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gliedern sich im Wesentlichen gleichartig, nur lassen sich bei der
einen Definition diese Eigenschaften, bei der andern jene leichter
aus der Grundgleichung ableiten. Im ganzen soll der historische Gang

möglichst innegehalten werden.
Endlich sei der Vollständigkeit halber noch bemerkt, dass sich

bei einzelnen Arbeiten über die Bernoullischen Zahlen hie und da einige
Bemerkungen über die Bernoullisclie Funktion finden. Am Schlüsse

dieser Arbeit findet sich deshalb ein Verzeichnis sämtlicher benutzter

Quellen und Werke.
Die dieser Arbeil beigefügten Tabellen und Kurven wurden

selbst berechnet und dargestellt.

I. Die Bernoullisclie Funktion nach J. Raabe.

§ 1. Herleitung der Definition.

Wie schon in der Einleitung erwähnt, gelangt Raabe auf diese

Funktion bei der Entwicklung von^^jx111 in eine Potenzreihe unter
Anwendung des binomischen Satzes. Der Weg der Herleitung
vermittelst Summation von Differenzreihen ist so ausgedehnt, dass hier
auf eine Wiedergabe desselben verzichtet werden muss, da dies den

Rahinen der vorliegenden Arbeit weit überschreiten würde, umfasst
die Ableitung dieser Definition in Raabes erster Schrift ja nicht weniger
als dreizehn Druckseiten, zudem isl die Herleitung ziemlich einfach
und bietet durchaus keine Schwierigkeiten.8)

Raabe definiert darin

B(z)-
Z T

m-f-1
Im. 1 c;Kz-1- iGK-

^ ^B3zm-5- + (1)

als die «Bernoullisclie Funktion.»
Aus dem Grunde, dass der Funktionsexponent in nicht in der

ganzen Allgemeinheit einer absoluten Variabelen auftritt, hat Raabe

denselben in der Bezeichnung der Bernoullischen Funktion unbeachtet

gelassen. Da sich eine Verschiedenheit der Bernoullischen Funktion
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mil geradem und ungeradem Exponenten ergibt, so bezoichnel er die
Bernoullisclie Funktion mit geradem Exponenten 2 m durch B"(z)
und diejenige mit ungeradem Exponenten (2m + l) durch B'(z), wobei

m ganz und positiv, weshalb sich folgende zwei Definilions-

gleichungen ergeben

+- + L2nT-(2m-l)B-Z- ™

V(?)..
z2m+2 Ij-fi. U*m+% z2mB^-2m+2 2Z +2V 1 7Bl

"il 3 JV +- + -2nT~Um-i;B»Z- (3)

Aus diesen beiden Hauplgleichungen ist ersichtlich, dass nach

Raabe auf der rechten Seile kein von der Variabelen freier Term
vorkommen darf, eine Bestimmung, welche, wie wir sehen werden,
die so definierte Bernoullisclie Funktion zu wenig allgemein macht.

Bedeutend rascher gelangt Raabe in seiner zweiten Arbeit zu

der nämlichen Definilionsgleichung. Ausgangspunkt dieser Herleitung
ist die bekannte Beziehung

k=oo
^^ sinkx

x 7r— 2^—.k=l K

Dieser Ausdruck wird mehrmals nacheinander mit dx multipliziert
und zwischen den Grenzen 0 und x integriert; so entstehen successive

die Bernoullischen Funktionen mit den Exponenten 2, 3, 4,

nämlich
k=oo

L — coskx
n\ — 2 lk~ k"

und sei noch abkürzend, wie gebräuchlich, bezeichnet
k=oo

2 — — + — + — + — + ••¦ in inf. Sod im -, m l 0m l Dm ' m ' n

k=l *¦ •"¦ ™ " *
so werden

k=oo
X2 oc I o "^ COskx

k—1 *
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k=oo
*3 _ *2 oc _ i „"Vsinkx
Jl-7t,Jl-2S*x + 2 S-i^Tk=l Ä

x2m+l x2m X2""-1 X2""-3

(2m+l)! '"' (2m)! 2S2(2m-l)!^2S4(2m-3)! +
k=oo

d! u—i kk=l
x2m+2 x2m+1 X2"" X2'"-2

o c _ L 2 S |_

2tOmM' * f9m_9.1l I

(/?)

(2m+2)! (2m-f-l)! 2(2m)!' i (2m—2)!
k=co

+ 2 (-«"V S + 2 (-D^1 S2m+2 + 2 ("If+22^01 k=l k

Beide gelten für alle Werte von x 0 bis x 2 re ; m darf gehen

von 0, 1, 2, ; eine Ausnahme bildet nur m 0; denn für diesen

Wert bleiben die Grenzwerte x 0 und x 2tt ausgeschlossen.

Berücksichtigen wir, dass

B =(2m)! —\- S„
m (27T)2m 2m

(2 m)! (2m-f-l)!
und multiplizieren wir (a) mit —-—^+r und (ß) mit 2^+2—'

(27t) + (2 7t)
so werden

k=oo / x \2m+l
2(—l)m+1(2m)! "V sinkx \^) 1 / x "2m

(2«)(27r)2m+1 Sk2m+1 2m+l 2 \2,

+y( 1 r\h) ~+ + 2 m \2m-\)*Ah}
k=00 / x \2m+2

2(—l)m(2ni-f-l)! "V coskx [2^) l/x^2m+1
(2 7r)8m+2 ^ k2m+2 2m--|-2 2 \c\jt,

2 m-
2m-

(-1)1
+ YV 1 JM^/ _+ + ~2m~"V2n.-ljBlA2lr

iim
B_

2m-j-2 m+1

x

führt die Beziehungen (2) und (3) ein; dann werden

In diesen beiden letzten Gleichungen ersetzt Raabe (-—I durch x und
t-ä TV /



=oo

T>t>M_2(-Vm-1 (2mV y sin2k*x
B W ro ^m+x VmF- ^J 2m+i (*)

=co

Durch obige Substitution hat sich aber das Giilligkeilsgebiet
verkleinert; die Beziehungen (4) und (5) gelten nur noch für 0<X1,
inklusive Grenzen, wenn der Fall m 0 ausgeschlossen wird.

Aus diesen ziemlich komplizierten Formeln leitet Raabe die
Mehrzahl der Eigenschaften der Bernoullischen Funktion ab, weshalb
seine Ableitungen oft etwas lang und umständlich werden.

Da wir zu spätem Vergleichungen noch die Bernoullisclie Funktion
mit dem Exponenten (2m—1) nötig haben, so geben wir Raabes

Delinilionsformel für dieselbe, nämlich

WC \
7-2m 1 2'n-l 1

1 /2m__1N\ti 2m-2 |B(z)=2m-YZ +Y\ 1 )^ - +
(-l)m-2/2m-l\+ ^m=2"Ì2m-3jB-i/'- (6)

§ 2. Die Derivierten der Bernoullischen Funktion.
A. Die einfachen Differentialquotienten.

Wir können dieselben aus den Definitionsgleichungen (2) und

(3), oder viel einfacher aus (4) und (5) auf folgende Weise finden:
1. Für die ungerade Bernoullisclie Funktion wird nach (2)

1 /2m-f-l\ „

(—\)m~l /2m-f-l
2 m \2m—1

2 m—1

B_ 2 z

dx

_i('»)v"+--+^(,:-1)^.}
B'(z) (2m-f-1) !$"(/.}. (7)'
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2. Für die gerade Bernoullische Funktion bedienen wir uns der
Formel (3); es wird

S „,,. 2m 2m a m-1 1 (2m\ D /0 2m-2_B (z) z -z +T(^ 1jB1(2m-l)z
1 f2m\ 2™ 4 (—D"-2 / 2l" \' 'B,(2m—3)z2m_4+- t—tt^- L )B z22V ' ' ~ 2m—2 \2m—3/ «»-1

(— l)m_1 / 2111

2m
1 2m-, 1 /2 m-1

2 m \2m—1/ m

Z 1 2m-l, 1 /*'"—M 2m-2ß2 11H —— — — z -f- —-1 z ß
I 2m 2 ' 2 \ 1 / 1

4 V 3 yV"' '+- l~I5=2-Um-8JB-^

+ (-l)m_1Bm

^B"(z) 2m 'B(z)-f (_l)m-,Bm. (8)

Es tritt hier eine Komplikation durch Hinzutrill einer Bernoullischen
Zahl auf.

Noch einfacher ergeben sich dieselben Formeln aus (4) und (5),
wie ersichtlich isl aus

k=oo
d 2(—lr*(2m+l)l N? sin2k7TZ

—-B'(z) ^—rj ^ — 2k 7t 5—3—ôz {2n.r m+2 p—| k2m+2

k=oo
2(—l)m+1(2m)!(2m-f-l) "V siii2k7rz1) "V sin 2k

~ —-J 72^4,2m+l _^ t2m+l(2/r) T k=1 k

dz
Analog wird

k=oo

5-B'(z) (2m+l)B"(z). (7)

-B"(^^S^2 "-—-^3x w_ (2,r)2m+1 feti k2m+1

k=oo
__2(-l)m"1(2m-l)!2m'V cos2k7rz

(2*r) k=1 k

Ziehen wir die Formeln (5) und (6) in Betracht, so wird dieses zu

AB"(z)=2m.'B(z) + (-l)m-1Bm. (8)
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B. Die wiederholten Differentialquotienten.
Da Raabe den Exponenten der Funktion nicht, oder nur

ungenügend andeutet, so lassen sich die wiederholten Ableitungen nicht
direkt durch die Bernoullisclie Funktion, wohl aber durch
trigonometrische Summenformeln darstellen; wäre bei dem Funklionszeichen
der Exponent berücksichtigt worden, so könnten die Derivierten mit
Leichtigkeit angegeben werden.

Durch successives Differenzieren der Beziehungen (4) und (5)
gelangen wir zu folgenden einfachen Gleichungen, wenn man symbolisch
selzt

B2r (2r)te Ableitung von ß
k=oo

B" M - 2(-l)m4'(2m)! ^ cos2k,rz
" 2t-lW /0 s2m —2r+2 ^J ,2m —2r+ 2 W

(2w) ^ k=l k
k—oo

B' M- 2(-l)m+r(2m+l)! ^ cos2k«z
2rW .- ,2m-2i + 2 ^i ,2m-2r+2 V1XJ)

(2^r) T k=i k

C. Einfache Integralformeln.
Aus den Gleichungen (7) und (8) resultieren durch Multiplikation

mit dz und Integration zwischen den Grenzen 0 und z

'^„»m+fcö., (12)
./ 2m ' 2m
o

Fuhren wir dieselben Operationen an den Formeln (4) und (5)
aus, so erhallen wir zwei weitere Inlegralformeln einfachster Art, wenn
als obere Grenze z — 1 gewählt wird; denn es werden

k=oo

fr V) k=i R
V

/.
k=oo

_ 2(-l)m(2m+l)! <ü 1 fB(z)dz- (2^r+2 äi^y.cos2k?rzdz

(-Dm
Bmi, I dz.

2m-f2 m+\

Bern. Mitteil. 1900. No. 1479.
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Nun ist I sin2k7Tzdz= I cos2ksrzdz 0,

/
somit

0 0

B"(z)dz 0 (13) und (B'(z)dz ^^Bm+1. (14)

§ 3. Die Bernoullisclie Funktion mit inversem

and mit negativem Argument.

Raabe widmet diesen beiden Betrachtungen nur wenig Aufmerksamkeit;

doch sind die Grundformeln schon bei ihm wie folgl hergeleitet.
Er erhöht in Formel (25) seiner so langen Ableitung der Definitionsformel9),

d. h., in

(T)(d+a)m-1-am-V1

m—2

(1+a)-_ma»-1_a»-f-^1J{(l+a)-1-a- -| a

+ (m2)l(l+ar-2-a-2)«2 + + {ml2){(^f-»l°
+ (m-l)k1+a)-ai«^=°

m um die Einheit und beachtet die bekannten Ergebnisse (26) und

(29) seiner Schrift und die Definitionsgleichung der Bernoullischen

Funktion, wonach

«i=y; «2h+i=0; ß2h=(—tf'^K
wobei h geht von 1 bis oo, so resultiert die Gleichheit

B(l-f-z)-B(z) zm (15)

Ersetzen wir in der ursprünglichen Formel (1) z durch (—z),
so wird

»M ^-lH»»+ i(>,<-,'
1 /m m-3i 2K(-*r-ö+-

im+1 1 1 /m\
(-DB(-z) -^-Fr--z -yljB.z

4 \2,+ "f O V^-H~
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7m+1 1 1 /m\b«=stt-t^.+t(i)». f-'

-l>^+-
B(z) + (-lfB(-z) -zm. (16)

Spezialisieren wir diese letzte Beziehung auf die gerade und

ungerade Bernoullisclie Funktion, so erhallen wir

W(-z) — B"(z) — z2m und B'(—z) B'(z) -f z2m+1. (16»)
Addieren wir die Formeln (15) und (16), so erkennen wir, dass

B(l+z) + (-l)mB(-z)=0. (17)

Aus der letzten Gleichung ergeben sich zwei Beziehungen, die uns

über die geraden und ungeraden Bernoullischen Funktionen nähern
Aufschluss geben. Je nachdem m gerade oder ungerade, wird, wenn
wir vorher z durch (—z) ersetzen,

B(l-z)-|-(-l)mB(z)=0. (17*)

B"(l—z)=— B"(z); B'(l—z) r= B'(z). (17b)

Für z 0 folgt aus (15) B(1) B(0), und da laut Definitionsgleichung
B(0) 0, so wird

B(0) B(1) 0. (17c)

Ist der Exponent gerade und z——, so entsteht nach (17b)

und dies kann nur Null sein; somit ist

B(0)-b(-1)=B(1) 0. (17*)

Es sind dies alles Resultate, die uns bei der Diskussion der
Bernoullischen Funktion gute Dienste leisten werden.

Später10) leitet Raabe dieselben Eigenschaften aus unsern Formeln

(4) und (5) ab. Er ersetzt in (4) z durch (1—z); dann wird
k=oo

Wrh ,_2(-l)m+1(2m)! ^ sin2k7r(l-z)j~ (2^)2m+1 -g k2m+l
'

Da aber sin2k?t(l—z) — sin2kzcz, so wird



12 —

B"a-z) V amJt Z* .am4.. 'also

k=oo
— 2(—l)m+1(2m)! y sin2k7TZ

(2^r)2m+1 él k2m+1

B"(l-z) — B"(z).n) (17b)
Desgleichen wird

k=oo

BV1 r\ I
(~1)m R _2(-l)m(2m+l)!^ cos2kyr(l-z)»^ ^-T- m+2 Bm+1- (27r)2m+2 j^J k2m+2

Da cos2k7r(l—z) cos2k7TZ, folgt
k= :O0

R,n 7x (-1)" __2(-l)m(2m+l)! ^? cos2k^z^ ZJ^" m-f-2 B"»+i- (2,r)2m+2 jjg k2m+2

(— l)m
B'(z) + ^T4-B somit

m+2 m+1'

B'(l—z) B'(z).u) (17b)

Dass die Funktion B(z) bei der Annahme eines ganzen, positiven

Exponenten m die Summe der mten Potenzen aller Zahlen 1 bis (z—1)
darstellt, kann nun gestützt auf die schon gefundenen Beziehungen
leicht gezeigt werden. Zum ersten Mal sind solche Reihensummierungen
von Jakob Bernoulli allgemein gelöst worden, der in seinem für die

Theorie der Wahrscheinlichkeitsrechnung so wichtigen Werke «ars

conjectandi» 1713 mit Hülfe der von ihm eingeführten Bernoullischen

Zahlen, von denen er die 5 ersten berechnet12), solche Summierungen
vornimmt. Vor ihm haben verschiedene Mathematiker wohl spezielle
Polenzreihen summiert; der Engländer Wallis summierte die vierten,
fünften und sechsten Potenzen13); auch Faulhaber führte in seiner
«academia algébrae» 1631 solche Operationen aus14); aber Jakob

Bernoulli15) gebührt das Verdienst, diese Aufgabe allgemein gelöst zu

haben.
Ganz einfach lassi sich diese Aufgabe durch Anwendung der

Bernoullischen Funktion ausführen. Wir gehen von Formel (15) aus,

erhöhen successive das Argument z je um die Einheit und erhalten,
wenn wir schliesslich alle diese Gleichungen addieren und z um k

Einheilen fortschreitet,

B(k+z) B(z) + zm+ (1+zf + (2-fz)m + • • • • -f- (k- 1-f-zf." (18)

Daraus geht für z 0 die gewünschte Summalionsformel. von
Jakob Bernoulli hervor, nämlich
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B(k) lm + 2m -f- 3m + -f (k—l)m. (18a)

Eine weitere wichtige Formel ergibt sich aus (17b). Ersetzen wir

darin z der Reihe nach durch—,—,—>••••> addieren dann
n n n n

alle diese Gleichungen und dividieren, da jedes Glied doppelt auftritt,.
durch 2, so folgt für die gerade Bernoullisclie Funktion

b"(Ì)+""(1) + "';(t) + +-(==9-K.>
1 2

Setzen wir weiter für z wieder successive die Werte —, —>
n n

—,...., in (18) ein, so wird für die gerade Bernoullisclie
n n

Funktion

»¦KiM4-)+ar+(>+ir+(-<4)-
+ + (*-!+ !)"¦

B"K4)-œ+(4-r+G+ir+(»+é;_

^+iM4-)+(4-M«+if+(*4-)''
+ .....: + (k_1 + A)-

+(»+^r+ +(>-i+°-=)T

+ +(k-2+if-
Addieren wir alle diese Gleichungen, so liefert die erste Kolonne

der rechten Seite gemäss (et) Null; sämtliche übrigen Potenzen mit
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dem Exponenten (2m), also von I — bis zu Ik—-2-\—1 lassen

1
sich gestützt auf (18a) darstellen durch —2^B"(nk); deshalb wird

B"(k)+B"(k+i)-fB"(k+|-) + +B"(k+5=1)
1

-^B"(nk). (19)

Raabe weist dann nach, dass diese Formel gilt für k beliebig
rational gebrochen und positiv, dann für alle irrationalen positiven
Werte von k, schliesslich zeigt er, dass dieselbe auch für negative
reelle Werte von k die Gültigkeit nicht verliert.17)

Um den entsprechenden Satz für die ungerade Bernoullisclie
Funktion zu erhallen, verfährt er wie folgt: Ausgehend von (7), wird

B'1(z) (2m+l)B"(z).18)
/ k\

Er ersetzt darin z durch z -) summiert beidseitig von k 0 bis

k n — 1 und erhält unter Anwendung von (19)
k=n—1 k=n—1

k\_(2mJLl)B,,(nz)
nk=0

V J k=0 V

Nach (7) ist aber auch B'^nz) (2m-f-l) B"(nz), daher

k=n-l
-4rB'l(nz) 2*'i(*+4
n k=0 \ n.

Wird beidseitig mit dz multipliziert und in Beziehung auf z

integriert, so folgt
k=n-l

-^+rB'(nz)=2B'(z+T) + M' {ß)
11 k=0 v J

wo M als Inlegrationskonstanle von z unabhängig ist. Um diese zu

bestimmen, setzen wir z 0, dann wird
k=n—1

0 H4.|oB'(4

M ~K4-Mt)+ +»i^)\



— 15 —

Durch Vergleichung zweier für dasselbe bestimmte Integral
gefundener Ausdrücke, erhält Raabe dann

„(-')' f„ i
2m-f2

I»
n

B.2m-f 1 1 m-fl

Setzt er die erhaltenen Werte in die vorhin erhaltene Formel (ß)
ein, so wird

B'(z) + B'(z-f~jL)+ B'(z-f-A) 4- + B'(z +
n—1

z -i ^ni I 2in-4-2 u \l „.. (—\) n — i
-n2m+iB'(nz)--m+2)n2m+1 Bm+1, (20)

eine Formel, die gleich wie (19) für sämtliche reelle Werte von z und

für ganze und positive Werte von n identisch Bestand hat.

Diese letzten zwei Beziehungen zeigen, wie schon Raabe andeutet,
eine gewisse Ähnlichkeit mit dem Gauss'schen Fundamentalsatz in der
Theorie der Gamma-Funktion

rW.r(a+-i).r(.+|) r(.+!=>).
r(na).n

"
2(2«) 2

nur finden sich hier alles Produkte, während bei der Bernoullischen
Funktion Summen auftreten.19) Es wäre wahrscheinlich sehr interessant,
sämtliche Analogien beider Funktionen herauszusuchen; doch würde
uns das zu weil von unserem Thema wegleiten.

§ 4. Diskussion der Bernoullischen Funktion.

Raabe diskutiert seine aufgestellten Definitionsformeln in keiner
einer Arbeilen; doch müssen wir auf diese Frage auch bei dieser
Definition eintreten, damit wir später mit den andern vergleichen
können. Wir kommen am besten zum Ziel, wenn wir bei den

Bernoullischen Funktionen mit niedrigen Exponenten anfangen und
allmählich zu denjenigen mit höhern fortschreiten.

Setzt man für m der Reihe nach 0, 1, 2, 3, so erhalten
die acht ersten Bernoullischen Funktionen folgende Werte:
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Bo(z) z. •

Bi(z)=i-z(z--!)•

B2(z) ^-z3-
1

2
1

Tz +TZ-
Bs(z) 4-Z*- Tz3 + Tz2-

B4(Z)=i-Z5_ lz4 + iz3- 1

30
z.

Bb(z) -jz6- 4z6+Äz4- 1

12
¦t?-

Be(z) y z7 - — z6 4- — z6 —
2

Z + 2
Z

1

6
23 + 42

B7(z) j-z8- 1
7

7
R

Yz7 + Ï2z6-
7

24
z* + *

1

12

z.

Für uns sind diejenigen Werte am wichtigsten, für welche z

innerhalb des Intervalles 0 und 1 liegt; für z ausserhalb nehmen die
Funktionen rasch grosse Werte an; auch können diese Werte aus den

innerhalb dieses Intervalles liegenden berechnet werden. Die Tabelle I

am Schlüsse dieser Arbeit gibt die Werte der sechs ersten Bernoullischen
Funktionen für verschiedene z von — 3 bis -|- 4.

1. B0(z) z. Diese Funktion stellt somit eine Gerade dar. die
durch den Ursprung der Zahlenebene geht und den Winkel der
Koordinatenaxen halbiert, indem sie durch den ersten und dritten
Quadranten läuft.

2. B1(z) —z2 — z. Am meisten interessieren uns die,
et et

Maximal- und Minimalwerle der Funktion. Nach der bekannten Regel

aus der Theorie der Maxima und Minima entwickelter Funktionen

erhalten wir hier ein Minimum für z -—• Es ist leicht einzusehen
Li

dass von z 0 bis z — diese Funktion fortwährend abnimmt und
Li

sein.negativ bleibt; der kleinste Wert muss somit Bi( -—) -—\l J 8

Von z — bis z 1 beginnt die Funktion fortwährend grösser zu
dt

werden, um für z 1 den Nullwert zu erreichen, von wo an die
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Funktion weiter zunimmt. Der Anblick der Gleichung sagt uns
überhaupt sofort, dass diese Funktion eine Parabel darstellt, die durch den

Ursprung gehl.

3. B2 — — z3 — z2A----z. Wir erhalten ein Minimum für
O dl O

z —- -I- — \/s und ein Maximum für z — — \J'ô ; zudem wird
2 6 2 6

diese Funktion für z =— zu 0; daher folgt:
Lt

Zwischen z 0 bis z — ist diese Funktion stets positiv und
dt

weist ein Maximum auf bei z=— ttS/S; im Intervall von z ——2b* 2

bis z 1 ist dieselbe negativ mit dem berechneten Minimum bei

z= — +-ß- \/3. Wie wir später sehen werden, stellt diese Gleichung
dt 0

eine Parabel höherer Ordnung dar.

4. B3 — z4 — z3 -f- — z2. Die Rechnung ergibt zwei

Minima, bei z=0 und z l und ein Maximum bei z — • Diese

Funktion isl im ganzen Zwischenraum von 0 bis \ positiv und besitzt

eine Maximalstelle für z —, wofür B3 — I — —— wird. Es stellt
di \ dt I 04:

dieselbe wieder eine Parabel höherer Ordnung dar; diese geht durch
den Nullpunkt, der aber kein Doppelpunkt ist; gleichwohl ist die
Abszissenaxe Doppellangenle; sie berührt in z 0 und z 1.

Bei der Diskussion der höhern Bernoullischen Funktionen können

wir nichl mehr analog verfahren, da wir auf Gleichungen vierten und

noch höhern Grades gelangen; wir begnügen uns hier mit der

graphischen Darstellung der zwei folgenden, höhern Bernoullischen
Funktionen. Bei einer später zu untersuchenden Definition der
Bernoullischen Funktion werden wir einen ausreichenden Weg der
Diskussion der hohem Bernoullischen Funktionen kennen lernen.20)

§ 5. Entwicklung der Bernoullischen Funktion in trig. Reihen.

Schon bei der Ableitung der Definitionsgleichung gelangte Raabe

zu Reihen, welche die Bernoullischen Funktionen darstellen, ebenso

Bern. Mitteil. 1900. 1480.



— 18 —

bei der Herleitung der Differentialquotienlen. Wir verweisen hier nur
auf die diesbezüglichen Formeln (4), (5), (9) und (10). Dieselben

zeigen viel Ähnlichkeit mit den Reihenentwicklungen der übrigen
Definitionen der Bernoullischen Funktion.

§ 6. Die Bernoullische Funktion als bestimmtes Integral.
Es handelt sich nicht darum, eine erschöpfende Darstellung aller

Integrale der Bernoullischen Funktion zu geben; wir wählen nur die

zum Vergleich mit den andern Definitionen wichtigen.

Durch Multiplikation mit cos2r?rzdz, resp. sin2r/rzdz und

Integration zwischen den Grenzen 0 und 1 entstehen aus den Formeln
(9) und (10) unter der Voraussetzung, dass r und k ganze Zahlen

seien, die vier leicht herzuleitenden Formeln.21)

(z)cos2r7czdz 0. (21)
o

| B"(z)sinî
\in-l

""'-^SS*-0- <22>

Ö
v

I B'(z)sin2r/rzdz 0. (23)

o

0

B' (z) cos 2 r TT z d z ]] ^'"+2)- (24)
(27tr)~ T"

Multiplizieren wir (4) milB"(z)dz und integrieren zwischen 0

und 1, so folgt, da die Doppelsumme durch die verschwindenden

Integrale zur einfachen Summe wird,
t k=oo

0 k=l o

Der Wert des Integrales rechts ist —, somit
et

k=oo
2(2m)!2 %J 1

_
2 (2m)!2

J l> WU"- 4m+2 ^ k4m+2
•

4m+2 "4.„-|.2'
ö v k=l

B"2^d7 2(2m)'2 V 1
S,

Wird S4m, 2
durch Bernoullisclie Zahlen ausgedrückt, so resultiert
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(V M dz r(2m+l)i a (z) - (2 m+1) (2 m+2)- jjam+1. (2o)
o

Ebenso wird aus (5)

Pw*Mâ7- r(2m+2)
J w (2m+2)(2m+3) (4m+4) 2m+2
o

l2

+ 1 Bm+1 L (26)

Mit Zuziehung der Gammafunktion gelangt Raabe zu einer
Anzahl bestimmter Integrale, welche durch die Bernoullisclie Funktion

dargestellt werden können.

7~T2m-l-li /»oo
Bekanntlich ist » 77 I e_kHu2mdu. Setzen wir diesen

k2m+l J
0

Wert in Formel (4) ein, so wird

ik=oo

i

> e-kusin2k7rz u2mdu.

k=l J

k=oo
N^ -ku • „. sin27TZ

Da aber >, e sin2k7rz -— so wird

/
eu-f-e u—2cos2ttzk=l

00 u2m (—l)m+1(27r)2m+1du- ;„i^—B"0)- (27)
eu-f-e"u—2cos2ttz 2sin27rz

o

Ebenso wird

3(cos2*z-e U)«2ffifl,du i_(_ir(2^2-+2B.(Z)
n"_l_fi_u—9r.ns9^-7 2f-

J eu4-e~u— 2cos2ttz
o

-. /p x2m+2

+ "2" 2m+2 *W (28)

Durch partielle Integration findet Raabe eine weitere Anzahl von
bestimmten Integralen, ausgedrückt durch Bernoullisclie Zahlen oder

Funktionen. Ebenso erhält er noch andere kompliziertere Formeln,
wenn er die Summenformeln oder andere zweckmässig gewählte, mit
den Bernoullischen Funktionen in Beziehung stehende Ausdrücke in
Parlialbrüche zerlegt. Alle diese Beziehungen erfordern aber eine

ziemlich umständliche Herleilung.22)
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