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Il Die Bernoullische Funktion nach 0. Schlomilch.
§ 7. Herleitung der Definition.

Ausgangspunkt ist die Summation der uns schon bekannten
Potenzreihe

1P} 2P |- 3P_|_ 4P + (k—1)".
Das Problem bietet uns keine Schwierigkeiten, wenn die Fille fiir
p=1, p=2, p=3,....... successive behandelt werden, d. h.,

wenn man jeden Fall auf den vorhergehenden zuriickfiihrt; eine all-
gemeine Formel ist dagegen auf diese Weise nicht zu finden, wohl
aber durch Differentialrechnung.

Obige Reihe entsteht durch p-malige Differentiation einer andern
Reihe, so dass ist

ekx___l 28)
PP 2P 3P + (k—1)F = {Dp - ’ .
e” —1x—p
Um die Differentiation auszufiihren, zerlegen wir die rechte Seite
kx—1 i
in zwei Faktoren xx a ° = = ¢(x) . w(x); dann wird nach der
e —_—

Regel der Differentiation von Produkten

0" {ewn] =@ y* @+ (§) ¢ @v O

+(3)er@w (@)
Zur Berechnung der Werte ¢(0), ¢'(0), ¢"(0),..... benutzen wir die
bekannte Formel iiber Bernoullische Zahlen 2¢)
e 1 9% B, 2'By 5, 2°B,
o= —x T YT Ve !

Wo — 7t <y < 7.

1 ;
Durch passende Uminderung, wobel noch y = ) x gesetzt wird, geht

diese Formel tiber in

X . 1 Bl2 B24 B36
Ot TR TR M TR A




Daraus erhalten wir fir x=0 folgendes Wertesysiem:

90(0)= 1.
1
P'(0)=—=5 ¢''(0)= B
gD”’(O) — O 90””(0) s Bg.
g0’!’.’:’(0)= 0 ?!IIIII(0)= B3.
g0y = o P0)=(—1)""Ba. (@)
Zur Bestimmung von y®(0), v*'(0),...... dient
kx
e —I1 2 k®* ., k* .
__..x_____k_.l__z_‘_x_!_ﬁx _l_..4_lx + .......
Fiir y"(0) verschwinden alle Ableitungen, die x. enthalten, und
kp+1
P 0) = .
VO =~ @

Setzen wir die Werte (8) und (y) in Formel () ein, so folgt gestiitzt
auf eine leicht einzusehénde kleine Verinderung

1P ahL P .. .. .. + (k—1)P = k™ -ikp—{-l b B, k"*
- p+1 2 2 \1/1
1 Y p—3 1 p\ p—5
__4_(3)sz 4_?(5)]331{ msdarimmans

Wihrend die linke Seite nur Sinn hat fir k als ganzen, positiven
Wert, grosser als 1, kann die rechte Seite verallgemeinert werden;
wir erhalten dann einen Ausdruck, der eine ganze, ralionale Funktion
darstelll. Um aber nicht Funktionen (p--1)t® Grades betrachten zu
miissen, und um der hdichsten Potenz von k oder z, wie allgemein
iiblich, den Koeffizienten 1 zu verschaffen, ersetzt Schlomilch p durch

(n-—1), multipliziert mit m und definiert unter, Vernachlissigung der
linken Seite

?(Za n) =:Zn — —;“ n Zn_1 + (g) Bl zn._Q_ (:) B, Zn—4
n n—6
'{" (6) Bgz ——+ ........ (1)

als die «Bernoullische Funktion n'" Ordnung.»

Die Herleitung dieser Fundamentalbeziehung verlangt, dass rechter
Hand kein von z freier Term vorkommen darf; es ist dies eine Eigen-

schaft, welche die Allgemeinheit dieser Definition wesentlich ein-
schrinkt. %) |
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Durch Vergleich erhalten wir folgende Definitionsformeln, welche
die Bernoullischen Funktionen als Nullwerte von Differentialquotienten
darstellen

0(z, 1) = “Di—l‘ezx_l ’ - Dn{" | (@)

e —1 [x%O

Ausgehend von diesen beiden Hauptgleichungen hat Schlémilch
die verschiedenen Eigenschaften der Bernoullischen Funktion genauer
untlersucht. Diese Definition stimmt nicht ganz mit derjenigen von
Raabe iiberein.?®) Die Resultate, zu denen Schlomilch gelangl, ent-
sprechen denjenigen, die Raabe gefunden. Schlomilch ist der erste,
welcher gezeigt hat, dass die Bernoullischen Funktionen Differential-
quotienten sind; dass sich dadurch die Darstellung hiibscher gestaltet,
ist nicht zu bezweifeln; nur ist das Operieren damit hie und da
ziemlich umstindlich.

ex _1 x X

x=0

§ 8. Die Derivierten der Bernoullischen Funktion.
A. Die einfachen Differentialquotienten.

Um die Eigenschaften der Ableitungen von ¢(z, n) zu erfahren,

zx_l

differenzieren wir die gebrochene Funktion (m—1)-mal nach

—1
X und einmal nach z und erinnern uns, dass die Reihenfolge der
‘Operationen beliebig ist; demnach wird ' e

1) " —1 " —1 , «x
D, D212 =D2x
z X {ex _1] X ex __1 + ex___l

=D;“[ A 1 ]
e —1

Dies liefert fir x = 0 unter Beriicksichtigung der DeﬁnitionsQleich-
ungen (2) DZL[;“) = ¢(z,n—1) 4 "V (0).

Trennen wir die gerade und die ungerade Bernoullische Funktion,
so folgt unter Anwendung friiherer Beziehungen
0
5, ¢ 2m)=2m. ¢(z,2m—1) und (3)
0 cé m—
—— @ 2mt)=Cn+1) {¢ (@ 2m) + (—1)" " Ba| (@)
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Diese heiden Formeln entsprechen ganz denjenigen von Raabe. _In-
folge der etwas andern Definitionsgleichung zeigt hier die Ableitung
der ungeraden Bernoullischen Funktion den Zusatz einer Bernoullischen
Zahl, wihrend bei Raabe die gerade.

B. Die wiederholten Differentialquotienten.

Schlomilch gibt dieselben nicht; doch sind sie durch successive
Differentiation einfach zu finden; es resullieren, ausgehend von (3)
und (4), folgende Formeln

27 om o
5,22 ‘P(Zagm)———‘(?l_)!<2l>{¢(z,2m_21)+(m1) 1Bm_l}j
8214—1 iy

FPCyES] 9”(7"_2 m) = (24-}-1)! (21_}_1>§0(Z,2m—2l—1).
22
2 g 2mt1) = (22) (2m+1)¢(z,2m+1—-21). . (5)
dz°" 21
82ﬂ.+1 , 2[]1—{—1
¢ @ 2ne = @A4D)! (_214_1) (o2, 2m—21)
+ (_1)mﬁ_}'—1Bm—l}'J

Die wiederholten Ableitungen der Bernoullischen Funktion sind wieder
Bernoullische Funktionen; nur treten hier noch Faktoren und Ber-
noullische Zahlen dazu, welche die Darstellung etwas komplizieren.

C. Einfache Integralformen.

Multiplizieren wir die Formeln (3) und (4) mit dz und inte-
grieren zwischen den Grenzen O und z, so erhalten wir

o(z, 2'm—1)dz=f%nm); m>1 und

o : (6)
fso(z,zln)dz———%%{jﬁw +(—1)" Bp.z. |

0 : )
Die Integrale der Bernoullischen Funktion, nach Schlomilch definiert,
sind wieder gleiche Funktionen, dividiert durch eine bestimmte Zahl;
fir die gerade Funktion tritt noch ein Produki einer Bernoullischen
Zahl mit einer Variabelen auf, das je nach dem Exponenten m ent-
weder addiert oder subtrahiert wird.
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. 1 .
Fir die obere Grenze 2= 5 erhalten wir unter Anwendung

der im folgenden § 9 zu beweisenden Formeln

1
5 _q\m lg2m
f¢(z,2m—1)dz= (—1) gsz 1% B, und
m

v L)
f; (2, 2m) dz = (—1)" B,

V) J

§ 9. Die Funktion mit inversem Argument.

ZX

Wir erselzen in die Grgsse z durch 1—z; dann geht

e —1

—ZzX

durch leichte Umwandlung dieses tiber in 1 — e—__;-m:l, und es wird

e(l—z}x—_ e-—zx_l
Dn[X—-x—} =-——Dnlx—-_—x—}.
x e —1 | _, x IR B

Ersetzen wir x darch — &, so wird

(1—2z)x 2k
D“lxe__x__:l __-(_1)nn',j=56,c —1
x e —1 ) _, d ¥ =1} .

Somit folgt nach Definitionsgleichung
¢(1—z,n)=(—1)"¢(z,n). (8)
Daraus ist ersichtlich, dass die Bernoullische Funktion fir 2= 5

bis z=1 in entgegengesetzier Reihenfolge dieselben Werle annimmt,

welche sie von z=—0 bis z=—;— hatte und zwar mit dem nimlichen

oder mit enigegengesetztem Vorzeichen, je nachdem die Funktion von
gerader oder ungerader Ordnung ist, was die Diskussion erleichtert.

Fir die gerade Funktion folgt aus (8) und der Definitions-
gleichung (1) fir x = 0, dass
¢(1,2m) = ¢(0,2m) = 0. (9)

Fir die ungerade Funktion wird fiir z=0 und z = 57 wie leicht ein-

zusehen ist,
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¢(L,2m+1)=¢ (-é— 2m+1) =¢(0,2m41)=0.  (10)

Wir suchen nun einen Wert fir ¢ (?, 2m). Dazu ersetzen wir in

der Definitionsformel (2) n durch 2m und z durch A, dann wird

2!
. 1.
go(%ﬂm):Dim{xe:_—}} =20 " 25
¢ — x=0 e'2_+1 -
Es ist identisch gleich
1y L3
2 2 X 1
X = X - o1 =¢(?X)—¢(X).
e?4-1 e2—1

Durch 2 m-malige Differentiation nach x und Multiplikation mit 2 erhalten
wir fiir x = 0 unter Beriicksichtigung von go(gm)(O) = (—-1)”‘_1 B, die

1 m 277 —1
Formel @ (?: 2m ) = (—1) ?n:l_Bm' (11)

Diese Berechnungen der geraden und ungeraden Bernoullischen
- Funktion fiir verschiedene Argumente sind nur Spezialfille eines all-
gemeinen Satzes, den Schlomilch wie folgt erhilt. Er setzt in der

Definitionsgleichung (2) fiir das Argument z der Reihe nach z, (z + %),

2 k—1 : ;
(z—!—T),-----n,(z—l— —k_)’ addiert die so erhalienen Aus-

aus der Klammer und erhilt die Summe

dricke, nimmt ¢ (x) =

- x 2x 3x (k—1)x
s= 07 [o7 (1 o ¥ oF s )]s 0ol
N .
x—0
Durch Summation der geometrischen Reihe in der Klammer folgt

ZX — !
S=DZ[ o = I—R—Isa(m
l ex—1 M | ]x:O
und durch leichte Veridnderung, wenn schliesslich x-=k§&, wird

1 nf,e"™—1 1
S=——D, 1§ = } k{————l} " (0).
Bern. Mitteil. 1900. No. 1481.
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Fiir n = gerade = 2 m wird
pts2m (o 2m) b (1425 2m)
| — o (K2, 2m) - (—1)" (P —1) Bu. (12)
Fir n— ungerade = (2 m - 1) folgt
wammHm+¢G4v;dm+4)+ ------ .+¢(v+fgi2m+ﬂ

° £

— o ¢ (kz, 2m41). (13)

Wir sehen hier wieder die Zweispurigkeit der géraden und
ungeraden Bernoullischen Funktion.

) 1 ) .
Setzen wir z=—0 und k=?, so finden wir aus dieser all-

gemeinen Formel fir cp( ,Zm), also fir die gerade Bernoullische

2 _
Funktion, den schon friher gefundenen Wert (11). Ebenso lassen

sich Ausdriicke finden fir

1 ) 1 1
90(—-,2111 ) @(T,2m> und gp(—é—,2m>.

Fir die ungerade Funklion kommen wir auf diese Weise zu kemen
Spezialwerlen.

§ 10. Die Funktion mit negativem Argument.

Um diese Funktion zu untersuchen, berechnet Schlomilch vorerst
¢(z}1,n). Nach Definitionsgleichung (2) wird durch Subtraktion

5 (z—1)x X
¢ z+1,n) — ¢(z,n) =D, JXEx— : }
l x==(

e —1
ZX X k
=|): .[Xw } =[): {xe“} —nz" L
G _1 x—=) x==0
¢@+1;m) = (z,n) + 02 (14)

Durch Anwendung von (8) entsteht daraus
¢(—zm)=(—1)"{ ¢z, n) + nz (15)
Es sind dies zwei wichtige Formeln; (14) dient dazu, aus einer

Bernoullischen Funktion eine neue Bernoullische Funktion gleichen
Grades, aber mil einem um die Einheit erhohten Argument zu be-

n--1 l



rechnen; (15) wird gebraucht zur Verwandlung einer Bernoullischen
Funktion mit negativem Argument in eine solche mil positivem.

Mit Hiilfe von (14) findet Schlomilch eine Beziehung zur Darstellung
der Werte der Bernoullischen Funktion auch ausserhalb des Inter-
valles von O bis 1. Lisst man nimlich z der Reihe nach die Werte
z+1, z-}-2, z4+3,----- y(z-}-k—1) annehmen, wo k = positiv und
ganz, und addiert dann die so erhaltenen Gleichungen, so wird

oletkm=p(n) ol + @)+ o)
. e )T (16)

Geben wir hierin dem k einen beliebigen ganzzahligen Wert,
so konnen wir auch hohere Werle der Bernoullischen Funklion, ganze
und gebrochene, berechnen, da z nicht ganzzahlig zu sein braucht und
wir ja die Bernoullische Funktion im Intervall von 0 bis 1 genau
kennen. Diese Formel wird uns die zur graphischen Darstellung der
einzelnen Funktionen notigen Werte liefern, wenn wir nicht vorziehen,
solche direkt aus den Definitionsformeln zu berechnen.

Schléomilch verwandelt eine Bernoullische Funktion mit negativem
Argument noch durch folgende einfache Formel, die er erhilt, indem

er in (8) fir z den Wert (z -+ ?> setzt, in eine Funktion mit positivem

Argument ¢ (% — 2, n) =(—1)"¢ (—%— -+ z, n), 17

die in einigen Fillen gute Dienste leistet. Aus dieser Formel ist auch

N 1 1\ . .
ersichtlich, dass ¢ (“Q“ -}z, n) eine gerade oder ungerade Funktion
ist, je nachdem n einen geraden oder ungeraden Wert hat. Daraus

1st auch go(%, n) als Maximal- oder Minimalwert erkennbar.

Einzelne spezielle Werle, die Schlomilch nicht oder auf ganz
andere Weise herleitel, findet J. Worpitzky gestiitzt auf Schlomilchs
Definition wie folgt:2®)

1. Berechnung von ¢ (%, n)-

Wir erselzen in (2) z durch 1. dann wird

’1 n X n 22[]_1
(p( 5 ,n) _—_2[)!{;0(?)—9&(1&)}‘;“-—DXGO(X)OF:T‘
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Weil D.""'o(x),=0 und D." ¢(x);=(—1)"B,, so wird fiir
1 ' .
n = ungerade = (2m-+1) ¢ (?, 2m-|—1) =) und fiir

1 2°™ —1
n==gerade =2m % (?, 2 m) = (—1)“—2—2mT1 B.. (18)

2. Berechnung von ¢ (%, n)

b 4 3w w 1
. ) ez et —1 o4 —
Es ist identisch — = e~
e -1 e —1 e —1
somit wird nach Definition (2)

r ] Tl )l
X ex—l—l I n SD 4 Sp 4

, wo w=2x, und

a f 1 N
Nach (17) ist qp(—i—i—, n) = (—1) @(T, n); daher wird fir
/
n=gerade ==2m. Dim_l :2 =0 und far
. e “]"1 x=0
n = ungerade = (2m+1). Dim{——fz ]
€ "I‘l x=0
= ;
om 1 7 \4
Ebenso ist identisch
Di_l‘ ex?—l ] =%D2_1[ _ 1 n X1 - XBL}. ()
g—l [xzo ed--1 ez-]-1 ezl =0
= n—1
Es sind Di_l[ xe%—m} __ 2 o {(—l)n—l ] @ %, n)-
e‘é‘_l__l o n.2
n—1 1 1 1
Dx {i“—} == 211__1@(2711)
ed -1 )i
132»1{ B } =%¢(%, n)
e?‘l"l x=0

Substituieren wir diese letzten drei Werte in («), so resultiert fiirn=2 m

1 1 22m—-1+1
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Setzen wir in dieser interessanien Beziehung zwischen den

1 1 1
Bernoullischen Funktionen mit Argument —- und — fir ¢ (——,2111)

2 4 2
den friiher gefundenen Wert, so erhalten wir
90( : ,Zm) == (—1) 2“1_1 ) (20)

§ 11. Diskussion dieser Definition.

Wir konnten natirlich bei dieser Diskussion gleich verfahren
wie bei Raabe. Schlomilch geht aber ganz anders vor, und wir wollen
uns deshalb an seine Darslellungsweise halten.

Setzen wir fir n der Reihe nach 1, 2, 3,...... , S0 nehmen
die acht ersten Bernoullischen Funktionen folgende Werle an:
0(z,1) =1
0z, 2) = 2t—z=1z(z—1).
3 1 1
¢ (z,8) = z3-——-—2—22+~§-z =1 (z—l)(z—-——g—)-
¢ (z2,4) =2*—22% }z22 =2z*(1z—-1)%
5 b 1
—_—d__ " a4 g ___ T
¢(z,5) =1z 2z+32 5L
5 1
. ___ a6 9,5 g4 T 42
¢ (z,6) = 2°—32> 5 5
7 7 7 1
N LT I D AT N R
¢z, 7)) =z 24—{—22 62—]—64.

¢ (z, 8) — 28— 4727 +—1§£z‘3-——;—z4+%z2.
Schlomilch beginnt seine Diskussion mit dem einfachsten Fall,
fir n=2 und fiihrt sie mittelst den Differentialformeln (3) und
(4) weiter.
Die erste Funktion ¢ (z,1)=z stellt wieder eine Winkelhalbierende
durch den Ursprung und den ersten und dritten Quadranten dar. Hin-
sichtlich der zweiten Funktion ¢ (z, 2) =1z (z—1) erhellt unmittelbar,

. : 1 : :
dass sie von z=0 bis 2= 5" negativ bleibt und fortwidhrend ab-

, 1 | . o :
nimmt; der Wert ¢ 5 2) =— ist ihr absolutes Minimum inner-

halb dieses Intervalles.
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., 1 0 : o
Nach (4) wird 5 57 ¢ (z,8) = ¢ (2, 2) 4 B,. Die rechte
Seile ist anfangs fiir z= 0 positiv, nimmt dann Kkontinuierlich ab und

1
g’ Woraus folgt, dass es

1 :
erhill fir z = 5 den negativen Wert —

, 1 ' " :
zwischen z=0 und 2= einen, aber auch nur einen Wert gibt,

fiir welchen der Ausdruck verschwindet. Diesem Verhalten von
¢'(z,8) gemiss, steigl anfangs ¢(z, 8), erreicht zwischen z =0 und

ZE?I ein Maximum und fillt dann wieder. Jenes Sieigen fingt an

mit ¢ (0, 3)=0; das nachherige Fallen hort auf mit go( L — 3) == ():
die Funktion ¢(z, 3) bleibt also positiv wihrend des Intervalles von
0 bis —;—-; dazwischen liegt ein Maximum.

1

Formel (3) gibt T % ¢(z,4) =¢(z,3), und da nach dem

Vorigen die rechte Seite, mithin auch ¢'(z,4) positiv ist, so findet
bei ¢(z,4) ein fortwihrendes Wachstum statt; dieses beginnt mit
¢ (0, 4) = 0; mithin ist ¢ (z, 4) positiv und zunehmend.

)
In Gleichung ; 3. ¢ (z, 5) = ¢ (z,4) — Bz ist die rechte Seite

anfangs fiir z = 0 negativ, wird aber immer grosser und erreicht fiir

, ) . o
L= % ihren grossten Wert(l — —25) B2, welcher positiv ist. Aus

diesemVerhalten von ¢’(z,5) folgt, dass ¢ (z,5) erst ab- und nachher wieder
zunimmt. Die Abnahme fingt mit ¢ (0,z) =0 an; die Zunahme hort

mil 90( ) 5) auf; somit bleibt ¢ (z, 5) negativ von z =0 bis z =—;—

und besitzt innerhalb dieses Intervalles ein Minimum.

0
Weil ferner %—a——go(? 6) = ¢(z, 5) und die rechte Seile,

also auch ¢'(z, 6) immer negativ ist, so nimmt ¢(z, 6) immer ab, mit
¢ (0, 6) =0 anfangend; somit ist ¢(z, 6) negativ und abnehmend.

‘Wir iiberblicken augenscheinlich den Fortgang dieser Schliisse,
deren Gesamtiergebnis sich graphisch darstellen lissi, wenn man z als
Abszisse und ¢ (z, n) als zugehorige rechiwinklige Ordinate konstruiert;
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dann werden im Intervall von O bis 1 die Funktionen gerader Ord-
nung charakterisiert durch

Fig. 1. 5
L1} i 1 E

Fig. 1, wenn n =2, 6, 10, 14, ....... , (4 k—-2),
Fig. 2, wenn n =4, 8, 12 16, ....... , (4K)
und die Funktionen wungerader Ordnung durch
Fig. 3. Fig. 4.

4 \.L/ \/ 1

Fig. 3, wenn n=3, 7, 11, 15, .. ..... , (4 k—1),

Fig. 4, wenn n =5, 9, 13, 17,....... , (4 k+-1).
Auf eine genauere graphische Darstellung der verschiedenen
Bernoullischen Funktionen werden wir im leizten Abschnift eintreten.??)

§ 12. Verwandlung der Bernoullischen Funktion
in trig. Reihen.

Mit Hiilfe der Schlomilchschen Definition als Differentialquotient
lisst sich diese Funktion in eine nach cosinus oder sinus der Vielfachen
eines Bogens fortschreitende Reihe entwickeln.

Aus der Theorie der Fourierschen Reihen und Inlegrale ist bekannt

3
(7)— a,1-a, cos——l—a cos ——+ . s——;i

—" """" (O§Z§H)5
‘obel a _2 Ift(z) COS—]-(E—Ti dz
\\'0 ei k= - ;

0

Es sei f(z) =¢(z,2m) und n=1; dann wird
ga'(z,Zm):%30-+31005ﬁz+3200s2nz—{—ascos8nz—{— ......

1
a, =2 fcp(z, 2m)cosk zzdz
Ot./

2m 1 5
=2D_ {ga(x) f(e“-———l) cosk sz zdz
. x=0
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Die Integration lisst sich jetzt leicht ausfiihren, doch miissen wir die
zwei Fille getrennt betrachten:

9m

1. k=0, dann erd—z—a _-D' go(x) (e —1)dz

(2“"(0)—( —1)"B

2m Xz
2. k>0, daher a, =2D_ go(_x) (e cosk sz zdz
0

1 28)
—fcosk:rz dz]}-
s x=0

ak=2[’im{sﬂ(x) U] |

2k o
™ (2m)! '
(k)™

Diese Formel wird fir k= gerade a = 2(—1)

» k=ungerade a_ = 0.
Demnach wird die gesuchte Reihenentwicklung

¢(2, 2m) = (—1)" By - (1)~ ((Z;EL{COZ;O‘J” L4 B
-+ %Smﬂf- N } (21)

fir 0<z<1.
Auf ganz analoge Weise finden wir einen Ausdruck fiir die
ungerade Bernoullische Funktion, so dass ist

(2m—1)! [sin2 sz sind 7z z
2m—1 2m—1 —I— 2m—1
7T 2 4

¢ (Za 2m_1) - (__1)m 2

sin 6 7z z
AL o }
fir 0<z<1; n>1.
Schlomilch findet diese Formel (22) durch Differentiation der
Reihe (21). Beide Formeln erinnern uns an die Raabeschen Definitions-
formeln (4) und (5), von denen ja Raabe die meisten Eigenschaften
seiner Bernoullischen Funktion herleitet.

(22)

Diese Reihen lassen darauf schliessen, dass die Bernoullische
Funktion in enger Beziehung zu den Kreisfunktionen steht, was auch
J. Worpitzky in einer Studie iiber «Bernoullische und Eulersche
Zahlen» beweist.??)



- -

Er zeigl, dass der Spezialwert einer geraden Ableitung der
Cotangente eines Argumentes, multiplizierl mit dem Argument selbst,
sich durch eine Bernoullische Zahl wie folgt ausdriicken lasst

Dim {xcolg x} e 2" Bu.

xX=

Ebenso lisst sich der Nullwert der geraden Ablelmngen der
trig. Tangente durch eine Bernoullische Zahl oder durch eine Bernoullische

. . 1° . .
Funktion vom Argument --- ausdriicken, so dass ist

2
V 2 2m_
Djm { lgx } — 2 m—1 @ﬁ*i*l) m.
x=0 m
Schliesslich ist auch der Nullwert der geraden Ableitung der

Sekante durch eine Bernoullische Funktion darstellbar, indem wird

4m+2 ( 1 )

§ 13. Die Rernoullische Funktion in bestimmten Integralen.

Dim { sec X }x=0= (—~—1)m

Ausser den einfachen Integralwerten in § 8 dieses Abschniltes
gibt Schlomilch weder in seinem Compendium, noch in der erwihnten
Abhandlung in Band I der Zeitschrift fiir Mathematik und Physik
andere Integralausdriicke mit Bernoullischen Fuanktionen, abgesehen
von der Bernoullischen Funktion, welche der Restausdruck bei der
Summierung der allgemeinen Differenzenreihe enthilt, und dem Rest-
gliede der Maclaurinschen Summenformel, das unter dem Integral-.
zeichen ebenfalls eine Bernoullische Funktion aufweist.’®) Auch bei
Worpitzky finden sich keine Integralformeln der Bernoullischen
Funktion, doch lassen sich den Raabeschen Formen entsprechende.
Ausdriicke mit Leichtigkeit aufstellen.

II. Die Bernoullische Funktion nach L. Schiafli.

§ 14. Herleitung der Definition.

Schlifli geht aus von der Summe

Sw== 172" 8" 4™ - ()
- gibt er dem m die Werte 0, 1, 2,.... » M, S0 erhilt er (m-{-1)
Summen Sy, S;, Sz, . ... .. , Sm. Diese mu]lnphzneren wir der Reihe
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