..¢__ in die rechle Seite
von (37) ein, so nimmt dieselbe die Gestalt an ‘
@ )y o) (3. %)
Die Gleichung (37) bleibt also bestehen, wenn wir die ' durch
die f erselzen, d. h. es gilt der Satz :
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Satz VII. Besteht cin Gleichungssystem der Form (36), worin
die o gegebene Funktionen von weniger Variablen,
als ihre Anzahl betrigt, sind, so giebt es im All-
gemeinen noch wunendlich viele Funktionen [ <[,

die fiir f .--f eingesetzt. das Gleichungssystem

hefriedigen.
§ 4.
Mit den Reversen sind gewisse andere Funklionen von 2n

Variablen & ..-& #, ...y nahe verwandi, die wir durch folgende
ileichungen definieren

¢ (¢ (5) -+ ) =4 (&) (38)
991;{% (§1 tre “"n)l”% ("h tr nn); e 99n(§1 oo § )+ 90;1(771 ™ }
=lk{§1’ 25} k=1...n)  (39)

N Maoe e Yy

Es folgen hieraus sofort die andern

¢ (x+y) = A(p (), ¢(¥)). (40)

ﬂk{xj +y1’ X;,“I"yq, e Xn+ yn}
[901(‘(...Xn),...gon(xl...xn)} K — 1 i1
klgpl(yl Y)a-”’:”n(yl---yn) \ i oM. (41)

Den Inhalt solcher Gleichungen nennt man bhekanntlich ein -
Additionstheorem. Die Funktionen 4, 4, welche n Paare von Funk-
tionen gewissermassen zu n Funklionen derselben Arl (mil neuen
Argumenlen) zusammenbinden, heisse ich Liganten.

Die Liganten, nur als Funktlionen der & betrachtel, sind partielle
Reverse in weiterem Sinne, und als solche fiir jedes n-System villig
bestimmt. Wir haben so den Satz:

Satz VIII. Zu jedem n-System gehirt ein bestimmies Liganten-
system. Die ligierten Funktionen ¢ ... sind die
lteralfunktionen threr Liganten.

Trotz der Analogie mit den Reversen spielen doch die Liganten
eine besondere Rolle. Ein Revers kann z. B. algebraisch sein, wéhrend
es die zugehirige Ligante nicht ist. So ist der Revers von b*™ gleich
§ hingegen die Ligante e'°85:108%  [g kann daher eine Funktion
Iterale einer algebraischen Funktlion sein und doch kein algebraisches
Additionstheorem besilzen.
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Die Liganten zeichnen sich durch gewisse Eigenschaften aus, auf

denen ihre Wichtigkeit beruht.

I. Selzen wir in (41) y, ==y, =--.y = o.
(0, L 0)=0_

7,0,...0)=0w, ...
i R L E e E

PN X)) =& ..

so erhalten wir _
o g e k=1
L — —
kT M| w00 ( L),
n
& unabhingige Konstanten, o, ..o

d. h. es giebl immer n von den

welche, in lk{ i
?71. -y
Aus dem Anblick von (38), (39) ergiebt sich soforl

¢ n . . . ' b I "
, fiir #,...n, eingeselzl, £, = g machen.

lfris

-

1L
(o &
bl =
Il Substituieren wir das System (4,...2) (;i ;:) in das
] &, s0 resultiert

':‘n’

andere (,...A) (:‘1' ' 'f“) an Stelle der & ...
- 721' * rln/
(901 v '9011) [El(gl . ;‘n) 4‘&1(721' . '7fn)+(‘f71 (y1 % yn); * 5= '-J:
d. h, ein in den 3 Werlsystemen (&,.. &), (.. 7,), (y,..y,) sym-

metrisches Funktionsystem.
Infolge der obigen drei Eigenschaften ist es moglich, fir die

Liganten die folgende, handlichere Schreibweise einzufiihren.

-
=1

setze namlich
K==l;:sq

L‘
s . ‘-
(G s) ey

:1~]
A fql...ﬁqn[':

und fasse diese n Gleichungen in die eine symbolische zusammen:
‘ . [gl et ;-nl
Ao oA )
(] " l"h""’?n‘
Wenn also das Ligantenzeichen — keinen Index hal, bedeutel
Die Relationen I, II, [II lassen sich dann so

(& E) = Gy )

es das ganze System.
darstellen.

Ich
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LG )~ (o ho) =G ... 5)
I & 8~y =0 o) (&)
) 42)

gn) - (yl .t yn)i - (’ql )
Y 2 Gy

5,) (yl x 1%

L (.. .

— ()~

E) (0w s

— (;.1 ey

Man siehl, dass man mit dem Zeichen — gerade so operiert,

wie mit dem Zeichen -} der Addition, die ja auch eine Ligante isl.

Die genannten drei Eigenschaften sind nun aber fiir die Liganlen

definitorisch und darin liegt auch ihre Wichtigkeit. Es gilt nidmlich
der folgende Salz:

Alle Funktionen oder Funktionensysteme von 2 n

Satz IX.
Variablen, denen die Eigenschaften I, II, III zu-
kommen, sind Liganten ecines. Systems von n Funk-

tionen mit n Variablen.
Beweis:  Geniigt das System (&...&)~ (y,...7,) den
Gleichungen I, II, III, so findet man zunichsl mit

Hilfe von II, III
En) a 1 (111 trE T‘In) - (1}1 ' 'fqn)}

(&)~ ay) = (&
P& 8~ (- omy)
fy) ™ Qg e ™ Oy ey |

———(_'El...;n)"\{('ql...

‘Bezeichnen wir allgemein den Ausdruck

co > (Mpeaemy), worin (g, ...7) km

al

(e o) — (goeomp) ~ -
)y , S0 findet man fiir das Ileralsystem von

vorkommt, mit (y,...7,)

&)~ (g, ..:n,) den Ausdruck
TR (43)

&...
Jx(‘-:-“:l' : Sn) — (nl" * nn):(é‘:l" 'gn)ﬁ(’ql‘ * ﬁn)

Fir x =0 ergiebt sich daraus mit Hilfe von I die Bedeutung

— . -
des Symbols (v,...,) °, nimlich
o
(o eemy) = (0...0). (44)
Setzen wir nun in (43) § =w, §,=w,,...§ =0, so dass
wird,

P=(0,...0) P= (.. )

also
selzen dann fir (3, ...1,) der Reihe nach die Wertsysteme
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) @ (m) (n),
(PP 0 T Fa /) MY €/ Mg /A
ein und fir x entsprechend x;, x,,....x , verbinden endlich die so
erhaltenen n [leralsysteme durch das Zeichen —~, so isl das Resultal
offenbar das n-System
(- v ) (X000 x)
— . x (2) (2) yx2 () () x
=g~y Ve~ gy ey, (45)
Selzl man hierin x, 4y, an Stelle von X, und ordnel die
Glieder rechts passend um, was wegen II, III moglich ist, so erhill
man sofort die Formel

(gpl' . 9711) (X1+y1’ cre xnb+yn)
== (@0 @) Ko X))~ (g ) (oY) (46)

welche von (41) nur durch die Schreibweise verschieden ist. Damil
- ist der Satz bewiesen.

Eine genauere Betrachtung zeigt iibrigens, dass die Relationen
I, 1I, schon in der dritten enthallen sind, so dass also die Eigenschafl
IIT allein zur Definition der Liganten ausreicht.

Fir n =1 hat Abel zuerst den obigen Satz (aus der Annahme I
aufl anderm Wege hergeleitet.

Bedenkt man, dass aus (45) folgt
(s eop) (X, 0-+-0) = (n’l...n'n)xl elc.,
so sieht man, dass sich (45) auch in der Form schreiben lasst:
(g e gn) (X X))
= (¢, q,) (8 0) A (g ogr,) (0Xge v 0)mvee (e evg ) (0000X,), (47)
d. h. in Worten: a
Satz X. Alle Funktionen eines n-Systems lassen sich mit Hilfe

der Liganten durch die n® Funktionen (¢,---¢,)
(x,0+-:0) etc. von je nur einer Variablen awsdriicken-

Sind die Liganten algebraisch, so ist also auch diese Zuriick-
fihrung algebraisch ausfiihrbar. Den Salz X hal zuerst Jacohi am
Beispiel der Abelschen Funklionen nachgewiesen.

Wir sind zu dem Begrifl einer Ligante gelangl durch die Aufgabe,
die Funktion einer Summe durch die Funktionen der einzelnen Sum-



— 129 —

manden auszudriicken. Diesem Problem steht offenbar dudl das andere
gegeniiber, eine Summe von Funktionswerten durch einen einzigen
Funktionswerl darzustellen. Es ist bekannt, dass auch dieses Problem
durch dieselben Liganten gelost wird, und in diesem Umstand (ritl
der in der Einleitung erwihnte Dualismus besonders slark ams Licht.

Nimmt man nimlich auf beiden Seiten der Gleichungen (45) die
Inversen (g, +¢,) und setzl X, = ¢, (§-+-£), y, = ¢, (g ++7,), S0 er-

hiilt man die gesuchle Darslellung

;ik ('gl' "t gn) +;}:'k(nl. vt 7111) = (—f}cu‘l’ vt .}"n) (k = fove- n)7
worin der Kiirze halber (A+--4 ) = (§++-& )~ (5, +-n,) geselzl ist.

Die Wichtigkeit der Liganten beruht nun zum grossen Teil
darin, dass sie sich leichter ilerieren lassen als andere, oft scheinbar
einfachere Funklionen; wenigstens gilt dies von den bisher allein in
Betracht gezogenen algebraischen Liganten. Da man durch ihre Ite-
ration direkt die ligierten Funktionen erhilt, wie dies bereils Abel
bei den elliptischen Funktionen ausgefiihrt hat, so erklirt sich, wes-
halb die Funktionen, welche algebraische Addilionstheoreme besilzen,
verhillnismissig leicht zugénglich sind.

§ A,

Nachdem im Vorhergehenden die Grundoperalionen der Iterations-
rechnung. die Transformation (Satz II), die Reversion und die Liganten-
bildung, in formaler Weise besprochen worden sind, ohne Riicksicht
auf die spezielle Natur der Funktionen, werfen wir nun zum Schluss
einen kurzen Blick auf das Verhalten der einzelnen Funktlionen
gegeniiber der Iteration.

Indem man sich an das in der Einleilung auseinandergesetzle
Schema von 4 Stufen erinnert, leuchlet ein, dass wir uns aof die
Untersuchung der (algebraischen) Deuterofunktionen beschrinken
miissen, indem ja erst aus diesen die Trilofunktionen erschlossen
werden sollen, was bisher nur unvollstindig gelungen ist. Dabei zeigl
sich gleich, dass die algebraischen Funkiionen sich in gewisse Klassen
sondern lassen, die bei der Ileralion ein wesenllich verschiedenes
Verhallten aufweisen. Darauf soll im Folgenden elwas eingegangen

werden.
Bern. Mitteil. 1901. No. 1516.
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Die einfachsten Deuterofunktionen sind offenbar die [linearen,
da sie am nichsten der Protofunktion verwandt sind. Jedes Gleichungs-
system von der Form:

f — A(k) __I_ A(k) ;..l + A(k) E + AS() é:'n (k=1-.--n)

fihrt bekanntlich im allgemeinen aul LExponentialfunklionen, in
speziellen Fallen auf ganze rationale Funktlionen. Selzl man Af)k) == ()
und fiihrt ein

-
fk . *k
8k e = e
‘n ‘:Il

so liefert die lleration des Systems gebrochener Funktlionen mit
gleichen Nennern:

A(k) 'T|'1+ A(k) 172"" v A(k) L/

(lﬂ),q1+ A(n)rq + A()
Quotienten solcher pronenhalfunktmnen resp. gebrochene rationale
Funktionen. Die Formeln fiir die Iteralfunktionen sind leicht herzu-
leiten, ich begniige mich mit dem einfachslen, oft gebrauchten Fall
einer einzigen Variablen. Es ist:

e (AHB)_ QO +A—D)Px)] §+2P(
CEFD 2P(x)-C-& F[Q(x) —(A— D)P(]

worin P(x)z(u-}—w —(U_W), Q(x) = (utw)* ‘l‘(“““)

(k=1,:+-n) (49)

(50)

2w
A--D 1 —
Il == gt WEE“\/;/ -—-—-——\/(A D):4-4BC.
Spezielle Fille, die hiufig vorkommen, sind:
o (AEFB) Q(0-E4-2P(0)-B
=== |} —_—— ) = : . . B
= (CchA) 2P (3) -5+ 00 ’

()
1—a$
(1-iay' (1—ia)* ., (1-}ia)" —(1—ia)

2 s 2
(14-ia)* (1 —ia)" (1—ia)*— (1 —ia)"

I - 2i
. JX<A§—[—B)_ (DA —(x—1)D]E-2xB
V=2 D)= 2xCE - [x F1)D—(x—1)A]

"=

(rational).
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~ Fir die Funktionen P(x), Q(x) und ihr Verhiltnis T(x) gelten
die Formeln _
P(x-}y)=P(x}-Q(y)-+P(y)0Qx T(x-|-y) = T(x)-+T()
Q(x}-y) = 0(x)-Q(y) 4.7 P(x)-Py 1+ 2. TOTH)

Je nach den verschiedenen Werlen von J° = & modifizieren sich
die Formeln. Fiir die Liganlen der Iteralfunktion (50) finden wir,
falls J° = oo genommen wird

. x(AE4+BY  Cyi4B
e (GEkD) = o o

Wenn der Grad der rationalen Funktionen den ersten ibertrifft,
so slosst die allgemeine Iteration auf grosse Schwierigkeilen. Nur
in speziellen Fillen lisst sich die Iteration ausfiihren und liefert dann

die Exponentialfunktionen a* oder a”".  Dazu gehort vor allen die
bemerkenswerte Klasse der isobaren Funktionen. Ist nimlich f, =¢, (1)
eine isobare Funklion der Variablen & ---&., wobeir & das Gewicht k
besitzl, so ist das System

([1(1)2 A"Sl

Py (1) = B'E‘i‘{"Bl‘Se_)

‘13(1) = G 'ﬁ -+ C1 §1'§2+Cz (52)
4pk(1)_- ME M ET h,—|-M, G754 My

leicht zu iterieren. Ein bOlChBS isobares System hal die Eigenschaft,
dass das inverse System wiederum isobar isl, ebenso alle Iierierien,
wie man leicht einsieht. Man Kkann fir die [teralfunktionen ¢ (x)
daher anselzen:

(0 =A%) §,
¢, () =B(x)-& + B,(x)
() =C(x)- 546 ()& &4 C,(x) et

Durch Rekursionsformeln erhilt man so

x Bl_ ux
A(X)s A 5 B(X):B'fBI_F, Bl(}\)-—_—B]
- _CC,-ABC,—B,C) € —A“‘ ABC, (AB)Y—A’~
X

C,—A-B, h— A C,—AB,  AB— A
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C; — (A Bl)‘ .
G, (x) = C, z C,(x)==C, elc.
C,—AB, -
Man iiberzeugl sich leichl, dass allgemein ¢, (x) aus Exponential-
funktionen, eventuell auch aus rationalen Funktionen zusammengeselzl ist.

Wenden wir uns zu den algebraischen Funktionen iiberhaupt,
so Ist klar, dass hier die Schwierigkeil der Iteration noch groisser
ist, als bei den rationalen Funktionen. Indessen giebt es doch viele
und allgemeine Fille, in denen diese Schwierigkeilen zum Teil ge-
hoben sind, so dass man zu Resullaten gelangen kann.

So giebl es z. B. unzihlige Funktionen, die nach Art des Salzes 1l
durch algebraische Transformation aus linearen oder isobaren Funktionen
entstanden sind und natiirlich durch Iteration auf Exponentialfunktionen
fihren. Dahin gehoren ferner alle algebraischen Funktionen, die elwa
einer linearen Iteralgleichung

=a (Y pa, (D poa  00(E) Fa 1) fa - &
([{k)z J(k)f)
genugen, so z. B. die Funktionen f in dem Beispiel pag. 116, die
rationalen Wer ten der Konslanien C entsprechen.

Zwei Klassen algebraischer Funktionen sind dadurch inleressant,
dass sich bei ihnen die Iteration durch rationale Rechnung bhe-
wiltigen lésst.

Es seien f,..-f n unabhingige algebraische Funktionen der
Variablen & ---& und es sei £ der Korper aller rationalen Funk-
tionen der & Der durch Adjunktion von f,.-- [ entstandene Korper
Q(f, -+ -f) heisse dann Kurz «der Kérper von (f;---f)».

Iterieren wir f---f,  so werden die Ausdricke f (f;---f ),
f(f--- 1) im allgemeinen nicht mehr dem Kérper Q(f .--f ) an-
gehoren. Es giebl indes eine grosse Zahl von Funktlonen fiir welche
dieser Fall eintritt, fiir welche also
e f), o f(f-:-f)= rationalen Funktionen von (f--f,§-5)
sind. [Ebenso sind dann auch die Ilerierten hoherer Ordnung Funk-
tionen in (f--f ). Sclche Funklionen f .- f die in ihrem eigenen
Korper ilerierbar sind, heisse ich «kirpertrew,.
Man kann die Aufgabe zu gegebenen Irrationalititen o (& --& ).
0.+ ++ o, alle korpertreuen Funklionen zu finden, leicht auf eine Auf-
gabe der Gleichungslehre zurickfiihren. Bezeichnen R, ... R ralio-
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nale Funktionen der Variablen x ...x mil vorliufig willkiirlichen
koeffizienten und bilden wir von dem Ausdruck '

Qk(xl"..xn) _— Rk(x]’...x') (k:].n)

n

das Produkt tber alle Konjugierlen von ¢, so erhallen wir das

folgende Syslem ralionaler Gleichungen

k*

Go= Mo (x, X )— R ---x)=0 k=1,.-n), (53
wodurch x,--x als Funklionen der Koelfizienten der R bhestimmt
sind. Unsere Aufgabe liufl nun daraufl hinaus, diese Koeffizienten der
sonst willkiirlichen rationalen Funktionen R als Grossen aus £(g,--9,)
s0 zu bestimmen, dass das Gleichungssystem (53) ein System rationaler
Losungen erhiilt:

xl = fl - Rl(gl .Qn’ Sl o 'f‘:n)’ e xn = f:(1 = Bn(gl "0 gl' ) b“:n)' (54)

Dabei hal man noch zu achlen, dass die f auch primitive Grissen des
Korpers (o, -+ 0,) sind, d. h., dass sich auch die o --o umgekehrt
durch die f - f ausdriicken lassen.

In jeder der Gleichungen (53) muss ferner ein Faklor ver-
schwinden, also fiir jedes k gelten: '

Q’k(rl' f) =R (f,-- 1) (k=1--n) (55)

wo o', irgend eine der Konjugierlen von g_ oder g_ selbhst vorstellen
soll. Sind nun noch £2(g,). £ (0,),- - £2(g,) lauler Galois’sche Korper,
die- mit ihren conjugierten Korpern zusammenfallen, so folgt aus (55),
dass auch o (f --f) und somit auch f_(f --.f) sich rational durch
o,---0, resp. f---f darstellen lassen, d. h. die Lisungen f,---f

N

sind kirpertreue Funktionen.
Statt der n Funklionen ¢ ---¢ kann man auch eine einzige

primilive Grisse o des Korpers £2(g, -H:‘gn) einfiihren.

Hat man so ein korperlreues Funktionensysiem gefunden, so
kann man sich die Iterierten verschiedener Ordnung durch bloss
rationale Rechnung successive darsiellen. Damit bleibt allerdings die
Schwierigkeit, die allgemeine Iteralfunktion zu finden, noch dieselbe,
wie fiir die rationalen Funktionen. Indes ist die Ldsung des obigen
Problems auch so schon wichtig, zumal sie einer interessanlen An-
wendung auf die Zahlentheorie fihig ist.

Ist ndmlich F(x,x;,...x,) eine rationale Form der Variabeln

X,+++X_ mit ganzzahligen Koeffizienten, so stelll die Zahlentheorie

X,l
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die Aufgabe, solche rationale Werle der X, X »-+X\  zu beslimmen,
welche der Gleichung
F=0

Geniige Lhun.

Angenommen nun, wir kennlen ein Losungssyslem x = a,
X, =a,-+-+x =2, so liefert das folgende Verfahren ein Millel, um
elwaige weitere Losungen zu finden.

Losen wir die Gleichung F — 0 nach einer der Variablen, z. B.
nach x auf, so erhalten wir

= :9(3‘1: Xgy o 0o X“),

wo o algebraisch isl. Nun suchen wir, wenn dies tiberhaupt mdglich
ist, ein korpertreues System f ...f zn £2(g). Setzen wir alsdann

x =0 =R -5, o0& --5)
: . (56)
xn:fn: Bn(;l“':s . Q(_].. .:Cn )'_

so gilt auch wegen der Korpertireue der fl. .. fn
= Q(fl t fn) == P‘(§1 . i:n& Q(‘.SL vt :t' ))

~ n
Fir § =a, §=a,...§ =a_ gehl dann g(&--- &) in eine
ralionale Zahl a tber, x, x,,---X werden daher ebenfalls rational
und stellen ein neues Lisungssysltem vor. [lerieren wir successive
das System (f;---f), so erhallen wir in den Iterierten beliebiger

Ordnung
x?,)“:'];’ (6 ), x g:) S A (a) (p)(f 0

verbunden mit x( ey (Ju Jr,, oo JL') neue ralionale Liésungssysteme,

sobald nach der lleration §=a, § —a,---&§ =a_ geselzl wird.

-n

Die so erhaltenen Losungen brauchen nicht alle von einander
verschieden zu sein. Sobald das System (f --- 1) fiir die speziellen
Werte § =a .- & =a_  cyclisch wird, wiederholen sich von einer
gewissen Ordnung an die Lisungen wieder.

Ist also ein einziges Lisungssystem bekannt, so liefert uns die
[teration gewisser kirpertreuer Funktionen eine endliche bis unendliche
Anzahl neuer.

Diese Methode ist die Verallgemeinerung des bei der Pell’schen
Gleichung lingst bekannten Verfahrens.

Beispiel einer korpertreuen Funktion ist
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(§'— 68| )41V 1—& |
VP o - 1 4 e
I+
Yon nicht geringerem Interesse als die kirpertrenen Funktionen
ist eine andere nah verwandte Klasse.

-
tre,

Die korpertreuen Funktionen sind dadurch charakterisiert, dass
ihre Iterierten simllich dem gleichen Korper Q(f, - .- f) = (o) an-
gehoren. Lassen wir diese Bedingung fallen, nehmen also an, dass
die Funktionen (f;,---f) und ihre Ilerierten J%, J3 elc. der Reihe
nach den verschiedenen Kirpern 2(g,), 2(0,), £2(p,).. . angehdren,
so kann der Fall eintreten, dass diese Korper wenigstens alle den
gleichen Grad » besilzen. Geniigl also etwa f,_(&, - - - & ) einer rationalen
Gleichung vom Grade »_

Yr T'k—l I'k-—'2
C AL AL F A, =,

worin A ...A, rationdle Funktionen der & vorstellen, so erfillt dann

"k
ihre erste Iterierte f (f,...f) eine analoge Gleichung vom selben

Grade mit Koeffizienlen, die ralional aus den Grossen A ...A, zu-

g™
sammengeselzt sind. Dasselbe gilt von den hoheren Iterierten. Das

Problem der Iteration von (f,...{) kann als gelost betrachtet werden,
wenn die Koeffizienten der (leichungen fiir J*(f, ... ) allgemein be-
stimmt sind, was auf die Iteration eines bloss rationalen n-Systems
herauslauft.

Solche Funktionen f ...f . deren Ilerierle simtlich Kérpern vom
gleichen Grad angehdéren, heisse ich «gradtrew».

Beispiel einer solchen gradireuen Funklion ist

f:\/§2+az—-—2a\/i—§2 , ffz\/§2—4az———4a\/1-—§2.

Die gradtreuen und korpertreuen Funktionen haben beide die
Eigenschaft, dass der Grad der in ihnen vorkommenden Irrationalitit
bei der Ileration erhalten bleibt, oder dass die rationalen, irreduciblen
Gleichungen, denen die verschiedenen Iterierten J{ (f,...f )= ¢, (x)
fir ganzzahlige x geniigen

Ry(5, ... gn)(X) o (1R (& .. :i'n)m@ﬁ_l(){) 4. R]‘J(é'1 e _En)(x)= 0
fir alle diese Werte von x denselben Grad besitzen in Bezug auf ¢ (x).




— 136 —

Indessen wird der Grad der ganzen rationalen Funktionen von & ... &

im allgemeinen mit wachsendem x rasch zunchmen, wodurch der
[teration praktisch bald eine Grenze gesleckl wird.

Nun enthalten aber beide Klassen noch eine unendliche Anzahl
algebraischer Funktionen, bei deren Iteration selbst die Funktionen
[{(51....§11)(x) in Bezug auf alle £ denselben Grad behallen. Diese
Funktionen f,...[ unlerscheiden sich daher von ihren Ilerierten nur
durch die wechselnden Werle der in ihnen vorkommenden Konstanten,
d. h. die Form der Funktionen hleibt bei der Iteration erhalten. '

Solche Funklionen nenne ich nun «formtrew» und zwar «eigent-
lich» oder «uneigentlich», je nachdem sie zugleich kirpertreu oder nur
gradtreu sind.

Beispiel einer eigentlich formireuen Funktion ist
ff=5546\1F28—8E (f=12540\1]25 8% —46031.¢&
9322 43681 428800 &*

wihrend die Funklion

f=\/a| &

uneigentlich formtreu ist.

Zu den formtreuen Kunktionen gehoren auch vor allem die
linearen und isobaren Funktionen, deren leichte Iterierbarkeil zumeist
auf ihrer Formtreue beruhl. Uberhaupt erscheinen die formireuen
Funktionen gewissermassen als «algebraisch lineare»> Funklionen und
sind daher in Bezug auf Iteration als die einfachsle Klasse der al-
gebraischen Funktionen zu betrachlen. Dies (rilt auch zu Tag in ihrer
nahen Beziehung zu den Funktionen von 2 n Variablen & ---& o«
die wir oben (§ 4) Liganten genannt haben.

Ist ndmlich (& ...&)~ (%, ...7,) ein Ligantensystem, so ist das
iterierte System gleich

{(;1 o E)o (o) } o (e o) =(§ . 8) A Oy )R

Man erhilt also die Ilerierten der Liganten, indem man an Stelle

VoI 4, Ny, -. .9, resp. die Ausdricke

n

e on ) o @ wws Ghroww e oo M) o, (Mpes < 7,)
setzt, d. h. die Liganten sind formtreue Funktionen von &, ... &

Wir kommen somit wieder zur Erkenninis, dass die niichsle
Aufgabe der endlichen Iterationsrechnung darin besteht, simtliche
algebraische Liganten etwa auf Grund der Definition in Salz IX mil
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rein algebraischen Mitteln herzustellen und sodann ihre Iteralfunktionen
zu untersuchen. In der That sind diese lelzleren Funktionen (und
die aus ihnen zusammengesetzlen) die einzigen Tritofunktionen, die
bisher erhalten worden sind, und es ist das grosse Abel’sche Theorem
in seiner urspriinglichen Form nichts anderes, als die dualistische Be-
handlung und teilweise Losung des soeben aufgestellten Problems.

Zum Schluss mag noch eine allgemeine Bemerkung folgen. Wir
verstanden in dieser Arbeit unter Iterieren durchweg, dass eine Funktion
oder ein Funktionensystem wunverdndert und fortgesetzt in sich selbst
substituiert wird. Wir konnen nun aber den Begriff des Iterierens
dadurch erweitern, dass wir die Funktionen bel jeder Subslitution
etwas abidndern. Ist z. B. f(§ «) eine Funklion von & mit einem
Parametler «, so bilden wir die Reihe

[ ) 1 ea), (Ea)..... f(& e) . ...

und substituieren das zweite Glied in das erste, das dritle in das
zweile u. s. f.  'Wir erhalten so einen Ausdruck, den ich eine Funk-
tionenkette heisse. Unterliegen die Grossen « einem bekannten Ge-
setz, bilden sie z, B. eine arithmelische Reihe, so kann man nach der
Funktion von n fragen, welche diese Kette allgemein als Funktion
ithrer Gliederzahl darstelll. Eine solche «Iteralfunktion» ist z. B. die
Fakultit (a, +1)" nach Crelles Bezeichnung.

Diese «erweilerte Iterationsrechnung» lisst sich formal zum Teil
ganz ihnlich behandeln wie die gewohnliche, spielt indes keine solche
Rolle. Ubrigens kann sie ganz auf die letztere zuriickgefiihrt werden,
so dass keine neuen Funktionen dadurch zuslande kommen. Sie ist
hier nur der Vollstindigkeit wegen erwdhnt worden, und weil es oft
niitzlich ist, gewisse Probleme unter diesem Gesichtspunkt zu betrachten,

— AN ————

Bern., Mitteil. 1901. No. 1517.
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