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0. Spiess.

Die Grundbegriffe
der

Etei*a.tionsi*ecliniiiig-.

Einleitung.
Die erste mathematische Operation, die der Mensch ausführte,

war die Addition.
Indem die Addition wiederholt aul dieselbe Grösse angewandt

wurde, entstand ein neuer Begriff, die Multiplikation.
Die Wiederholung oder «Iteration» der Multiplikation führte

weiter zur Exponentialfunktion, der einfachsten Transzendenten.
Von da an verliess man den Weg, durch Iteration einer bekannten

Funktion zu «höheren» Funktionen aufzusteigen, indem man in der
Summen- und Integralrechnung eine ergiebige Quelle zur Auffindung
neuer Funktionen entdeckte. In der That, die einfache Operation des

Inlegrierens auf einen algebraischen Ausdruck angewandt, hat die
Entstehung einer ganz neuen Funklion von merkwürdigen Eigenschaften

zur Folge. Indem man dieses Prinzip auf alle bekannten und die neu

gefundenen Funktionen anwandte, wurde die Analysis durch eine

ungeahnte Menge neuer Funktionen bevölkert.
Nun liegt aber der Gedanke nahe, auch den allen Weg von neuem

zu betreten, und zu versuchen, ob nicht die Iteration ganz allgemein
ein Mitlei zur Auffindung neuer Funktionen abgeben könne. Die

Untersuchung lehrt, dass diese Operation der Integration an Fruchtbarkeit

völlig ebenbürtig ist.

Wenden wir nämlich eine beliebige Funklion n-mal auf sich
selbst an, so stellt der erhaltene Ausdruck in seiner Abhängigkeit
von n eine neue Funktion dar, die ich die Iteraifunktion der

ursprünglichen Funklion heisse. Diese ist allerdings zunächst nur für
ganzzahlige Werte von n bestimmt. Um zu für alle Werte ihres
Arguments definierten Funktionen zu gelangen, bieten sich dann zwei

Wege dar.
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Der erste Weg isl der historische. Man geht von der nur für

ganzzahliges n abgeleiteten Formel aus und sucht an Hand einer geeigneten

Definition ihre Bedeutung für den Fall, dass n negativ oder

gebrochen wird. Auf diese Weise erhielt man z. B. aus der
ganzzahligen Potenz die Exponentialfunktion.

Die andere Methode zieht es vor, das Unendlichkleine gleich am

Anfang einzuführen. Ileriert man nämlich einen Ausdruck von der
Form £-{-(îf(£), worin d unendlich klein ist, n mal, und lässt dann

n so ins Unendliche wachsen, dass n • ô endlich bleibt, so konvergiert
der erhaltene Ausdruck im allgemeinen gegen eine Funktion von
n-d x, welche eben die Ileralfunktion ist. So führt z. B. die
Iteration von § -f- d • i" direkt auf

lim (l-f-f))n-i'=i--.ex.
X

Durch diese beiden Methoden zerfällt der Iterationscalcül in
zwei ziemlich selbständige Zweige. Der eine hat mehr algebraischen,
der andere mehr funklionen-theorelischen Charakter.

Es ist von Nutzen, die durch Iteration gefundenen Funktionen
nach ihrer Entstehung in Stufen verschiedener Ordnung einzuteilen.
Kennen wir bereits sämtliche Funktionen der n*011 Stufe, so wird der

Umfang der nächst höheren Slufe folgendermassen festgelegt. Zunächst

bestimmen wir zu allen Funktionen nter Stufe ihre Iteralfunktionen.
Wenden wir dann diese (und ihre Inversen) auf sich selbst und auf

sämtliche Funktionen der unteren Stufen in endlicher Anzahl und in

allen möglichen Kombinationen an, so erhallen wir eine Gesamtheit von
Funktionen, die wir in Erweiterung des bekannten, für die Algebra

aufgestellten Begriffs, füglich einen «Körper» heissen dürfen.
Dieser Körper heisst «zur (n-)-l)te11 Stufe gehörig» und enthält

offenbar sämtliche zu den unteren Stufen gehörigen Körper. Nehmen

wir diese letzleren alle weg, so bleiben die Funktionen der (n-f-l)teu
Stufe übrig.

Die bisher bekannten Funktionen gehören höchstens den 4 ersten
Stufen an.

Die erste Slufe enthält nur eine einzige Funktion von einer

Variablen, nämlich f(£) £-f-a, die Addition. Ich heisse sie hier
* Protofunktion».

Die zweite Stufe enthält zunächst die durch Anwendung von

Multiplikation und Division gebildeten rationalen Funktionen, sodann
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deren Inverse, die algebraischen Funktionen. Sie heissen hier
zusammen Beuterofunktionen.

Die drille Stufe der Tritofanktionen entspringt durch llerieren
der Deutero-Stufe. Dahin gehören vor allem die Abel'schen Funktionen.

Die nächst folgende Tetra-Stufe isl beinahe noch gar nichl untersucht.

Hieher sind wohl die aus Iteration von a» entspringende

'ie/.Ögv' /(Funktion, ferner Funktionen wie / -^—, / e
x dx elc. zu rechnen.

doch existiert wohl noch kein Beweis, dass sie nichl doch noch am

Ende dem Körper der Trilofunktionen angehören.

Es zeigt sich nämlich sofort eine Schwierigkeit. Gleichwie
nicht jedes Integral einer algebraischen Funktion notwendig
transzendent sein muss, sondern algebraisch bleiben kann, so führt auch

nichl die Iteration einer jeden Funktion immer zu einer höheren

Slufe. So z. B. liefert - -7 die Iteralfunktion ^-7—, die in Bezug

auf n wiederum linear ist.

Es ist daher bei jeder Iteration zu prüfen, ob die erhaltene neue
Funktion nicht elwa zur selben Slufe zurückführt. Daher ist auch

gar nichl vorauszusehen, ob Pen tafunktionell existieren oder nicht,
und wir stehen so vor der inleressanlen Möglichkeit, dass die
Mannigfaltigkeit analytischer Verhältnisse einer ähnlichen Beschränkung unterliegt,

wie sie bei räumlichen Beziehungen durch den Mangel einer
vierten Dimension eintritt.

Man sieht nun bald, dass die Funktionen, die wir durch Iteration
erhalten können, im wesentlichen zusammenfallen mit denen, die das

Integralprinzip liefert. Man findet weiter, dass der Grund dazu in einer
merkwürdigen Analogie liegt, die zwischen der Summen- und
Integralrechnung einerseits und dem Iteralionscalcül anderseits herrscht, eine

Analogie, die man füglich als Dualismus bezeichnen darf.

Schon äusserlich entspricht der Summenrechnung eine
endliche Iteralionsrechnung, dem Inlegralionscalcül eine infinitesimale

«Ileralrechnung». Wie das Integrieren durch das Differenzieren
aufgehoben wird, so steht dem llerieren eine inverse Operation gegenüber,

die ich Bevertieren heisse. Deutlicher wird der Dualismus im
Lauf dieser Arbeit hervortreten. Am klarsten tritt er bei der
infinitesimalen Iteration (die hier nicht mehr behandelt werden konnte) zu
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Tage. Dort lässt sich nämlich beweisen, dass die Funktion von
n-cV x, die man durch llerieren von

in der oben geschilderten Weise erhält, genau die Inverse isl, von
der Funklion, die durch Integrieren von

—-r- entsteht.
f00

So führt z. B. die Funktion f(i') \/l-S2 beim ersten
Verfahren auf den Sinus, beim zweiten auf den Arcussinus. Beide

Rechnungsarten unterstützen und ergänzen sich also.

Die Iteration behandelt also die Fragen der Summen- und

Integralrechnung von einer andern Seile. Indem die bekannten Probleme

vom Standpunkt der Iteration aus neu zu beleuchten sind, eröffnet sich

ein weites Arbeitsfeld. Es schien mir nun angemessen, vor der

Behandlung der höheren Teile der Theorie die einfachen Begriffe|und
formalen Operationen der gewöhnlichen Iterationsrechnung in elementarer

Weise darzulegen und an leichten Beispielen zu erläutern. Dies

isl in vorliegender Arbeil geschehen. Da es sich hier vorläufig nur
um die formalen Beziehungen handelt, so ist auf Schwierigkeiten, wie
sie bei der wirklichen Ausführung durch Mehrdeutigkeit, Unsletigkeit
etc. eintreten können, keine Rücksicht genommen. Dabei verbot der

notwendige Rahmen der Arbeil auf einzelne Probleme näher
einzugehen. Aus demselben Grunde musste auch die infinitesimale Iteration,
die einer sirengeren Behandlung bedarf, weggelassen werden.

Bevor ich beginne, will ich einige Bezeichnungen, die ich

beständig brauchen werde, schon hier auseinandersetzen.

Sind p(i'), f(£) Funktionen, so bezeichne ich ihre Inversen durch

einen über das Funktionszeichen gesetzten Strich, also mit <p(S), f (|).
Es ist also immer ff (|) =- ff (|) i*. Ebenso, wenn n simultane,

unabhängige Funktionen der n Variablen Sv $.» • • • i*n vorgelegt sind

yk fk("i- §•. •"$,) (k l,V-.n), (A)

so bezeichne ich die n Funktionen, die durch Auflösung dieses Systems

nach den $ entstehen, mit f., f.„ • • • fu, so dass also

f! Öi fri • • • yj. f2> • • • O y* • • • rk Cf» • • •X) h ist-

Ein solches System von n unabhängigen Funktionen von n

Variablen nenne ich kurz ein an-System», und verwende für dasselbe

statt der Schreibweise (A) oft auch die folgende:
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(y1,---y11) (f1-..fj(ivy1 (B)

wo der letzte eingeklammerte Ausdruck (i^ • • • £n) meist weggelassen

wird. Soll in dieses System ein zweites

Oi • • • ?J ("i • • • "„)

substituiert werden, so deute ich dies durch einen dazwischen gestellten
Strich | an, also in diesem Fall durch

(f, • • • Q & y | (Vl ¦ ¦ ¦ ?a) %¦¦• 'Q
oder kürzer (^ • ¦ ¦ fn) (tpl • ¦ • <pa).

Die Substitution ist so auszuführen, dass an Stelle von i"k im

ersten Syslein <pk(S,- • ¦ £n) gesetzt wird. Das Resultai der Substitution
wird geschrieben:

(V--U (<v-•?„)&• ••£„)¦
Diese Schreibweise ermöglicht, mehrfache Substitutionen von

Funktionensysteinen durch blosses Aneinanderreihen von Klammern
auszudrücken. Die Grössen, in welche substituiert wird, bezeichne ich

durchweg durch die Buchstaben i", ij, t, so dass, wenn die f noch

andere Variable enthaften, nie ein Zweifel über den Ort, wo substituiert
werden soll, eintritt.

§ 1.

Es sei f(|) eine Funktion von i\ Indern wir f(i") an Stelle von

| setzen und dies n mal wiederholen, d. h. f(i') iterieren, so erhallen
wir einen Ausdruck, der den Substituenten i' und die Iterations-
variable n enthält. Ich bezeichne ihn mil

r ta).
Dieser Ausdruck, als Funktion von i' betrachtet, heisst « iterierte

Funktion nUr Ordnung», als Funktion von n betrachtet aber < Iteral-
funktion» oder kurz «die Iterale» von f(i:).

Beide Begriffe verhalten sich zueinander wie Potenz und

Exponentialfunktion, in welche sie übergehen, wenn f(£) a• £: ist.
Sind allgemein v unabhängige Funktionen fp f2, • • • f,, der

Variablen Sv i'2, • • ¦£",, gegeben, oder kurz ein «y-System», und setzen

wir hierin wiederholt fk(^- • • i",,) mr £k e'n> so erhalten wir v Iteral-
funktionen, die ich mit

j'^V'-g. j21(f1---g,---- j;:(f1---g
bezeichne. Die Funktionen f selbst heissen in Bezug auf ihre Iterale
« Stammfunktionen».
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Für das Iterationszeichen J gelten die Regeln

jk(g--ui-'bk(g--g ^+b(g--g i-

Jak i (^ I JO (JÛ I Ju I Ju- 2.

Es gilt also für das llerieren wie für das Addieren das commutative
und das associative Gesetz.

Zunächst ist das Symbol J" nur für ganzzahlige Werte von n
definiert. Wir können aber die Bedeutung sofort auf beliebiges n

erweitern, wenn wir Jnf(i") als diejenige Funktion von n und |
definieren, für welche die Beziehungen 1. und 2. gelten und welche für

ganzzahlige n die nte Iterierle von f(i') ist.
Nach dieser Feststellung, die für Funktionensysleme ganz

entsprechend ist, ergiebt sich leicht die Bedeutung von Jn für negative
und gebrochene n. Es ist nämlich

j°f(£) s, fk (tt - • • g ik, .i" \ï1--- y fk, • • • rnm=jn7(t).
i

Weiler bedeutet Jnf(£) diejenige Funktion, deren nt0 Iterierle die ge-

gebene Funktion f(i') ist. Speziell für f (i') S ist Jn (£) eine

cyclische Funktion. So ist

1 s Bf _1 ±\/T

Für die Iterale von f(i") gilt offenbar die Relation

Jn41f(i-) f[Jnf(|)J
oder, wenn wir von nun an statt n x als Iterationsvariable wählen,
und dieselbe nach Obigem als beliebig reelle Grösse ansehen, — falls

wir noch Jxf(i')—- ^(x) setzen

«/»(x-r-1) =fp(x). 3.

Ebenso genügt Jk (\x- • ¦ f,,) Vk(x) ('er Refal-i011

yk(x) fkrfi(x-l), ç>,(x-l), ¦••?>„(x-l)j, (k l..-n). 4.

Umgekehrt, sind (<p • ¦ • tpv) Lösungen der Gleichung (4), "so sind
sie zugleich die Ileralfunktionen der (f1---f)>). Setzen wir nämlich
auf den rechten Seilen von (4) für tpk(\—l) den Wert ein, der'aus

(4) folgt, wenn x—1 für x gesetzt wird, und fahren so fort, so folgt
wirklich
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wenn die willkürlichen Grössen 9^(0), <p.,(o), • • • f,,(o) resp. gleich

i't,-•••?,, gesetzt werden. Diese letzteren kann man als Konstanten

oder allgemeiner als Funktionen von \ mit der Periode 1 ansehen.
Da aber die letztere Annahme in den wenigsten Fällen auf die weitere
Rechnung einen Einfluss übt, so können wir hier davon abstrahieren
und sagen:

Satz I. Die Iteraifunktionell eines r-Sgstems (f,---fr) sind
durch dasselbe völlig bestimmt bis auf die Anfangswerte

tp (o),- • • tpr(o). Letztere können beliebigen

Konstanten gleichgesetzt werden.

Das System (4) kann übrigens auch als Differenzengleichung
aufgefasst werden, woraus sich ergiebt, dass die Lösung von (4)
sowohl als Problem der Summen- wie der Ileralionsrechnung aufgefasst
werden kann. Nun kann man aber jede beliebige Differenzengleichung
auf ein simultanes System von Gleichungen erster Ordnung zurückführen.

Es kann daher jedes Problem der Summenrechnung auch als

Problem der Iterationsrechnung aufgefasst werden.

Eine Gleichung G[y(x-f k), ^'(x-f-k—1), • • • tp(x)} — 0 (5)
wird man allerdings hauptsächlich in der Differenzenrechnung behandeln.
Man kann ihr aber, dem in der Einleitung erwähnten Dualismus gemäss,
eine andere Gestall geben, in der sie speziell zu einer Aufgabe der

Ileralionsrechnung wird.

Wir setzen nämlich in (5) x f(£), wo tp die Inverse von tp

ist. Dann wird also <ptp (£) !-. Setzen wir ferner

^(l-}-^i) f(i), (6)
so folgt sofort:

f f GO tp (1 -f Ip tp (1 + tph)) tp (2-H> |).
fff(i) P (3 f

verschreiben wir noch zur Bequemlichkeit .Ikf(?) f"k)(|), so wird
unsere Gleichung (5) transformiert in

G[fk)®, f(k-1,©,----f(i-),i-J. (7)

Diese Gleichung stellt die Aufgabe, aus einer Belation zwischen
den versclii.ede.nen Iterierten einer Funktion diese Funktion selbst, zu
finden. Aus der Gleichung (6). die man auch schreiben kann

^(x + l) l>(x),
sieht man. dass tp(\) einfach die Iteralfunktion von f(i') ist.
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Analog können wir auch simultane Differenzengleichungen, z. B.

Giifix+kA, i^xA-hA,.... ,f(x), «//«] 0

H[r/>(x-fk2), ip(xA-h2),....rf(x),ip(x)) 0 ['a)

umformen. Wir setzen nämlich ^>(x) —£, }ii(\) — it und bestimmen
zwei Funktionen f(£, if), g(i', -^) so, dass

9(x-t-1) %(x),^(x)], m(xA-l) g\,f(x), ip(x)\,
was, wie wir sehen werden (Salz VII), auf unendlich viele Arten möglich

ist. Dann ergiebt sich offenbar wieder, dass </, to die Ileralen

von f und g sind, d. h. es wird

V-(x-|-k) Jk(f,g)(i,^=f(k)(|,ri)
l/)(x-f-h) ^(f,g)(i>/) g(b,(£,^),

wodurch die Gleichungen 7a eine (7) analoge Gestalt annehmen.

Ist endlich eine partielle Differenzengleichung vorgelegt
G[(/-(x +k,y+h),...y(x,y)] 0, (8)

so wählen wir eine beliebige Funktion </<(x,y), die elwa einer

Gleichung genügt
H[(/»(x-fk0,y+h0),...lKx,y)j 0, (9)

setzen alsdann tp(x, y) i", iii(x,y) r(, also x n?(S,rf), y ip(£,rf)
und bestimmen zwei Funktionen f. g, so dass

,p(lA-if, 7) f(i-, tj) «(f, 1 -f #) f0(|, r/)

'/'(!+'/-, "0 g(iV'i) «/'(?, 1 + '/') 8o(Ê»l)-

Dann ergiebt sich ohne weiteres

<p(2-\-y, 0) f(f,g); f„(f0, go)=^Ç,2+^)
,/-(2 + ^, i/O g(f,g); g0(f0, gn) - i//(p, 2-r-ip).

Allgemein erhält man für die Ilerierten von (f, g), (f0, g0)

tp (k -f^, 7) Jk (f, g) (i, q) f(k) ; (p, h -f i70 J \ (f0 g0) (£ f((,h)

<"(k0ff, 0) Jk°(f;g)(i^)=g(ko); i/-(^ho+ '") J2°(f(1g0)(^) sl'0!
worin natürlich k, h, kQ, h0 ganze Zahlen bedeuten. Es wird dann z. B.

ç>(k + x, h+y) p(k+£ h 4- ,77) =fw[C)(£, ij), g0h)(i, i))] etc.

Setzen wir diese Werte in (8), (9) ein, so verwandeln sich diese

Differenzengleichungen in Relationen zwischen den Ilerierten von (f, g),

(f0g0), und umgekehrt kann jede solche Relation durch Einführung
der Funktionen tp, t/uri eine Differenzengleichung verwandelt werden.

Alle solche Relationen zwischen Ilerierten verschiedener Ordnung
fasse ich unter dem Namen Iteralgleichungen zusammen. Das Problem.

Bern. Mitte.il. 1901. No. 1514.
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das eine Ileralgleichung stellt, ist von hohem Interesse. Da die

Lösungen eine oder mehrere willkürliche Konstanten involvieren, so

sind die Funktionen f oft ganz verschiedener Natur, besitzen aber

trotzdem ein und dieselbe Iteralfunktion tp(x). Sind algebraische

Lösungen vorhanden, so gehören diese meistens zu einer
merkwürdigen Klasse von algebraischen Funktionen, für die ich den Namen

«körpertreue Funktionen» gebrauche. Ich begnüge mich, ein
einfaches Beispiel zu rechnen.

Beispiel. Die Funktion f(i") soll aus der Gleichung

ff(D -±-f(D«- m+~? (10)

bestimmt werden.
Statt (10) können wir auch schreiben

2 f f — f2 i2 (2f— £2), woraus

\/2îl — i2 i\/2f-i2.
Hiernach erkennt man sofort die Richtigkeit der beiden Gleichungen:

f+\/2ff—f2

2)f— \/2ff—- f2
_

2 ~~

Nimmt man beiderseits die Logarithmen, so erkennt man, das;

der Ausdruck

(i'-f\/2f- -I2)
2

(i-\/2T
(11)

log
!+\/2f—

log
-\/2l-i2)

sich niclit ändert, wenn f(i") an die Stelle von h, gesetzt wird. Definiert
man daher f(£) durch die Gleichung

:'+\/2f—i'2"
log

¦\j2t-
log

so ist diese Bedingung offenbar erfüllt, d. h. es gilt dann

Const. C. (12)

log
f+\/2ff— P

log
M-\/2f- ifl

log
f—\/2ff—f

log
-\/2f

(13)
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Wir haben dann in f eine Lösung unserer lleralgleichung (10),
sobald wir noch zeigen können, dass aus (12) rückwärts wieder (10)
sich als notwendige Folge ergiebt.

Die Gleichung (12) für f wird einfacher, wenn wir die Exponenten
nehmen und setzen

i~
2

~?." ^ aiso ^ (,_y)2+y2_ (U)
Es ergiebt sich dann y aus der Gleichung

yc £-y. (15)

Nehmen wir— statt C, so folgt (£—y)u y. d. h. es

vertauscht sich einfach y mit (£—y). Da aber f(f) nach (14) in beiden

symmetrisch ist, so sieht man, dass zu reciproken Werten von C

dasselbe f(f) gehört.

Für rationale Werte von C wird f(f) algebraisch. Z. B. wird für

C CO, y i
y o

f(£)=l+(Ç-l)2
f(ö st2

C l y "T fCéO -Ç (15 a)

C — 1
i'+v/i'2—*y- 2 f(|)=i"2 — 2

0 2 -l-r-\/i+ 4à
y =^-ï :
J 9 f(i) if2-t-3 i-+l+(i-+l)\/l+4 i'

Man überzeugt sich leicht, dass diese Funktionen die Gleichung
(10) befriedigen.

Es bleibt nun noch der Nachweis zu leisten, dass die Gleichung
(12) oder die beiden Gleichungen (13), (15) zusammen wieder auf
die Relationen (11) und somit (10) zurückführen. Aus (13) zieht man

zunächst die beiden Gleichungen

f+Y^fT^f2" /i-+\/2l=-TrN;'UJ

f—\/2ff— f2
_

A"—\/~2t— g
vm

2 V 2

wo y(i') konstant oder von f abhängig sein kann. Es ist also zu

zeigen, dass y 2 ist. Addieren wir beide Gleichungen, führen y
ein und für f seinen Wert aus (14), so erhallen wir:
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(l-y),+y, (l-y)î;+yy. (ie)
Diese Gleichung muss für y dieselben Werle liefern wie (15).

Eliminieren wir (f—y) mit Hilfe von (15), so resultiert:

y«-|-y«C y)'(0 + yy(0-O. (16a)
Diese Gleichung wird erfüllt für y 0, y=l, d.h. für f —i"2

und f=l-|-(£—l)2, welches beides Lösungen von (10) sind.

Schliessen wir diese Werte von y aus und setzen y2-j-y2 -=i/'(y), so

folgt

ÜÜ\ XrSMW ViM\±™\
»Ky) yw 2 J >jAyl -' J • • • • dj Ur l 2 J 7

Diese Gleichung kann dann nur bestehen, wenn y(£) 2 ist.

Bestimmen wir endlich noch die gemeinsame Ileralfunklion tp(x)
aller der f(£). Sie ist die vollständige Lösung der, (10) entsprechenden,

üifferenzengleichung

?(")==4">(x-1)2~"^(x-2),^(v_1) + "T^(x_2)3-
Man findet ohne Mühe

p(x) a«x-f/?«x, (17)
worin a, ß willkürliche Konstanten bedeuten. Indem wir diese aus

tp(\), tp(x-\-l), ^(x-f-2) eliminieren, sodann x=0, tp(0) £,

^(l) f(i;), ç?(2) ff(i") setzen, erhalten wir wieder die Gleichungen

(11). Zugleich ergiebt sich

log«
log/»

'

Alle die aus (14) und (15) folgenden Funktionen f(|) führen
also durch Iteration auf dieselbe Funklion (17), wobei nur die Werle
der Konstanten a, ß wechseln.

Wir kehren nun zu unserer allgemeinen Theorie zurück.

§ 2.

Die Theorie der Iteration stützt sich wesenllich auf das folgende
Fundamentaltheare.ni.

Ist F{$) pf^(S), so folgt fY(i) ip(f\)y(~),
d. h. wenn die Iterale von f bekannt ist, so ist es auch die von F.

Auf Funktionen mehrerer Variablen angewandt, lautet das Princip:
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Satz II.
Ist (Fv F2 Fn) (tpy tpu) (f,.. Q fo.. fo)
und bezeichnen wir das lleralsyslem con (f,.. fn)

(i'j. i'n) kurz mit (f fn)x. so oi/t

(F1...Fn)x=(?1...^)(f1...fI1r(^...^).
Die Iteration von (Fr..Fn) ist dadurch auf die von (g..i„)

zurückgeführt. Der Beweis des Salzes ergiebt sich durch den blossen

Anblick.
In dem einfachsten Fall, in dem ft ^-f-1, h %2> • • ' 'n ~ £B

ist, lautet der Satz II speziell:

«Ist Vk tpk{l-\-ifl(£l--$i),ip2.'.-ipR} (k=l,...n),
so isl das lleralsyslem der Fk- (\\

il(Vx--V ?k{x + Vv?2>---fn} (k=l.---n)«.
Im Fall einer einzigen Funktion F heisst dies:

«aus F(|) ^(1 + ^(1)) folgt JxF(|) ?[x-f-^(|)J».
Der Salz II nimmt im Fall der infinitesimalen Iteration eine

besonders einfache Gestall an und hai alsdann ein duales Gegenstück in

einem bekannten Satz der Integralrechnung, der im Fall einer einzigen
Variablen so lautet:

«Ist das Integral von f(t")-d£ bekannt, so ist es auch das von

fy(i>d^(f) F(i>di\»
In der Thal spielt dieser Salz in der Integralrechnung die gleiche

Rolle wie der obige Satz II im Ileralionscalcül.
Die Spezialisierung (A) führt uns nun zu einem neuen wichtigen

Begriff.
1st nämlich ein n-System gegeben (<pl—fn) (if, ¦¦• Sn), so bilden

wir die folgenden n2 Funktionen.

<P\{H-^i'n¦ ¦ ¦ 9») C fil?!-1!^"fn 1 ff\

fW .r, \A t \A A 1 _ f<2)_
92\ i+^. r2-• • • p„J f2 v.Jyf.i i+?a. ¦¦¦fI

aji-K^.---fn| f^ ^{^H-^---fJ ff
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Alsdann liefert die Iteration der Systeme (tf... ff), (ff. ff)..
die n2 neuen Funktionen

•••^(^7 ^•••X+^n| (k !•••"), (22)

von denen je n mit dem Index k Spezialwerte der einen Funklion

von n Variablen
tpk(xvx2, ...xj sind. (23)

Die Gleichungen (21) lehren also eine Operation, durch welche

man von den gegebenen («^... tpn) (xt.. xn) zu neuen Funktionen f
gelangt, durch deren Iteration Spez(alwerle der tp wieder erzeugt
werden.

Im Fall einer einzigen Funktion cp(x) giebt es nur eine solche

Funktion

f(£)==<Kl+y£), (24)

deren Iterale offenbar tf(x-4-tf£), also wieder tp(\) selbst isl.
Diese Operation ist also der Iteration gerade entgegengesetzt

und verhält sich zu ihr, wie das Differenzenbilden zum Summieren.
Ich nenne sie daher Beversion und das. Resultat der Reversionen nach

den verschiedenen Variablen, die Funktionen f, partielle Beverse.

Es ist von Vorteil, hier einige Bezeichnungen einzuführen.

Ich nenne die Funktionen <pv tf0,...<fn eines n-Systems homolog,

und dem entsprechend die partiellen Reverse nach derselben

Variablen, also z. B.

^ <Pi(1-t-<Pv Vv- )' 41' ^(l+'/i- Ta» •••)•• •

homologe Bereise
und ihre Ileralfunklionen

rPx(x~\-fv <P-2 •••)••• • <pn(x-r-(pv ip2..
homologe Iteralfunktionen.

Dagegen sollen die Reverse ein und derselben Funklion nach

den verschiedenen Variablen, als z. B.

ff «, fk(\ -ffo, tp2... ff=?k fo, l -rfo,...),...

associerte Beverse heissen.
C-fkfo----i + y„)
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Alle die n2 Ileralfunklionen in (22) heissen übrigens noch

partiell, da sie sämtlich Spezialwerle der n Funktionen fo...^n)
(x1. xn) in (23) sind. Diese letztern bilden das totale Iteralsystem
zu dem totalen Reverssystem (21).

Ausser den in (21) definierten Funktionen f werden wir aber

auch die folgenden Ausdrücke

tpk(l-\-tpv 1+fOjj, <pv ?>k(lH-fo, 1-f-ft,, l+f3, ...j»n etc.

als partielle Reverse bezeichnen, dieselben aber von den bisher
besprochenen einfachen Reversen durch das Beiwort «gemischt»
unterscheiden. Demgemäss werden auch die Funktionen

Vkih + Vx' X2 + ?2> • ' 0» <Pk(h + <Pv X2+^2' X3 + f3'---) elC-

gemischte Iteralfunktionen heissen.

Endlich werden wir gelegentlich auch Ausdrücke wie tp(tp-\-a)

ç>kfo-f-a, tp2-\-h,....), worin a, b Konstanten sind, als Reverse von
tp in etwas allgemeinerem Sinn bezeichnen, da sie von den oben

definierten nicht wesentlich verschieden sind.

Nach diesen notwendigen Feststellungen wollen wir nun die

Eigenschaften unseres neuen Begriffs näher untersuchen.

§ 3.

Substituieren wir von 2 associerlen Revers-Systemen

(fx... fn) fn) (a-ffo, ?2,...?„);
(gj • • • gn) fo • • • i"„) fo, b -f <p2,... tpn)

das erste in das zweite, oder das zweite in das erste, so ist das

Resultat beidemal dasselbe, nämlich

fo •••?„) (a+?i> b+^'---V„)-
Zwei Funktionen oder Funktionensysleme, die bei der Substitution

ineinander das commutative Gesetz befolgen, heisse ich commutativ.
Da nun also

fk(gi> • • • 8„) 8k(fi • • • U (k 1,... n), (25)
so haben wir den

Satz III. Associerte partielle Revers-Systeme sind commutativ.

Dieser Satz entspricht dualislisch der bekannten Relation

J.iJrìVCi,rì) JrìJ..¥(ln).
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Es gilt nun aber auch der umgekehrte Satz, nämlich

Satz IV. Sind zwei n-Systeme (f f (g,..ig) komtnu-

tativ, so sind sie associerte, partielle Reverse eines

und desselben Funktionensystems (</t. .</n)(x1. xn).

Beweis. Sind die beiden Systeme commutativ, so gilt

(f1...y(g1...gn) (g1...gn)(f1...y.
Substituieren wir beide Seilen in (f1... fj und bezeichnen

allgemein ein n-fach iterierles System mit (f, fn)n, so folgt
successive

(f1...fn)2(gx:..gn) (f1...fn)(g1...gn)(f1...y (g1..gn)(f1..fn)2

(fl---v'(gl.--gn)= (gi--gn)(f,--g3
Allgemein haben wir für zwei ganze Zahlen xv x.,

(f,... y*1 (gl... gn)12 (gl... gn)x'2 (i;... yXl. (26)

Bezeichnen wir diese n Funktionen von xv x2 und den i" mil

«M** x2; Ir ¦ • £,)> %(*!< **> Ir • • U> • • • «M^r X2Î l'i ¦ • • *'„)•

so gelten offenbar die beiden Gleichungen

(<V- <*>») (X1 + !' V Il • • • ln) (fl- • f„) (©!¦ • <»n)(Xl> V If ¦ U
(ö)1...ö)n)(x1,x2+l;iV..|n) (g1...gn)(a>1...ö>n)(x1,x2;|1...5n)/

Setzen wir nun für £....£ willkürliche Funktionen von n — 2
-1 -n

neuen Grössen x,,, x4,...xn, so gehen die Funktionen (D über in

Funktionen fo • • • Tn) der n Grössen xp v„...xn und die beiden

obigen Gleichungen werden zu den folgenden :

(fx ¦ ¦ ¦ Vn) (X1+L X2> • • • XJ (fX-- fJ ('/i • • ¦ '/„> (V " ' XJ

fo. r/n) (Xp X2-f 1,. Xn) (gr gn) fo <fj (Xr Xn).

Bei der Wahl der genannten willkürlichen Funktionen hat man

nur darauf zu achten, dass die </,¦••</„ von einander unabhängig
werden, d. h., dass ihre Funktionaldeterminante nicht verschwindet.
Dann kann man nämlich das System fo </ (x1... xj umkehren
und setzen:

xt f/l(|r.. iy, x2 7p2 (i;... in),.... xn ,/n(t\... iy,
wodurch wir die Funktionen f und g in der Thal als partielle Reverse

der tp dargestellt erhalten. Zugleich sieht man, dass infolge der
Willkürlichkeit der in (27) eingeführten Funktionen von x3... xn unendlich

viele solcher Funktionen tp existieren, sobald n^>2.
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Salz V. Sind n n-Systeme (ff.. ff), (ff. ff),. (ff.. ff)
gegeben, von denen je zwei zueinander kommutativ
sind, so bilden die n2 Funktionen f ein totales Revers-

System, d.h. es lässt sich dann ein bis auf n willkürliche

Konstanten völlig bestimmtes System fo. tp\
(xt. xn) 'finden, für welches die Gleichungen (21)
gelten.

Beweis. Wir bestimmen zunächst die n partiellen Ileralsysleme

(i\,..f'S\ (ff...ff)x2, (ff...c,rn-
Bilden wir von diesen n Systemen das Subslilulionsprodukt, so

ist dieses nach der Annahme wenigstens für ganzzahlige xx.. xn von
der Reihenfolge der Faktoren unabhängig und stellt also ein ganz he

stimmles System von n Funktionen der n Variablen x1.. xn vor, das

wir schreiben

fo... tpj (h... xj=(fx... rur (ff... ffr ¦. (f.. ff r-• (28)

Diese Funktionen enthalten noch die Substiluenten £.. Sn, welche
als willkürliche Konstanten belrachtet werden können. Da allgemein

(f. y° — (lx. • • • ln) ist, so sieht man sofort, dass

fo <fn) (o, o, o) (i't. in) wird, d. h.

£1 V>l(o...o), i"2 ?>,(o, ...o),... £n tpa(o,.. o). (29)

Es bleiben also die Anfangswerte der Funktionen tp beliebig.

Aus der Formel (28) zieht man noch die beiden folgenden

fo...?n)(x1o...o) (r1...rnfi;
...fo...n)(o..oxn) (ff...lf)x« (30)

fo. ..^ii)(x1x2...xn)

— (9x ¦ ¦ '/'J (Xl • • °J | ('/i • • fr) (° V • °) • • | fo • • <7'n)(° • ¦ XJ' (81)

Es isl also das totale Iteralsystem das Substitutionsprodukt der

n associerlen partiellen Ileralsysleme.

Satz VI. Zu jedem n-System (fr..fn) können (falls n >» 1)
unendlich viele Systeme (ip1.. <jpn) so bestimmt

werden, dass fx, f2. fn homologe partielle Reverse

eines jeden sind.
Born. Mitteil. 1901. No. Î515.
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Beweis. Bezeichnen wir für den Augenblick das lleralsyslem

der (f, y mit (0>L. ©n) (x,; ;,. in), so gilt

(*!••• ®„) (X1 + 1 ll • • • In) (f, • • • U (*.-•• ® ("r lt • • • In)-

Setzen wir hierin für i~r in beliebige Funktionen der neuen
Variablen x2.. xn ein und bezeichnen die so transformierten (ö»t.. .<zy

mit fo--- ^n) (xr • • Xn)>

so geht das obige Gleichiingssystein über in

fo • • • <Pj (X1 + 1» X2- • • • X„) Ci ¦ ¦ • V fo • • • Pn) fo • - Xn)>

womit der Satz bewiesen isl. — Der Nutzen dieses Satzes ergiebt sich

aus folgender Bemerkung. Bilden wir nämlich von den so gefundenen
Funktionen tp die Reverse nach den Variablen x.„ xn, so erhalten

wir nach Salz III lauler zu (\\.. fn) kommutalive Systeme. Das

giebt das

Coroliar: Zu jedem gegebenen n-System (f,...fn) kann, falls
n~A> 1 ist. eine unendliche Anzahl kommutativer
Systeme (gr..gn) gefunden werden.

Wir wollen nach dieser Methode ein Beispiel rechnen, indem

wir die Aufgabe lösen, zu den beiden linearen Funktionen

t1 A^-\-bii f2 c£-4-d?j (32)

die allgemeine Form der zu ihnen kommutativen Funktionen g g2 zu
bestimmen.

Wir suchen Grössen X, /.t, io der Art, dass die Gleichung besteht

l fj-j-jitfj— w(%^-\-[irf)

und zwar findet man leicht

l c, f.i — 10—a; io2—(a-f-d) w-f-(ad— bc) —0.

Nehmen wir die beiden Werte iov w„ von a> für verschieden

an, bezeichnen wir ferner die partiellen Iteralfunktionen von f, f„
mit O(x), f(x), so hat man die Beziehungen

c(0(x)-r(w1—a) lP(x) wx (ci'+(w — a)n)
(33)

c(&(x)-f-(w.)--a) ¦<F{x) to2 (cf-f-(«2 — a)ijj.

Wir setzen nun für £, i] willkürliche Funktionen einer neuen
Variablen y ein. setzen also etwa
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c I+fo — a) tj P (y), c i 4- (w2—a) -n — Q (y)

und schreiben für O, lIs jetzt tp{x,y) und ip(x,y), so gilt:

C(/(x,y) + (w1 —a)i/((x,y) wr .P(y)
c '7 fo y) +K- a) v fo y) ">l Q(y)- (3*)

Wir berechnen nun die Ausdrücke

8i V fo 1 + V') g2= ^fo 1 -p- ^), (35)

welches die gesuchten Funktionen sind. Zunächst bemerken wir durch
Elimination von x aus (33), dass der Ausdruck

[c^x^-K^-a^'foy)]10«"1
c (</¦, i/o ifo/'foy)+K — a) i/>(x.y)]-j^—

bloss Funktion von y ist, so dass wir umgekehrt y gleich einer
willkürlichen Funktion Q(G(tf, »//)) setzen können. Aus (34) ziehen
wir dann

ct//(x,y-f-l)+K—a)ip(x,y~\-l)

< ^•P^ {c.Kx)y) + fo-a)lKx,y)}-^hl).
Setzen wir in dieser und der analogen Gleichung für w2 Fy,

G(y) an Stelle von ~—Ç-— —^fo—> machen wir ferner
P(y) Q(y)

x 7p (t ii), y ÛC(|, ij) ^(1,1,)
und bedenken die Gleichungen (35), so erhalten wir

cg1 + (w1—a) g2 { cifo (Wl—a)n Ffo)

cgt+fo—a) g, { cifofo— a) n } G(^)-
Fß(t)Berechnen wir hieraus gv g2. und schreiben für

c(w2—wt)

wieder F(l), G l). so erhalten wir endlich:
c(iü2—io1)

gi(l, *j) fo-a) I cl+fo —a) r,} FC(|ij)
— (Wl—a){c|+(w2—a)ij}GC(£ij)

g2(l, »•/)==- c { c£+ (Wl- a) tj } F C (^ (db)

+ c{cè+K-a)ij}6C(|ij),

[cH-^-ahJ10*/0!
worin C(t, »j) î bedeutet.

[c£-J-(w2— a)ij] iogw2
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F, G sind völlig willkürliche Funktionen. Die Formeln (3fi)
enthalten die vollständige Lösung unserer Aufgabe für den Fall

ungleicher Wurzeln w.

Die Funktionen fv f.„g1,g2, bilden zusammen ein totales Revers-

system, das die totalen Iteralen ç>(xy), i/»(xy) hat.

Setzt man für F, G beliebige Konstanten A. B. so erhält man
eine partikulare Lösung des Problems, aus der man also die
allgemeine findet, indem man die Konstanten durch willkürliche Funktionen
des Ausdrucks C(|, rt,) ersetzt. Diese Funklion C(i"i;) hai die Eigenschaft,

sich nicht zu ändern, wenn man an Stelle von i, tj resp. ^(s?/),
f9(i"rj) setzt. Da sie demnach für alle Ilerierten von (fv f2) sich gleich
bleibt, nenne ich sie eine Coiterante von (fv f2).

Solche Coileranlen gibt es zu jedem System (ft • • • fn). Man kann
sie in der angegebenen Weise erhalten, indem man aus je zwei
Iteralfunklionen die Ileralionsvariable eliminiert. Sie spielen in dem

Problem, die kommulativen Funktionen zu finden, eine Hauptrolle,
indem sie dazu dienen, aus partikularen Lösungen mit willkürlichen
Konstanten allgemeinere Lösungen herzustellen.

Zum Schluss dieses Paragraphen folge noch eine Bemerkung
zur Theorie der Reverse. Es gelte nämlich zwischen den Funktionen

Ci ¦ " fn) emes n-Systems und den n Funktionen sp}- ¦ -tpn der r
Variablen xl-xi. ein Gleichungssyslem der Form

fo...fn)(x1+ l.x2,...xr) (f1...y(^1...fn)(x1...xr) (37)

Isl nun r —n, so sind, wie wir gesehen haben, fofo durch
diese Gleichungen als partielle Reverse der tp ¦ ¦ ¦ tpn eindeutig
bestimmt und können durch Einführung der Inversen der tp aus diesen

leicht dargestellt werden.
¦ Ist aber r<n, so sind die <p1---(pn nicht von einander

unabhängig, es existieren vielmehr n — r Relationen zwischen ihnen, die

wir etwa schreiben können

(Px Gl fo • • • 9>J> Ch G2 fo • • • '/n)> • • • Cfn-r Gn-rfo ¦ ¦ ¦ f»)¦

Führen wir diese Ausdrücke für tpt ¦ • ¦ tpnr in die rechte Seite

von (37) ein, so nimmt dieselbe die Gestalt an

(f1...f'n)fo...<iPn)fo...xr).
Die Gleichung (37) bleibt also bestehen, wenn wir die f durch

die f ersetzen, d. h. es gilt der Satz :
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Satz VII. Besteht ein Gleichungssystem der Form (36). worin
die tp gegebene Funktionen von weniger Variablen,
als ihre Anzahl beträgt, sind, so giebt es im
Allgemeinen hoch unendlich viele Funktionen f'x • • • f'n>

die für f, •••fn eingesetzt, das Gleichungssgstem

befriedigen.

§ 4-

Mit den Reversen sind gewisse andere Funktionen von 2 n

Variablen Ifo-!,, %"-iJn nahe verwandt, die wir durch folgende
Gleichungen definieren

ip(9(s)+~9(il)) l(lri) (38)

<Pj\fx (!'l • • • !„) H Vi fo ¦¦¦%)¦> • • • >~Vjk ¦ • • In) + Pnfol • • • %)}

l\*V ^ •••In) (k =!...„) (39)

Es folgen hieraus sofort die andern

<f(xA-y) k(tp(x), tp(y)). (40)

^k{xi+yu x2+y."----xn+yn}

,{^(Xr--Xnfo--fnfo---Xn)j {k X n). ßl)

Den Inhalt solcher Gleichungen nennt man bekanntlich ein
Additionstheorem. Die Funktionen 1, Ak, welche n Paare von
Funktionen gewissermassen zu n Funktionen derselben Art (mit neuen

Argumenten) zusammenbinden, heisse ich Liganten.
Die Liganlen, nur als Funktionen der £ betrachtet, sind partielle

Reverse in weiterem Sinne, und als solche für jedes n-System völlig
bestimmt. Wir haben so den Satz:

Satz VIII. Zu jedem n-System gehört ein bestimmtes Liganten-
system. Die ligierten Funktionen cpx. .tpn sind die

Iteralfunktionen ihrer Liganten.

Trotz der Analogie mit den Reversen spielen doch die Liganten
eine besondere Rolle. Ein Revers kann z. B. algebraisch sein, während
es die zugehörige Liganle nicht ist. So isl der Revers von ba* gleich
!*, hingegen die Liganle e'0^-'0^. Es kann daher eine Funktion
Iterale einer algebraischen Funklion sein und doch kein algebraisches
Addilionslheorem besitzen.
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Die Liganten zeichnen sich durch gewisse Eigenschaften aus, auf
denen ihre Wichtigkeit beruht.

I. Setzen wir in (41) y1 — y2 • •. yn o.

f/i(°> • • • °) «i • • ¦ • </>„(«,. o wn

<P,fo--Xn) l| • • • • 'f„fo---Xn) l./
so erhallen wir

£ 1 fo1 " ' bn
(k 1... n),

d. h. es giebt immer n von den t unabhängige Konstanten, io1. «n,

welche, in U"1 "n 1 für rti...iin eingesetzt, ^k=|k machen.
I % • ¦ • rin |

II. Aus dem Anblick von (38), (39) ergiebt sich sofort

III. Substituieren wir das System (l{.. /XJ
*1

y" j in das

andere fo... AJ I ": "n I an Stelle der ^... Sn, so resultiert
\ /l* - - In/

fo • • • fn) fo di • • • IJ + </\ fo ¦ ¦ ¦ ri„) + Vi. fo • • • yn); —].
d. h. ein in den 3 Wertsystemen (i'r in), (^ iln), (yx. yn)
symmetrisches Funktionsystem.

Infolge der obigen drei Eigenschaften ist es möglich, für die

Liganten die folgende, handlichere Schreibweise einzuführen. Ich

setze nämlich

k{^¦;:;^}=&... y -, (%•.. ^) *=i... n>

und fasse diese n Gleichungen in die eine symbolische zusammen:

fo---\){^:.;:^}=(ir--i„)^fo---^)-
Wenn also das Ligantenzeichen ^ keinen Index hat, bedeutet

es das ganze System. Die Relationen I, II, III lassen sich dann so

darstellen.



— 127 —

I. (^,.. !n)-(tV..Wn) fo---!«)-
n. (i-t... iy - (ih... %) dh... ry - fo... iy.

III. I(i-1...iy-(y/...yn)i - fo.--fo> 142)

— fo-- -IJfofo- --yj-fo--- Vl
fo. if,,) - (rh. ijb) - fo. yn).

Man sieht, dass man mil dem Zeichen <-> gerade so operiert,
wie mit dem Zeichen -f- der Addition, die ja auch eine Ligante isl.

Die genannten drei Eigenschaften sind nun aber für die Liganten
definitorisch und darin liegt auch ihre Wichtigkeit. Es gilt nämlich
der folgende Satz:

Satz IX. Alle Funktionen oder Funktionensysteme von 2 11

Variablen, denen die Eigenschaften I, II, III
zukommen, sind Liganten eines Systems von n

Funktionen mit n Variablen.

Beweis : Genügt das System (ij. |) ^ (rj.. tjn) den

Gleichungen I, II, III, so findet man zunächst mit
Hilfe von IL III

J2 fo • • • ly - fo • • • %) (li • • •• !„) - {fo • • • V " fo • • • nJ}
•i3fo ¦ • • In) -(%••• %)

di•••!«)-{ fo• • • nJ -(*ii•• • nj'-fo • • • V}•
Bezeichnen wir allgemein den Ausdruck

fo • • ¦ nj "" fo • • • na) (li • • • i„)' worin fo • • • %) k mal

vorkommt, mit fo • •. ^n) so findet man für das lleralsyslem von

fo • - • ln) ^ fo • • ¦ vT) den Ausdruck

Jxfo • • • !u) - fo • • • nJ di • • • ln) - fo • • • »nrx- (43)

Für x 0 ergiebt sich daraus mit Hilfe von I die Bedeutung

des Symbols (1^. ijn)^°, nämlich

fo- ••in)^" («!•• • «„)• (44)

Setzen wir nun in (43) |x wr i"., w2... in wn. so dass

also J° (wL... e<y, .I1 (q... ?y wird,

setzen dann für (r^ »y der Reihe nach die Wertsysleme
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(fo--fon), (n? ....^...(Vf-.-if)
ein und für x entsprechend x x.„ xn, verbinden endlich die so

erhaltenen n Ileralsysleme durch das Zeichen r-,, so isl das Resultat

offenbar das n-System

fo • • • ffa) fo • • • Xn)

fo,.-.. v/1 - (if- • • nfr -¦¦¦ inf ¦ • ¦ CT". («)
Setzt man hierin xk -j- yk an Stelle von xk, und ordnet die

Glieder rechts passend um, was wegen II, III möglich ist, so erhält
man sofort die Formel

fo •••?„) fo-f-yi, ••• xn+y„)
(tp,... yn) (x.... xn) ^ fo. ,Pn) (yx... yj, (46)

welche von (41) nur durch die Schreibweise verschieden ist. Damit

ist der Satz bewiesen.

Eine genauere Betrachtung zeigt übrigens, dass die Relationen

I, II, schon in der dritten enthaften sind, so dass also die Eigenschaft
III allein zur Definition der Liganten ausreicht.

Für n 1 hat Abel zuerst den obigen Salz (aus der Annahme III)
auf anderm Wege hergeleitet.

Bedenkt man, dass aus (45) folgt

fo" * • Vr) fo °- * -°) =*= (Vi * • • n'nf1 etC->

so sieht man, dass sich (45) auch in der Form schreiben lässt:

fo"-yn)fo---xn)
fo- • -Vj fo---o)~ fo---yn) (ox2- • .o)n • • • «fo. .-ipj (o- • -xn), (47)

d. h. in Worten:

Satz X. Alle Funktionen eines n-Systems lassen sich mit Hilfe
der Liganten durch die n2 Funktionen fo- • .tpn)

(XjO-'-o) etc. von je nur einer Variablen ausdrücken-

Sind die Liganten algebraisch, so isl also auch diese Zurück-

führung algebraisch ausführbar. Den Salz X hat zuerst Jacobi am

Beispiel der Abelschen Funktionen nachgewiesen.

Wir sind zu dem Begriff einer Liganle gelangt durch die Aufgabe,
die Funktion einer Summe durch die Funktionen der einzelnen Sum-
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nianden auszudrücken. Diesem Problem steht offenbar dual das andere

gegenüber, eine Summe von Funklionswerten durch einen einzigen
Funktionswert darzustellen. Es ist bekannt, dass auch dieses Problem

durch dieselben Liganlen gelöst wird, und in diesem Umstand trill
der in der Einleitung erwähnte Dualismus besonders stark ans Licht.

Nimmt man nämlich auf beiden Seilen der Gleichungen (45) die

lnversenfo---7y und setzt xk '/kfo---|n), yk </kfo-"rÜ> Sü er'

hält man die gesuchte Darstellung

Vkdi' • • Ufo'/tfo- • • in) ÄA, • ' • K) (k 1 • • • n),

worin der Kürze halber (X^- -Àn) fo-'fo) ^ fo,,-in) gesetzt ist.

Die Wichtigkeit der Liganten beruht nun zum grossen Teil

darin, dass sie sich leichler ilerieren lassen als andere, oft scheinbar

einfachere Funktionen; wenigstens gilt dies von den bisher allein in
Betracht gezogenen algebraischen Liganlen. Da man durch ihre
Iteration direkt die ligierlen Funktionen erhält, wie dies bereits Abel

bei den elliptischen Funktionen ausgeführt hat, so erklärt sich, weshalb

die Funktionen, welche algebraische Addilionstheoreme besitzen,

verhältnismässig leicht zugänglich sind.

§ 5.

Nachdem im Vorhergehenden die Grundoperalionen der Iteralions-

rechnung. die Transformation (Satz II), die Reversion und die Liganlen-
bildung, in formaler Weise besprochen worden sind, ohne Rücksicht
auf die spezielle Natur der Funktionen, werfen wir nun zum Schluss

einen kurzen Blick auf das Verhalten der einzelnen Funktionen

gegenüber der Iteration.

Indem man sich an das in der Einleitung auseinandergesetzte
Schema von 4 Stufen erinnert, leuchtet ein, dass wir uns auf die

Untersuchung der (algebraischen) Deuterofunklionen beschränken

müssen, indem ja erst aus diesen die Trilofunklionen erschlossen

werden sollen, was bisher nur unvollständig gelungen isl. Dabei zeigt
sich gleich, dass die algebraischen Funktionen sich in gewisse Klassen

sondern lassen, die bei der Iteration ein wesentlich verschiedenes
Verhalten aufweisen. Darauf soll im Folgenden etwas eingegangen
werden.

Bern. Mitteil. 1901. No. 1516.
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Die einfachsten Deuterofunklionen sind offenbar die linearen,
da sie am nächsten der Protofunklion verwandt sind. Jedes Gleichungs-
syslem von der Form :

fk=Af + Afi1 + Afi2+-Afin (k l...n)
führt bekanntlich im allgemeinen auf Exponentialfunktionen, in

speziellen Fällen auf ganze rationale Funktionen. Setzt man Af 0

und führt ein
fk

ik>

gk-T^TTferr Awn- (k !>•••») (49)

so liefert die Iteration des Systems gebrochener Funklionen mit
gleichen Nennern:

Afii-f Af^-f---Af-r;n
Quotienten solcher Exponentialfunktionen resp. gebrochene rationale
Funklionen. Die Formeln für die Ileralfunktionen sind leicht herzuleiten,

ich begnüge mich mit dem einfachsten, oft gebrauchten Fall

einer einzigen Variablen. Es ist:

x /AH-B\ [ü(x) + (A-D)P(x)j i+2P(x)-B
VCi-rD/ 2P(x).C-i f-|Q(x)-(A-D)P(x)J

' (aV)

_, (u-(-w)x— (u—w)x (u+ w)x-f (u-w)x
worin P(x) —-—!— v -, Q(v)=-—¦— '

A-f-D 1 — 1

Spezielle Fälle, die häufig vorkommen, sind:

(A-Di ,x/A|+B\ Q(x)-g+2P(x)-B

l+a \
1 a e /

S

(l+iaf+(l —ia)fo (1+iaf —(1—ia)x

(l-fia)x+(l-ia)x __
(1 —ia)x—(l-ia)x c

2
"

2i ""

w-„ n'AI+lA [(x + l)A-(x-l)D]g+2xü*-" J ,iCÏ+DJ--2xCi+[(x+ l)D-(x-l)A] (,all0nal)-
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Für die Funktionen P(x), Q(x) und ihr Verhältnis T(x) gelten
die Formeln

P(x-fy)=P(x)-Q(y)+P(y)Qx T(x-|-y)- TW + T^
Q(s-f-y) Q(x).Q(y) + _/P(x).Py v '" l + J-T(x)T(y)

Je nach den verschiedenen Werten von J° £ modifizieren sich

die Formeln. Für die Liganten der Iteralfunklion (50) finden wir,
falls J° oc genommen wird

LlgJ Ul+Dj-C(rj-f-Ç)-(A-D)- (51)

Wenn der Grad der rationalen Funklionen den ersten übertrifft,
so stösst die allgemeine Iteration auf grosse Schwierigkeilen. Nur
in speziellen Fällen lassi sich die Iteration ausführen und liefert dann

die Exponentialfunktionen ax oder ab Dazu gehört vor allen die
bemerkenswerte Klasse der Isobaren Funklionen. Ist nämlich fk=^k(l)
eine isobare Funktion der Variablen Ir-fo' wobei- ik das Gewicht k

besitzt, so ist das System

^(1) — Afo
'fol)= B-!'i + Ui!2

r/3(l) C-^ + qiV^+C, (52)

,Pk(l)=...M^+M1^-2.^-r-M2-i^:!.ia+...MTk
leicht zu ilerieren. Ein solches isobares System liai die Eigenschaft,
dass das inverse System wiederum isobar ist, ebenso alle Ilerierlen,
wie man leicht einsieht. Man kann für die Iteralfunktionen ^>(x)
daher ansetzen:

^(x) A(x).^
^2(x) B(x).^ + B1(x)

tp,(x) C (x) - ft + ClVx) • |x • Ì2 + C2(x) etc.

Durch Rekursionsformeln erhält man so

A(X):

C(x)

]3X a
AX; B(x) B--L- ;

13, — A2
B1(x) Bx

CC2-f-A(BC1— B:C) Cx—A:ix ABC1 (ABX)X-_A3x

C,—A-B1 C3— Aa C,—ABj ABX--A8
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C2 — (AB/
C. (x) C, — — ; C,(x) Cx etc.

1 1
C2 — ABt - 2

Man überzeugt sich leicht, dass allgemein 7"k(x) aus Exponenlial-
funklionen, eventuell auch aus rationalen Funktionen zusammengesetzt ist.

Wenden wir uns zu den algebraischen Funktionen überhaupt,
so isl klar, dass hier die Schwierigkeil der Iteration noch grösser
ist, als bei den rationalen Funktionen. Indessen giebt es doch viele
und allgemeine Fälle, in denen diese Schwierigkeiten zum Teil
gehoben sind, so dass man zu Resultaten gelangen kann.

So giebt es z. B. unzählige Funktionen, die nach Art des Salzes II
durch algebraische Transformalion aus linearen oder isobaren Funktionen
entstanden sind und natürlich durch Iteration auf Exponentialfunktionen
führen. Dahin gehören ferner alle algebraischen Funklionen, die etwa

einer linearen Ileralgleichung
f(U)= h f<*-D + h ,M + 3k_2 m + hi m + 8k

([(k)=J(L,f)
genügen, so z. B. die Funklionen f in dem Beispiel pag. 116, die
rationalen Werten der Konstanten C entsprechen.

Zwei Klassen algebraischer Funklionen sind dadurch interessant,
dâss sich bei ihnen die Iteration durch rationale Rechnung
bewältigen lässt.

Es seien fi; • • • fn n unabhängige algebraische Funktionen der
Variablen |x • • • in und es sei Q der Körper aller rationalen
Funktionen der f. Der durch Adjunktion von fL, • • • fn entstandene Körper

ßfo • • y heisse dann kurz «der Körper von (fx- • • fj».
Iterieren wir f. • • • f so werden die Ausdrücke f, (f, • ¦ • fIn- 1 v 1 n / '

• • • yiy • • y im allgemeinen nicht mehr dem Körper ß(f1---fn)
angehören. Es giebt indes eine grosse Zahl von Funktionen, für welche
dieser Fall eintritt, für welche also

f, (f, • • • f • • • f (f, • • • f rationalen Funktionen von (f, • • f |, • i"lv 1 n'' nV 1 n7 v 1 n' ~1 -n'
sind. Ebenso sind dann auch die Ilerierten höherer Ordnung
Funktionen in J2(f • • f). Solche Funktionen f^fo, die in ihrem eigenen

Körper ilerierbar sind, heisse ich «körpertreu».
Man kann die Aufgabe zu gegebenen Irrationalitäten ^fo ••!„).

q2, • • • Qn alle körperlreuen Funklionen zu finden, leicht auf eine
Aufgabe der Gleichungslehre zurückführen. Bezeichnen Rv • • • Ru ratio-
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naie Funktionen der Variablen x1---xn mit vorläufig willkürlichen
Koeffizienten und bilden wir von dem Ausdruck

?kfo> • • • V> — Bkfo>---xJ (k l---n)
das Produkt über alle Konjugierten von çk, so erhallen wir das

folgende System rationaler Gleichungen

Gk= Jfocfo* • • • x„) — uk(xi-• • • x„) ° k l,.-n), <53)

wodurch xv ¦ ¦ xn als Funktionen der Koeflizienlen der R bestimmt
sind. Unsere Aufgabe läuft nun darauf hinaus, diese Koeffizienten der
sonst willkürlichen rationalen Funklionen R als Grössen aus ßfo--cn)
so zu bestimmen, dass das Gleichungssyslem (53) ein System rationaler

Lösungen erhält:

Xl fl Rlfo--?n> 11" fo), • • • Xn fn=«n(?r-?nlr-|„)- (^)
Dabei hat man noch zu achten, dass die f auch primitive Grössen des

Körpers ûfo--çn) sind, d. h., dass sich auch die Ql--Qn umgekehrt
durch die f. • • f ausdrücken lassen.i n

In jeder der Gleichungen (53) muss ferner ein Faklor
verschwinden, also für jedes k gellen:

e'kfofo) Rkfo-fo) (k l--n) (55)

wo q'k irgend eine der Konjugierten von pk oder çk selbst vorstellen
soll. Sind nun noch ßfo), ii (q2), • • ii(Qn) lauter Galois'sche Körper,
die mit ihren conjugierten Körpern zusammenfallen, so folgt aus (55),
dass auch çk(ffofn) und somit auch fyfofo) sich rational durch

q1- • ¦ Qn resp. f - - - f darstellen lassen, d.h. die Lösungen ft-"f
sind körpertreue Funktionen.

Statt der n Funklionen çx- •• on kann man auch eine einzige
primitive Grösse q des Körpers ì2(q1-• - Qn) einführen.

Hat man so ein körperlreues Funktionensystem gefunden, so

kann man sich die Ilerierten verschiedener Ordnung durch bloss

rationale Rechnung successive darstellen. Damit bleibt allerdings die

Schwierigkeit, die allgemeine Iteralfunktion zu finden, noch dieselbe,
wie für die rationalen Funktionen. Indes ist die Lösung des obigen
Problems auch so schon wichtig, zumal sie einer interessanten

Anwendung auf die Zahlentheorie fähig ist.

Ist nämlich F(x, xv xj eine rationale Form der Variabein

x, xt- • • xn mit ganzzahligen Koeffizienten, so stellt die Zahlenlheorie
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die Aufgabe, solche rationale Werte der x, x^v • - \ zu bestimmen,
welche der Gleichung

F 0

Genüge thun.

Angenommen nun, wir kennten ein Lösungssyslem x a,

x1 a1, • • • xn an, so liefert das folgende Verfahren ein Mittel, um

etwaige weitere Lösungen zu finden.
Lösen wir die Gleichung F 0 nach einer der Variablen, z. B.

nach x auf, so erhalten wir
x o(xr x2, - - - xn),

wo q algebraisch isl. Nun suchen wir, wenn dies überhaupt möglich
ist, ein körpertreues System fo-fo zu ii(o). Setzen wir alsdann

xt=fo Ki(!r--!„= efo---ln))
(56)

X„=fn-Knfo--fo, (?(l,--fo>)-
so gilt auch wegen der Körpertreue der fL ¦ ¦ ¦ fn

x <?fo-fo) K(fo--ln, ?(li-••!„))•
Für |1 a1, i'2= a2, £n an geht dann ç(ix- • • in) in eine

rationale Zahl a über, x, x,, • • • \n werden daher ebenfalls rational
und stellen ein neues Lösungssyslem vor. llerieren wir successive

das System fo-fo), so erhalten wir in den Ilerierten beliebiger
Ordnung

x« j'' (f • - f xf} J''(f, - - - f - - - - xW jW(t • • - fl 1 v 1 n/, 2 2^1 n" n n v 1 n'

verbunden mit x q(ì[, J2, • • • Jn) neue rationale Lösungssysleme,

sobald nach der Iteration i a, i"t a1, • • • |n an gesetzt wird.

Die so erhaltenen Lösungen brauchen nicht alle von einander
verschieden zu sein. Sobald das System (fx- • • fn) für die speziellen
Werte £. a1, • • • i"n an cyclisch wird, wiederholen sich von einer
gewissen Ordnung an die Lösungen wieder.

Ist also ein einziges Lösungssystem bekannt, so liefert uns die

Iteration gewisser körpertreuer Funktionen eine endliche bis unendliche

Anzahl neuer.

Diese Methode ist die Verallgemeinerung des bei der Pell'schen

Gleichung längst bekannten Verfahrens.

Beispiel einer körperlreuen Funktion ist
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f_t (i4- ei2+1)+4 (i ^gn/TEgj.-' __ i+ï2
v/rZfSi 4ja(l-i2)-fo-6i2+l)\/i-i2-

Von nicht geringerem Interesse als die körpertreuen Funklionen
ist eine andere nah verwandte Klasse.

Die körpertreuen Funklionen sind dadurch charakterisiert, dass

ihre Iterierlen sämtlich dem gleichen Körper ß(f • • • f ìì(q)
angehören. Lassen wir diese Bedingung fallen, nehmen also an, dass

die Funklionen fo • • • fn) und ihre Ilerierten J2, J3, etc. der Reihe
nach den verschiedenen Körpern ßfo), ßfo), i2fo).. angehören,
so kann der Fall eintreten, dass diese Körper wenigstens alle den

gleichen Grad v besitzen. Genügt also etwa fyi", • • • i"J einer rationalen

Gleichung vom Grade vk

<k + A1fk'k"1+A2f;k"+....AJ,k=o,
worin Ax... A,, rationale Funklionen der i vorstellen, so erfüllt dann

ihre erste Iterierle ^(^...y eine analoge Gleichung vom selben

Grade mit Koeffizienten, die rational aus den Grössen A, A„ zu-1 'k
sammengeselzt sind. Dasselbe gilt von den höheren Ilerierten. Das

Problem der Iteration von (ft... fn) kann als gelöst betrachtet werden,

wenn die Koeffizienten der Gleichungen für Jx(f1... f allgemein
bestimmt sind, was auf die Iteration eines bloss rationalen n-Systems
herausläuft.

Solche Funktionen f1. fn, deren Iterierle sämtlich Körpern vom

gleichen Grad angehören, heisse ich «gradtreu».

Beispiel einer solchen gradtreuen Funklion ist

f i /i2-a2--2a\/ì — i'2 ff i /i2—4a2— 4a\/l-£2.

Die gradlreuen und körpertreuen Funklionen haben beide die

Eigenschaft, dass der Grad der in ihnen vorkommenden Irrationalität
bei der Ileralion erhalten bleibt, oder dass die rationalen, irreduciblen
Gleichungen, denen die verschiedenen Iterierten Jx (ft. fj <p (x)
für ganzzahlige x genügen

Rofo • • • ij^fo+vii -.. i^vr1^)+• • • • Bnfo-. • in)w= o

für alle diese Werte von x denselben Grad besitzen in Bezug auf ^k(x).
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Indessen wird der Grad der ganzen rationalen Funktionen von i^ i'n

im allgemeinen mit wachsendem x rasch zunehmen, wodurch der

lleralion praktisch bald eine Grenze gesteckt wird.

Nun enthaften aber beide Klassen noch eine unendliche Anzahl

algebraischer Funktionen, bei deren lleralion selbst die Funklionen
R (|x iy(x) in Bezug auf alle ç denselben Grad behalten. Diese

Funktionen fr..f unterscheiden sich daher von ihren Ilerierten nur
durch die wechselnden Werte der in ihnen vorkommenden Konstanten,
d. h. die Form der Funktionen bleibt bei der Iteration erhalten.

Solche Funklionen nenne ich nun «formtreu» und zwar «eigentlich»

oder «uneigentlich», je nachdem sie zugleich körpertreu oder nur
gradirai sind.

Beispiel einer eigentlich formtreuen Funktion ist

ff=5j-f-6\/rf-2i2—8"F ff 12540 \/rf2i2— 8p—46031. j
9 + 32Ì2 " 43681 -f- 28800 Ì2

während die Funklion

f=\/aTF
iineigentlich formtreu ist.

Zu den formtreuen Funktionen gehören auch vor allem die

linearen und isobaren Funktionen, deren leichte Ilerierbarkeit zumeist

auf ihrer Formtreue beruh!. Überhaupt erscheinen die formtreuen
Funktionen gewissermassen als «algebraisch lineare» Funktionen und

sind daher in Bezug auf Iteration als die einfachste Klasse der

algebraischen Funktionen zu betrachten. Dies Irin auch zu Tag in ihrer
nahen Beziehung zu den Funktionen von 2 n Variablen ix- • • in rj^ ¦ ¦ itn,

die wir oben (§ 4) Liganten genannt haben.

Ist nämlich (i'x... in) <-> fo... ijn) ein Liganlensystem, so isl das

iterierte System gleich

{(it... iy r. fo... iin)} « fo... %) - fo... iy ~ fo... ,y2.
Man erhält also die Ilerierten der Liganten, indem man an Stelle

von i]v rj.„ ijn resp. die Ausdrücke

(il • • • in) "l (il • ¦ • Ìn)= (il • • • 'ij n, fo- • ¦ i»)
setzt, d. h. die Liganten sind formtreue Funktionen von |7... S

Wir kommen somit wieder zur Erkenntnis, dass die nächste

Aufgabe der endlichen Iterationsrechnung darin besteht, sämtliche

algebraische Liganten etwa auf Grund der Definition in Salz IX mit
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rein algebraischen Mitteln herzustellen und sodann ihre Iteralfunktionen
zu untersuchen. In der That sind diese letzteren Funklionen (und
die aus ihnen zusammengesetzten) die einzigen Trilofunktionen, die
bisher erhalten worden sind, und es isl das grosse Abel'sche Theorem
in seiner ursprünglichen Form nichts anderes, als die dualistische

Behandlung und teilweise Lösung des soeben aufgestellten Problems.

Zum Schluss mag noch eine allgemeine Bemerkung folgen. Wir
verslanden in dieser Arbeit unter Iterieren durchweg, dass eine Funklion
oder ein Funktionensystem unverändert und fortgesetzt in sich selbst

substituiert wird. Wir können nun aber den Begriff des Iterierens
dadurch erweitern, dass wir die Funklionen bei jeder Substitution
etwas abändern. Isl z. B. f(£, a) eine Funklion von i mit einem
Parameter a, so bilden wir die Reihe

f(Ì, aA, f(Ì,«2), f(Ì, a3), f(i, «n),

und substituieren das zweite Glied in das erste, das dritte in das

zweite u. s. f. Wir erhalten so einen Ausdruck, den ich eine
Funktionenkette heisse. Unterliegen die Grössen an einem bekannten
Gesetz, bilden sie z. B. eine arithmetische Reihe, so kann man nach der
Funktion von n fragen, welche diese Kette allgemein als Funklion
ihrer Gliederzahl darstellt. Eine solche «Ueralfunktion» isl z. B. die
Fakultät (a, -f-1)" nach Crelles Bezeichnung.

Diese «erweiterte Iterationsrechnung» lässt sich formal zum Teil

ganz ähnlich behandeln wie die gewöhnliche, spielt indes keine solche

Rolle. Übrigens kann sie ganz auf die letztere zurückgeführt werden,
so dass keine neuen Funktionen dadurch zustande kommen. Sie isl
hier nur der Vollständigkeit wegen erwähnt worden, und weil es oft
nützlich ist, gewisse Probleme unter diesem Gesichtspunkt zu betrachten.

-wv^suvv—
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