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Er zeigl, dass der Spezialwert einer geraden Ableitung der
Cotangente eines Argumentes, multiplizierl mit dem Argument selbst,
sich durch eine Bernoullische Zahl wie folgt ausdriicken lasst

Dim {xcolg x} e 2" Bu.

xX=

Ebenso lisst sich der Nullwert der geraden Ablelmngen der
trig. Tangente durch eine Bernoullische Zahl oder durch eine Bernoullische

. . 1° . .
Funktion vom Argument --- ausdriicken, so dass ist

2
V 2 2m_
Djm { lgx } — 2 m—1 @ﬁ*i*l) m.
x=0 m
Schliesslich ist auch der Nullwert der geraden Ableitung der

Sekante durch eine Bernoullische Funktion darstellbar, indem wird

4m+2 ( 1 )

§ 13. Die Rernoullische Funktion in bestimmten Integralen.

Dim { sec X }x=0= (—~—1)m

Ausser den einfachen Integralwerten in § 8 dieses Abschniltes
gibt Schlomilch weder in seinem Compendium, noch in der erwihnten
Abhandlung in Band I der Zeitschrift fiir Mathematik und Physik
andere Integralausdriicke mit Bernoullischen Fuanktionen, abgesehen
von der Bernoullischen Funktion, welche der Restausdruck bei der
Summierung der allgemeinen Differenzenreihe enthilt, und dem Rest-
gliede der Maclaurinschen Summenformel, das unter dem Integral-.
zeichen ebenfalls eine Bernoullische Funktion aufweist.’®) Auch bei
Worpitzky finden sich keine Integralformeln der Bernoullischen
Funktion, doch lassen sich den Raabeschen Formen entsprechende.
Ausdriicke mit Leichtigkeit aufstellen.

II. Die Bernoullische Funktion nach L. Schiafli.

§ 14. Herleitung der Definition.

Schlifli geht aus von der Summe

Sw== 172" 8" 4™ - ()
- gibt er dem m die Werte 0, 1, 2,.... » M, S0 erhilt er (m-{-1)
Summen Sy, S;, Sz, . ... .. , Sm. Diese mu]lnphzneren wir der Reihe

_ Bern. Mitteil. 1900. No. 1482
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nach mit y° 11’ 91 o SO folgt

0
S()Oz':: 1 —I— 1 + 1 + ....... -l—- 1_
Siyt 2y 8y ...y =y
1 + + 1! T ' 1!
Sey2 ¥ @yy (33') ....... [x—DLyp
21 2l + 21 1 B + 2!
Swy™ __ y™ (Zy)m Gy , [x—1)y]"
ml— m T oml U oml T +

_— e e e— — e e—— e . e e e e, e eetem et danmm

Addieren wir die senkrecht untereinanderstehenden Kolonnen, so er-
halten wir, wenn bis ins Unendliche ausgedehnt wird,
m=oco

Sp¥ =—1y e —1

e T e, 1 ..... . e —_— ey
P N N S E o
Wir denken uns die Gleichung mit y multipliziert und dann
zerrissen; so erhalten wir eine Beziehung, aus welcher wir die
Bernoullischen Zahlen ebenso leicht herleiten kénnen wie die Bernoul-
lische Funktion. Wir definieren daher

v m-+-1 Xy
S e

m! T g e’ —1

m=:(
als die Fundamentalgleichung der Bernoullischen Zahlen und Bernoul-
lischen Funktionen.

Der erste Bruch fiir sich betrachtet fiihrt auf die Bernoullische
Funktion, wihrend der zweile auf die Bernoullischen Zahlen leitet.

Wir nehmen deshalb an, es sei

n==00

y - n
= > 20,5y und &)

definieren x(0, Xx) = Konstante = 1 und y(n, x) als n* Bernoullische
Funktion. Die Koeffizienten der Potenzen von y sind also die Ber-
noullischen Funktionen, und wir wollen fiir die n** Bernoullische Funktion
% (0,x) einen Ausdruck suchen. Es wird



- G5 =

ye’ y )
o—-1 == 71 exY=:1+CIIy—-}_.c2y ;{» ...... _]L C;,yl—{— ...... }X
X yu . xn—], yn-—), }
{1+ + + (n—A)! + 3
Der allgemeine Term, Welcher y’1 liefert, lautet
Koeffizi n [n]al) cixn_4
oeffizient von y — |y e
. A=00 ni
i 16_‘__2 axr
»Daher wird —s __ll-o i

Diese Gleichung stellt denselben Wert dar wie Beziehung (2); durch
Vergleichung beider folgt als Wert fir yx(n, x)

=03 n—4 =t
. X cox X
x(n’x)ﬁg (—A! (n 1)!+2 m—a!

Bei der letzten Summe ist ersichtlich, wie auch schon frither, dass
infolge der Fakultit im Nenner A nur bis A=n gehen darf.
Aus der Theorie der Bernoullischen Zahlen ist bekannt, dass bei
y
o7 —

Entwicklung von

- folgende Koeffizienten c, auftreten:

. 1 —1 BZ, )
C=1; ¢, =— 2;021_1——0, Cg)=(— 1) ehlk

daher wird, wenn wir noch fir A den Wert (21) selzen,
=3

| K 1 B n—2ﬁ.
AL e R o 1)r+2( B (21)1 m—en

Da aber @0 (nf——2).)'=- (—2!17), so definieren wir die «n*

Bernoullische Funktion» durch

he=

x(n,x)=-$— . n-‘u1+2(_1) ( ) n—zi.}_ 3)

i=1
Wir konnen die obere Grenze in der Summe weglassen, wenn

/
wir bedenken, dass fiir 4 =—g— der Ausdruck kz) == 1, ebense
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x®=1 wird und fiir ein grosseres A zufolge von (n ‘H‘) = 0, wenn

p posiliv, die Summe stets zu Null wird; die Reihe bricht also von selbst
ab. Der Hauptunterschied dieser Definition gegeniiber den beiden ersten
ist der, dass auf der rechten Seite auch Terme mit x° also solche, die
x gar nicht mehr enthalten, vorkommen diirfen, was diese Definition

: . 1 .
viel allgemeiner macht. Auch der vorgeseizie Faktor FY leistel gute

Dienste, da er das Konvergenzgebiet der Funktion vérgriissert.“) Die
kiirzere Schreibweise durch Einfihrung der Summenformel konnte bei
den iibrigen Definitionen auch angewendet, werden.

§ 15. Die Derivierten dieser Funktion.
A. Einfache Differentialquotienten.

Wir wollen vorerst die gerade und ungerade Bernoullische
Funktion trennen. Ist n gerade, so wird fiir

1. n=gerade = 2m.

|

6 N1 am—1 _ 2M (2m—1) om 2
a—x,g(2m, x)—@ﬁm l 2mx — ) X
A=m 9 l
m m—24—
4 ¥ (1)t B, 2m—22)x "
21/ 4
e l
_ 1 [ go-t_ 2m—1 om»
@m—1)! | 2
: {A-:m
i=m—1 9 1
i—1fa— 2m—2j—1
+§1(—1J ( . )B,_x

0
7% x(2 m,x) = %(2m—-1, x).
2. n = ungerade = (2m--1). Dann ist

% c(@m+1,x) = (?E:T)' { 2m4-1)x°"

— (2 m+1)£§_‘}_ x%aiz (__1)1—-1 (2 m+1) B, (2 m-1—24) xzm_zi._
i=1 24 |



s G =

i=m
o . ;]) -! {xgm . 3;1_ (21 +§ (_1)1—1 (22':) B, xzm—2j.}.

8
5 ¥(@mA-1,x) = y(2m, x).

Wir haben beide Funktionen getrennt betrachtet wegen der obern
Grenze; wir hitlen aber ebenso gut direkt von (3) ausgehen konnen

und dann erhalten
0

10, %) = z(n—1, x). )
Die Able-ituhg einer Bernoullischen Funktion wird gefunden,
indem man den Exponenten um die Einheit vermindert.

B. Die wiederholten Differentialquotienten.

Gestiitzt auf (4) werden
D? x(n, x) = D x(n—1, x) = x(n—2, x). .
D3 y(n, x) = x(n—3, x).

Vg, x) = (o2, x). )

Die wiederholte Ableitung einer Bernoullischen Funktion wird

gefunden, indem man den Exponenten um die Zahl, welche die Anzahl
der Ableitungen angibt, vermindert.

Wir finden hier den ersten grossen Vorteil dieser Funktion
gegeniiber den zwei friilhern Definilionen; es treten keine Bernoul-
lischen Zahlen zu den Ableitungen; die Definition ist demnach all-
gemeiner und liefert einfachere Resultate.

C. Einfache Integralformen.

Da die Differentialformeln sich einfacher gestallen, so thun dies
auch die Integralformeln. Auech hier kiénnen wir vom allgemeinen
Fall ausgehen und es resultiert

f;(ﬂ—l, x)dx = {-Z(“: X) }0

0
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m—-i ' Bm
(2m)!

Da, wie wir spiler sehen werden, x(2m, 0) = (—1) und

x(2m--1, 0) = 0, so entstehen die beiden Beziehungen

fx(zmml x)dx = x(2m, x) 4 (--1)™ _T‘BI;TDW_ und .(6) '

fx (2m, x)dx = ¥ (2m-1, x). N _ (7) |
0
Durch Integration wird somit der Exponent um die Einheit erhdht.
Das bestimmte Integral zwischen den Grenzen O und x einer Bernoul-
lischen Funktion ist wieder eine Bernoullische Funktion mit um die
Einheit erhohtem Exponenten und —- einer Bernoullischen Zahl fiir
die ungerade Bernoullische Funktion.

Wir haben hier insofern eine Vereinfachung, als das Argument
bei der Bernoullischen Zahl fehlt, das bei Raabe und Schlémilch nocbh
hinzutritt.

Fir die obere Grenze x = % wird nach (7)
1

J‘z (2m, x) dx = x(2m—{-1, %) =0

und nach (6)

1 .

? ‘ l)l Blﬂ
fz(2m-1,x)dx::x( m, u) -+ (— ___-_(2"])! .
0

Selzen wir fir x(zm, -—2~) den spiter zu beweisenden Werl%®) ein,

1
' B oo Bm 22 u)_l
so wird J;@ m—1,x) dx =(—1) 2m)! : .

§ 16. Die Bernoullische Funktion mit inversem Argument.

Ersetzen wir in (2) den Wert x durch (1—x), so wird

=37 .
= 2 x(n, 1—x)y", d.h
e’ —1

n==0



(1—x)y
n e

x(n, 1—x) ﬁ_[y] in —L———i—-

Nun wird
— 00
y o7 oX(—Y) ' )
A (s —Z 20, %)(—y) —2 2 (0, )Y =1
’ n=0 n=0

somit ist x(n, 1—x) = (—1)" g(n, x). (8)

Daraus folgt fiir x = 0 unter Anwendung der Definitionsgleichung (3),
wenn n == gerade == 2m
Bm

x2m, 0) = x(2m, )= (=" -

: (9)

!
dagegen fir n = ungerade — (2m--1), wenn x auch = ;_

;é(?m-[—lz 0) = x<2 m-}-1, —‘1)—) = y(2m+41,1)=0, d.h.,, (10)
alle Bernoullischen Funktionen ungerader Ordnung verschwinden fiir

die Argume-}zte 0. —i)— und 1.

. ; 1 ;
Wir fragen uns nun, was wird aus 2(2[(1, 5 ) Um diesen

X /

Wert ausmitteln zu konnen, miissen wir vorerst tiber die Verviel-
fachung des Argumentes aufgeklirt sein.

Wir denken uns die yx-Funktionen y (n, x), %(n,x—l——i—),

' 2 N k—1 '
¥ (n, % +—k ) R R (u, X |- Tcm) aufgefasst als Koeffizienten

von y* in den dazu gehirenden Entwicklungen; dann addieren wir
diese; die Summe T wird, wenn wir dieselbe als geomelrische Pro-
gression summieren,

1 S | . xy
T==— -J*y ye*l = i ——— also
¢ —1 ek —1 ek —1
k—1 & ye
20y %) ~f g { X e g X = =[y"]in ——
’ ek —1

n=0oo

= ()
Es ist aber —) 0 — k( )L ks X(":I\X)( )

eiz‘——, 1 e(Y) —1 ,}WU
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[yn] = ! T X(nvkx)'

kK"
Daraus ergibt sich

z (n, x)‘*‘%(n’x—l-—ll;) +x(n,x+%)
+.....—I—x(n,x’+ k—ki)= 3 k) o

als wichtige Formel, die iiber jede Vervielfachung des Argumentes

1

P ]

Auskunft gibt. Infolge von S bricht die Reihe links von selbst

ab. Die beiden entsprechenden Formeln der friihern zwei Definitionen
lieferten stets zwei getrennte Werte, je nachdem die Bernoullische
Funktion gerade oder ungerade war. Wir ersehen auch daraus, dass
die so definierle Bernoullische Funktion die allgemeinere ist; zudem
ist diese Herleitung vorliegender Formel wesentlich einfacher als bei
Raabe und Schlémilch. '

Aus derselben lassen sich verschiedene Spezialwerte berechnen.

I. Verdopplung des Argumentes. k= 2.

1
20, %) -+ x(n,x +-§—) —:—2-,—}_—1 2 (@, 2X).

Ersetzen wir in (8)die Grisse x durch (x + —é—;) und selzen diesen

Wert in die letzte Formel ein, so wird

n 1 1
y(n, x) 4 (—1) g (n, Tl x) = o x(n, 2x). (a)
Ist darin x ==0 und n = ungerade = (2m-}-1), so wird
¥ (2 m--1, é") ==0; dagegen wird fiir

% =0 und n = gerade = 2m, wenn fiir y(3m, 0) der bekannte Wert
geselzt wird,
1 m 2‘)m-—1_’1 Bm
Ii. Verdreifachung des Argumentes. k =3.
1 2 1 |
%(n, Xx) + X(n! X +"3_) —I'_ X (D, X +"§') = —3;1? Z(n, 3){). (ﬁ)

.

Unter Anwendung von (8) wird fir x =0



T

" n 1
x.(na 0) + Z(ﬂa _;> + (_1) b4 (I’l, ‘g) = ”5,;,1_:1 X(na 0),

n = ungerade liefert die identische Gleichung 0 = 0; dagegen ist
fiir n = gerade. wenn fiir y(2m, 0) der gefundene Wert gesetzt wird,

1 m 1 g™ lg B,

Aus Gleichung (@) resultiert. fiir x:—;— und n=2m

X (2 m, %) — g2m-1 { X (2 m, %) + ¢ (2m,'%~)}. (y)

Einen Wert fiir x(2m ) erhalten wir, wenn wir in (8) fiir

"6

X =6 und n =2m selzen; es ist dann

(o3 x(em ) r (o) = e (en )

1
Daraus folgt, wenn fiir x(2m, 2) der frither gefundene Wert (12)

geselzt wird,

1 - 1 (22m— _1) (1 32m—~1) _Bm

Setzen wir die gefundenen Formeln (13) und (14) in () ein,

. , 2
so ist, was zwar einfacher aus Formel (8) fir x = und n=2m

hervorgeht,
m 1 32 m-—-1 —1 B

2 m
x(gm’§>=(”1) 2T gm-T T (2m)! \1a)

Wir hitten schon dort die zwei Sitze aufstellen kénnen:

1. Jede zwei geraden Bernoullischen Funktionen, deren Argumente
sich zu 1 erginzen, sind nach absolutem Wert und nach Vor-
zeichen einander gleich.

2. Jede zwei ungeraden Bernoullischen Funktionen, deren Argu-
mente sich zu 1 erginzen, sind wohl dem Vorzeichen nach
entgegengesetzt, dem absoluten Werte nach aber gleich.

Bern. Mitteil. 1900. No. 1483.



— 49 —
II1. Vierfaches Argument. Kk = 4.
1 1 5 3
2(0,X) + 7 (“’ X -} 1‘) |- % (", X |- ‘2) + X(n, x - T)

1
= 411::1“ 7 (0, 4x).
Fir x = 0 wird unter Anwendung von Formel (8) und Einsetzen der’

Werte fir x(2m, 0) und y <2m

1
ﬁ) fiir die gerade Bernoullische

’ 2
Funktion
1 3 m 22111—1_1 Bm
Z <2m* T) = Z (2 m, 4) — (__1) 24111—1 ) (2 m)! : (16)
1 K
Auf idhnliche Weise lassen sich (2 m, ;), ¥ (Qm, w;w), e o
/

7 . ’ :
x(Zm,--S—) und andere y-Funklionen berechnen; die Ausdriicke

werden aber ziemlich kompliziert.

§ 17. Die Bernoullische Funktion mit negativem Argument.

Wir konnen auf zwei getrennten Wegen das Verhalten der Ber-
noullischen Funktion mil negalivem Argument untersuchen, VYorerst
gehen wir von der Definitionsformel (2) aus, miissen aber dabei die
geraden und ungeraden Funktionen getrennt betrachten.

1. Die gerade Bernoullische Funktion. Wir erselzen in (3) n
durch 2m und x durch (— x); dann wird

: [ 2m 2m Im-—1
1(2 imn, — \) s (2[“)7 ] l- . 2 - X
A=1n l
R 9 )

IZ (—1H (m) B, yhm-2l 4
i=1 24 ]
. . 2 m x?m-—l
Durch Addition und Subtraktion desselben Ausdruckes —ﬁﬁ_ﬁﬁ_‘-_

und passendes Zusammennehmen wird

2m-—1

X
z(2m, —x) = %(2m,x) +m

2. Die ungerade Bernoullische Funktion. Durch analoges Ver-
fahren wird
1 [ Zm-+4-1 72ﬂi’;1_ ‘2111

y(2m-}-1, —x) = m l — X 3
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A=m

+2( i1 (?..m—l—l)]3 (—x )2m+1 ~2\

(2111—|—1)x2m. :

Hier addieren und subtrahieren wir T nun ist
x2111

2 Y= 5 SRR, -
x(2m-+4-1, —x) x(@m+41,x) @m)!

Eine allgemeine Formel fiir die Bernoullische Funktion mit negativem
Argument finden wir aus folgender Betrachtung:

Ersetzen wir in Formel (2) den Wert x durch (1-}-x), so ist

=00

(14x)y
S‘ n ye
> 1oy = (a)
n=_0 i
(14x)y y S
ye X ”-1 n
—g— =veT 4+ —1—_yey+2x(n,X)y.
, e n=>y0
Durch Reihenentwicklung von e*7 folgt
(14x)y B n-—l 11 N=00
ye '
Te 1 - (n~—l)' 2 x (0, X)y". )

n==1 n=>0
Vergleichen wir die Koeffizienten von y” der Gleichungen (a)
und (8), so erhallen wir

n—1

X
X(n 1+X) ] 1)' + }((n '() (17)
Ersetzen wir darin x durch (—x), s0 wird unter Beriicksichtigung von (8)
n—1 ]
NPIILS IS S .

Diese Formel geht fir n = 2m und n =(2m--1) in die eingangs dieses
Paragraphen hergeleiteten tiber. Sie dient zur Berechnung der Ber-
noullischen Funktion mit negativem Argument. Auch hier zeigt sich
wieder die Vereinfachung, da Raabe und Schlomilch je zwei ent-
sprechende Formeln nitig haben.

Um die y-Funktion auch ausserhalb des Intervalles 0 bis 1 zu
untersuchen, dient eine Formel, welche wir erhalten, indem wir in
(17) fir (x--1) der Reihe nach setzen (x-4-1), (x }2),..... , (x4-k)
und simtliche so entstandenen Gleichungen addieren; es wird dann
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200 k0 = 1 (0,%) + gy [ 7 - (T
+(2+x)“‘ P —I—(k——l—}—x)““l}. (19)

Eine weitere Formel zur Untersuchung der Bernoullischen Funktion

mit negativem Argument, die uns gule Diensle zur numerischen Aus-
rechnung und Kontrolle der Werte leistel, finden wir, wenn wir in

(8) fiir x den Wert (x —|——é~) selzen; dieselbe geht dann iiber in

(o )mrelnl 0 o

1 :
Diese Formel charakterisiert uns den Punkt x *«é—als Maximal- oder
Minimalstelle.
§ 18. Diskussion dieser Definition.

Setzen wir in der Definitionsformel (3) der Reihe nach fiir n
die Werte 1, 2, 3, . ... .. , 50 nehmen die acht ersten Funktionen
dieser Definition folgende Werte an, die nacheinander diskutiert

werden sollen:

2(2,x) = ;2 — ; + 112

23,3) = —f—— Y +—15—

) =
2,8 = —gp — g s

2(8,%) 77‘260 21; T 2?;8 1::0 + 30;40'
%(1,%) 5(})‘;0” 1:4;) + 1210 4;;0 + 30240
2(8,%) 40,:20 — 10}:);0 -+ sgio ~ 17);130

x? 1

+ 60480 ~ 1.209600
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Wir gelangen hier zu dhnlichen Resultaten wie friher; da aber
auf der rechten Seite auch Terme vorkommen diirfen, die von der
Variabelen befreit sind, so ist leicht ersichtlich, dass nur die ungeraden
Bernoullischen Funktionen fir die Werte x = 0 und x = 1 erfiillt sind;
das Glied der geraden Bernoullischen Funktion, das die Veridnderliche
nicht enthilt, gibt fir das Argument 0 und 1 sofort den Wert der
ganzen Funktion an.

x(1,x) =x — -ﬁ;m stellt eine Gerade dar, die aber fir diese
Definition nicht mehr durch den Ursprung geht.
%(2,x) ist die Gleichung einer Parabel; die Funktion besitzt ein
2 2/ 12
x (3, x) besitzt im Intervall 0 bis 1 sowohl ein Maximum als

- . 1
Minimum bei x = 1 vom Werle y (2 1) ==

ein Minimum, und zwar liegt ersteres bei x =~;~—%\/§, das letztere

—%) = (; diese Kurve,

analytisch gesprochen, ist eine Art Parabel hohern Grades.

dagegen bei x——z-%w—l——é—\/g; zudem ist y (3,

/

1

Die Funktion y (4, x) besitzt bei x = é— ein Méximum_‘vom Werte

m57760 ; zudem ergeben sich zwei Minima bei x=0 und x =1, so
1
dass x (4, 0) = x (4, 1) = — =55~

Was x(5, x) anbetrifft, so isl diese Funktion als ungerade Ber-

noullische Funktion erfiillt fir x =0, x :~—1~ und x =1; sie weist

2
ein Maximum auf zwischen ) und 1, wie auch ein Minimum zwischen
1
0 und 5

d

Alle diese hohern Bernoullischen Funktionen stellen Parabeln
hoherer Ordnung dar.

Wir erhalten somit folgende Bilder des Verlaufes der Bernoul-



— 46 —

lischen Funktion zwischen den Grenzen 0 und 1; im wesentlichen
stimmen sie mit den bei Schlémilch dargestellten iiberein.

: Figur 1. /—r\
Ny Y% P i N
’ \_E_/ ‘. v Y N

Figur 2.

Die Funktionen sind charakterisiert durch®¢)

Figur 1, wenn n=2, 6, 10, . . . . . , (4k—2),
» 2, » n=4,8 12 ... .. , 4Kk,
» 3, » n=38 7,11, ..... , (4k—1),
» 4 > m=5,9 13 ... .. . (4k--1).
Figur 3. Figur 4.

§ 19. Entwicklung der Bernoullischen Funktion in Reihen.

Wir konnten hier analog verfahren wie Schlomilch®S); zudem
wiirden wir noch viel rascher ans Ziel kommen, da das Integral, welches
bei dieser Herleitung auszuwerten ist, leicht dargestellt werden kann.3®)
Schlifli geht aber ganz auf seine Arlt und Weise vor; er untersucht
vorerst, was wird aus

a « a? o o"
7115_'_1“_‘_77—#”', ...... Jr"i",;Jr ......... -, -
n=—
Multiplizieren wir mit xl, so wird
n=00 2 i=o0 3
X nl - aX
2 Tn -——[a ] mn 2 I—a (a)
n=1 i=1
Laut Theorie der Gammafunktion gilt fiir ein beliebiges a die
ot a1 —a 1— b—1 cme I o T(l_"a) F(b)
Beziehung®’) fx (1—x) " " dx=2isinamw Th—at1) '

substituieren wir fir a den Wert (1—n) und setzen b =1, so wird



1 1 n--1
*114_“2isinnnfx O ()

D

Diese Formel gibt uns ein Mittel an die Hand, obige Summe durch
ein bestimmtes Integral auszudriicken. Ist t die Integrationsvariabele,
so wird nach (3)

1 1 e—j—1 (_ 1)1 {‘ «—A—1
etz t e T d t-
(a—2A) 2i sin (¢—A4) ﬂ(f dt 2isina v '

Die Summe geht dann iiber in

d=0cc i=00
a‘(
la— 2 1—1
—a 2 smanf (—1)
=1 i=1

- a {.ta X dt
~ 2isinam tx ot

~——

Der gefihrliche Punkt des Integrales ist t=—x; fiir diesen
wird der Nenner zu Null, so dass der Wert des Integrales oo ist,

wir miissen daher die Schlinge um (— x) gehen lassen, diesen Pol
also ausschliessen, und wir betrachien

=00 1
S ﬂ . (14 ta thv (
Hl—am 2isine t (t+4-x) 2

Dieses Integral ist aber kein Schlingenintegral mehr; denn es nimmt
nach einem ganzen Umlauf seinen urspriinglichen Wert an. Wir
dirfen dann auch spiter, ohne den Wert des Integrales zu verindern,
eine additive Konstante beifiigen, welche wir so auswihlen, dass sie
fir unsere Zwecke passt.



. . « « Logt .
Durch Substitution von t“= e“*" wird
’ Logt 1 ‘
21na(——-+~)
o * o ‘
at” al 1 2izae 2in 2
i Qi T lem —ien 9j ’ 2ig )
2isinasw  Gler e 217 plem 4

n=0oco

.1 Logt 1 e
T 2 27‘("’ i ’7_2_) (2t7za) %)

N=

Somit ist [an] = (n Logt -+ %) (2iz)"

2iz *\ 2ix
Deshalb wird, wenn wir die Gleichungen (e) und () beriicksichtigen,

' (2in)" Logt 1
2 gz ) M3 T2)

- - . Log x [ xdt
) (e )y @

wobei die zugefiigle Konslanle den Werl hat

Log x xdt

e x(“’ 2m) ((Fx)

Wir wollen nun darnach trachten, x auf die Peripherie des Einheils-
kreises zu bringen; zu diesem Zweck miissen wir uns aber zuerst
iiber Logt und Log (—x) ins Klare setzen; vor dem Nullpunkt wollen wir
uns hiiten, weil in demselben eine starke Transcendenz vorbanden ist.

Log (—x)=—in(—p) 4+ 2i7n @; @=Konstante. p =0, so-
bald (—x) auf der Peripherie des Einheitskreises liegt.

Wenn t=e""* """ wird Logt=— i + 2img.

¢ = Bogen von 0 bis 1; wenn L =x, soll ¢ = @ werden. Dann sind

Y 1\, Loglt 1 __Logx
Logl=2in (go ?), @ = 277 5 @_Konstanle__vzf;;-,
—'%’E""—_——“2ilrd50.
Selzen wir diese Werte ein, so wird aus (d)
A=o00 " n
x* _ (2im) { x dt
;1 ' CT % (0, ¢) — x (n, @)}TE_‘F}Y ()

-1 -Xx,0



Der Klammerausdruck unter dem Inlegralzeichen wird dann in
dem Momente zu Null, sobald ¢ — @ geworden; somit ist

2in @ 2in
X =8 ; t=—o So;

ezin'@ _ ein(go-[—@)-—iﬂ(gp—@); e2iﬂ90 — ei n(go+@)+i;'r(ga——@);
Lix o THO)—im(5-0) _ in(p10) +in(p-6)

=—o ' "#T®) g5y (¢p—6) m;

e = %{ 1-}icotg ((p—@)'ft}-

Substituieren wir diese Werle ins Integral (¢), so erhallen wir

X" (2176)n 1
2 ”)‘:ﬁ:"‘g;[— {x(n,ga) — x(n, @)}né—{l-H colg (¢—0) 7z 2i 7z d.

Ty
\\_}

i . 2i : . .
Selzen wir jelzt x = e m@’ so bewegt sich die Variabele auf
dem Einheitskreis von O bis 1, und es wird

l:ooezm Ol ) 1 i l
2 o = (2in) f{x(n,go)—x(n,@)}E—{l—}—icotg(gpwﬂ));zjdgp, (1)
=1 o

Wegen i" solllen wir die Fille fiir n= gerade oder n = ungerade

trennen; um dies zu vermeiden, ziehen wir vor, beide Seilen mit
7T

(——i)n= e % zu multiplizieren; dann wird (n) zu

A=o0o (2 al@—2%
e 2

ln
A=1

:(2n)nJ{x(ﬂ,@)—x(ﬂ,@)}—}g{1+i60lg(§0—@)n de. (21)

Diese Formel gill auch fir &= ¢, da dieselbe dafiir nicht unstelig
wird. Wegen der Cotangente ldsst sich anfangs leicht glauben, das
Integral werde unstetig; doch ist ja im Nenner der Cotangente der
Sinus, der sich aufden Bogen (¢ — @) reduzieren lisst. Dadie y-Funktionen
algebraische Funktionen nt® Grades sind, so geht die Klammer in
tiefster Anniiherung iiber in (¢"—o"); somit verhill sich das Integral
Bern. Mitteil. 1900. . No. 1484.
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wie 520—: ; ein solcher Ausdruck ist aber endlich und daher auch
das Gesamlintegral fir ¢ == 6

Herausheben der Komponenten.

In obiger Formel (21) sind sowohl reelle als imaginire Besland-
teile enthalten. Wir wollen nach dem Moivreschen Grundsalz der
Trennung des Reellen vom Imaginiren die einzelnen Komponenten
herausnehmen, da wir zerlegen kinnen

A=o0 (27110 A=00 Nz
N _..2005(2,1 @—7)

i=1 i=1
=00
R
—+i Z sin (2175@— i:—) (o)
A=1
A. Die reelle Komponente.
Dieselbe wird
=00 nz ‘
cos (24760 — —- 9,0 (!
2 - ( n : ) =( ) IZ(D)ED)WX(I]:@)}dSD (1))
s ) 2, |

Dieses Inlegral muss ausgemitielt werden. Wir wissen, dass durch
Integration der Grad einer Bernoullischen Funktion um die Einheit

sleigl; somit wird fir n gerade oder ungerade
1

1 ,
f 2 (n,@)dg ={ 7 (0+1,¢) }G: 0

denn die ungeraden Bernoullischen Funklionen verschwinden fiir die
Argumente 0 und 1 und die geraden weisen denselben Wert auf, der
hier das eine Mal mil negatlivem Vorzeichen genommen werden muss.
Es zeigt sich nur die Ausnahme fiir n=0; doch miissen wir diesen
Fall ausschliessen, da sonst links alle Nenner zur Einheit werden.
Ferner ist x(n,@) in Bezug auf ¢ als Konstante zu belrachlen,

1
a]sof%(n,@)dgp:x(n, ®); daher wird (»)

0
=00

2c05(2ln@—~) (27;)?%@,9).

2’11

A==1
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2 v 00%(2l7rt9—~m)
10, 0) = ——— > : : (22)

(2 72)" —- A
Dies ist wieder eine weil allgemeinere FKFormel als die ent-
sprechende der friihern Definitionen; aus derselben erhalten wir leicht

die den friihern gleichwertigen Beziehungen; die einzige Bedingung
ist 0 <<o<L1.
Die Formel konvergiert ganz unzweideutig fir n =2, 3, 4,

fiir n=1 miissen wir die Konvergenzfrage noch genauer priifen; es
wird fiir n=1

l=o0 =
cOS (23.750 — - [') RN sin2d7c6
Z ] T Z A

:—'76%(1,@)=——ﬂ' (@——%")

Der hochste Werl von sin24 sz © kann nur 1 sein; dann niherl sich
die Summe der Reihe der Stammbriche, welche divergent ist. Die
Folge davon ist, dass die Werle ® =0 und ©=1 ausgeschlossen
werden missen. Ist n nahe bei Null, so schreitet der Zihler fort
nach 2720, 470, 6n06,...... Die Summe dieser Ausdricke wird

aber oo gross; die Konvergenz erscheint daher sehr verdéchtig; aber
fir 272 0 = ist

}.:OO l:oo

sindy sindy o Y
= 2 -2 Ty YT 2T 2
i=1 A=1

Wir selzen A= u; dann dirfen wir ein sehr kleines i als du
belrachten, so dass ist

=00
sin _ T Y
2 L =T
d=1
it = A durchliuft die Wertereihe g, p-f-p, p-2 ¢, .. ... , d.h., wenn

y klein genug gewihll, so gehl u von 0 bis oo; somil wird die Summe

U._

2 sin w du—'f?lqu 2

Also ist der Ausdruck konvergent, da wir hier einen endlichen Wert
erhalten.
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Wir kehren wieder zu unsrer reellen Komponente (22) zuriick
und wollen die Fille n — gerade == 2 m und n = ungerade = (2m--1)
trennen.

Fiir n = 2m wird cos (24 720 — m 7z) = (—1)"™ cos 24726, also

l:OO

c0s247z 6 et (272)°™
2"—7@.—;—‘——( 1) 1Lﬁ)—x@ﬂh®)- (23)
1=1

Dies ist eine den Raabeschen Definitionsformeln entsprechende Be-
ziehung; nur fehlt hier wieder der listige Zusalz der Bernoullischen Zahl.

Setzen wir darin @ =0 und beriicksichtigen den Wert fiir
x(2m, 0), so wird

" A=o0 "
1 1 (2w "B
g _Iém == S2m = ? (2[1])' A (24)

Da ¥ (2m, 0) =y(2m, 1), so wiirden wir die nimliche Formel erhalten
fiir 6=1.

Fir n = (2m 4 1) wird cos (227;@—- mrcm—ﬁ) =

2
(—1)"sin 247z ©; dies in (22) geselzt, gibt

=00

sin 247 6 gy 1 m
ol e — = (D" @A @mt1,0).  (25)
=1

1 . L . y
Fir 6= 0, 37 1 resultiert daraus die identische Gleichung

0==0; dieselbe entsteht ebenfalls, wenn wir (23) nach & ableilen.
Differenzieren wir {(25) nach 6, so entsteht wieder Formel (23); alles
dies sind Kontrollen der Richtigkeit.

Spezialfille dieser ungeraden Bernoullischen Funktion sind losbar
und sehr zu vereinfachen, wenn ein Mittel gefunden wiirde, um die
ungerade Bernoullische Funktion durch Bernoullische Zahlen oder durch
geeignele bestimmte Integrale auszudriicken; doch stésst man gerade
bei letzterer Aufgabe auf die Summierung von komplizierten Aus-
driicken. So wird z. B. fiir @=—i- aus Formel (25)

A=00 . x T
sin 4 - 1 1

2 m—1 2m-41
e — (1) 5 @)y (2 m-}-1, —4—)
A=1



sin A — | 1 1 1
Es wird e
l?m-{—l 2m--1 2m-41 2m-+41
e 3 b 7
=00
e =
...... — 1 (22‘_1)2m+1 = 2m+11
A=
, m—1 1 m
somit Hypry =(—1) 1—2—(27r)2 +1x(2 m-1, %) (26)
1 1 1 1

Ahnliche Formeln konnte ir flir @ =—, —, —, —, «««. 3
iche Formeln konnten wir fiir 5’83 13 ab

leiten; jedesmal kommen wir auf Funklionen, die den Bernoullischen
Funktionen nahe verwandt sein miissen, da sie ganz ihnlichen Summen-
- formeln geniigen.®?)

B. Die imaginire Komponente.

Zuriickgreifend auf Formel (21) und (¢) wird, wie leicht einzu-
- A=o00 ni

_ sin (2470 — 27
sehen 1ist, 2 o
i=1

1o "
=5 " | {200,9)— 2(n, 0)] colg m(p-—0)dp. (@D)

0
Es ist dies wieder eine ganz allgemeine, siamtliche Fille einschliessende

Formel.

Fir n = 1 wird, da sin <2Zn9— g—)z—coszlx@,
l=0c0 1
2 Lsg%if_”_:_”[ {2(1, 8) — 2(1, 9) | cotg 7z (p—0) dg.
L =1

Nach lingern Umwandlungen, wobei als Inlegralionskonstante
Log 2 genommen ist, wird, wenn © als Konslanle weggelassen, also
bei verindertem ¢ = ¢,

A=00
N cos2Amw O :
2‘ — = Log (2sinsz ¢,).
A=1
Es ist auch, wenn (¢ — @) =¢, gesetzl, da die Grenzen (— ©) und

=00 n

sin (2 Am® — —
(1— @) werden, 2 - =
i=1 A
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1—6@
n 1
= (27) “gf{x(nz%‘l— 0) — (0, ©) Jeolg 7w ¢, dg,.
)
Das Inlegral rechis bezeichnen wir mit S; es lisst sich zerlegen in

1—@
S =f{ x(n, ¢, -} 6) —y(n, ©) } cotg 7z ¢, do,
0

+0
- f{ x(n, (')_991) — x(n, 0) } colg 7z pldspl’
by

wenn im zweilen Integral zudem noch ¢, durch (— ¢,) ersetzl wird.
Wir konnen nun parliell integrieren, indem wir seizen

1
fcotg e, do, = - Log (2sin 7z ¢,).

Die finiten Teile der partiellen Integration aus beiden obigen
Integralen der Summe S werden, wie wir uns durch Ausfiihrung der

Integration tberzeugen konnen, zu Null; es bleiben nur die infiniten
Teile, und es wird
A=00 nsm

sin (247w0 — 27
2 i

i=1

e
| 2 :
:—2—(27:) ;[vLog(Q sin7zz ¢ ) y (n—1,0—¢)d ¢,
5

1 1 1—6 ;
== g (2 =)" s fLog (2sinzzg) y(n—1,¢, -}- 0)dg,.
b

Da fir n=(2m 1) der Wert sin (217:@—-11171—-1):

2
—¢08(2A7w O—mr) = — (—1)" cos 247z 0, so wird
A:OO
E (—1)"™ ! cos2A 7 6
2m-1
Bl A

e
=@ f Log (2sin 7 ¢,) 7(2m, 6—g) dg,

0
1—6
—en" f Log (2sin 7w ¢,) z (2m, ¢-1-6) dg,.
0
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Fir ® = 0 verschwindet das erste Integral, und es ist

i=00
1 m : ' :
; Bl = (—1)"(2 7;)2 fLog @sinzz o)y (2m, p)de, (28)
= y

wenn wieder ¢ als Inlegrationsvariabele gewihlt wird.

Mit Hiilfe dieser Definition als Reihenentwicklung ldsst sich die
Raabesche Restformel ableilen; dann konnen wir den Zusammenhang
derselben mil der Riemannschen Reilhe nachweisen; diese Beziehungen
sprechen deutlich fiir die Allgemeinheit dieser Definition. Alles hier
- auszufiilhren, wiirde aber den Rahmen vorliegender Arbeit wesentlich
iiberschreiten. )

§ 20. Integrale mit Bernoullischen Funktionen.

Schlifli selbst gibt in seinen Vorlesungen keine Integraldarstel-
lungen der Bernoullischen Funklion. Dieselben gestalten sich aber
wesentlich einfacher als die entsprechenden der frithern Definitionen.
Dieser § liesse sich beliebig weil ausdehnen; es taucht eine grosse
Mannigfaltigkeit an Integralen der Bernoullischen Funktion auf. Wir
geben hier nur die zum Vergleich wichtigen. Gute Hiilfe bei all diesen
Darstellungen liefern uns die Formeln (23) und (25).

A. Einfache Integrale.
1. Fiir die gerade Bernoullische Funktion.
Es inleressieren uns einige Spezialfille der Formel (7); selzen

. . . ; 1
wir darin fiir die obere Grenze der Reihe nach 3 1 und %, S0
1
3 —1)" /3
wird vorerst f y(2m, x)dx = (1) "m\—/H BZm--|-1’ wobei (29)
s ‘ (27)
1 ' 1 1
Bzm+1 =, e gZmtl = JRESE! - 2t
A=00

k'_ — P 1 . 1 .
sl (3l_2)2111+1 (3 ,-{_1)2111—[—1

Die Funktion HZm-{—l lasst sich unter Anwendung der Formel

] ] b o
K" I'(a)
0
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aus der Theorie der Gammafunktion*!) in ein bestimmtes Inlegral
verwandeln, so dass wird

. 1 o;Zm { e—x_e—2x} ‘ '
Ry = @m)] T dx, somit folgt
0
= 1 I 75 ( 2
3 1"V 3 X*Mle *—e” “Fldx
fx(2m,x)dx= (2m+)1 v f e 19X 30,
. @yt rEemt1), 1—¢
1
Analog ist f 4(2m x)dx—wll wobei  (31)
. X ’ (2 n)z m-1 2m+4-1?
1 1 1
H2m+1=1_ gZutl -+ —om41 72m
ey A—1
B IE— = (=1)™

P (2].’__1)2m+1'
Durch Anwendung derselben Formel (&) wird

o0 2m
Homp1 = F(9m—[—1)f = dxwzr(2m+1)f cofx 4%

m—1 2m
also fx(mn,x)dx: (;;1)1 2 [‘ xx — dx
(2 7r) re m+1)6 e -}-e

0

(—1)[]1—-1 fochZI.ll
= 2m-+1 cof x dx. (32)
@)yt rEentn),) of
Entsprechend folgt

X

6 _ m—1,/ o5
fx(2m, x) dx :( (;L)zml/lg Gypyyr  Wobei  (33)

0

1 1 1
G2m+1="1+ oZmil - FEES =S p2mt1

L ' )A—l ( )1—1
—I- —l— ...... 2 (31 2)2m+1 —|— (3) 1)2m+1._

Wie friiher durch Integrale dargestelit, w;rd



2111 —x_I_e—-‘.’.x} ] .
2m+1 F(2m—|—1) 146 —3x X, somi

% . (_l)m——l \/_?T [’C’;Zm { e—x+e—2x}
J% (2 m, X) dx = (zn)21n+1r(2 m+1)6 1+e—-—3x dx. (34)

2. Fiir die ungerade Bernoullische Funktion.

Hier vereinfachen sich die Werte bedeutend, da wir alle durch
Bernoullische Zahlen ausdriicken konnen. Gestiitzt auf (6) werden,

G

) . g 1
wenn wir wieder der Reihe nach fiir die obere Grenze 5 % und

1
5 und fiir die untere Grenze stets 0 setzen, folgende Formeln auf

einfache Weise, durch Einselzen der von friher her bekannten

Formeln (9), (13), (16) und (14), entstehen
1

5 ; e ! 32" _1 B,

y(2m—1, x)dx = (—1) 2 T @m)l (35)
(4]

L Am—1 | o2m—1

i w2 42T —1 By
fx(zm—l,x) dx = (—1) oim T @m)! (36)
0

1

. 1 62m— _|_32m-1+22m-— -1 B

fx(2m—1 X)dx = (—1)" — P Bl 37)

0

B. Iﬁtegra.le mit trig. Funktionen.

Nehmen wir r als posilive ganze Zahl an, so wird nach (25)

1
fx(2m+l,x)cos 2rxdx

0 1 A=o0c
—1)" 19
((21))2m+1 f 2 Sm;n}:ﬁx cos 2r w x dx;
1

da aber sin24zzx.cos2rzex dx =20 fiir alle Werte von 4, so folgt

1
fx(Zm—{—l,x) cos 2r zx dx = 0. (38)
0 .
Bern. Mitteil. 1900. No. 1485.
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Da wir auf die Auswertung eines analogen Integrales kommen,
wenn wir die gerade Bernoullische Funktion mit sin 2rszzx dx kombi-
nieren, so wird, was auch direkl hiille gezeigl werden konnen,

1
fx(z m, X)sin2rzxdx =0. (39)
0
Wir verbinden nun gleichartige Bernoullische Funktionen und
trig. Funktionen; es wird

1
fx(Qm, X)ecos2rzxdx

Q
1 111-1 l
( ) fz 0052; X cos 2rse X dx.
275)

1
Der Ausdruckf cos 2 7c A X .cos2rz xdx verschwindet fiir alle Werle

V]

des ganzzahligen A4, mit Ansnahme von A ==r; dafiir wird
! 1
f cosgzrnxdx_——_—g-
0
Von der Summalion unter dem Integralzeichen bleibt somit nur
1 1
5 ——13;—, daher wird
1 (__1)111—1
x(2m,x)cos2rzxdx = 5 (40)
s (27r)

Die entsprechenden Erliuterungen gelten' auch fiir die ungerade
Bernoullische Funktion verbunden mit sin2rzxdx; also

"L . (—p™ "
Jx(2m+1,x) sin2rz xdx = (41)

(27er) 2m AT

0

Daraus ergibt sich der

Satz : Die Integrale einer Bernoullischen Funktion verbunden mit
einer ungleichartigen trig. Funktion werden zu Null, verbunden mit
einer gleichartigen nehmen sie einen bestimmten Wert an.

Wir kionnten auch Integrale mit den (rigonomeltrischen Funktionen

im Nenner untersuchen; doch wiirden uns diese Unlersuchungen zu
weil vom eigentlichen Thema wegfiihren.



C. Integrale von Produkten der y-Funktion.

Wir gehen wieder von den Formeln (23) und (25) aus und
unterscheiden:

1. Beide Bernoullischen Funktionen seien gerade. Dann wird

1
J:f‘ x(2m, x)z(2n, x)dx
b A=00 =00

(—1)™ 2 (—1)" e f 2 2 c0s? 2 4 7¢ X
(2 ﬂ)zm (2 75)‘311 lam T.2n

Bekanntlich sind

vo| =

! 1 1 (% 1
605221nxdx:_——§—; cos%lnxdx:r; coszzlnxdx:g-
Q. E' h
Somit resultieren, da die Doppelsumme verschwindet, wenn wir fir
A=00
N 1 . . .

EmEEm Samton den Wert in Bernoullischen Zahlen selzen,

|

die drei Formeln

: _____ m-n
f%(zll],x)x(2n,x)dx=:( 1) Bujn

(2m—-2n)!
0
5 +
- _'_4 1 ("_“l)m nB111+n
f,{(Zm, x)%(2n, x)dx == o T @miznl (42)
0

1
1 ( _1\)m+n Bm-f—n

f/(‘.?.m X) x(2n, x)dx == CREET]

0

)
1 1
1 ] 4
Also folgt Fx)dx=2 | F(x)dx =4 | F(x)dx, (43)
0 0 0

wobei F(x)=»(2m, x) 4(2n, x) ist.

Lassen wir m =n werden, so verindert sich (43) nicht, nur

dass dann F(x) == 1 v (2m, x)} wird, wihrend die Formeln (42) iiber-
gehen in :



: B2m )
f{x(Zm,x)} dx = @m)’
’ 1L
; 1  Bom
af{”(Qm’ 0 O =5 (44)
1
! 1 B2m
{x(Zm,x)}dx-:T- (4m)! )

2. Beide Funktionen seien ungerade. Es wird

L
f x(Cm4-1x)x(@n-}-1,x)dx

0 l=o0l=00
(=P le(—1) e f' 2 2 Sin?2 A7 x
- 2m 2n--1 m n+1
@)™t (2m)™t -l = e

Es sind bekanntlich

1 1
. 1 [ 1 (8 1
sin22lmxdx=?; sin%ﬂnxdx:z; sin22lrsxdx=—8_-
0

0

A==00
, " 2 1 .
Deshalb resultieren, wenn fiir BT = Sy ntonye der Wert in
=l

Bernoullischen Zahlen gesetzt wird, da die tbrigen Integrale der Doppel-
summe zu Null werden,

J rEmHL Y@ de = (1™ mif51+iz)1'

1

- m+n _j_-_ Bm+n+1
fx(2m+1,x)x(2n—|—1,x)dxr-—(—1) 9 ! (2n1+2n+2)! (45)

0

1

4 m--n 1 Bm n
J ¥ @m1,x) 7@, N de= ()™ o |

Es wird also auch hier die Beziehung gelten

1 1
. 4 ]
JG(x)dx=2fi}(x)dx=4Jt}(x)dx, wobei (46)

0

G(x) = x(2m+1,%) £ (2041, ).



Lassen wir wieder m = n werden, so erfihrt die Beziehung (46)
keine Anderung, nur dass G(x):{x(2m—|—1,x) }2 wird; die Formeln
(45) gehen dann tber in

1
2 Bm 1
J{%(zm—l—lﬁ X)} dX=—(4—n?_}j_2)! )

2 2 1 Bomt1
f{x(2m+1,x)g dx =gt 7)

f remt o o=l

3. Eine Bernoullische Funktion sei gerade, die andere wun-
gerade. Dann wird

1
f x(@m-}-1,x) x (2m, x)dx

0 1 0O A=00
(—1)™1 g (~1)"“12 sin24d7zzx.c0824 %
= Tmf1 an m-|—1 2n dx.
22y (2 =) A
1
Weil fsillzlnx.cos22nxdx=(), so wird
¢
31
f y(@m--1, x) y(2m, x)dx == 0. (48)

Wir erkennen daraus den
Satz: Die Integrale eines Produltes zweier Bernoullischen Funktionen
nehmen einen bestimmten durch Bernoullische Zahlen ausdriickbaren
Wert an, wenn die beiden Bernoullischen Funktionen gleichartig, ver-
schwinden aber, wenn dieselben ungleichartig sind.

Die Integraldarstellungen lassen sich noch beliebig weitl aus-
dehnen; doch miissen uns diese Belrachlungen genugen.
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