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Er zeigt, dass der Spezialwert einer geraden Ableitung der
Cotangente eines Argumentes, multipliziert mit dem Argument selbst,
sich durch eine Bernoullische Zahl wie folgt ausdrücken lässt

2m i \ 2m
Dx |"«(),8xU--2 Bm.

Ebenso lässt sich der Nullwert der geraden Ableitungen der

trig. Tangente durch eine Bernoullische Zahl oder durch eine Bernoullische
1 >

Funktion vom Argument — ausdrücken, so dass ist
di

,2m(, I 2m-! (22m-l)
Dx Igx =2 ì ^Bm.x I )x=o m

Schliesslich ist auch der Nullwert der geraden Ableitung der
Sekante durch eine Bernoullische Funktion darstellbar, indem wird

2m f Ì m+1 24m+2 /1 \

§ 13. Die Bernoullische Funktion in bestimmten Integralen.
Ausser den einfachen Integralwerten in § 8 dieses Abschnittes

gibt Schlömilch weder in seinem Compendium, noch in* der erwähnten
Abhandlung in Band I der Zeitschrift für Mathematik und Physik
andere Integralausdrücke mit Bernoullischen Funktionen, abgesehen

von der Bernoullischen Funktion, welche der Bestausdruck bei der

Summierung der allgemeinen Differenzenreihe enthält, und dem Rest-

gliede der Maclaurinschen Summenformel, das unter dem Integralzeichen

ebenfalls eine Bernoullische Funktion aufweist.30) Auch bei

Worpitzky finden sich keine Integralformeln der Bernoullischen

Funktion, doch lassen sich den Raabeschen Formen entsprechende.
Ausdrücke mit Leichtigkeit aufstellen.

ill. Die Bernoullische Funktion nach L. Schläfli,

§ 14. Herleitung der Definition«

Schläfli geht aus von der Summe

Sm=lm-f-2m+3m + 4m-f- ....f (,_!)».
gibt er dem m die Werte 0, 1, 2, m, so erhält er (m-f 1)
Summen S0, Si, S2, Sm. Diese multiplizieren wir der Reihe

Berp. Mitteil. 1900. No_ U82
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12 m

nach mit y°. ^, |y -j^-, so folgt

-0f i + i + i + + i-

_hj__-_jL_ + Ji_ ^1l_ i i [x-!]y
1! 1! n 1! ^ 1! ^ r 1!

S2y2 _y*_ (2y)_a (3yf [U-Dy]'
2! 2! "*" 2! "• 2! "•" •" 2!

SmT r__ (2jT (3jT ;.. [n-Dy]"
m! ml "*" m! ' ml ^" m!

Addieren wir die senkrecht untereinanderstehenden Kolonnen, so

erhalten wir, wenn bis ins Unendliche ausgedehnt wird,
m=oo

'^ Sm>' _r _2y _3y _(*-*> y exy—1
l-f-e+e '+e '-f -f-e

'

m=0 m! ey-l
Wir denken uns die Gleichung mit y multipliziert und dann

zerrissen; so erhalten wir eine Beziehung, aus welcher wir die
Bernoullischen Zahlen ebenso leicht herleiten können wie die Bernoullische

Funktion. Wir definieren daher
m=oo

2Smvm+1^ yexy y
m! ey-l ey-l K)

m=0
als die Fundamentalgleichung der Bernoullischen Zahlen und Bernoullischen

Funktionen.

Der erste Bruch für sich betrachtet führt auf die Bernoullische
Funktion, während der zweite auf die Bernoullischen Zahlen leitet.

Wir nehmen deshalb an, es sei

n=oo
vexy X^T-T=2^x)yn und (2)

definieren #(0, x) Konstante 1 und %(n, x) als nte Bernoullische
Funktion. Die Koeffizienten der Potenzen von y sind also die
Bernoullischen Funktionen, und wir wollen für die n** Bernoullische Funktion
/(n,x) einen Ausdruck suchen. Es wird
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ih=7heH1+Ciy+C2y2+ +cy+ }x

L.xy.xV, x-y-* \
11+TT+1T+ + Ü=X)T + ••••}•

Der allgemeine Term, welcher yD liefert, lautet

„ r m3I) W*~X
Koeffizient von y [y j (n-;)!

ü.=oo

Daher wird ye 2qx'
n-A

X)\
JU=0

^

Diese Gleichung stellt denselben Werl dar wie Beziehung (2); durch

Vergleichung beider folgt als Wert für %(n, x)
A=oo i^=n

CjX c0x ctx ^^ C^X

^0 (n^j! "ST + (ïï=ï)! +-g (rT=I)!

Bei der letzten Summe ist ersichtlich, wie auch schon früher, dass

infolge der Fakultät im Nenner X nur bis X n gehen darf.

Aus der Theorie der Bernoullischen Zahlen ist bekannt, dass bei

y
Entwicklung von —~— folgende Koeffizienten c auftreten:

ey—1 *¦

l „ ..*-» Bi
c0=l; c1== — -5-; cai_1=0; cai=(—1)2 ' ^1 ' "2A v *' (2À)!

daher wird, wenn wir noch für X den Wert (2X) setzen,

*= —k
2

1 x"-1 <^\ i-i B
\ X 1 X

1 "V, i^"1 i n-2jl
X

n! 2 (n—1)! '
«^J ' (2i)! (n—2A)1

Da aber .„,., ^tt-; =¦(—), so definieren wir die «wfe
(2A)! (n—2A.)! \2x/

Bernoullische Funktion» durch

2

.-ai
(3)

Wir können die obere Grenze in der Summe weglassen, wenn

wir bedenken, dass für X — der Ausdruck " 1, ebenso(:)-¦
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(«+,Hx° — 1 wird und für ein grösseres X zufolge von I 1 0, wenn

(i positiv, die Summe stets zu Null wird; die Reihe bricht also von selbst
ab. Der Hauplunlerschied dieser Definition gegenüber den beiden ersten
ist der, dass auf der rechten Seite auch Terme mit x°, also solche, die

x gar nicht mehr enthalten, vorkommen dürfen, was diese Definition

viel allgemeiner macht. Auch der vorgesetzte Faktor — leistet gute

Dienste, da er das Konvergenzgebiet der Funktion vergrössert.82) Die

kürzere Schreibweise durch Einführung der Summenformel könnte bei

den übrigen Definitionen auch angewendet.werden.

§ 15. Die Derivierten dieser Funktion.
A. Einfache Differentialquotienten.

Wir wollen vorerst die gerade und ungerade Bernoullische
Funktion trennen. Ist n gerade, so wird für

1. n gerade — 2m.

4- %(2 m, x) -J_ 2 m x »-' - ^2m-1) x2m-2
Sx (2 m)! 2

i=m

+2 / ia-l/2m\t, ,n n ,s 2I11-2A-1
(—D 2k) Bi(2m-2;)x

(2 m—1)

>l=l
1 | 2 m-1 2 m—1 2m-2

X X

f>U=m
U=ra—1

+2(-
i=i

,i-i /2 m—1 \ o ra_2;._i
¦1} { 2x Jv

jl X(2m,x) x(2m—1, x).

2. n ungerade (2 m -j-i). Dann ist

S-„19 m-l_1 v\
'

r9m_Ll\T-2mx(2m+l,x) (^~IF!{(2m+l)x

(2m+l)J2m_x2^2(-l)A-1(2™|1)B,(2m+l-2.)x
2 m—2/.
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1
x2m-

i=m

i=l J
(2 m)!

^Z(2m+l,x) x(2m,x).

Wir haben beide Funktionen getrennt betrachtet wegen der obern

Grenze; wir hätten aber ebenso gut direkt von (3) ausgehen können
und dann erhalten

^-z(n, x) z(n—1, x). (4)

Die Ableitung einer Bernoullischen Funktion wird gefunden,

indem man den Exponenten um die Einheit vermindert.

B. Die wiederholten Differentialquotienten.

Gestützt auf (4) werden

D*jc(n, x) Dz(n-1, x) z(n-2, x).

ü3x(n,x)- x(n-3,x).

l>;x(n,x)= x(n-A,x). (5)

Die wiederholte Ableitung einer Bernoullischen Funktion wird
gefunden, indem man den Exponenten um die Zahl, welche die Anzahl
der Ableitungen angibt, vermindert.

Wir finden hier den ersten grossen Vorteil dieser Funktion
gegenüber den zwei frühem Definitionen; es treten keine Bernoullischen

Zahlen zu den Ableitungen; die Definition ist demnach

allgemeiner und liefert einfachere Besnltate.

C. Einfache Integralformen.

Da die Differentialformeln sich einfacher gestalten, so thun dies
auch die Integralformeln. Auch hier können wir vom allgemeinen
Fall ausgehen und es resultiert

I x(n—l,x)dx {.z(n,x)
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Da, wie wir später sehen werden, x(2m5 0) (—l)m~~l m und
u ili

x(2m-f-l, 0) 0, so entstehen die beiden Beziehungen

rz(2m-l, x) dx Z(2m, x) -f (- l)m -^- und (6)

J x(2m,x)dx ^(2m-f-l,x). (7)
o

Durch Integration wird somit der Exponent um die Einheit erhöht.
Das bestimmte Integral zwischen den Grenzen 0 und x einer Bernoullischen

Funktion ist wieder eine Bernoullische Funktion mit um die
Einheit erhöhtem Exponenten und + einer Bernoullischen Zahl für
die ungerade Bernoullische Funktion.

Wir haben hier insofern eine Vereinfachung, als das Argument
bei der Bernoullischen Zahl fehlt, das bei Raabe und Schlömilch noch
hinzutritt.

Für die obere Grenze x — wird nach (7)
d'

und nach (6)
i

o

2 < 1

z(2m,x)dx.-=x 2m-fl,— =02

Z(2m-l,x)dx-^2m,-|j+(_l) (2m)!

Setzen wir für x(2m, — ] den später zu beweisenden Werl88) ein,

i
so wird f z(2m-l,x)dx=(-iri2u7)T--^5=r.

§ 16. Die Bernoullische Funktion mit inversem Argument.

Ersetzen wir in (2) den Wert x durch (1—x), so wird

n—oo
y -a-x,ye^ n 'V^—- >x(n, l-x)yn, d.h..

5 -1 ä
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3(l-x)yyev
X(n, l-x) [yn] in

e" —i
Nun wird

n oo ii=°°
_q__==(_,) -^_=2 *<"> x)(-y)n=^ x(». *)A-i>"

e ] el n=0 n=0
somit ist z(n,l-x)==(—l)"z(n,'x). (8)

Daraus folgt für x 0 unter Anwendung der Definitionsgleichung (3),
wenn n — gerade — 2 m

X(2m,0)=,x(2m,l) (-l)m^ -^-, (9)

dagegen für w ungerade (2m+i), wenn x auch =- — •

»(201+1, 0) W 2m + l, y x(2m+l, 1) 0, d.h., (10)

alle Bernoullischen Funktionen ungerader Ordnung verschwinden für
1

die Argumente 0. -^- und 1.

Wir fragen uns nun, was wird aus x(2ui. ~ - )• Um diesen
" \ 2 /

Wert ausmilteln zu können, müssen wir vorerst über die Vervielfachung

des Argumentes aufgeklärt sein.

Wir denken uns die x-Funktionen y(n.x), yln, x+ -.— )>

X n, x + — x n, x -| r— aufgefasst als Koeffizienten

von yn in den dazu gehörenden Entwicklungen; dann addieren wir
diese; die Summe T wird, wenn wir dieselbe als geometrische
Progression summieren,

1 <'y-l xy yex-v
T - — — - y e - j—, also

e i ek-1 ek—1

z(n,x) + x(n,x+|ji+... + z(n,x + -^=i)=[,-]in--^-.
e t x

*y i /y\ kx(T) n==0°
ve k (v)e v ' ^C1 / v

Rs ist. aber -1 —VJE> k ^ z (n> k x) /_L
3W 'ek—1 eVk^—l I1==0
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[f} ~rx(«,kx).
Daraus ergibt sich

z(n, x) + x|n,x + -i-j +x(n.x + T)

+ + x(n,x + '^™) -?irx(n,kx) (11)

als wichtige Formel, die über jede Vervielfachung des Argumentes
k j

Auskunft gibt. Infolge von —r— bricht die Reihe links von selbst

ab. Die beiden entsprechenden Formeln der frühem zwei Definitionen
lieferten stets zwei getrennte Werte, je nachdem die Bernoullische
Funktion gerade oder ungerade war. Wir ersehen auch daraus, dass

die so definierte Bernoullische Funktion die allgemeinere ist; zudem

ist diese Herleitung vorliegender Formel wesentlich einfacher als bei
Raabe und Schlömilch.

Aus derselben lassen sich verschiedene Spezialwerte berechnen.

/. Verdopplung des Argumentes, k 2.

x(n,x) + x/n,x + -iW--L- Z(n,2x).

Ersetzen wir in (8) die Grösse x durch! x + -5-.) und setzen diesen

Wert in die letzte Formel ein, so wird

X(n, x) + (-1)" x (n, -1 — x \ —L- x(n, 2x). («)

Ist darin x 0 und n —ungerade —(2m-\-l), so wird

x(2m +1,-~j 0; dagegen wird für

x — O und n — gerade — 2m, wenn für % (3ni, 0) der bekannte Wert
gesetzt wird,

„(,-+) .(-tr-Sp^-.-^ a»
//. Verdreifachung des Argumentes, k 3.

X(n,x) + x(n,x +yj+z(n,x+y) -^x(n,3x). (ft)

Unler Anwendung von (8) wird für x — O
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X(n, 0) + x(n, y) + (-1)" x (n, y) - -^ x(n, 0);

w ungerade liefert die identische Gleichung 0 0; dagegen ist
für n gerade, wenn für x(2m,0) der gefundene Wert gesetzt wird,

/ 1 \ >* 1 32m_1—1 B„
x(2m,yj (-l) y.__s_._5r (13)

Aus Gleichung (a) resultiert für x —- und n —2m

*(¦-¦ t) -*""{»("-'-r) + »(¦-¦'¦s-)r w

Einen Werl für W2m,--) erhalten wir, wenn wir in (/3) für

1
x =y und n 2m setzen; es ist dann

x(2m,|)+x(2m,|y+x(2m4)=-^ÌrrX(2m,|).

Daraus folgt, wenn für xl2m,yj der früher gefundene Wert (12)

gesetzt wird,

fo 1\ r i.m (22m-1-l)(l-32-1) Bm

x(2m,yj=(-l) y gfch L.__. (14)

Setzen wir die gefundenen Formeln (13) und (14) in (y) ein,

t, was :

hervorgeht,

2
so ist, was zwar einfacher aus Formel (8) für x — und n 2 m

o

2\ » 1 -ò2m-l-l Bn
42m,yJ (-l) _.n?=3-._^r. (15)

Wir hätten schon dort die zwei Sätze aufstellen können:

1. Jede zwei geraden Bernoullischen Funktionen, deren Argumente
sich zu 1 ergänzen, sind nach absolutem Wert und nach

Vorzeichen einander gleich.

2. Jede zwei ungeraden Bernoullischen Funktionen, deren Argu¬
mente sich zu 1 ergänzen, sind wohl dem Vorzeichen nach

entgegengesetzt, dem absoluten Werte nach aber gleich.

Ber». Mitteil. 1900. No. 1483.
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77/. Vierfaches Argument, k 4.

X(n, x) + x U, x + — ¦ j [- x hi, x + y \ + x n. x + y
— -ï=rz(n,4x).

4

Für x 0 wird unter Anwendung von Formel (8) und Einsetzen der

Werte für x(2m, 0) und x(2m, — für die gerade Bernoullische

Funktion

X (W 4-Ì 7 f2 m,-^ (— 1)"
2 "' ~* 3l—. (16)

XV 4/ /v
V 4/ 2 (2m)!

7

Auf ähnliche Weise lassen sich /(2in, \+ X\2m, --

x(2m, -) und andere /-Funktionen berechnen; die Ausdrücke

werden aber ziemlich kompliziert.

§ 17. Die Bernoullische Funktion mit negativem Argument.
Wir können auf zwei getrennten Wegen das Verhalten der

Bernoullischen Funktion mit negativem Argument untersuchen. Vorerst
gehen wir von der Definilionsformel (3) aus, müssen aber dabei die

geraden und ungeraden Funktionen getrennt betrachten.

1. Die gerade Bernoullische Funktion. Wir ersetzen in (3) n
durch 2 m und x durch (—x); dann wird

,n s
1 2m 2 111 2in-l

X(2,n,-x)=(2ni)1|x +-- -x

„2 m—212<-«'-'Gr)v*
;.=i

2mx2m~1
Durch Addition und Subtraktion desselben Ausdruckes ~^——-—

(2 m)!
und passendes Zusammennehmen wird

2 m—1

X(2m,—x) x(2m,x)+ ^2m—\)\'
2. Die ungerade Bernoullische Funktion. Durch analoges

Verfahren wird

r-, i a -,
1 2m fl 2U1+1 2m

Z(20'"l-1'-X}= (2uTTÜ! r * 2- - X
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l=m

+2'
Hier addieren und subtrahieren wir • '—

; nun ist
(2m+l)!

X(2m+1, -x) - x(2m+l, x) - -—^y
Eine allgemeine Formel für die Bernoullische Funktion mit negativem

Argument finden wir aus folgender Betrachtung:

Ersetzen wir in Formel (2) den Wert x durch (1+x), so ist

> X(n,l+x)yn -^ («)*¦ e'—1

(1+x) y
ye
ey-l yexy+-^-=ye"+2zCn,x)

e —1 ¦"¦n=0
Durch Reihenentwicklung von exy folgt

n=oo „ n= ooU+*)y
y e

ii—l n=0
Vergleichen wir die Koeffizienten von y11 der Gleichungen (a)

und (ß), so erhalten wir

X(n,l+x)= (-£yy+Z(«,x). (17)

Ersetzen wir darin x durch (—x), so wird unler Berücksichtigung von (8)

X(n,-x) (-l)n{^y- +x(n,x)|. (18)

Diese Formel geht für n 2m und n (2m+l) in die eingangs dieses

Paragraphen hergeleiteten über. Sie dient zur Berechnung der
Bernoullischen Funktion mit negativem Argument. Auch hier zeigt sich

wieder die Vereinfachung, da Raabe und Schlömilch je zwei

entsprechende Formeln nötig haben.

Um die /-Funktion auch ausserhalb des Intervalles 0 bis 1 zu

untersuchen, dient eine Formel, welche wir erhalten, indem wir in
(17) für (x+1) der Reihe nach setzen (x+1), (x+2) (x+k)
und sämtliche so entstandenen Gleichungen addieren; es wird dann
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1

X(n, k+x) x (n, x) + ^+^y-{ x""1 + (l+x)n-1

+ (2+x)"-1 + + (k-l+x)"-1}. (19)

Eine weitere Formel zur Untersuchung der Bernoullischen Funktion
mit negativem Argument, die uns gute Dienste zur numerischen
Ausrechnung und Kontrolle der Werte leistet, finden wir, wenn wir in

(8) für x den Wert

x(n,2 -x) (-l)»x («,{-1

setzen; dieselbe geht dann über in

(20)

als Maximal- oderDiese Formel charakterisiert uns den Punkt x
a

Minimalstelle.

§ 18. Diskussion dieser Definition.

Setzen wir in der Definitionsformel (3) der Reihe nach für n
die Werte 1, 2, 3, so nehmen die acht ersten Funktionen
dieser Definition folgende Werle an, die nacheinander diskutiert
werden sollen:

X(l,x)

X(2,x)

X(3,x)

X(4,x)

X(5,x) -120

*<M)-w-

X2 X 1

2 2 12

X3 X2 X

6 4 12 '

X4 X3 X2

24 12 24

X5 X4 X3

48

x5

X(7,x)

K(8,x)

x'
5040

x8

240
x6

1440
v7

72

288
vi

1

720

x

720

x2

1440
x3

30240
x

40320 10080 +
1440

x6

4320
V*

30240

8640 17280

60480 1.209600
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Wir gelangen hier zu ähnlichen Resultaten wie früher; da aber
auf der rechten Seite auch Terme vorkommen dürfen, die von der
Variabelen befreit sind, so ist leicht ersichtlich, dass nur die ungeraden
Bernoullischen Funktionen für die Werte x 0 und x 1 erfüllt sind;
das Glied der geraden Bernoullischen Funktion, das die Veränderliche
nicht enthält, gibt für das Argument 0 und 1 sofort den Wert der

ganzen Funktion an.

X (1, x) x s- sle"t eme Gerade dar, die aber für diese
d

Definition nicht mehr durch den Ursprung geht.

x(2,x) ist die Gleichung einer Parabel; die Funktion besitzt ein

Minimum bei x — vom Werte % 12,—-) — —•

X (3, x) besitzt im Intervall 0 bis 1 sowohl ein Maximum als

ein Minimum, und zwar liegt ersleres bei x=— —^3, das letztere
d O

dagegen bei x==-— + —\/3; zudem ist x 3, ~^-) 0; diese Kurve,

analytisch gesprochen, ist eine Art Parabel hohem Grades.

i
Die Funktion % (4, x) besitzt bei x -^- ein Maximum vom Werte

7
; zudem ergeben sich zwei Minima bei x 0 und x 1, so

5760

dass jf(4, 0) x(4, 1)
720

Was x(5, x) anbetrifft, so ist diese Funktion als ungerade

Bernoullische Funktion erfüllt für x 0, x —- und x 1 ; sie weist
d

ein Maximum auf zwischen — und 1, wie auch ein Minimum zwischen
di

0 und y
Alle diese hohem Bernoullischen Funktionen stellen Parabeln

höherer Ordnung dar.

Wir erhalten somit folgende Bilder des Verlaufes der Bernoul-
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lischen Funktion zwischen den Grenzen 0 und 1; im wesentlichen
stimmen sie mit den bei Schlömilch dargestellten überein.

Figur 1.

Figur 2.

Die Funktionen sind charakterisiert durch34)

Figur 1, wenn n 2, 6, 10, (4k-2),
» 2, » n 4, 8, 12, 4k,
» 3, n 3, 7, 11, (4k-l),
» 4, • n 5, 9, 13, (4k 1-1).

Figur 3. Figur 4.

§ 19. Entwicklung der Bernoullischen Funktion in Reihen.

Wir könnten hier analog verfahren wie Schlömilch35); zudem
würden wir noch viel rascher ans Ziel kommen, da das Integral, welches
bei dieser Herleitung auszuwerten ist, leicht dargestellt werden kann.36)
Schläfli geht aber ganz auf seine Art und Weise vor; er untersucht

vorerst, was wird aus

a a a'
X-^~"l + P~ + + " +

n=i

a

Multiplizieren wir mit x so wird

n=oo l=oo

24-M-2£ («)
n=l A 1=1

Laut Theorie der Gammafunktion gilt für ein beliebiges a die

Beziehung37) /x~a(1—xf-1 dx ¦ 2 i sin a/r

-i

r(i-a)rrb)
r(b—a+l) '

substituieren wir für a den Wert (1—n) und setzen b 1, so wird
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1 1 C »-1 A— 7^—- I x d:
n 2i sin n itj iß)

Diese Formel gibt uns ein Mittel an die Hand, obige Summe durch

ein bestimmtes Integral auszudrücken. Ist t die lntegrationsvariabele,
so wird nach (ß)

1
—__ fl«-*-1 dt ¦

{~1)k fl«-*-1 dt.
(a—X) 2isin(a—X)nJ 2i sin a rt J

Die Summe geht dann über in
1—oo l=oo

2 7^=5^— Cur* 2 (-D" (V) <"
*mJ X—a 2isina7r / ^J v \ t /
1=1 J 1=1

a C a x dl
2i sin a n) t+x t

Der gefährliche Punkt des Integrales ist t — — x; für diesen

wird der Nenner zu Null, so dass der Werl des Integrales oo ist,
wir müssen daher die Schlinge um (— x) gehen lassen, diesen Pol

also ausschliessen, und wir betrachten

l=oo x
^C ßX_ a Ca x d t
Zi X^a ~~ 2isin«7r J t (t+xf ' ("
1=1 ^ '

1ÌS)
Dieses Integral ist aber kein Schlingenintegral mehr; denn es nimmt
nach einem ganzen Umlauf seinen ursprünglichen Wert an. Wir
dürfen dann auch später, ohne den Wert des Integrales zu verändern,
eine additive Konstante beifügen, welche wir so auswählen, dass sie

für unsere Zwecke passt.
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Durch Substitution von l" e" ^8 wird

2ina(^«t-+)r)
al al 1 2Ì7rae V2i" V

2i sin an ' « * -ian 2\7t e21"71 1

n=oo

-Tt2/(».^+i)(^«)"-">
Sodisi [«-] -L Z(n,% + |) (2i.,-.

Deshalb wird, wenn wir die Gleichungen («) und (f) berücksichtigen,.
l=oo

2x* (2i.r)n H Logt l\

^ ^ /Vn' 2i*r /jt(l+x)' W
wobei die zugefügte Konstante den Wert hat

(2i,r)D f / Logx\ xdt
K - ~ "2l^J X vn' ~2Ï^ l(l+x)

-1<5)
Wir wollen nun darnach trachten, x auf die Peripherie des Einheilskreises

zu bringen; zu diesem Zweck müssen wir uns aber zuerst
über Logt und Log(—x) ins Klare setzen; vor dem Nullpunkt wollen wir
uns hüten, weil in demselben eine starke Transcendenz vorbanden ist.

Log (—x) — i 7t (—q) + 2 i 7i Q ; © Konstante, q 0,
sobald (—x) auf der Peripherie des Einheitskreises liegt.

Wenn t e wird Log t — —\ 7t-f-2\ ntp.
tp Bogen von 0 bis 1; wenn t x, soll tp — 0 werden. Dann sind

Logici.(,-i-); ^ + |; ^Konstante^;
dt

—— — 2ift<itp.
Setzen wir diese Werte ein, so wird aus (6)

l=oo n

1=1

-i -x,o
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Der Klammerausdruck unter dem Integralzeichen wird dann in
dem Momente zu Null, sobald tp 0 geworden; somit ist

2Ì7T0 2i7T«>
x e ;t — e ;

2i7i© in(f+@)— in{<p—0)_ 2\n<j> i 71 (f+9) + in(f—0)_
G —¦— G G ¦ G j

t I x eÌ*(P+0)-Ì*(?-@)_eÌ7l(p+©)+i<p-©)

-ei7r(?+0)2isin(^-0)^;

y^— y {1+i cotg (tp-9)7t\

Substituieren wir diese Werte ins Integral (e), so erhalten wir
i=°°

2 ^ "^Ì^"J {z(n,?')-x(n,©)}y{l+icotg(p-0)7r}2iyrd^.

Setzen wir jetzt x — e so bewegt sich die Variabele auf
dem Einheitskreis von 0 bis 1, und es wird
1=00 1

2 ^7n— =(2i.r)n j Jz(n,^)-x(n,0)j-|{l+icolg(^-0),r[d^. (M)

1=1 ò

Wegen i11 sollten wir die Fälle für n gerade oder n ungerade

trennen; um dies zu vermeiden, ziehen wir vor, beide Seiten mit
71

(—i) e - zu multiplizieren; dann wird (/.1) zu

2i r1=1

&nf\ jx(n,f)-x(n,9)}Y{l+icolg^-0)7l}d^' (21)

Diese Formel gilt auch für 0 ^>, da dieselbe dafür nicht unstetig
wird. Wegen der Cotangente lässt sich anfangs leicht glauben, das

Integral werde unstetig; doch ist ja im Nenner der Cotangente der

Sinus, der sich aufden Bogen (tp—0) reduzieren lässt. Da die x-Funklionen
algebraische Funktionen nten Grades sind, so geht die Klammer in

tiefster Annäherung über in (yn—©n); somit verhält sich das Integral
Bern. Mitteil. 1900. No. 1484.
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wie — ; ein solcher Ausdruck ist aber endlich und daher auch
tp — 0

das Gesamtintegral für tp — @.

Herausheben der Komponenten.

In obiger Formel (21) sind sowohl reelle als imaginäre Bestandteile

enthalten. Wir wollen nach dem Moivreschen Grundsalz der

Trennung des Reellen vom Imaginären die einzelnen Komponenten
herausnehmen, da wir zerlegen können

*=oo / n"\ l=oo
2? e =2?cos\2An@
1=1 1=1

l=oo

+'2 sin 2X7t9 —— )• (q)

¥>) —x(n,e) °> (")

1=1

A. Die reelle Komponente.
Dieselbe wird

^?cos(2/Ur0-^) (2,,)11 f1}

£ r ^~2"J (^1=1 o

Dieses Integral muss ausgemiltelt werden. Wir wissen, dass durch

Integration der Grad einer Bernoullischen Funktion um die Einheit

steigt; somit wird für n gerade oder ungerade

j x(n,^>)dtp {x(n-\-l,ip)}=0;
ò

denn die ungeraden Bernoullischen Funktionen verschwinden für die

Argumente 0 und 1 und die geraden weisen denselben Wert auf, der
hier das eine Mal mit negativem Vorzeichen genommen werden muss.
Es zeigt sich nur die Ausnahme für n 0; doch müssen wir diesen

Fall, ausschliessen, da sonst links alle Nenner zur Einheit werden.
Ferner ist %(n,0) in Bezug auf tp als Konstante zu betrachten,

also I %(n,&)dip — %(n, ©); daher wird (v)

;(2X„9-¥) (27tf

o

l=oo
COS(

X(n, 0).2
1=1 A
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2 %^ cos(2Â7r© 5-)
Z(n, 0) -—- 2| — —• (22)

Dies ist wieder eine weit allgemeinere Formel als die

entsprechende der frühem Definitionen; aus derselben erhalten wir leicht
die den frühem gleichwertigen Beziehungen; die einzige Bedingung
isl 0<@<1.

Die Formel konvergiert ganz unzweideutig für n 2, 3, 4, ;

für n l müssen wir die Konvergenzfrage noch genauer prüfen; es

wird für n 1

l=oo „ x l=oo
COS I2 (2Â7C0— 2)__N? sin2>Î7C0

1=1 1=1
1

— *x(l,e) -M® 2

Der höchste Werl von sin2À?r© kann nur 1 sein; dann nähert sich
die Summe der Reihe der Slammbrüche, welche divergent ist. Die

Folge davon isl, dass die Werle 0 0 und 0=1 ausgeschlossen
werden müssen. Ist n nahe bei Null, so schreitet der Zähler fort
nach 2/t©, in 9, 6 tt©, Die Summe dieser Ausdrücke wird
aber oo gross; die Konvergenz erscheint daher sehr verdächtig; aber

für 2n&-—ip ist
l=oo 1=°°
¦^ sin X ip _ '^ sin X ip 7t ip_

— .; — Xib r 2 2
1=1 ;.=i 7

Wir setzen X\j.i — (.i\ dann dürfen wir ein sehr kleines tp als Afi
betrachten, so dass isl

l=oo
"V^ sin u n ip
Zi-tT^^T—J-i=i f

f.i /Ì,/; durchläuft die Werlereihe f<, /*+i/>, |U+2 i//, d.h., wenn

ip klein genug gewählt, so geht li von 0 bis oo; somit wird die Summe

(t 00 /»OO
TT

T
Also ist der Ausdruck konvergent, da wir hier einen endlichen Wert

erhallen.

,u=oo »oo
^^ sin u / sin u> d^= --df--H P J P



— 52 —

Wir kehren wieder zu unsrer reellen Komponente (22) zurück
und wollen die Fälle n gerade 2 m und n ungerade (2m+1)
trennen.

Für n 2m wird cos (2 Xn © — m n) (—l)m cos 2^/r®, also

l=oo

2 JS^- (-')"-^io«.* m
1=1

Dies isl eine den Raabeschen Definitionsformeln entsprechende
Beziehung; nur fehlt hier wieder der lästige Zusatz der Bernoullischen Zahl.

Setzen wir darin 0 0 und berücksichtigen den Wert für

x(2m, 0), so wird
l=oo

21 _e _ 1 (2^)2mBm ,„.,
y2m -b2m— 2 •—(än^f—" { ]

1=1
Da x(2m,0) x(2m, 1), so würden wir die nämliche Formel erhallen
für ©=1.

rtFür n (2m + 1) wird cos 2Ì7t& — m n,
et

(—l)m sin 2 X 7t 0 ; dies in (22) gesetzt, gibt
l=oo
"^^ SÌn2l7T0 ,vm-l 1 ._ ,2m+l ,n -, _,. ,ncNZl pm+i— (—!) y(27r) x(2m+l,0). (25)
1=1

Für ©= 0, —, 1 resultiert daraus die identische Gleichung
et

0 0; dieselbe entsteht ebenfalls, wenn wir (23) nach © ableiten.
Differenzieren wir (25) nach 0, so entstellt wieder Formel (23); alles

dies sind Kontrollen der Richtigkeit.

Spezialfälle dieser ungeraden Bernoullischen Funktion sind lösbar
und sehr zu vereinfachen, wenn ein Mittel gefunden würde, um die

ungerade Bernoullische Funktion durch Bernoullische Zahlen oder durch

geeignete bestimmte Integrale auszudrücken; doch slösst man gerade
bei letzterer Aufgabe auf die Summierung von komplizierten

Ausdrücken. So wird z. B. für 8 —- aus Formel (25)

*=C>° TT.

2sinX-2-tfm+l
1=1

(-l)m~14-(2-)2m+1z(2oi+l,4-)'
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l=oo n
•^y sin X -s- iEs wird >, —r—L — L

^2m+l " o2m-fl I r2m+l „2m-)-l

A=°° 1-1
%? (-l/ „"T- ' — ^J (2A,-l)2m+1 2m+1'

somit H2m+1 (-If"1y (2n)2m+1 x (2 m +1, y). (26)

Ähnliche Formeln könnten wir für ©=—-,—,-—,-—, ab-
U O O 1 d

leiten; jedesmal kommen wir auf Funktionen, die den Bernoullischen
Funktionen nahe verwandt sein müssen, da sie ganz ähnlichen Summenformeln

genügen.39)

B. Die imaginäre Komponente.

Zurückgreifend auf Formel (21) und (q) wird, wie leicht einzu-

'^Tsin (2^0 — -^)
sehen ist, ^. — -

1=1

y(27T)nJ {%(n,tp) — %(n,fi))neign(tp—&)dtp. (27)

0

Es ist dies wieder eine ganz allgemeine, sämtliche Fälle einschliessende

Formel.

Für n l wird, da sin(2À7r0 — — cos2^0,
1=00
^1 cos 2 X n ©

-=,r |(x(l, 0)-x(l,f))colg7r(^—©)d^.
— X
1=1 0

Nach längern Umwandlungen, wobei als Inlegrationskonstante
Log 2 genommen ist, wird, wenn 0 als Konstante weggelassen, also

bei verändertem <p ipy

1=00^ COS2À7T©
Za \ Log (2 sin/r ^).
1=1

Es ist auch, wenn (<p — 0) tfL gesetzt, da die Grenzen (— 0) und

2sini2Xn& T)V

1=1
K
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C2 n) — I { X (n, 9x + e) ~ Z (n> ©) }cot8 ^ ?i dfr
— 0

Das Integral rechts bezeichnen wir mit S; es lässt sich zerlegen in

/1-0{X <X 9x + °) — X ("> 0) i cot8 7f fid fi
o

/>+©
— I { X(n, G—9x) — Z(n> e)} cot& 7f f i °>vl'

wenn im zweiten Integral zudem noch tpx durch (— <pA ersetzt wird.

Wir können nun partiell integrieren, indem wir setzen

/colgntp1dtp1 — Log(2sinyr^1).
71

Die finilen Teile der partiellen Integration aus beiden obigen

Integralen der Summe S werden, wie wir uns durch Ausführung der

Integration überzeugen können, zu Null; es bleiben nur die infiniten
Teile, und es wird

^1 sin (2Àn © — -y-)

1=1 K

i i rG
y(2^)ny I Log(2sin,r^1)x(n-l,0-^1)d^1

o

i i rl~9
-y (2 7r)ny I Log(2sin7rç51) x(n—1,^+ <-)) d tpr

t nDa für n (2m + 1) der Wert sin 2 X 7t © — m n —

— cos(2Att©—mVr) —(—l)mcos2Â7c©, so wird
l=oo
2(—l)'"+1cos2X7r©

52m-fl
1=1 l

r>9

(2 7T)2m I Log (2 sin/r ^)x(2m,©—<pl)dtpl
o

i-©
/1—MLog (2 sin n tpA x (2 m, ^+0) d tpv
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Für 0 0 verschwindet das erste Integral, und es ist
1=00

2 w=^i)ra (2 ^2m fLog (2 sin 7t & *(2 m' ^ df-(28)
1=1

k s;

wenn wieder <p als Integrationsvariabele gewählt wird.
Mil Hülfe dieser Definition als Reihenentwicklung lässt sich die

Raabesche Restformel ableiten; dann können wir den Zusammenhang
derselben mit der Riemannschen Reihe nachweisen; diese Beziehungen
sprechen deutlich für die Allgemeinheit dieser Definilion. Alles hier

auszuführen, würde aber den Rahmen vorliegender Arbeit wesentlich

überschreiten.40)

§ 20. Integrale mit Bernoullischen Funktionen.

Schläfli selbst gibt in seinen Vorlesungen keine Integraldarslel-
lungen der Bernoullischen Funktion. Dieselben gestallen sich aber

wesentlich einfacher als die entsprechenden der frühem Definitionen.
Dieser § liesse sich beliebig weit ausdehnen; es taucht eine grosse
Mannigfaltigkeit an Integralen der Bernoullischen Funktion auf. Wir
geben hier nur die zum Vergleich wichtigen. Gute Hülfe bei all diesen

Darstellungen liefern uns die Formeln (23) und (25).

A. Einfache Integrale.

1. Für die gerade Bernoullische Funktion.

Es interessieren uns einige Spezialfälle der Formel (7); setzen

wir darin für die obere Grenze der Reihe nach —, —- und -r-, so
3 4 6

1

n .; v „wird vorerst I % (2 m, x) dx 2J+1— R2m+1, wobei (29)
0

1 1

(2n)-

2m-fl
-1

r>2in+1 + ,2m+l e2iu+1

l=oo

=y 1 L
—J C31—9,Y*m+1 f3;-lVfr{(U-2fm+1 (3X-lfm+1

Die Funktion R2m,1 lässt sich unter Anwendung der Formel

ka r(a) J v '
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aus der Theorie der Gammafunktion41) in ein bestimmtes Integral
verwandeln, so dass wird

/»°°2mJ —x_ — 2x1

R2m+1 -(2lnjrJ |_e-3x -dx» «omit folgt

i
(-iT-^B /»x2m{e-x-e-2x}dx

(2nfm+lr(2m-r-l)J l-e~3x*(2m, x) dx - *' v Vt7 '
• (30)

i

/ï (__i)m-12
jC(2m, x)dx » wobei (31)

H -1 l 7-
X 1

n2m+l -1 „2in4-l T2m+l * o2m+l I -2m+l „2m+l
l=oo

1-1

+ —2u(*i_-(-i/
^ (2A-l)2m+1i

Durch Anwendung derselben Formel (a) wird

H _ 1 / X
_

1 / X

2m+i— r(2m+l)J ex+e_x dX==2r(2m+l)J cof" dx'
ex+e~x 2 7'(2m+l)J col x

o ' o

fT (—l)m_12 / x2m
also x(2m,x)dx v2 / -r^~=rdxJ (2«)2m+1r(2m+l)J ex+e x

J2m
1

(2nfm^r(2mArl)J cöfx

Entsprechend folgt

(-i)-1-1 rv
2m+1^om+l)J rûîx dX' (32)

X(2m,x)dx l-~21^13 G2m+1, wobei (33)F
G2m+1=: 1 +2ni+l l^ tj2m+l ^m-fl c2m+l

l=oo
1-1 / -i \1-1

4-4--- -^ (-ir1 i (-i)T-T ^j (3A_2)2m+i T (3i_j^+i1

Wie früher durch Integrale dargestellt, wird
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1 f x2m{e-x+e-2x}
2m+i— j-(2m+i) J i+e-3x dx' somit

0

1 oo.
fï(2m x)dx - (-Dm"V3 fx2-{e-x+e-2x} dxJ ^2m'x)dx- (2^)2-+1r(2m+l)J l+e-3x ^ (34)

2. Fur die ungerade Bernoullische Funktion.

Hier vereinfachen sich die Werte bedeutend, da wir alle durch
Bernoullische Zahlen ausdrücken können. Gestützt auf (6) werden,

wenn wir wieder der Reihe nach für die obere Grenze ~r-, — und
o 4

— und für die untere Grenze stets 0 setzen, folgende Formeln auf

einfache Weise, durch Einsetzen der von früher her bekannten
Formeln (9), (13), (16) und (14), entstehen

f 3" 1 32m—1 B

Jx(2m-l,x)dx (-iry.^_^.^. (35)
o

i

/1
p4m-l p2m-l 1 ß

X(2m-l,x) dx (-lf JL, -i • öjfr (36)

i
6 1 fi2m-l q2m-l 92m-l 1 ß
X (2 m-1, x) d x (-l)m i- -

b +d T — • A^V,- (37)/A < i v ; 2 6 (2m)!/
B. Integrale mit trig. Funktionen.

Nehmen wir r als posilive ganze Zahl an, so wird nach (25)

I x(2m+l,x)cos 2mxdx
O l=oo

(—\)m-12 f1^ sin2A7TX
- -ö-^rrr- I ZA 2^X1—cos2r7Txdx;

(2nfm+x J J^J x2^Ai
0 1=1

rda aber I sin2^7ix .cos2r?tx dx 0 für alle Werte von X, so folgt

¦»i

x(2m+l,x)cos2r7Txdx 0. (38)f0
Bern. Mitteil. 1900. No. 1485.
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Da wir auf die Auswertung eines analogen Integrales kommen,

wenn wir die gerade Bernoullische Funktion mit sin2r/rxdx
kombinieren, so wird, was auch direkt hätte gezeigt werden können,

X(2m,x)sin2r7rxdx 0. (39)fo
Wir verbinden nun gleichartige Bernoullisclie Funktionen und

trig. Funktionen; es wird

f> (2m, x) cos 2r n x dx

0
_ A=oo

_(:
(2^ lV k=l

i)m_12 rv; cos2?ax
——s I Zx o cos 2 r TT x d x.
2,o J H x2m

rDer Ausdruck I cos 2 7tX x .cos2 r n xdx verschwindet für alle Werte

0

des ganzzahligen ^, mit Ausnahme von A r; dafür wird
»i; cos2 2 r /t x d x —-

et

0

Von der Summation unter dem Integralzeichen bleibt somit nur

Y " ~~J^~ ' daher wird

r (-Dm_i
x(2m,x)cos2ryrxdx= '

¦ (40)
J (2nr)

Die entsprechenden Erläuterungen gelten auch für die ungerade
Bernoullische Funktion verbunden mit sin2r^xdx; also

(2/cr)21
o

Daraus ergibt sich der

Satz : Die Integrale einer Bernoullischen Funktion verbunden mit
einer ungleichartigen trig. Funktion werden zu Null, verbunden mit
einer gleichartigen nehmen sie einen bestimmten Wert an.

Wir könnten auch Integrale mit den trigonometrischen Funktionen
im Nenner untersuchen; doch würden uns diese Untersuchungen zu

weil vom eigentlichen Thema wegführen.

/y(2m+l,x) sin 2rnxdx -± s;2m+1 ¦ (41)
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C. Integrale von Produkten der ^-Funktion.

Wir gehen wieder von den Formeln (23) und (25) aus und

unterscheiden:

1. Beide Bernoullischen Funktionen seien gerade. Dann wird

J= | x(2in,x)x(2n,x)dx
l=oo l=oo

(-l)"»-^^
(2n)2m(2n)p-/" 2 2

Ô' 1=1 1=1

cos2 2 X 7t x
-\2in g2"

dx.

Bekanntlich sind

r \ n i n iI cos2 2Â 7TX dx — ;
I cos22 Xnx dx —- ;

I cos22A?rxdx —¦

0 0 0

Somit resultieren, da die Doppelsumme verschwindet, wenn wir für

l=oo

Zi 2m+2n S2m+2n den Wert in Bernoullischen Zahlen setzen,

1=1

die drei Formeln

Io
/o
/

X(2m,x)x(2n,x)dx
\in-+n(-l)"1^" Bm+n

(2m+2n)!

i^ï 1 I 1 \m+n R
x(2m,x)x(2n,x)dx=+.( l) *»+»

4 (2m+2n)!

(42)

Also folgt I F(x)dx 2 I F(x)dx 4 I F(x)dx, (43)

0 0 0

wobei F(x) x(2m, x)x(2n, x) ist.

Lassen wir m n werden, so verändert sich (43) nicht, nur

dass dann F(x) { x(2m, x) }2 wird, während die Formeln (42)
übergehen in
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J {x(2m,x)}2dx:

ß X(2m, x)J dx

B2m

(4m)! '

1 B2m

/(x(2m,x)}dx

2 (4 m)!

1 132m

(44)

4 (4 m)!

2. Beide Funktionen seien ungerade. Es wird

j x(2m+l,x)x(2n+l,x)dx
l=ool=oo

(2nfm+1(2n)
Es sind bekanntlich

i

2

(_!)¦»-! 2 (—If'1 2 f1 'V "V _sin

n+1(2«)2n+1 J -H fH ^2m

22Arrx
m+1 j 2 n+l

sin22Xnxdx ^r; I sin22-Î7Txdx:

5' i=i i=i
i
sins2Ä7rxdx —-

4 ' J S
o

hP
l=oo

Deshalb resultieren, wenn für ^. —2m+2ll+2 S2m+2n+2 der Wert in

1=1 *
Bernoullischen Zahlen gesetzt wird, da die übrigen Integrale der Doppelsumme

zu Null werden,

Bm+n+lX(2m+l,x)x(2n+l,x)dx (-l)m-fn

/ X(2m+l,x)x(2n+l,x)dx (-l)m+n-

(2 m+2n+2)!

m-f-n 1

J
Bm+n+l

(2m+2n+2)!

m+n 1 Rm+n-flX(2m+l,x)x(2n+l,x)dx (-l) 4 (2m+2n+2).

Es wird also auch hier die Beziehung gelten

(45)

I G(x)dx 2 I G(x)dx 4 / G(x)dx, wobei (46)

G(x) x(2m+l,x)x(2n+l,x).
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Lassen wir wieder m n werden, so erfährt die Beziehung (46)
keine Änderung, nur dass G(x) { x(2m+l,x)}2 wird; die Formeln

(45) gehen dann über in
»if B2

U(2m+l,x)fdx=-T^r.

n i2 ij |Z(2m+l,x)| dx
B2 m+l

f]x(2m+l,x)|2dx -l.

2 (4m+2)!

B2ra+1

(4m+2)!

(47)

3. Eine Bernoullische Funktion sei gerade, die andere

ungerade. Dann wird

J x(2m+l,x)x(2m,x)dx

(—l)m_1 2(-l)n~12
l=ool=oo

22A=l 1=1

sin 2 X n x. cos 2 X ,t x

/0 s2m+l/o \2n I ^^J ^^A ^2m+l ^ 2n(2n) +(2n) J £* f* XX
Weil I sin2Xnx.cos2 Xnxdx 0, so wird

dx.

fX(2m+l,x)x(2m,x)dx 0. (48)

Wir erkennen daraus den

Satz : Die Integrale eines Produktes zweier Bernoullischen Funktionen
nehmen einen bestimmten durch Bernoullische Zahlen ausdrückbaren

Wert an, wenn die beiden Bernoullischen Funktionen gleichartig,
verschwinden aber, wenn dieselben ungleichartig sind.

Die Integraldarslellungen lassen sich noch beliebig weit
ausdehnen; doch müssen uns diese Betrachtungen genügen.
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