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H. Renfer.

Die Definitionen
der

Bernoullischen Funktion
und Untersuchung der Frage,

welche von denselben für die Theorie die zutreffendste ist.

[Historisch-kritisch beleuchtet.]

Einleitung.

Die Vorgeschichte des hier zu behandelnden Gegenstandes ist
ziemlich rasch erschöpft, was schon aus der spärlichen Litteratur über
diese Funktion hervorgehen dürfte, sind es doch äusserst wenige
Autoren, die sich mit einer speziellen Untersuchung der Bernoullischen
Funktion befreundet haben.*) Weit grösser isl die Anzahl der Schriften
über die Bernoullischen Zahlen, auf deren Theorie sich diejenige der
Bernoullischen Funktion aufbaut.2) Die vorliegende Arbeit setzt die
Kenntnis der Theorie der Bernoullischen Zahlen3) voraus, wenigstens
in Bezug auf ihre wichtigsten Eigenschaften und Beziehungen und

die gebräuchlichsten Rekursionsformeln. Wo es nötig ist, wird jeweilen
auf die betreffende Lilleralur verwiesen.

Eingeführt in die algebraische Analysis wurde die.Bernoullische
Funktion von Professor Dr. /. L. Raabe in Zürich durch seine Arbeit
»Die Jakob Bemoullische Funktion», die im Jahre 1848 im Verlage
von Orell, Füssli & Cie. in Zürich erschien. Raabe gelangle gestützt
auf Reihensummierungen und mit Hülfe der Bernoullischen Summenformel

auf diese Funktion; gemäss letzterer Beziehung benannte er
dieselbe nach dem grossen Basler Mathematiker Jakob Bernoulli.4)
Als Beleg diene der Anfang des Vorwortes der oben erwähnten Schrift:

Bern. Mitteil. 1900. No. 1478.
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«Bei der Summation der ohne Ende fortlaufenden Reihe

a, + 2m.aax + 3m.a8x2

+ + Pm.apxp-a

-f- (p+l)malXp + (p+2)üVP+1 + (p-\-W+2
+ + (v+pr^-1

+(2p+iralX2p+ (2pf2ra2x2p+1+(2p+3ra3x2p+2

+ f(2pH-p)mai)x3p-1

+ (3p+l)ma1x3p-f-(3p+2)ma2x3p+1+ (3p+3)ma8x3p+2

+ + (3p-h,ra/p-1
-j- in inf.
an der äussersten Grenze ihrer Konvergenz, wobei in eine ganze und

positive Zahl, Null mitbegriffen, vorstellt und a1, a9, a3 a

endliche Konstanten sind, wird man auf einen Ausdruck geführt, der
die von Jakob Bernoulli eingeführten, nach ihm benannten Zahlen

impliziert, und welcher zur Summierung der Reihe mil dem allgemeinen
Gliede rm, wo r alle ganzen Zahlenwerte von 1 aufwärts gezählt
annehmen kann, von ihm benutzt worden ist. Diesen Ausdruck, in
seiner Allgemeinheil, nenne ich die «Jakob Bernoullisclie Funktion»
oder kürzer die «Bernoullisclie Funktion», und bezeichne solche,
gleich wie die Bernoullischen Zahlen, die sie enthält, durch B1, B2

B3, Bm, dargestellt zu werden pflegen, durch B (z), falls
z die allgemeine Grösse oder Vaiiabele dieser Funktion isl.»

Im Jahre 1851 erschien eine zweite Abhandlung Raabes über
denselben Gegenstand, beliteli «Zurückfiihrung einiger Summen und
bestimmten Integrale auf die Jakob Bernoullisclie Funktion.»5) Durch
diese Arbeit wird seine frühere Schrift bedeutend erweitert und

ergänzt.
Nach Raabe hai sich dann auch Dr. 0. Schlömilch, Professor an

der polytechnischen Schule zu Dresden, einlässlich mit dieser Funktion
beschäftigt. Seine im Jahre 1856 in der Zeitschrift für Mathematik
und Physik, Band I, Seite 193 u. ff. veröffentlichte Abhandlung «Ueber

die Bernoullisclie Funktion und deren Gebrauch bei der Entwicklung
halbkonvergenter Reihen» stellt die Bernoullisclie Funktion elegant als

Nullwerl von Differenlialquotienten dar. Diese Darstellung ist sehr

interessant; die Ausdrücke für die Spezialwerte der verschieden hohen
Derivierlen sind ziemlich einfach anzusehen, doch sind die Operationen,
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welche damit auszuführen sind, wie wir sehen werden, oft schwierig
und erfordern viel Zeit. Die Schlömilchsche Definition stimmt nicht
mit derjenigen von Raabe überein; doch ist die Beziehung zwischen

beiden sehr einfach aufzustellen, was wir in einem spätem Abschnitt
dieser Arbeit darstellen werden. Etwas erweitert findet sich die

vorhin erwähnte Abhandlung auch in Schlömilchs «Compendium der

höhern Analysis.» Braunschweig 1866, Seite 207 u. ff. des II. Bandes.

Wie aus den hinterlassenen Manuskripten von Professor Dr.L.Schläfli
in Bern hervorgeht, hat sich auch dieser eingehend mit der Bernoullischen
Funktion beschäftigt. Seine Definition stimmt mit den beiden vorher
erwähnten nicht überein; er kommt, allerdings auf ganz anderem Wege,

zu einer den frühem aber nahe verwandten Funktion, nämlich als

Zusammenhang mit den Koeffizienten einer Binomialenlwicklung. Das

Interessante seiner Definition ist, dass dieselbe aus der gleichen
Fundamentalbeziehung herstammt, wie die Definitionsgleichung der
Bernoullischen Zahlen. Immerhin lässt sich seine Definition mit den

beiden vorhergehenden in einfache Beziehungen bringen.

Schliesslich hat sich in den letzten Jahren noch der englische
Mathematiker Dr. /. W. L. Glaisher sehr eingehend mit dieser Funktion
befasst. Von demselben existieren zwei in englischen mathemalischen

Zeitschriften erschienene Abhandlungen über diesen Gegenstand. Nachdem

derselbe in seiner ersten Arbeit «On the Bernoullian Function,**)
die allgemeine Theorie der Bernoullischen Funktion ausführlich
entwickelt hatte, gab er in seiner zweiten Schrift «On the definite
Integrals connected with the Bernoullian Function»1) meist lntegral-
darslellungen der Bernoullischen Funktion, wie es ja schon der Titel
sagt; es linden sieb jedoch auf Seile 21 einzelne Spezialwerle dieser

Funktion, so dass die letztgenannte Schrift zu den vorliegenden
Untersuchungen ebenfalls herbeigezogen werden musste.

Es handelt sich nun darum, nachzuweisen, welche dieser
verschiedenen Definitionen von Raabe, Schlömilch, Schläfli und Glaisher,
und letzterer hat selbst wieder von einander abweichende aufgestellt,
für die Theorie die zutreffendste ist. Um diese Frage entscheiden

zu können, müssen wir uns vorerst mit den einzelnen Definitionen
vertraut machen. Wir betrachten daher der Reihe nach die verschiedenen

Definitionen, möglichst erschöpfend und mit Weglassung alles
Nebensächlichen. Gestützt auf diese Betrachtungen treffen wir dann unsere
Folgerungen und den Entscheid der Frage. Die einzelnen Abschnitte



gliedern sich im Wesentlichen gleichartig, nur lassen sich bei der
einen Definition diese Eigenschaften, bei der andern jene leichter
aus der Grundgleichung ableiten. Im ganzen soll der historische Gang

möglichst innegehalten werden.
Endlich sei der Vollständigkeit halber noch bemerkt, dass sich

bei einzelnen Arbeiten über die Bernoullischen Zahlen hie und da einige
Bemerkungen über die Bernoullisclie Funktion finden. Am Schlüsse

dieser Arbeit findet sich deshalb ein Verzeichnis sämtlicher benutzter

Quellen und Werke.
Die dieser Arbeil beigefügten Tabellen und Kurven wurden

selbst berechnet und dargestellt.

I. Die Bernoullisclie Funktion nach J. Raabe.

§ 1. Herleitung der Definition.

Wie schon in der Einleitung erwähnt, gelangt Raabe auf diese

Funktion bei der Entwicklung von^^jx111 in eine Potenzreihe unter
Anwendung des binomischen Satzes. Der Weg der Herleitung
vermittelst Summation von Differenzreihen ist so ausgedehnt, dass hier
auf eine Wiedergabe desselben verzichtet werden muss, da dies den

Rahinen der vorliegenden Arbeit weit überschreiten würde, umfasst
die Ableitung dieser Definition in Raabes erster Schrift ja nicht weniger
als dreizehn Druckseiten, zudem isl die Herleitung ziemlich einfach
und bietet durchaus keine Schwierigkeiten.8)

Raabe definiert darin

B(z)-
Z T

m-f-1
Im. 1 c;Kz-1- iGK-

^ ^B3zm-5- + (1)

als die «Bernoullisclie Funktion.»
Aus dem Grunde, dass der Funktionsexponent in nicht in der

ganzen Allgemeinheit einer absoluten Variabelen auftritt, hat Raabe

denselben in der Bezeichnung der Bernoullischen Funktion unbeachtet

gelassen. Da sich eine Verschiedenheit der Bernoullischen Funktion
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mil geradem und ungeradem Exponenten ergibt, so bezoichnel er die
Bernoullisclie Funktion mit geradem Exponenten 2 m durch B"(z)
und diejenige mit ungeradem Exponenten (2m + l) durch B'(z), wobei

m ganz und positiv, weshalb sich folgende zwei Definilions-

gleichungen ergeben

+- + L2nT-(2m-l)B-Z- ™

V(?)..
z2m+2 Ij-fi. U*m+% z2mB^-2m+2 2Z +2V 1 7Bl

"il 3 JV +- + -2nT~Um-i;B»Z- (3)

Aus diesen beiden Hauplgleichungen ist ersichtlich, dass nach

Raabe auf der rechten Seile kein von der Variabelen freier Term
vorkommen darf, eine Bestimmung, welche, wie wir sehen werden,
die so definierte Bernoullisclie Funktion zu wenig allgemein macht.

Bedeutend rascher gelangt Raabe in seiner zweiten Arbeit zu

der nämlichen Definilionsgleichung. Ausgangspunkt dieser Herleitung
ist die bekannte Beziehung

k=oo
^^ sinkx

x 7r— 2^—.k=l K

Dieser Ausdruck wird mehrmals nacheinander mit dx multipliziert
und zwischen den Grenzen 0 und x integriert; so entstehen successive

die Bernoullischen Funktionen mit den Exponenten 2, 3, 4,

nämlich
k=oo

L — coskx
n\ — 2 lk~ k"

und sei noch abkürzend, wie gebräuchlich, bezeichnet
k=oo

2 — — + — + — + — + ••¦ in inf. Sod im -, m l 0m l Dm ' m ' n

k=l *¦ •"¦ ™ " *
so werden

k=oo
X2 oc I o "^ COskx

k—1 *
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k=oo
*3 _ *2 oc _ i „"Vsinkx
Jl-7t,Jl-2S*x + 2 S-i^Tk=l Ä

x2m+l x2m X2""-1 X2""-3

(2m+l)! '"' (2m)! 2S2(2m-l)!^2S4(2m-3)! +
k=oo

d! u—i kk=l
x2m+2 x2m+1 X2"" X2'"-2

o c _ L 2 S |_

2tOmM' * f9m_9.1l I

(/?)

(2m+2)! (2m-f-l)! 2(2m)!' i (2m—2)!
k=co

+ 2 (-«"V S + 2 (-D^1 S2m+2 + 2 ("If+22^01 k=l k

Beide gelten für alle Werte von x 0 bis x 2 re ; m darf gehen

von 0, 1, 2, ; eine Ausnahme bildet nur m 0; denn für diesen

Wert bleiben die Grenzwerte x 0 und x 2tt ausgeschlossen.

Berücksichtigen wir, dass

B =(2m)! —\- S„
m (27T)2m 2m

(2 m)! (2m-f-l)!
und multiplizieren wir (a) mit —-—^+r und (ß) mit 2^+2—'

(27t) + (2 7t)
so werden

k=oo / x \2m+l
2(—l)m+1(2m)! "V sinkx \^) 1 / x "2m

(2«)(27r)2m+1 Sk2m+1 2m+l 2 \2,

+y( 1 r\h) ~+ + 2 m \2m-\)*Ah}
k=00 / x \2m+2

2(—l)m(2ni-f-l)! "V coskx [2^) l/x^2m+1
(2 7r)8m+2 ^ k2m+2 2m--|-2 2 \c\jt,

2 m-
2m-

(-1)1
+ YV 1 JM^/ _+ + ~2m~"V2n.-ljBlA2lr

iim
B_

2m-j-2 m+1

x

führt die Beziehungen (2) und (3) ein; dann werden

In diesen beiden letzten Gleichungen ersetzt Raabe (-—I durch x und
t-ä TV /



=oo

T>t>M_2(-Vm-1 (2mV y sin2k*x
B W ro ^m+x VmF- ^J 2m+i (*)

=co

Durch obige Substitution hat sich aber das Giilligkeilsgebiet
verkleinert; die Beziehungen (4) und (5) gelten nur noch für 0<X1,
inklusive Grenzen, wenn der Fall m 0 ausgeschlossen wird.

Aus diesen ziemlich komplizierten Formeln leitet Raabe die
Mehrzahl der Eigenschaften der Bernoullischen Funktion ab, weshalb
seine Ableitungen oft etwas lang und umständlich werden.

Da wir zu spätem Vergleichungen noch die Bernoullisclie Funktion
mit dem Exponenten (2m—1) nötig haben, so geben wir Raabes

Delinilionsformel für dieselbe, nämlich

WC \
7-2m 1 2'n-l 1

1 /2m__1N\ti 2m-2 |B(z)=2m-YZ +Y\ 1 )^ - +
(-l)m-2/2m-l\+ ^m=2"Ì2m-3jB-i/'- (6)

§ 2. Die Derivierten der Bernoullischen Funktion.
A. Die einfachen Differentialquotienten.

Wir können dieselben aus den Definitionsgleichungen (2) und

(3), oder viel einfacher aus (4) und (5) auf folgende Weise finden:
1. Für die ungerade Bernoullisclie Funktion wird nach (2)

1 /2m-f-l\ „

(—\)m~l /2m-f-l
2 m \2m—1

2 m—1

B_ 2 z

dx

_i('»)v"+--+^(,:-1)^.}
B'(z) (2m-f-1) !$"(/.}. (7)'
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2. Für die gerade Bernoullische Funktion bedienen wir uns der
Formel (3); es wird

S „,,. 2m 2m a m-1 1 (2m\ D /0 2m-2_B (z) z -z +T(^ 1jB1(2m-l)z
1 f2m\ 2™ 4 (—D"-2 / 2l" \' 'B,(2m—3)z2m_4+- t—tt^- L )B z22V ' ' ~ 2m—2 \2m—3/ «»-1

(— l)m_1 / 2111

2m
1 2m-, 1 /2 m-1

2 m \2m—1/ m

Z 1 2m-l, 1 /*'"—M 2m-2ß2 11H —— — — z -f- —-1 z ß
I 2m 2 ' 2 \ 1 / 1

4 V 3 yV"' '+- l~I5=2-Um-8JB-^

+ (-l)m_1Bm

^B"(z) 2m 'B(z)-f (_l)m-,Bm. (8)

Es tritt hier eine Komplikation durch Hinzutrill einer Bernoullischen
Zahl auf.

Noch einfacher ergeben sich dieselben Formeln aus (4) und (5),
wie ersichtlich isl aus

k=oo
d 2(—lr*(2m+l)l N? sin2k7TZ

—-B'(z) ^—rj ^ — 2k 7t 5—3—ôz {2n.r m+2 p—| k2m+2

k=oo
2(—l)m+1(2m)!(2m-f-l) "V siii2k7rz1) "V sin 2k

~ —-J 72^4,2m+l _^ t2m+l(2/r) T k=1 k

dz
Analog wird

k=oo

5-B'(z) (2m+l)B"(z). (7)

-B"(^^S^2 "-—-^3x w_ (2,r)2m+1 feti k2m+1

k=oo
__2(-l)m"1(2m-l)!2m'V cos2k7rz

(2*r) k=1 k

Ziehen wir die Formeln (5) und (6) in Betracht, so wird dieses zu

AB"(z)=2m.'B(z) + (-l)m-1Bm. (8)



— 9 —

B. Die wiederholten Differentialquotienten.
Da Raabe den Exponenten der Funktion nicht, oder nur

ungenügend andeutet, so lassen sich die wiederholten Ableitungen nicht
direkt durch die Bernoullisclie Funktion, wohl aber durch
trigonometrische Summenformeln darstellen; wäre bei dem Funklionszeichen
der Exponent berücksichtigt worden, so könnten die Derivierten mit
Leichtigkeit angegeben werden.

Durch successives Differenzieren der Beziehungen (4) und (5)
gelangen wir zu folgenden einfachen Gleichungen, wenn man symbolisch
selzt

B2r (2r)te Ableitung von ß
k=oo

B" M - 2(-l)m4'(2m)! ^ cos2k,rz
" 2t-lW /0 s2m —2r+2 ^J ,2m —2r+ 2 W

(2w) ^ k=l k
k—oo

B' M- 2(-l)m+r(2m+l)! ^ cos2k«z
2rW .- ,2m-2i + 2 ^i ,2m-2r+2 V1XJ)

(2^r) T k=i k

C. Einfache Integralformeln.
Aus den Gleichungen (7) und (8) resultieren durch Multiplikation

mit dz und Integration zwischen den Grenzen 0 und z

'^„»m+fcö., (12)
./ 2m ' 2m
o

Fuhren wir dieselben Operationen an den Formeln (4) und (5)
aus, so erhallen wir zwei weitere Inlegralformeln einfachster Art, wenn
als obere Grenze z — 1 gewählt wird; denn es werden

k=oo

fr V) k=i R
V

/.
k=oo

_ 2(-l)m(2m+l)! <ü 1 fB(z)dz- (2^r+2 äi^y.cos2k?rzdz

(-Dm
Bmi, I dz.

2m-f2 m+\

Bern. Mitteil. 1900. No. 1479.
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Nun ist I sin2k7Tzdz= I cos2ksrzdz 0,

/
somit

0 0

B"(z)dz 0 (13) und (B'(z)dz ^^Bm+1. (14)

§ 3. Die Bernoullisclie Funktion mit inversem

and mit negativem Argument.

Raabe widmet diesen beiden Betrachtungen nur wenig Aufmerksamkeit;

doch sind die Grundformeln schon bei ihm wie folgl hergeleitet.
Er erhöht in Formel (25) seiner so langen Ableitung der Definitionsformel9),

d. h., in

(T)(d+a)m-1-am-V1

m—2

(1+a)-_ma»-1_a»-f-^1J{(l+a)-1-a- -| a

+ (m2)l(l+ar-2-a-2)«2 + + {ml2){(^f-»l°
+ (m-l)k1+a)-ai«^=°

m um die Einheit und beachtet die bekannten Ergebnisse (26) und

(29) seiner Schrift und die Definitionsgleichung der Bernoullischen

Funktion, wonach

«i=y; «2h+i=0; ß2h=(—tf'^K
wobei h geht von 1 bis oo, so resultiert die Gleichheit

B(l-f-z)-B(z) zm (15)

Ersetzen wir in der ursprünglichen Formel (1) z durch (—z),
so wird

»M ^-lH»»+ i(>,<-,'
1 /m m-3i 2K(-*r-ö+-

im+1 1 1 /m\
(-DB(-z) -^-Fr--z -yljB.z

4 \2,+ "f O V^-H~
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7m+1 1 1 /m\b«=stt-t^.+t(i)». f-'

-l>^+-
B(z) + (-lfB(-z) -zm. (16)

Spezialisieren wir diese letzte Beziehung auf die gerade und

ungerade Bernoullisclie Funktion, so erhallen wir

W(-z) — B"(z) — z2m und B'(—z) B'(z) -f z2m+1. (16»)
Addieren wir die Formeln (15) und (16), so erkennen wir, dass

B(l+z) + (-l)mB(-z)=0. (17)

Aus der letzten Gleichung ergeben sich zwei Beziehungen, die uns

über die geraden und ungeraden Bernoullischen Funktionen nähern
Aufschluss geben. Je nachdem m gerade oder ungerade, wird, wenn
wir vorher z durch (—z) ersetzen,

B(l-z)-|-(-l)mB(z)=0. (17*)

B"(l—z)=— B"(z); B'(l—z) r= B'(z). (17b)

Für z 0 folgt aus (15) B(1) B(0), und da laut Definitionsgleichung
B(0) 0, so wird

B(0) B(1) 0. (17c)

Ist der Exponent gerade und z——, so entsteht nach (17b)

und dies kann nur Null sein; somit ist

B(0)-b(-1)=B(1) 0. (17*)

Es sind dies alles Resultate, die uns bei der Diskussion der
Bernoullischen Funktion gute Dienste leisten werden.

Später10) leitet Raabe dieselben Eigenschaften aus unsern Formeln

(4) und (5) ab. Er ersetzt in (4) z durch (1—z); dann wird
k=oo

Wrh ,_2(-l)m+1(2m)! ^ sin2k7r(l-z)j~ (2^)2m+1 -g k2m+l
'

Da aber sin2k?t(l—z) — sin2kzcz, so wird
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B"a-z) V amJt Z* .am4.. 'also

k=oo
— 2(—l)m+1(2m)! y sin2k7TZ

(2^r)2m+1 él k2m+1

B"(l-z) — B"(z).n) (17b)
Desgleichen wird

k=oo

BV1 r\ I
(~1)m R _2(-l)m(2m+l)!^ cos2kyr(l-z)»^ ^-T- m+2 Bm+1- (27r)2m+2 j^J k2m+2

Da cos2k7r(l—z) cos2k7TZ, folgt
k= :O0

R,n 7x (-1)" __2(-l)m(2m+l)! ^? cos2k^z^ ZJ^" m-f-2 B"»+i- (2,r)2m+2 jjg k2m+2

(— l)m
B'(z) + ^T4-B somit

m+2 m+1'

B'(l—z) B'(z).u) (17b)

Dass die Funktion B(z) bei der Annahme eines ganzen, positiven

Exponenten m die Summe der mten Potenzen aller Zahlen 1 bis (z—1)
darstellt, kann nun gestützt auf die schon gefundenen Beziehungen
leicht gezeigt werden. Zum ersten Mal sind solche Reihensummierungen
von Jakob Bernoulli allgemein gelöst worden, der in seinem für die

Theorie der Wahrscheinlichkeitsrechnung so wichtigen Werke «ars

conjectandi» 1713 mit Hülfe der von ihm eingeführten Bernoullischen

Zahlen, von denen er die 5 ersten berechnet12), solche Summierungen
vornimmt. Vor ihm haben verschiedene Mathematiker wohl spezielle
Polenzreihen summiert; der Engländer Wallis summierte die vierten,
fünften und sechsten Potenzen13); auch Faulhaber führte in seiner
«academia algébrae» 1631 solche Operationen aus14); aber Jakob

Bernoulli15) gebührt das Verdienst, diese Aufgabe allgemein gelöst zu

haben.
Ganz einfach lassi sich diese Aufgabe durch Anwendung der

Bernoullischen Funktion ausführen. Wir gehen von Formel (15) aus,

erhöhen successive das Argument z je um die Einheit und erhalten,
wenn wir schliesslich alle diese Gleichungen addieren und z um k

Einheilen fortschreitet,

B(k+z) B(z) + zm+ (1+zf + (2-fz)m + • • • • -f- (k- 1-f-zf." (18)

Daraus geht für z 0 die gewünschte Summalionsformel. von
Jakob Bernoulli hervor, nämlich
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B(k) lm + 2m -f- 3m + -f (k—l)m. (18a)

Eine weitere wichtige Formel ergibt sich aus (17b). Ersetzen wir

darin z der Reihe nach durch—,—,—>••••> addieren dann
n n n n

alle diese Gleichungen und dividieren, da jedes Glied doppelt auftritt,.
durch 2, so folgt für die gerade Bernoullisclie Funktion

b"(Ì)+""(1) + "';(t) + +-(==9-K.>
1 2

Setzen wir weiter für z wieder successive die Werte —, —>
n n

—,...., in (18) ein, so wird für die gerade Bernoullisclie
n n

Funktion

»¦KiM4-)+ar+(>+ir+(-<4)-
+ + (*-!+ !)"¦

B"K4)-œ+(4-r+G+ir+(»+é;_

^+iM4-)+(4-M«+if+(*4-)''
+ .....: + (k_1 + A)-

+(»+^r+ +(>-i+°-=)T

+ +(k-2+if-
Addieren wir alle diese Gleichungen, so liefert die erste Kolonne

der rechten Seite gemäss (et) Null; sämtliche übrigen Potenzen mit
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dem Exponenten (2m), also von I — bis zu Ik—-2-\—1 lassen

1
sich gestützt auf (18a) darstellen durch —2^B"(nk); deshalb wird

B"(k)+B"(k+i)-fB"(k+|-) + +B"(k+5=1)
1

-^B"(nk). (19)

Raabe weist dann nach, dass diese Formel gilt für k beliebig
rational gebrochen und positiv, dann für alle irrationalen positiven
Werte von k, schliesslich zeigt er, dass dieselbe auch für negative
reelle Werte von k die Gültigkeit nicht verliert.17)

Um den entsprechenden Satz für die ungerade Bernoullisclie
Funktion zu erhallen, verfährt er wie folgt: Ausgehend von (7), wird

B'1(z) (2m+l)B"(z).18)
/ k\

Er ersetzt darin z durch z -) summiert beidseitig von k 0 bis

k n — 1 und erhält unter Anwendung von (19)
k=n—1 k=n—1

k\_(2mJLl)B,,(nz)
nk=0

V J k=0 V

Nach (7) ist aber auch B'^nz) (2m-f-l) B"(nz), daher

k=n-l
-4rB'l(nz) 2*'i(*+4
n k=0 \ n.

Wird beidseitig mit dz multipliziert und in Beziehung auf z

integriert, so folgt
k=n-l

-^+rB'(nz)=2B'(z+T) + M' {ß)
11 k=0 v J

wo M als Inlegrationskonstanle von z unabhängig ist. Um diese zu

bestimmen, setzen wir z 0, dann wird
k=n—1

0 H4.|oB'(4

M ~K4-Mt)+ +»i^)\
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Durch Vergleichung zweier für dasselbe bestimmte Integral
gefundener Ausdrücke, erhält Raabe dann

„(-')' f„ i
2m-f2

I»
n

B.2m-f 1 1 m-fl

Setzt er die erhaltenen Werte in die vorhin erhaltene Formel (ß)
ein, so wird

B'(z) + B'(z-f~jL)+ B'(z-f-A) 4- + B'(z +
n—1

z -i ^ni I 2in-4-2 u \l „.. (—\) n — i
-n2m+iB'(nz)--m+2)n2m+1 Bm+1, (20)

eine Formel, die gleich wie (19) für sämtliche reelle Werte von z und

für ganze und positive Werte von n identisch Bestand hat.

Diese letzten zwei Beziehungen zeigen, wie schon Raabe andeutet,
eine gewisse Ähnlichkeit mit dem Gauss'schen Fundamentalsatz in der
Theorie der Gamma-Funktion

rW.r(a+-i).r(.+|) r(.+!=>).
r(na).n

"
2(2«) 2

nur finden sich hier alles Produkte, während bei der Bernoullischen
Funktion Summen auftreten.19) Es wäre wahrscheinlich sehr interessant,
sämtliche Analogien beider Funktionen herauszusuchen; doch würde
uns das zu weil von unserem Thema wegleiten.

§ 4. Diskussion der Bernoullischen Funktion.

Raabe diskutiert seine aufgestellten Definitionsformeln in keiner
einer Arbeilen; doch müssen wir auf diese Frage auch bei dieser
Definition eintreten, damit wir später mit den andern vergleichen
können. Wir kommen am besten zum Ziel, wenn wir bei den

Bernoullischen Funktionen mit niedrigen Exponenten anfangen und
allmählich zu denjenigen mit höhern fortschreiten.

Setzt man für m der Reihe nach 0, 1, 2, 3, so erhalten
die acht ersten Bernoullischen Funktionen folgende Werte:
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Bo(z) z. •

Bi(z)=i-z(z--!)•

B2(z) ^-z3-
1

2
1

Tz +TZ-
Bs(z) 4-Z*- Tz3 + Tz2-

B4(Z)=i-Z5_ lz4 + iz3- 1

30
z.

Bb(z) -jz6- 4z6+Äz4- 1

12
¦t?-

Be(z) y z7 - — z6 4- — z6 —
2

Z + 2
Z

1

6
23 + 42

B7(z) j-z8- 1
7

7
R

Yz7 + Ï2z6-
7

24
z* + *

1

12

z.

Für uns sind diejenigen Werte am wichtigsten, für welche z

innerhalb des Intervalles 0 und 1 liegt; für z ausserhalb nehmen die
Funktionen rasch grosse Werte an; auch können diese Werte aus den

innerhalb dieses Intervalles liegenden berechnet werden. Die Tabelle I

am Schlüsse dieser Arbeit gibt die Werte der sechs ersten Bernoullischen
Funktionen für verschiedene z von — 3 bis -|- 4.

1. B0(z) z. Diese Funktion stellt somit eine Gerade dar. die
durch den Ursprung der Zahlenebene geht und den Winkel der
Koordinatenaxen halbiert, indem sie durch den ersten und dritten
Quadranten läuft.

2. B1(z) —z2 — z. Am meisten interessieren uns die,
et et

Maximal- und Minimalwerle der Funktion. Nach der bekannten Regel

aus der Theorie der Maxima und Minima entwickelter Funktionen

erhalten wir hier ein Minimum für z -—• Es ist leicht einzusehen
Li

dass von z 0 bis z — diese Funktion fortwährend abnimmt und
Li

sein.negativ bleibt; der kleinste Wert muss somit Bi( -—) -—\l J 8

Von z — bis z 1 beginnt die Funktion fortwährend grösser zu
dt

werden, um für z 1 den Nullwert zu erreichen, von wo an die
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Funktion weiter zunimmt. Der Anblick der Gleichung sagt uns
überhaupt sofort, dass diese Funktion eine Parabel darstellt, die durch den

Ursprung gehl.

3. B2 — — z3 — z2A----z. Wir erhalten ein Minimum für
O dl O

z —- -I- — \/s und ein Maximum für z — — \J'ô ; zudem wird
2 6 2 6

diese Funktion für z =— zu 0; daher folgt:
Lt

Zwischen z 0 bis z — ist diese Funktion stets positiv und
dt

weist ein Maximum auf bei z=— ttS/S; im Intervall von z ——2b* 2

bis z 1 ist dieselbe negativ mit dem berechneten Minimum bei

z= — +-ß- \/3. Wie wir später sehen werden, stellt diese Gleichung
dt 0

eine Parabel höherer Ordnung dar.

4. B3 — z4 — z3 -f- — z2. Die Rechnung ergibt zwei

Minima, bei z=0 und z l und ein Maximum bei z — • Diese

Funktion isl im ganzen Zwischenraum von 0 bis \ positiv und besitzt

eine Maximalstelle für z —, wofür B3 — I — —— wird. Es stellt
di \ dt I 04:

dieselbe wieder eine Parabel höherer Ordnung dar; diese geht durch
den Nullpunkt, der aber kein Doppelpunkt ist; gleichwohl ist die
Abszissenaxe Doppellangenle; sie berührt in z 0 und z 1.

Bei der Diskussion der höhern Bernoullischen Funktionen können

wir nichl mehr analog verfahren, da wir auf Gleichungen vierten und

noch höhern Grades gelangen; wir begnügen uns hier mit der

graphischen Darstellung der zwei folgenden, höhern Bernoullischen
Funktionen. Bei einer später zu untersuchenden Definition der
Bernoullischen Funktion werden wir einen ausreichenden Weg der
Diskussion der hohem Bernoullischen Funktionen kennen lernen.20)

§ 5. Entwicklung der Bernoullischen Funktion in trig. Reihen.

Schon bei der Ableitung der Definitionsgleichung gelangte Raabe

zu Reihen, welche die Bernoullischen Funktionen darstellen, ebenso

Bern. Mitteil. 1900. 1480.
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bei der Herleitung der Differentialquotienlen. Wir verweisen hier nur
auf die diesbezüglichen Formeln (4), (5), (9) und (10). Dieselben

zeigen viel Ähnlichkeit mit den Reihenentwicklungen der übrigen
Definitionen der Bernoullischen Funktion.

§ 6. Die Bernoullische Funktion als bestimmtes Integral.
Es handelt sich nicht darum, eine erschöpfende Darstellung aller

Integrale der Bernoullischen Funktion zu geben; wir wählen nur die

zum Vergleich mit den andern Definitionen wichtigen.

Durch Multiplikation mit cos2r?rzdz, resp. sin2r/rzdz und

Integration zwischen den Grenzen 0 und 1 entstehen aus den Formeln
(9) und (10) unter der Voraussetzung, dass r und k ganze Zahlen

seien, die vier leicht herzuleitenden Formeln.21)

(z)cos2r7czdz 0. (21)
o

| B"(z)sinî
\in-l

""'-^SS*-0- <22>

Ö
v

I B'(z)sin2r/rzdz 0. (23)

o

0

B' (z) cos 2 r TT z d z ]] ^'"+2)- (24)
(27tr)~ T"

Multiplizieren wir (4) milB"(z)dz und integrieren zwischen 0

und 1, so folgt, da die Doppelsumme durch die verschwindenden

Integrale zur einfachen Summe wird,
t k=oo

0 k=l o

Der Wert des Integrales rechts ist —, somit
et

k=oo
2(2m)!2 %J 1

_
2 (2m)!2

J l> WU"- 4m+2 ^ k4m+2
•

4m+2 "4.„-|.2'
ö v k=l

B"2^d7 2(2m)'2 V 1
S,

Wird S4m, 2
durch Bernoullisclie Zahlen ausgedrückt, so resultiert



— 19 —

(V M dz r(2m+l)i a (z) - (2 m+1) (2 m+2)- jjam+1. (2o)
o

Ebenso wird aus (5)

Pw*Mâ7- r(2m+2)
J w (2m+2)(2m+3) (4m+4) 2m+2
o

l2

+ 1 Bm+1 L (26)

Mit Zuziehung der Gammafunktion gelangt Raabe zu einer
Anzahl bestimmter Integrale, welche durch die Bernoullisclie Funktion

dargestellt werden können.

7~T2m-l-li /»oo
Bekanntlich ist » 77 I e_kHu2mdu. Setzen wir diesen

k2m+l J
0

Wert in Formel (4) ein, so wird

ik=oo

i

> e-kusin2k7rz u2mdu.

k=l J

k=oo
N^ -ku • „. sin27TZ

Da aber >, e sin2k7rz -— so wird

/
eu-f-e u—2cos2ttzk=l

00 u2m (—l)m+1(27r)2m+1du- ;„i^—B"0)- (27)
eu-f-e"u—2cos2ttz 2sin27rz

o

Ebenso wird

3(cos2*z-e U)«2ffifl,du i_(_ir(2^2-+2B.(Z)
n"_l_fi_u—9r.ns9^-7 2f-

J eu4-e~u— 2cos2ttz
o

-. /p x2m+2

+ "2" 2m+2 *W (28)

Durch partielle Integration findet Raabe eine weitere Anzahl von
bestimmten Integralen, ausgedrückt durch Bernoullisclie Zahlen oder

Funktionen. Ebenso erhält er noch andere kompliziertere Formeln,
wenn er die Summenformeln oder andere zweckmässig gewählte, mit
den Bernoullischen Funktionen in Beziehung stehende Ausdrücke in
Parlialbrüche zerlegt. Alle diese Beziehungen erfordern aber eine

ziemlich umständliche Herleilung.22)
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II. Die Bernoullisclie Funktion nach 0. Schlömilch.

§ 7. Herleitung der Definition.

Ausgangspunkt ist die Summation der uns schon bekannten
Polenzreihe

1P+2P+3P4-4P + + (k—l)p.
Das Problem bietet uns keine Schwierigkeiten, wenn die Fälle für
p — 1, p 2, p 3, successive behandelt werden, d. h.,
wenn man jeden Fall auf den vorhergehenden zurückführt; eine

allgemeine Formel isl dagegen auf diese Weise nicht zu finden, wohl
aber durch Differentialrechnung.

Obige Reihe entsteht durch p-malige Differentialion einer andern

Reihe, so dass ist

1P+2P+3P+ -f(k-l)p JlJp ^=M 3-

I ex —1 |x=0

Um die Differentiation auszuführen, zerlegen wir die rechte Seile
kx—1

x e
in zwei Faktoren —— — tp(x). xp(\)\ dann wird nach der

e —1 x

Regel der Differentiation von Produkten

Dp \tp(x) ip(x))j= cp(0) ip» (0) -f- (j) p'(0) ^(O)
+ (P)^"(0)^p-2+ («)

Zur Berechnung der Werle f(0), ip'(0), tp"(0), benutzen wir die
bekannte Formel über Bernoullisclie Zahlen24)

ex+e~x 1 22ß! 24B2 3 26B3

ex_ e~x x + 2! y 4! y ~*~ 6! "^ '

wo — nt <C y < 7t.

Durch passende Umänderung, wobei noch y — x gesetzt wird, geht
et

diese Formel über in

x 1 Bi „ B2 B3 61 — X -4- —- X2 — X4 -+- -rrr x6 r-
e*_l 2 "2! 4! ' 6! '
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Daraus erhalten wir für x 0 folgendes Wertesyslem:
y>(0) 1.

y'(0) -y- 9"(0)= Bl
<p'"(0)= 0. <p""(0) — B2.

p'""(0) 0. f"""(0)= B3.

^(2m+i)(0)= 0 /a»(0) (-ir1Bm. (ß)

Zur Bestimmung von i/r°(0), i/ip_1(0), dient

Für ipv(0) verschwinden alle Ableitungen, die x enthalten, und

kp+i

Setzen wir die Werte (/5) und (;-) in Formel (a) ein, so folgt gestützt
auf eine leicht einzusehende kleine Veränderung

l'+2"+3' + +C-l)*=-^-{k'+{(ï)«1^
-t(:)v~+i(:)^-+

Während die linke Seite nur Sinn hat für k als ganzen, positiven
Wert, grösser als 1, kann die rechte Seite verallgemeinert werden;
wir erhalten dann einen Ausdruck, der eine ganze, rationale Funktion
darstellt. Um aber nicht Funktionen (p-p-l)ten Grades betrachten zu

müssen, und um der höchsten Potenz von k oder z, wie allgemein
üblich, den Koeffizienten 1 zu verschaffen, ersetzt Schlömilch p durch

(n—1), multipliziert mit m und definiert unter. Vernachlässigung der
linken Seile

1 n-1 /n\„ n-o /n\ n_4^(z,n) zn--^nzn-1 + ^2JB1z11-9-^JB2Z

+ Qb3z0-6-+ (1)

als die 'Bernoullisclie Funktion nter Ordnung.»

Die Herleitung dieser Fundamentalbeziehung verlangt, dass rechter
Hand kein von z freier Term vorkommen darf; es ist dies eine Eigenschaft,

welche die Allgemeinheit dieser Definition wesentlich
einschränkt.26)
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Durch Vergleich erhalten wir folgende Definitionsformeln, welche
die Bernoullischen Funktionen als Nullwerte von Differentialquotienten
darstellen

tp(z, n) nDn_1 ^=11 =D^^!=1|0'^' (2)
ex -ljx=o x| ex — l|x=0

Ausgehend von diesen beiden Hauptgleichungen hat Schlömilch
die verschiedenen Eigenschaften der Bernoullischen Funktion genauer
uniersucht. Diese Definition stimmt nicht ganz mit derjenigen von
Raabe überein.25) Die Resultate, zu denen Schlömilch gelangt,
entsprechen denjenigen, die Raabe gefunden. Schlömilch ist der erste,
welcher gezeigt hat, dass die Bernoullischen Funktionen Differentialquotienten

sind; dass sich dadurch die Darstellung hübscher gestaltet,
ist nicht zu bezweifeln; nur ist das Operieren damit hie und da

ziemlich umständlich.

§ 8. Die Derivierten der Bernoullischen Funktion.
A. Die einfachen Differentialquotienten.

Um die Eigenschaften der Ableitungen von tp(z, n) zu erfahren,
ezx—1

differenzieren wir die gebrochene Funktion — (m—l)-mal nach
ex —1

x und einmal nach z und erinnern uns, dass die Reihenfolge der

Operationen beliebig ist; demnach wird

z x _1
ezx—1

Dies liefert für x 0 unter Berücksichtigung der Definitionsgleichungen

(2) Dz -ÄüL — ^(z,n—1) + ?(n-1)(0).

Trennen wir die gerade und die ungerade Bernoullische Funktion,
so folgt unter Anwendung früherer Beziehungen

8
—;—tp(z, 2m) 2ra. ip(z, 2m—1) und (3)

-^-ç-(z,2m+l) (2m-f-l)|^(z,2m) + (_l)m-lBm|. (4)
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Diese beiden Formeln entsprechen ganz denjenigen von Raabe.

Infolge der etwas andern Definitionsgleichung zeigt hier die Ableitung
der ungeraden Bernoullischen Funktion den Zusatz einer Bernoullischen

Zahl, während bei Raabe die gerade.

B. Die wiederholten Differentialquotienten.

Schlömilch gibt dieselben nicht; doch sind sie durch successive

Differentiation einfach zu finden; es resultieren, ausgehend von (3)
und (4), folgende Formeln

f)2 ;- /9 m \tr,li 9 ml (9. 3,11 / " \\

(5)

_^z,2m) (2Â)!^ ì{^(z,2m-2A)f(-ir-i-1Bm_4.
d2X+1 / 2m \

tp(z,2m) (2l-r-l)l( Jcp(z,2m-2l-l).ôz2A+l

ct>(z.2mA-l)=r-(2l)\{2
21

-^^f(z,2m+\)^(2l)\(2^V)ip(z,2m-\-i-2X).
ß2;.+i

?(z,2m+l) (2Ä+l)! (2^J) {?(Mm—21)
Bz2X+'

+(_ir^Bm_4.j
Die wiederholten Ableitungen der Bernoullischen Funktion sind wieder
Bernoullisclie Funktionen; nur treten hier noch Faktoren und
Bernoullisclie Zahlen dazu, welche die Darstellung etwas komplizieren.

C. Einfache Integralformen.

Multiplizieren wir die Formeln (3) und (4) mit dz und

integrieren zwischen den Grenzen 0 und z, so erhallen wir

0

fi
tp(z, 2m—1)dz =y(-Z' 2*"'

; m>l und
T ' 2 m

(6)
tp(;z, 2m-f-l) m^(z,2in)dz yv2m

' ;+(—1) Bm.z
ö

Die Integrale der Bernoullischen Funktion, nach Schlömilch definiert,
sind wieder gleiche Funktionen, dividiert durch eine bestimmte Zahl;
für die gerade Funktion tritt noch ein Produkt einer Bernoullischen
Zahl mit einer Variabelen auf, das je nach dem Exponenten m
entweder addiert oder subtrahiert wird.
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Für die obere Grenze z —- erhallen wir unter Anwendung
di

der im folgenden § 9 zu beweisenden Formeln
x_

/2 /_ -|\m 02m 1

?(z,2m-l)dz - l ' il Bm und
m 2

o

J^(z,2m)dz=(-l)m-lBm.

(7)

§ 9. Die Funktion mit inversent Argument.

ezx —1
Wir ersetzen in die Grösse z durch 1—z; dann geht

ex —1
e~xx—1

durch leichte Umwandlung dieses über in 1 und es wird
e~x —1

(1—z)x » I —zx

D-Ul =1 -D» x6 -1
¦

e-1 |x=0 x| e -l]x=0
Ersetzen wir x durch — £, so wird

(1—z)x z -
e —1 ^n^n «. e —1

D" » - - M -(-1)-d: f
p* 1 t p* 1e x Jx=o l e 1J|=0

Somit folgt nach Definilionsgleichung

f(l-z,n) (-l)>(z,n). (8)

Daraus isl ersichtlich, dass die Bernoullische Funktion für z —
di

bis z 1 in entgegengesetzter Reihenfolge dieselben Werte annimmt,

welche sie von z 0 bis z — halle und zwar mit dem nämlichen
d

oder mit entgegengesetztem Vorzeichen, je nachdem die Funktion von

gerader oder ungerader Ordnung ist, was die Diskussion erleichtert.

Für die gerade Funktion folgt aus (8) und der Definilionsgleichung

(1) für x 0, dass

ç>(l,2m) y>(0,2m) 0. (9)

Für die ungerade Funktion wird für z 0 und z —, wie leicht ein-
dt

zusehen ist,
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ip(l, 2m+l) tp (Ì, 2m-f-l j <p(0, 2m-f-l) 0.

Wir suchen nun einen Wert für <p
I —, 2m )• Dazu ersetzen wi

(10)

wir in

der Definilionsformel (2) n durch 2 m und z durch —; dann wird
di

«
I J_x/l \ 2m f e~2~ lì 2m) 2'(T-Hhr-fL-».)-^

Es ist identisch gleich
1 1

TX TX x / 1

-x »^ -u_zt ^{-j-xì-^^
e2-(-l e2-l

Durch 2m-malige Differentiation nach x und Multiplikation mit 2 erhalten
wir für x 0 unter Berücksichtigung von tp(2m)(0) (—l)m_1 Bm die

'

1 „ \ ..« 22m-l
Formel tp [ -, 2mj (-l)m Bm. (11)

Diese Berechnungen der geraden und ungeraden Bernoullischen
Funktion für verschiedene Argumente sind nur Spezialfälle eines

allgemeinen Satzes, den Schlömilch wie folgt erhält. Er setzt in der

Deflnitionsgleichung (2) für das Argument z der Reihe nach z, z + —

z -f- — ], z -\ — j, addiert die so erhaltenen

Ausdrücke, nimmt tp (x) —— aus der Klammer und erhält die Summe
e —1

(x 2x 3x (k—l)x\ I |

l-f-e"ï-r-e"r+e'F + -f-e k )— kL(x)
' J lx=0

S D

Durch Summation der geometrischen Reihe in der Klammer folgt

S — D;{f"e"4-L-kl^Wl
1 |_ ek—1 _ )x=o

und durch leichte Veränderung, wenn schliesslich x —kf, wird

Bern. Mitteil. 1900. No. 1481.
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Für n gerade 2 m wird

f (z, 2 m) -f tp \i -fy' 2 mJ + + V
¦ k-1 -zh :—, 2m

=-p^rî i?(kz,2m) + (-l)m(k'M-l)Bmj. (12)

Für n ungerade — (2 m -\- 1) folgt

^(z,2m+l) + f(z.+ Y,2m-f-l)+ -f-<p (z -f-±=±, 2 m+l)

-j^T?(kz,2m+l). (13)

Wir sehen hier wieder die Zweispurigkeit der geraden und

ungeraden Bernoullischen Funktion.

Setzen wir z 0 und k——, so finden wir aus dieser all-
d

gemeinen Formel für ^(—, 2m), also für die gerade Bernoullische

Funktion, den schon früher gefundenen Wert (11). Ebenso lassen

sich Ausdrücke finden für

y(-ö-> 2 m), ip (—, 2 m und tp —-, 2 m

Für die ungerade Funktion kommen wir auf diese Weise zu keinen
Spezialwerlen.

§ 10. Die Funktion mit negativem Argument.

Um diese Funktion zu untersuchen, berechnet Schlömilch vorerst

tp(z-T-l, n). Nach Definitionsgleichung (2) wird durch Subtraktion

n { e(z_1)x — ezx
tp (z-f-1, n) — tp (z, n) Dx x ——

{ e —1 Jx=o

D:{x^=H) =D;{xe»} =nz-
l e —1 Jx=o l x=o

ip(zA-l,n)^tp(z,n)4- nzn-\ (14)

Durch Anwendung von (8) entsteht daraus

tp(-z, n) (-l)nj tf (z, n) + n z""1 j. (15)

Es sind dies zwei wichtige Formeln; (14) dient dazu, aus einer
Bernoullischen Funktion eine neue Bernoullische Funktion gleichen
Grades, aber mit einem um die Einheit erhöhten Argument zu be-
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rechnen; (15) wird gebraucht zur Verwandlung einer Bernoullischen
Funktion mit negativem Argument in eine solche mil positivem.

Mit Hülfe von (14) findet Schlömilch eine Beziehung zur Darstellung
der Werte der Bernoullischen Funktion auch ausserhalb des Intervalles

von 0 bis 1. Lässt man nämlich z der Reihe nach die Werte

z-f-1, z-f-2, z-f-3, '(z+k—1) annehmen, wo k positiv und

ganz, und addiert dann die so erhaltenen Gleichungen, so wird

tp (z+k, n) tp (z, n) 4- n \?~X+ (z+l/^-f (z+2)n-1

-r -Hz+k-ir1). (16)

Geben wir hierin dem k einen beliebigen ganzzahligen Wert,
so können wir auch höhere WTerte der Bernoullischen Funktion, ganze
und gebrochene, berechnen, da z nicht ganzzahlig zu sein braucht und

wir ja die Bernoullische Funktion im Intervall von 0 bis 1 genau
kennen. Diese Formel wird uns die zur graphischen Darstellung der
einzelnen Funktionen nötigen Werte liefern, wenn wir nicht vorziehen,
solche direkt aus den Definitionsformeln zu berechnen.

Schlömilch verwandelt eine Bernoullische Funktion mit negativem
Argument noch durch folgende einfache Formel, die er erhält, indem

er in (8) für z den Wert z -f- — setzt, in eine Funktion mit positivem

Argument tp — — z, nj (—l)n tp — + z, nJ, (17)

die in einigen Fällen gute Dienste leistet. Aus dieser Formel ist auch

ersichtlich, dass tp — -{- z, n eine gerade oder ungerade Funktion

ist, je nachdem n einen geraden oder ungeraden Wert hat. Daraus

ist auch tp —, n ] als Maximal- oder Minimalwert erkennbar.

Einzelne spezielle Werte, die Schlömilch nicht oder auf ganz
andere Weise herleitet, findet J. Worpitzky gestützt auf Schlömilchs
Definition wie folgt:26)

1. Berechnung von (4' »}

Wir ersetzen in (2) z durch — ; dann wird
dt

^(4"'n)=2[>^(x)~^(X)}=;~D^(x)o 22n-l
22n-l

'
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2in+l 2m ,n
Weil Dx tp(x)0 Q und Dx tp(x)0=(—l) Bn, so wird für

n ungerade (2 w-f-1) ip f —, 2 m-f-1 0 und für

/ 1 \ 22m—1
n gerade 2m <pi—,2m )—(—1)"—2m-1 Bn. (18)

2. Berechnung von ip[—^,n
x 3w w

„ • -, ¦ r.
eä" eT—1 e'î—1

Es ist identisch wo w 2x, und
ex-f-i ew -1 ew —1

somit wird nach Definition (2)

(17) ist ipl—-, n) (—Ifcpl—, n); daher wird fürNach

o™ i I a 2 I

n gerade —2m. Dx 1 1 =0 und für
ex-fl Jx=(

2m | e 2

n ungerade (2 f« 4-1_). D

ex+l

x=0

x=0
,2m-|-l2'

2m-f-
Ebenso ist identisch

r* (r-n

x„x, O X x Ix X
l e — 1 jx=0 l eï+1 eT-|-l el-p-l J x^

Es sind D"-1)^— =-^_~ (-l)n-lU(x'n
)x=0 l JeT-f-i

.n-1 | 1 | 1 /_1_

n_2n-l ^^-g-Dx {-i } 0n-i f \ ir n

eT-fl >x=0

— 1 1 /1
Dx \—-\ =—9 l-g-n

eT-f-l /x=0
Substituieren wir diese letzten drei Werte in (a), so resultiert für n 2 m

(i-, 2 m) 0 (j-, 2 m)
2 "J^1. (19)
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Setzen wir in dieser interessanten Beziehung zwischen den

Bernoullischen Funktionen mit Argument— und — für cp( -—,2m]

den früher gefundenen Wert, so erhalten wir

,(4,.»)-<-.rtf'-iyr-'+i) (20)

§ 11. Diskussion dieser Definition.

Wir könnten natürlich bei dieser Diskussion gleich verfahren
wie bei Raabe. Schlömilch geht aber ganz anders vor, und wir wollen

uns deshalb an seine Darstellungsweise halten.

Setzen wir für n der Reihe nach 1, 2, 3, so nehmen

die acht ersten Bernoullischen Funktionen folgende Werte an:
(z, 1) z.

tp (z, 2) z2—z z (z—1).

^(z,3) z3-Az2-f-J_z z (z_!)^_i_j.
tp (z, 4) z4— 2 z3 -fz2 =z2(z—l)2.

^(z,5) z5-Az4 + „z3__Lz

^(z,6) z6-3z* -fA^-i-z2.
?(Z,7) Z'—rL;*Ar^-lrZ*Ar\z.
y>(z,8) z8-4z7 -fHz6__Lz4_|_JLz2.

Schlömilch beginnt seine Diskussion mit dem einfachsten Fall,
für n 2 und führt sie mittelst den Differentialformeln (3) und

(4) weiter.

Die erste Funktion tp (z,l)=z stellt wieder eine Winkelhalbierende
durch den Ursprung und den ersten und dritten Quadranten dar.
Hinsichtlich der zweiten Funktion tp (z, 2) z (z—1) erhellt unmittelbar,

dass sie von z 0 bis z — negativ bleibt und fortwährend

abnimmt; der Wert tp I —, 2 — isl ihr absolu tes Minimum innerhalb

dieses Intervalles.
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'

1 S
Nach (4) wird — —x— tp (z, 3) ip (z, 2) -f- Br Die rechte

o c z

Seile ist anfangs für z 0 positiv, nimmt dann kontinuierlich ab und

erhält für z — den negativen Wert———, woraus folgt, dass es
et Let

zwischen z 0 und z —- einen, aber auch nur einen Wert gibt,
d

für welchen der Ausdruck verschwindet. Diesem Verhalten von

<p'(z,%) gemäss, steigt anfangs <p(z, 3), erreicht zwischen z 0 und

z¦'•= —- ein Maximum und fällt dann wieder. Jenes Steigen fängt an
et

mit ip(0, 3) 0; das nachherige Fallen hört auf mit <p[-^> 3 =0;
die Funktion tp (z, 3) bleibt also positiv während des Intervalles von

0 bis — ; dazwischen liegt ein Maximum.
et

1 f)
Formel (3) gibt — »-— <p(z, 4) ==<p(z, 3), und da nach dem

Vorigen die rechte Seile, mithin auch ip'{/., 4) positiv ist, so findet
bei tp(z, 4) ein fortwährendes Wachstum statt; dieses beginnt mit

^(0, 4) — 0; mithin ist tp(z, 4) positiv und zunehmend.
1 r)

In Gleichung — ¦?— tp (z, 5) <p (z, 4) —• B2 ist die rechte Seite
O G Z

anfangs für z 0 negativ, wird aber immer grösser und erreicht für

—- ihren grössten Wert 11 -3
et \ et

diesemVerhalten von ip'(z,5) folgt, dass ip(z,ö) ersi ab- und nachher wieder
zunimmt. Die Abnahme fängt mit ip (0, z) 0 an; die Zunahme hört

mit tp I —, 5 auf; somit bleibt tp(z, 5) negativ von z 0 bis z —

und besitzt innerhalb dieses Intervalles ein Minimum.

Weil ferner — —z—<p(z, 6) tp(z, 5) und die rechte Seile,

also auch tp'(z,6) immer negativ ist, so nimmt ip(z, 6) immer ab, mit

ip(0, 6) 0 anfangend; somit ist tp(z, 6) negativ und abnehmend.

Wir überblicken augenscheinlich den Fortgang dieser Schlüsse,

deren Gesamtergebnis sich graphisch darstellen lässt, wenn man z als

Abszisse und tp (z, n) als zugehörige rechtwinklige Ordinate konstruiert;

z — ihren grössten Wert 1 -5- B2, welcher positiv ist. Aus
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dann werden im Intervall von 0 bis 1 die Funktionen gerader

Ordnung charakterisiert durch

Fig. 1.

Fig. 2.

Fig. 1, wenn n 2, 6, 10, 14, (4 k—2),
Fig. 2, wenn n 4, 8, 12, 16, (4 k)

und die Funktionen ungerader Ordnung durch
Fig. S. Fig. i.

Fig. 3, wenn n 3, 7, 11, 15, (4 k—1),
Fig. 4, wenn n 5, 9, 13, 17, (4k-f-l).

Auf eine genauere graphische Darstellung der verschiedenen

Bernoullischen Funktionen werden wir im letzten Abschnitt eintreten.27)

§ 12. Verwandlang der Bernoullischen Funktion
in trig. Reihen.

Mit Hülfe der Schlömilchschen Definition als Differentialquotient
lässt sich diese Funktion in eine nach cosinus oder sinus der Vielfachen
eines Bogens fortschreitende Reihe entwickeln.

Aus der Theorie der Fourierschen Reihen und Integrale ist bekannt

'(z)=ir ao+aicos-^-
2nz 3ttz

a0 cos b- a„ cos

wobei Tp
-f (0<z<n),

(z) cos dz.

Es sei f(z) tp(z, 2m) und n l; dann wird

tf(z, 2 m) -q- aQ-4-a cos7Tz-f-a2cos 2 rc z-f-a3 cos 3 ?r z -f- •

dt

2 Cç
%J

tp(z, 2m)cosk7zrzdz

2D. tf(x) ,f<e*"-1) cosk/r zdzj-
x=0
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Die Integration lässt sich jetzt leicht ausführen, doch müssen wir die

zwei Fälle gelrennt betrachten:

1. k 0, dann wird — a0«= Dxm ç>(x) I (exz—l)dz
°

_/m>(0) (-l)mBm.

2. k>0, daher ak 2Dxm\<f(x)\ i (exzcosk/rzdz

r lì ")
— I cos k 7t z d z >•

a -2D2mUo eX[(-V"] jak-2Dx ^(x) x2+7r2k2 Jx=o
m (2m)'

Diese Formel wird für k gerade a, 2 (—1) —-—5—
(k7r)jm

» k ungerade ak 0.

Demnach wird die gesuchte Reihenentwicklung

t a \ 1 i\mD i / 1Nm-i0 (2m)! (cos2ttz cos4ttz
^(z,2m) (-l) Bm+(—1) 2^-ätr 2m + .2m(n) 2 4

+^ + [ (2D

für 0<z<l.
Auf ganz analoge Weise finden wir einen Ausdruck für die

ungerade Bernoullische Funktion, so dass ist

(2 m—1)! isin2/cz sin4;rz0 .s .,m0 (2m—1)! (sin2 7rz
p(z,2m—1) (-1) 2 2m_/ +

TT l 2 ^2 m-1

+^ + !¦ Wo2m—1 ~T~ ' I'

für 0<z<l; n>l.
Schlömilch findet diese Formel (22) durch Differentiation der

Reihe (21). Beide Formeln erinnern uns an die Raabeschen Definitionsformeln

(4) und (5), von denen ja Raabe die meisten Eigenschaften
seiner Bernoullischen Funktion herleitet.

Diese Reihen lassen darauf schliessen, dass die Bernoullische
Funktion in enger Beziehung zu den Kreisfunktionen steht, was auch

J. Worpilzky in einer Studie über «Bernoullische und Eulersche
Zahlen» beweist.29)
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Er zeigt, dass der Spezialwert einer geraden Ableitung der
Cotangente eines Argumentes, multipliziert mit dem Argument selbst,
sich durch eine Bernoullische Zahl wie folgt ausdrücken lässt

2m i \ 2m
Dx |"«(),8xU--2 Bm.

Ebenso lässt sich der Nullwert der geraden Ableitungen der

trig. Tangente durch eine Bernoullische Zahl oder durch eine Bernoullische
1 >

Funktion vom Argument — ausdrücken, so dass ist
di

,2m(, I 2m-! (22m-l)
Dx Igx =2 ì ^Bm.x I )x=o m

Schliesslich ist auch der Nullwert der geraden Ableitung der
Sekante durch eine Bernoullische Funktion darstellbar, indem wird

2m f Ì m+1 24m+2 /1 \

§ 13. Die Bernoullische Funktion in bestimmten Integralen.
Ausser den einfachen Integralwerten in § 8 dieses Abschnittes

gibt Schlömilch weder in seinem Compendium, noch in* der erwähnten
Abhandlung in Band I der Zeitschrift für Mathematik und Physik
andere Integralausdrücke mit Bernoullischen Funktionen, abgesehen

von der Bernoullischen Funktion, welche der Bestausdruck bei der

Summierung der allgemeinen Differenzenreihe enthält, und dem Rest-

gliede der Maclaurinschen Summenformel, das unter dem Integralzeichen

ebenfalls eine Bernoullische Funktion aufweist.30) Auch bei

Worpitzky finden sich keine Integralformeln der Bernoullischen

Funktion, doch lassen sich den Raabeschen Formen entsprechende.
Ausdrücke mit Leichtigkeit aufstellen.

ill. Die Bernoullische Funktion nach L. Schläfli,

§ 14. Herleitung der Definition«

Schläfli geht aus von der Summe

Sm=lm-f-2m+3m + 4m-f- ....f (,_!)».
gibt er dem m die Werte 0, 1, 2, m, so erhält er (m-f 1)
Summen S0, Si, S2, Sm. Diese multiplizieren wir der Reihe

Berp. Mitteil. 1900. No_ U82
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12 m

nach mit y°. ^, |y -j^-, so folgt

-0f i + i + i + + i-

_hj__-_jL_ + Ji_ ^1l_ i i [x-!]y
1! 1! n 1! ^ 1! ^ r 1!

S2y2 _y*_ (2y)_a (3yf [U-Dy]'
2! 2! "*" 2! "• 2! "•" •" 2!

SmT r__ (2jT (3jT ;.. [n-Dy]"
m! ml "*" m! ' ml ^" m!

Addieren wir die senkrecht untereinanderstehenden Kolonnen, so

erhalten wir, wenn bis ins Unendliche ausgedehnt wird,
m=oo

'^ Sm>' _r _2y _3y _(*-*> y exy—1
l-f-e+e '+e '-f -f-e

'

m=0 m! ey-l
Wir denken uns die Gleichung mit y multipliziert und dann

zerrissen; so erhalten wir eine Beziehung, aus welcher wir die
Bernoullischen Zahlen ebenso leicht herleiten können wie die Bernoullische

Funktion. Wir definieren daher
m=oo

2Smvm+1^ yexy y
m! ey-l ey-l K)

m=0
als die Fundamentalgleichung der Bernoullischen Zahlen und Bernoullischen

Funktionen.

Der erste Bruch für sich betrachtet führt auf die Bernoullische
Funktion, während der zweite auf die Bernoullischen Zahlen leitet.

Wir nehmen deshalb an, es sei

n=oo
vexy X^T-T=2^x)yn und (2)

definieren #(0, x) Konstante 1 und %(n, x) als nte Bernoullische
Funktion. Die Koeffizienten der Potenzen von y sind also die
Bernoullischen Funktionen, und wir wollen für die n** Bernoullische Funktion
/(n,x) einen Ausdruck suchen. Es wird
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ih=7heH1+Ciy+C2y2+ +cy+ }x

L.xy.xV, x-y-* \
11+TT+1T+ + Ü=X)T + ••••}•

Der allgemeine Term, welcher yD liefert, lautet

„ r m3I) W*~X
Koeffizient von y [y j (n-;)!

ü.=oo

Daher wird ye 2qx'
n-A

X)\
JU=0

^

Diese Gleichung stellt denselben Werl dar wie Beziehung (2); durch

Vergleichung beider folgt als Wert für %(n, x)
A=oo i^=n

CjX c0x ctx ^^ C^X

^0 (n^j! "ST + (ïï=ï)! +-g (rT=I)!

Bei der letzten Summe ist ersichtlich, wie auch schon früher, dass

infolge der Fakultät im Nenner X nur bis X n gehen darf.

Aus der Theorie der Bernoullischen Zahlen ist bekannt, dass bei

y
Entwicklung von —~— folgende Koeffizienten c auftreten:

ey—1 *¦

l „ ..*-» Bi
c0=l; c1== — -5-; cai_1=0; cai=(—1)2 ' ^1 ' "2A v *' (2À)!

daher wird, wenn wir noch für X den Wert (2X) setzen,

*= —k
2

1 x"-1 <^\ i-i B
\ X 1 X

1 "V, i^"1 i n-2jl
X

n! 2 (n—1)! '
«^J ' (2i)! (n—2A)1

Da aber .„,., ^tt-; =¦(—), so definieren wir die «wfe
(2A)! (n—2A.)! \2x/

Bernoullische Funktion» durch

2

.-ai
(3)

Wir können die obere Grenze in der Summe weglassen, wenn

wir bedenken, dass für X — der Ausdruck " 1, ebenso(:)-¦
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(«+,Hx° — 1 wird und für ein grösseres X zufolge von I 1 0, wenn

(i positiv, die Summe stets zu Null wird; die Reihe bricht also von selbst
ab. Der Hauplunlerschied dieser Definition gegenüber den beiden ersten
ist der, dass auf der rechten Seite auch Terme mit x°, also solche, die

x gar nicht mehr enthalten, vorkommen dürfen, was diese Definition

viel allgemeiner macht. Auch der vorgesetzte Faktor — leistet gute

Dienste, da er das Konvergenzgebiet der Funktion vergrössert.82) Die

kürzere Schreibweise durch Einführung der Summenformel könnte bei

den übrigen Definitionen auch angewendet.werden.

§ 15. Die Derivierten dieser Funktion.
A. Einfache Differentialquotienten.

Wir wollen vorerst die gerade und ungerade Bernoullische
Funktion trennen. Ist n gerade, so wird für

1. n gerade — 2m.

4- %(2 m, x) -J_ 2 m x »-' - ^2m-1) x2m-2
Sx (2 m)! 2

i=m

+2 / ia-l/2m\t, ,n n ,s 2I11-2A-1
(—D 2k) Bi(2m-2;)x

(2 m—1)

>l=l
1 | 2 m-1 2 m—1 2m-2

X X

f>U=m
U=ra—1

+2(-
i=i

,i-i /2 m—1 \ o ra_2;._i
¦1} { 2x Jv

jl X(2m,x) x(2m—1, x).

2. n ungerade (2 m -j-i). Dann ist

S-„19 m-l_1 v\
'

r9m_Ll\T-2mx(2m+l,x) (^~IF!{(2m+l)x

(2m+l)J2m_x2^2(-l)A-1(2™|1)B,(2m+l-2.)x
2 m—2/.
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1
x2m-

i=m

i=l J
(2 m)!

^Z(2m+l,x) x(2m,x).

Wir haben beide Funktionen getrennt betrachtet wegen der obern

Grenze; wir hätten aber ebenso gut direkt von (3) ausgehen können
und dann erhalten

^-z(n, x) z(n—1, x). (4)

Die Ableitung einer Bernoullischen Funktion wird gefunden,

indem man den Exponenten um die Einheit vermindert.

B. Die wiederholten Differentialquotienten.

Gestützt auf (4) werden

D*jc(n, x) Dz(n-1, x) z(n-2, x).

ü3x(n,x)- x(n-3,x).

l>;x(n,x)= x(n-A,x). (5)

Die wiederholte Ableitung einer Bernoullischen Funktion wird
gefunden, indem man den Exponenten um die Zahl, welche die Anzahl
der Ableitungen angibt, vermindert.

Wir finden hier den ersten grossen Vorteil dieser Funktion
gegenüber den zwei frühem Definitionen; es treten keine Bernoullischen

Zahlen zu den Ableitungen; die Definition ist demnach

allgemeiner und liefert einfachere Besnltate.

C. Einfache Integralformen.

Da die Differentialformeln sich einfacher gestalten, so thun dies
auch die Integralformeln. Auch hier können wir vom allgemeinen
Fall ausgehen und es resultiert

I x(n—l,x)dx {.z(n,x)
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Da, wie wir später sehen werden, x(2m5 0) (—l)m~~l m und
u ili

x(2m-f-l, 0) 0, so entstehen die beiden Beziehungen

rz(2m-l, x) dx Z(2m, x) -f (- l)m -^- und (6)

J x(2m,x)dx ^(2m-f-l,x). (7)
o

Durch Integration wird somit der Exponent um die Einheit erhöht.
Das bestimmte Integral zwischen den Grenzen 0 und x einer Bernoullischen

Funktion ist wieder eine Bernoullische Funktion mit um die
Einheit erhöhtem Exponenten und + einer Bernoullischen Zahl für
die ungerade Bernoullische Funktion.

Wir haben hier insofern eine Vereinfachung, als das Argument
bei der Bernoullischen Zahl fehlt, das bei Raabe und Schlömilch noch
hinzutritt.

Für die obere Grenze x — wird nach (7)
d'

und nach (6)
i

o

2 < 1

z(2m,x)dx.-=x 2m-fl,— =02

Z(2m-l,x)dx-^2m,-|j+(_l) (2m)!

Setzen wir für x(2m, — ] den später zu beweisenden Werl88) ein,

i
so wird f z(2m-l,x)dx=(-iri2u7)T--^5=r.

§ 16. Die Bernoullische Funktion mit inversem Argument.

Ersetzen wir in (2) den Wert x durch (1—x), so wird

n—oo
y -a-x,ye^ n 'V^—- >x(n, l-x)yn, d.h..

5 -1 ä
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3(l-x)yyev
X(n, l-x) [yn] in

e" —i
Nun wird

n oo ii=°°
_q__==(_,) -^_=2 *<"> x)(-y)n=^ x(». *)A-i>"

e ] el n=0 n=0
somit ist z(n,l-x)==(—l)"z(n,'x). (8)

Daraus folgt für x 0 unter Anwendung der Definitionsgleichung (3),
wenn n — gerade — 2 m

X(2m,0)=,x(2m,l) (-l)m^ -^-, (9)

dagegen für w ungerade (2m+i), wenn x auch =- — •

»(201+1, 0) W 2m + l, y x(2m+l, 1) 0, d.h., (10)

alle Bernoullischen Funktionen ungerader Ordnung verschwinden für
1

die Argumente 0. -^- und 1.

Wir fragen uns nun, was wird aus x(2ui. ~ - )• Um diesen
" \ 2 /

Wert ausmilteln zu können, müssen wir vorerst über die Vervielfachung

des Argumentes aufgeklärt sein.

Wir denken uns die x-Funktionen y(n.x), yln, x+ -.— )>

X n, x + — x n, x -| r— aufgefasst als Koeffizienten

von yn in den dazu gehörenden Entwicklungen; dann addieren wir
diese; die Summe T wird, wenn wir dieselbe als geometrische
Progression summieren,

1 <'y-l xy yex-v
T - — — - y e - j—, also

e i ek-1 ek—1

z(n,x) + x(n,x+|ji+... + z(n,x + -^=i)=[,-]in--^-.
e t x

*y i /y\ kx(T) n==0°
ve k (v)e v ' ^C1 / v

Rs ist. aber -1 —VJE> k ^ z (n> k x) /_L
3W 'ek—1 eVk^—l I1==0
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[f} ~rx(«,kx).
Daraus ergibt sich

z(n, x) + x|n,x + -i-j +x(n.x + T)

+ + x(n,x + '^™) -?irx(n,kx) (11)

als wichtige Formel, die über jede Vervielfachung des Argumentes
k j

Auskunft gibt. Infolge von —r— bricht die Reihe links von selbst

ab. Die beiden entsprechenden Formeln der frühem zwei Definitionen
lieferten stets zwei getrennte Werte, je nachdem die Bernoullische
Funktion gerade oder ungerade war. Wir ersehen auch daraus, dass

die so definierte Bernoullische Funktion die allgemeinere ist; zudem

ist diese Herleitung vorliegender Formel wesentlich einfacher als bei
Raabe und Schlömilch.

Aus derselben lassen sich verschiedene Spezialwerte berechnen.

/. Verdopplung des Argumentes, k 2.

x(n,x) + x/n,x + -iW--L- Z(n,2x).

Ersetzen wir in (8) die Grösse x durch! x + -5-.) und setzen diesen

Wert in die letzte Formel ein, so wird

X(n, x) + (-1)" x (n, -1 — x \ —L- x(n, 2x). («)

Ist darin x 0 und n —ungerade —(2m-\-l), so wird

x(2m +1,-~j 0; dagegen wird für

x — O und n — gerade — 2m, wenn für % (3ni, 0) der bekannte Wert
gesetzt wird,

„(,-+) .(-tr-Sp^-.-^ a»
//. Verdreifachung des Argumentes, k 3.

X(n,x) + x(n,x +yj+z(n,x+y) -^x(n,3x). (ft)

Unler Anwendung von (8) wird für x — O
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X(n, 0) + x(n, y) + (-1)" x (n, y) - -^ x(n, 0);

w ungerade liefert die identische Gleichung 0 0; dagegen ist
für n gerade, wenn für x(2m,0) der gefundene Wert gesetzt wird,

/ 1 \ >* 1 32m_1—1 B„
x(2m,yj (-l) y.__s_._5r (13)

Aus Gleichung (a) resultiert für x —- und n —2m

*(¦-¦ t) -*""{»("-'-r) + »(¦-¦'¦s-)r w

Einen Werl für W2m,--) erhalten wir, wenn wir in (/3) für

1
x =y und n 2m setzen; es ist dann

x(2m,|)+x(2m,|y+x(2m4)=-^ÌrrX(2m,|).

Daraus folgt, wenn für xl2m,yj der früher gefundene Wert (12)

gesetzt wird,

fo 1\ r i.m (22m-1-l)(l-32-1) Bm

x(2m,yj=(-l) y gfch L.__. (14)

Setzen wir die gefundenen Formeln (13) und (14) in (y) ein,

t, was :

hervorgeht,

2
so ist, was zwar einfacher aus Formel (8) für x — und n 2 m

o

2\ » 1 -ò2m-l-l Bn
42m,yJ (-l) _.n?=3-._^r. (15)

Wir hätten schon dort die zwei Sätze aufstellen können:

1. Jede zwei geraden Bernoullischen Funktionen, deren Argumente
sich zu 1 ergänzen, sind nach absolutem Wert und nach

Vorzeichen einander gleich.

2. Jede zwei ungeraden Bernoullischen Funktionen, deren Argu¬
mente sich zu 1 ergänzen, sind wohl dem Vorzeichen nach

entgegengesetzt, dem absoluten Werte nach aber gleich.

Ber». Mitteil. 1900. No. 1483.
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77/. Vierfaches Argument, k 4.

X(n, x) + x U, x + — ¦ j [- x hi, x + y \ + x n. x + y
— -ï=rz(n,4x).

4

Für x 0 wird unter Anwendung von Formel (8) und Einsetzen der

Werte für x(2m, 0) und x(2m, — für die gerade Bernoullische

Funktion

X (W 4-Ì 7 f2 m,-^ (— 1)"
2 "' ~* 3l—. (16)

XV 4/ /v
V 4/ 2 (2m)!

7

Auf ähnliche Weise lassen sich /(2in, \+ X\2m, --

x(2m, -) und andere /-Funktionen berechnen; die Ausdrücke

werden aber ziemlich kompliziert.

§ 17. Die Bernoullische Funktion mit negativem Argument.
Wir können auf zwei getrennten Wegen das Verhalten der

Bernoullischen Funktion mit negativem Argument untersuchen. Vorerst
gehen wir von der Definilionsformel (3) aus, müssen aber dabei die

geraden und ungeraden Funktionen getrennt betrachten.

1. Die gerade Bernoullische Funktion. Wir ersetzen in (3) n
durch 2 m und x durch (—x); dann wird

,n s
1 2m 2 111 2in-l

X(2,n,-x)=(2ni)1|x +-- -x

„2 m—212<-«'-'Gr)v*
;.=i

2mx2m~1
Durch Addition und Subtraktion desselben Ausdruckes ~^——-—

(2 m)!
und passendes Zusammennehmen wird

2 m—1

X(2m,—x) x(2m,x)+ ^2m—\)\'
2. Die ungerade Bernoullische Funktion. Durch analoges

Verfahren wird

r-, i a -,
1 2m fl 2U1+1 2m

Z(20'"l-1'-X}= (2uTTÜ! r * 2- - X
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l=m

+2'
Hier addieren und subtrahieren wir • '—

; nun ist
(2m+l)!

X(2m+1, -x) - x(2m+l, x) - -—^y
Eine allgemeine Formel für die Bernoullische Funktion mit negativem

Argument finden wir aus folgender Betrachtung:

Ersetzen wir in Formel (2) den Wert x durch (1+x), so ist

> X(n,l+x)yn -^ («)*¦ e'—1

(1+x) y
ye
ey-l yexy+-^-=ye"+2zCn,x)

e —1 ¦"¦n=0
Durch Reihenentwicklung von exy folgt

n=oo „ n= ooU+*)y
y e

ii—l n=0
Vergleichen wir die Koeffizienten von y11 der Gleichungen (a)

und (ß), so erhalten wir

X(n,l+x)= (-£yy+Z(«,x). (17)

Ersetzen wir darin x durch (—x), so wird unler Berücksichtigung von (8)

X(n,-x) (-l)n{^y- +x(n,x)|. (18)

Diese Formel geht für n 2m und n (2m+l) in die eingangs dieses

Paragraphen hergeleiteten über. Sie dient zur Berechnung der
Bernoullischen Funktion mit negativem Argument. Auch hier zeigt sich

wieder die Vereinfachung, da Raabe und Schlömilch je zwei

entsprechende Formeln nötig haben.

Um die /-Funktion auch ausserhalb des Intervalles 0 bis 1 zu

untersuchen, dient eine Formel, welche wir erhalten, indem wir in
(17) für (x+1) der Reihe nach setzen (x+1), (x+2) (x+k)
und sämtliche so entstandenen Gleichungen addieren; es wird dann



— 44

1

X(n, k+x) x (n, x) + ^+^y-{ x""1 + (l+x)n-1

+ (2+x)"-1 + + (k-l+x)"-1}. (19)

Eine weitere Formel zur Untersuchung der Bernoullischen Funktion
mit negativem Argument, die uns gute Dienste zur numerischen
Ausrechnung und Kontrolle der Werte leistet, finden wir, wenn wir in

(8) für x den Wert

x(n,2 -x) (-l)»x («,{-1

setzen; dieselbe geht dann über in

(20)

als Maximal- oderDiese Formel charakterisiert uns den Punkt x
a

Minimalstelle.

§ 18. Diskussion dieser Definition.

Setzen wir in der Definitionsformel (3) der Reihe nach für n
die Werte 1, 2, 3, so nehmen die acht ersten Funktionen
dieser Definition folgende Werle an, die nacheinander diskutiert
werden sollen:

X(l,x)

X(2,x)

X(3,x)

X(4,x)

X(5,x) -120

*<M)-w-

X2 X 1

2 2 12

X3 X2 X

6 4 12 '

X4 X3 X2

24 12 24

X5 X4 X3

48

x5

X(7,x)

K(8,x)

x'
5040

x8

240
x6

1440
v7

72

288
vi

1

720

x

720

x2

1440
x3

30240
x

40320 10080 +
1440

x6

4320
V*

30240

8640 17280

60480 1.209600
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Wir gelangen hier zu ähnlichen Resultaten wie früher; da aber
auf der rechten Seite auch Terme vorkommen dürfen, die von der
Variabelen befreit sind, so ist leicht ersichtlich, dass nur die ungeraden
Bernoullischen Funktionen für die Werte x 0 und x 1 erfüllt sind;
das Glied der geraden Bernoullischen Funktion, das die Veränderliche
nicht enthält, gibt für das Argument 0 und 1 sofort den Wert der

ganzen Funktion an.

X (1, x) x s- sle"t eme Gerade dar, die aber für diese
d

Definition nicht mehr durch den Ursprung geht.

x(2,x) ist die Gleichung einer Parabel; die Funktion besitzt ein

Minimum bei x — vom Werte % 12,—-) — —•

X (3, x) besitzt im Intervall 0 bis 1 sowohl ein Maximum als

ein Minimum, und zwar liegt ersleres bei x=— —^3, das letztere
d O

dagegen bei x==-— + —\/3; zudem ist x 3, ~^-) 0; diese Kurve,

analytisch gesprochen, ist eine Art Parabel hohem Grades.

i
Die Funktion % (4, x) besitzt bei x -^- ein Maximum vom Werte

7
; zudem ergeben sich zwei Minima bei x 0 und x 1, so

5760

dass jf(4, 0) x(4, 1)
720

Was x(5, x) anbetrifft, so ist diese Funktion als ungerade

Bernoullische Funktion erfüllt für x 0, x —- und x 1 ; sie weist
d

ein Maximum auf zwischen — und 1, wie auch ein Minimum zwischen
di

0 und y
Alle diese hohem Bernoullischen Funktionen stellen Parabeln

höherer Ordnung dar.

Wir erhalten somit folgende Bilder des Verlaufes der Bernoul-
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lischen Funktion zwischen den Grenzen 0 und 1; im wesentlichen
stimmen sie mit den bei Schlömilch dargestellten überein.

Figur 1.

Figur 2.

Die Funktionen sind charakterisiert durch34)

Figur 1, wenn n 2, 6, 10, (4k-2),
» 2, » n 4, 8, 12, 4k,
» 3, n 3, 7, 11, (4k-l),
» 4, • n 5, 9, 13, (4k 1-1).

Figur 3. Figur 4.

§ 19. Entwicklung der Bernoullischen Funktion in Reihen.

Wir könnten hier analog verfahren wie Schlömilch35); zudem
würden wir noch viel rascher ans Ziel kommen, da das Integral, welches
bei dieser Herleitung auszuwerten ist, leicht dargestellt werden kann.36)
Schläfli geht aber ganz auf seine Art und Weise vor; er untersucht

vorerst, was wird aus

a a a'
X-^~"l + P~ + + " +

n=i

a

Multiplizieren wir mit x so wird

n=oo l=oo

24-M-2£ («)
n=l A 1=1

Laut Theorie der Gammafunktion gilt für ein beliebiges a die

Beziehung37) /x~a(1—xf-1 dx ¦ 2 i sin a/r

-i

r(i-a)rrb)
r(b—a+l) '

substituieren wir für a den Wert (1—n) und setzen b 1, so wird



- 47 -
1 1 C »-1 A— 7^—- I x d:
n 2i sin n itj iß)

Diese Formel gibt uns ein Mittel an die Hand, obige Summe durch

ein bestimmtes Integral auszudrücken. Ist t die lntegrationsvariabele,
so wird nach (ß)

1
—__ fl«-*-1 dt ¦

{~1)k fl«-*-1 dt.
(a—X) 2isin(a—X)nJ 2i sin a rt J

Die Summe geht dann über in
1—oo l=oo

2 7^=5^— Cur* 2 (-D" (V) <"
*mJ X—a 2isina7r / ^J v \ t /
1=1 J 1=1

a C a x dl
2i sin a n) t+x t

Der gefährliche Punkt des Integrales ist t — — x; für diesen

wird der Nenner zu Null, so dass der Werl des Integrales oo ist,
wir müssen daher die Schlinge um (— x) gehen lassen, diesen Pol

also ausschliessen, und wir betrachten

l=oo x
^C ßX_ a Ca x d t
Zi X^a ~~ 2isin«7r J t (t+xf ' ("
1=1 ^ '

1ÌS)
Dieses Integral ist aber kein Schlingenintegral mehr; denn es nimmt
nach einem ganzen Umlauf seinen ursprünglichen Wert an. Wir
dürfen dann auch später, ohne den Wert des Integrales zu verändern,
eine additive Konstante beifügen, welche wir so auswählen, dass sie

für unsere Zwecke passt.
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Durch Substitution von l" e" ^8 wird

2ina(^«t-+)r)
al al 1 2Ì7rae V2i" V

2i sin an ' « * -ian 2\7t e21"71 1

n=oo

-Tt2/(».^+i)(^«)"-">
Sodisi [«-] -L Z(n,% + |) (2i.,-.

Deshalb wird, wenn wir die Gleichungen («) und (f) berücksichtigen,.
l=oo

2x* (2i.r)n H Logt l\

^ ^ /Vn' 2i*r /jt(l+x)' W
wobei die zugefügte Konstante den Wert hat

(2i,r)D f / Logx\ xdt
K - ~ "2l^J X vn' ~2Ï^ l(l+x)

-1<5)
Wir wollen nun darnach trachten, x auf die Peripherie des Einheilskreises

zu bringen; zu diesem Zweck müssen wir uns aber zuerst
über Logt und Log(—x) ins Klare setzen; vor dem Nullpunkt wollen wir
uns hüten, weil in demselben eine starke Transcendenz vorbanden ist.

Log (—x) — i 7t (—q) + 2 i 7i Q ; © Konstante, q 0,
sobald (—x) auf der Peripherie des Einheitskreises liegt.

Wenn t e wird Log t — —\ 7t-f-2\ ntp.
tp Bogen von 0 bis 1; wenn t x, soll tp — 0 werden. Dann sind

Logici.(,-i-); ^ + |; ^Konstante^;
dt

—— — 2ift<itp.
Setzen wir diese Werte ein, so wird aus (6)

l=oo n

1=1

-i -x,o
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Der Klammerausdruck unter dem Integralzeichen wird dann in
dem Momente zu Null, sobald tp 0 geworden; somit ist

2Ì7T0 2i7T«>
x e ;t — e ;

2i7i© in(f+@)— in{<p—0)_ 2\n<j> i 71 (f+9) + in(f—0)_
G —¦— G G ¦ G j

t I x eÌ*(P+0)-Ì*(?-@)_eÌ7l(p+©)+i<p-©)

-ei7r(?+0)2isin(^-0)^;

y^— y {1+i cotg (tp-9)7t\

Substituieren wir diese Werte ins Integral (e), so erhalten wir
i=°°

2 ^ "^Ì^"J {z(n,?')-x(n,©)}y{l+icotg(p-0)7r}2iyrd^.

Setzen wir jetzt x — e so bewegt sich die Variabele auf
dem Einheitskreis von 0 bis 1, und es wird
1=00 1

2 ^7n— =(2i.r)n j Jz(n,^)-x(n,0)j-|{l+icolg(^-0),r[d^. (M)

1=1 ò

Wegen i11 sollten wir die Fälle für n gerade oder n ungerade

trennen; um dies zu vermeiden, ziehen wir vor, beide Seiten mit
71

(—i) e - zu multiplizieren; dann wird (/.1) zu

2i r1=1

&nf\ jx(n,f)-x(n,9)}Y{l+icolg^-0)7l}d^' (21)

Diese Formel gilt auch für 0 ^>, da dieselbe dafür nicht unstetig
wird. Wegen der Cotangente lässt sich anfangs leicht glauben, das

Integral werde unstetig; doch ist ja im Nenner der Cotangente der

Sinus, der sich aufden Bogen (tp—0) reduzieren lässt. Da die x-Funklionen
algebraische Funktionen nten Grades sind, so geht die Klammer in

tiefster Annäherung über in (yn—©n); somit verhält sich das Integral
Bern. Mitteil. 1900. No. 1484.
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wie — ; ein solcher Ausdruck ist aber endlich und daher auch
tp — 0

das Gesamtintegral für tp — @.

Herausheben der Komponenten.

In obiger Formel (21) sind sowohl reelle als imaginäre Bestandteile

enthalten. Wir wollen nach dem Moivreschen Grundsalz der

Trennung des Reellen vom Imaginären die einzelnen Komponenten
herausnehmen, da wir zerlegen können

*=oo / n"\ l=oo
2? e =2?cos\2An@
1=1 1=1

l=oo

+'2 sin 2X7t9 —— )• (q)

¥>) —x(n,e) °> (")

1=1

A. Die reelle Komponente.
Dieselbe wird

^?cos(2/Ur0-^) (2,,)11 f1}

£ r ^~2"J (^1=1 o

Dieses Integral muss ausgemiltelt werden. Wir wissen, dass durch

Integration der Grad einer Bernoullischen Funktion um die Einheit

steigt; somit wird für n gerade oder ungerade

j x(n,^>)dtp {x(n-\-l,ip)}=0;
ò

denn die ungeraden Bernoullischen Funktionen verschwinden für die

Argumente 0 und 1 und die geraden weisen denselben Wert auf, der
hier das eine Mal mit negativem Vorzeichen genommen werden muss.
Es zeigt sich nur die Ausnahme für n 0; doch müssen wir diesen

Fall, ausschliessen, da sonst links alle Nenner zur Einheit werden.
Ferner ist %(n,0) in Bezug auf tp als Konstante zu betrachten,

also I %(n,&)dip — %(n, ©); daher wird (v)

;(2X„9-¥) (27tf

o

l=oo
COS(

X(n, 0).2
1=1 A
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2 %^ cos(2Â7r© 5-)
Z(n, 0) -—- 2| — —• (22)

Dies ist wieder eine weit allgemeinere Formel als die

entsprechende der frühem Definitionen; aus derselben erhalten wir leicht
die den frühem gleichwertigen Beziehungen; die einzige Bedingung
isl 0<@<1.

Die Formel konvergiert ganz unzweideutig für n 2, 3, 4, ;

für n l müssen wir die Konvergenzfrage noch genauer prüfen; es

wird für n 1

l=oo „ x l=oo
COS I2 (2Â7C0— 2)__N? sin2>Î7C0

1=1 1=1
1

— *x(l,e) -M® 2

Der höchste Werl von sin2À?r© kann nur 1 sein; dann nähert sich
die Summe der Reihe der Slammbrüche, welche divergent ist. Die

Folge davon isl, dass die Werle 0 0 und 0=1 ausgeschlossen
werden müssen. Ist n nahe bei Null, so schreitet der Zähler fort
nach 2/t©, in 9, 6 tt©, Die Summe dieser Ausdrücke wird
aber oo gross; die Konvergenz erscheint daher sehr verdächtig; aber

für 2n&-—ip ist
l=oo 1=°°
¦^ sin X ip _ '^ sin X ip 7t ip_

— .; — Xib r 2 2
1=1 ;.=i 7

Wir setzen X\j.i — (.i\ dann dürfen wir ein sehr kleines tp als Afi
betrachten, so dass isl

l=oo
"V^ sin u n ip
Zi-tT^^T—J-i=i f

f.i /Ì,/; durchläuft die Werlereihe f<, /*+i/>, |U+2 i//, d.h., wenn

ip klein genug gewählt, so geht li von 0 bis oo; somit wird die Summe

(t 00 /»OO
TT

T
Also ist der Ausdruck konvergent, da wir hier einen endlichen Wert

erhallen.

,u=oo »oo
^^ sin u / sin u> d^= --df--H P J P
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Wir kehren wieder zu unsrer reellen Komponente (22) zurück
und wollen die Fälle n gerade 2 m und n ungerade (2m+1)
trennen.

Für n 2m wird cos (2 Xn © — m n) (—l)m cos 2^/r®, also

l=oo

2 JS^- (-')"-^io«.* m
1=1

Dies isl eine den Raabeschen Definitionsformeln entsprechende
Beziehung; nur fehlt hier wieder der lästige Zusatz der Bernoullischen Zahl.

Setzen wir darin 0 0 und berücksichtigen den Wert für

x(2m, 0), so wird
l=oo

21 _e _ 1 (2^)2mBm ,„.,
y2m -b2m— 2 •—(än^f—" { ]

1=1
Da x(2m,0) x(2m, 1), so würden wir die nämliche Formel erhallen
für ©=1.

rtFür n (2m + 1) wird cos 2Ì7t& — m n,
et

(—l)m sin 2 X 7t 0 ; dies in (22) gesetzt, gibt
l=oo
"^^ SÌn2l7T0 ,vm-l 1 ._ ,2m+l ,n -, _,. ,ncNZl pm+i— (—!) y(27r) x(2m+l,0). (25)
1=1

Für ©= 0, —, 1 resultiert daraus die identische Gleichung
et

0 0; dieselbe entsteht ebenfalls, wenn wir (23) nach © ableiten.
Differenzieren wir (25) nach 0, so entstellt wieder Formel (23); alles

dies sind Kontrollen der Richtigkeit.

Spezialfälle dieser ungeraden Bernoullischen Funktion sind lösbar
und sehr zu vereinfachen, wenn ein Mittel gefunden würde, um die

ungerade Bernoullische Funktion durch Bernoullische Zahlen oder durch

geeignete bestimmte Integrale auszudrücken; doch slösst man gerade
bei letzterer Aufgabe auf die Summierung von komplizierten

Ausdrücken. So wird z. B. für 8 —- aus Formel (25)

*=C>° TT.

2sinX-2-tfm+l
1=1

(-l)m~14-(2-)2m+1z(2oi+l,4-)'
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l=oo n
•^y sin X -s- iEs wird >, —r—L — L

^2m+l " o2m-fl I r2m+l „2m-)-l

A=°° 1-1
%? (-l/ „"T- ' — ^J (2A,-l)2m+1 2m+1'

somit H2m+1 (-If"1y (2n)2m+1 x (2 m +1, y). (26)

Ähnliche Formeln könnten wir für ©=—-,—,-—,-—, ab-
U O O 1 d

leiten; jedesmal kommen wir auf Funktionen, die den Bernoullischen
Funktionen nahe verwandt sein müssen, da sie ganz ähnlichen Summenformeln

genügen.39)

B. Die imaginäre Komponente.

Zurückgreifend auf Formel (21) und (q) wird, wie leicht einzu-

'^Tsin (2^0 — -^)
sehen ist, ^. — -

1=1

y(27T)nJ {%(n,tp) — %(n,fi))neign(tp—&)dtp. (27)

0

Es ist dies wieder eine ganz allgemeine, sämtliche Fälle einschliessende

Formel.

Für n l wird, da sin(2À7r0 — — cos2^0,
1=00
^1 cos 2 X n ©

-=,r |(x(l, 0)-x(l,f))colg7r(^—©)d^.
— X
1=1 0

Nach längern Umwandlungen, wobei als Inlegrationskonstante
Log 2 genommen ist, wird, wenn 0 als Konstante weggelassen, also

bei verändertem <p ipy

1=00^ COS2À7T©
Za \ Log (2 sin/r ^).
1=1

Es ist auch, wenn (<p — 0) tfL gesetzt, da die Grenzen (— 0) und

2sini2Xn& T)V

1=1
K
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C2 n) — I { X (n, 9x + e) ~ Z (n> ©) }cot8 ^ ?i dfr
— 0

Das Integral rechts bezeichnen wir mit S; es lässt sich zerlegen in

/1-0{X <X 9x + °) — X ("> 0) i cot8 7f fid fi
o

/>+©
— I { X(n, G—9x) — Z(n> e)} cot& 7f f i °>vl'

wenn im zweiten Integral zudem noch tpx durch (— <pA ersetzt wird.

Wir können nun partiell integrieren, indem wir setzen

/colgntp1dtp1 — Log(2sinyr^1).
71

Die finilen Teile der partiellen Integration aus beiden obigen

Integralen der Summe S werden, wie wir uns durch Ausführung der

Integration überzeugen können, zu Null; es bleiben nur die infiniten
Teile, und es wird

^1 sin (2Àn © — -y-)

1=1 K

i i rG
y(2^)ny I Log(2sin,r^1)x(n-l,0-^1)d^1

o

i i rl~9
-y (2 7r)ny I Log(2sin7rç51) x(n—1,^+ <-)) d tpr

t nDa für n (2m + 1) der Wert sin 2 X 7t © — m n —

— cos(2Att©—mVr) —(—l)mcos2Â7c©, so wird
l=oo
2(—l)'"+1cos2X7r©

52m-fl
1=1 l

r>9

(2 7T)2m I Log (2 sin/r ^)x(2m,©—<pl)dtpl
o

i-©
/1—MLog (2 sin n tpA x (2 m, ^+0) d tpv
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Für 0 0 verschwindet das erste Integral, und es ist
1=00

2 w=^i)ra (2 ^2m fLog (2 sin 7t & *(2 m' ^ df-(28)
1=1

k s;

wenn wieder <p als Integrationsvariabele gewählt wird.
Mil Hülfe dieser Definition als Reihenentwicklung lässt sich die

Raabesche Restformel ableiten; dann können wir den Zusammenhang
derselben mit der Riemannschen Reihe nachweisen; diese Beziehungen
sprechen deutlich für die Allgemeinheit dieser Definilion. Alles hier

auszuführen, würde aber den Rahmen vorliegender Arbeit wesentlich

überschreiten.40)

§ 20. Integrale mit Bernoullischen Funktionen.

Schläfli selbst gibt in seinen Vorlesungen keine Integraldarslel-
lungen der Bernoullischen Funktion. Dieselben gestallen sich aber

wesentlich einfacher als die entsprechenden der frühem Definitionen.
Dieser § liesse sich beliebig weit ausdehnen; es taucht eine grosse
Mannigfaltigkeit an Integralen der Bernoullischen Funktion auf. Wir
geben hier nur die zum Vergleich wichtigen. Gute Hülfe bei all diesen

Darstellungen liefern uns die Formeln (23) und (25).

A. Einfache Integrale.

1. Für die gerade Bernoullische Funktion.

Es interessieren uns einige Spezialfälle der Formel (7); setzen

wir darin für die obere Grenze der Reihe nach —, —- und -r-, so
3 4 6

1

n .; v „wird vorerst I % (2 m, x) dx 2J+1— R2m+1, wobei (29)
0

1 1

(2n)-

2m-fl
-1

r>2in+1 + ,2m+l e2iu+1

l=oo

=y 1 L
—J C31—9,Y*m+1 f3;-lVfr{(U-2fm+1 (3X-lfm+1

Die Funktion R2m,1 lässt sich unter Anwendung der Formel

ka r(a) J v '
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aus der Theorie der Gammafunktion41) in ein bestimmtes Integral
verwandeln, so dass wird

/»°°2mJ —x_ — 2x1

R2m+1 -(2lnjrJ |_e-3x -dx» «omit folgt

i
(-iT-^B /»x2m{e-x-e-2x}dx

(2nfm+lr(2m-r-l)J l-e~3x*(2m, x) dx - *' v Vt7 '
• (30)

i

/ï (__i)m-12
jC(2m, x)dx » wobei (31)

H -1 l 7-
X 1

n2m+l -1 „2in4-l T2m+l * o2m+l I -2m+l „2m+l
l=oo

1-1

+ —2u(*i_-(-i/
^ (2A-l)2m+1i

Durch Anwendung derselben Formel (a) wird

H _ 1 / X
_

1 / X

2m+i— r(2m+l)J ex+e_x dX==2r(2m+l)J cof" dx'
ex+e~x 2 7'(2m+l)J col x

o ' o

fT (—l)m_12 / x2m
also x(2m,x)dx v2 / -r^~=rdxJ (2«)2m+1r(2m+l)J ex+e x

J2m
1

(2nfm^r(2mArl)J cöfx

Entsprechend folgt

(-i)-1-1 rv
2m+1^om+l)J rûîx dX' (32)

X(2m,x)dx l-~21^13 G2m+1, wobei (33)F
G2m+1=: 1 +2ni+l l^ tj2m+l ^m-fl c2m+l

l=oo
1-1 / -i \1-1

4-4--- -^ (-ir1 i (-i)T-T ^j (3A_2)2m+i T (3i_j^+i1

Wie früher durch Integrale dargestellt, wird
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1 f x2m{e-x+e-2x}
2m+i— j-(2m+i) J i+e-3x dx' somit

0

1 oo.
fï(2m x)dx - (-Dm"V3 fx2-{e-x+e-2x} dxJ ^2m'x)dx- (2^)2-+1r(2m+l)J l+e-3x ^ (34)

2. Fur die ungerade Bernoullische Funktion.

Hier vereinfachen sich die Werte bedeutend, da wir alle durch
Bernoullische Zahlen ausdrücken können. Gestützt auf (6) werden,

wenn wir wieder der Reihe nach für die obere Grenze ~r-, — und
o 4

— und für die untere Grenze stets 0 setzen, folgende Formeln auf

einfache Weise, durch Einsetzen der von früher her bekannten
Formeln (9), (13), (16) und (14), entstehen

f 3" 1 32m—1 B

Jx(2m-l,x)dx (-iry.^_^.^. (35)
o

i

/1
p4m-l p2m-l 1 ß

X(2m-l,x) dx (-lf JL, -i • öjfr (36)

i
6 1 fi2m-l q2m-l 92m-l 1 ß
X (2 m-1, x) d x (-l)m i- -

b +d T — • A^V,- (37)/A < i v ; 2 6 (2m)!/
B. Integrale mit trig. Funktionen.

Nehmen wir r als posilive ganze Zahl an, so wird nach (25)

I x(2m+l,x)cos 2mxdx
O l=oo

(—\)m-12 f1^ sin2A7TX
- -ö-^rrr- I ZA 2^X1—cos2r7Txdx;

(2nfm+x J J^J x2^Ai
0 1=1

rda aber I sin2^7ix .cos2r?tx dx 0 für alle Werte von X, so folgt

¦»i

x(2m+l,x)cos2r7Txdx 0. (38)f0
Bern. Mitteil. 1900. No. 1485.
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Da wir auf die Auswertung eines analogen Integrales kommen,

wenn wir die gerade Bernoullische Funktion mit sin2r/rxdx
kombinieren, so wird, was auch direkt hätte gezeigt werden können,

X(2m,x)sin2r7rxdx 0. (39)fo
Wir verbinden nun gleichartige Bernoullisclie Funktionen und

trig. Funktionen; es wird

f> (2m, x) cos 2r n x dx

0
_ A=oo

_(:
(2^ lV k=l

i)m_12 rv; cos2?ax
——s I Zx o cos 2 r TT x d x.
2,o J H x2m

rDer Ausdruck I cos 2 7tX x .cos2 r n xdx verschwindet für alle Werte

0

des ganzzahligen ^, mit Ausnahme von A r; dafür wird
»i; cos2 2 r /t x d x —-

et

0

Von der Summation unter dem Integralzeichen bleibt somit nur

Y " ~~J^~ ' daher wird

r (-Dm_i
x(2m,x)cos2ryrxdx= '

¦ (40)
J (2nr)

Die entsprechenden Erläuterungen gelten auch für die ungerade
Bernoullische Funktion verbunden mit sin2r^xdx; also

(2/cr)21
o

Daraus ergibt sich der

Satz : Die Integrale einer Bernoullischen Funktion verbunden mit
einer ungleichartigen trig. Funktion werden zu Null, verbunden mit
einer gleichartigen nehmen sie einen bestimmten Wert an.

Wir könnten auch Integrale mit den trigonometrischen Funktionen
im Nenner untersuchen; doch würden uns diese Untersuchungen zu

weil vom eigentlichen Thema wegführen.

/y(2m+l,x) sin 2rnxdx -± s;2m+1 ¦ (41)
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C. Integrale von Produkten der ^-Funktion.

Wir gehen wieder von den Formeln (23) und (25) aus und

unterscheiden:

1. Beide Bernoullischen Funktionen seien gerade. Dann wird

J= | x(2in,x)x(2n,x)dx
l=oo l=oo

(-l)"»-^^
(2n)2m(2n)p-/" 2 2

Ô' 1=1 1=1

cos2 2 X 7t x
-\2in g2"

dx.

Bekanntlich sind

r \ n i n iI cos2 2Â 7TX dx — ;
I cos22 Xnx dx —- ;

I cos22A?rxdx —¦

0 0 0

Somit resultieren, da die Doppelsumme verschwindet, wenn wir für

l=oo

Zi 2m+2n S2m+2n den Wert in Bernoullischen Zahlen setzen,

1=1

die drei Formeln

Io
/o
/

X(2m,x)x(2n,x)dx
\in-+n(-l)"1^" Bm+n

(2m+2n)!

i^ï 1 I 1 \m+n R
x(2m,x)x(2n,x)dx=+.( l) *»+»

4 (2m+2n)!

(42)

Also folgt I F(x)dx 2 I F(x)dx 4 I F(x)dx, (43)

0 0 0

wobei F(x) x(2m, x)x(2n, x) ist.

Lassen wir m n werden, so verändert sich (43) nicht, nur

dass dann F(x) { x(2m, x) }2 wird, während die Formeln (42)
übergehen in
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J {x(2m,x)}2dx:

ß X(2m, x)J dx

B2m

(4m)! '

1 B2m

/(x(2m,x)}dx

2 (4 m)!

1 132m

(44)

4 (4 m)!

2. Beide Funktionen seien ungerade. Es wird

j x(2m+l,x)x(2n+l,x)dx
l=ool=oo

(2nfm+1(2n)
Es sind bekanntlich

i

2

(_!)¦»-! 2 (—If'1 2 f1 'V "V _sin

n+1(2«)2n+1 J -H fH ^2m

22Arrx
m+1 j 2 n+l

sin22Xnxdx ^r; I sin22-Î7Txdx:

5' i=i i=i
i
sins2Ä7rxdx —-

4 ' J S
o

hP
l=oo

Deshalb resultieren, wenn für ^. —2m+2ll+2 S2m+2n+2 der Wert in

1=1 *
Bernoullischen Zahlen gesetzt wird, da die übrigen Integrale der Doppelsumme

zu Null werden,

Bm+n+lX(2m+l,x)x(2n+l,x)dx (-l)m-fn

/ X(2m+l,x)x(2n+l,x)dx (-l)m+n-

(2 m+2n+2)!

m-f-n 1

J
Bm+n+l

(2m+2n+2)!

m+n 1 Rm+n-flX(2m+l,x)x(2n+l,x)dx (-l) 4 (2m+2n+2).

Es wird also auch hier die Beziehung gelten

(45)

I G(x)dx 2 I G(x)dx 4 / G(x)dx, wobei (46)

G(x) x(2m+l,x)x(2n+l,x).
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Lassen wir wieder m n werden, so erfährt die Beziehung (46)
keine Änderung, nur dass G(x) { x(2m+l,x)}2 wird; die Formeln

(45) gehen dann über in
»if B2

U(2m+l,x)fdx=-T^r.

n i2 ij |Z(2m+l,x)| dx
B2 m+l

f]x(2m+l,x)|2dx -l.

2 (4m+2)!

B2ra+1

(4m+2)!

(47)

3. Eine Bernoullische Funktion sei gerade, die andere

ungerade. Dann wird

J x(2m+l,x)x(2m,x)dx

(—l)m_1 2(-l)n~12
l=ool=oo

22A=l 1=1

sin 2 X n x. cos 2 X ,t x

/0 s2m+l/o \2n I ^^J ^^A ^2m+l ^ 2n(2n) +(2n) J £* f* XX
Weil I sin2Xnx.cos2 Xnxdx 0, so wird

dx.

fX(2m+l,x)x(2m,x)dx 0. (48)

Wir erkennen daraus den

Satz : Die Integrale eines Produktes zweier Bernoullischen Funktionen
nehmen einen bestimmten durch Bernoullische Zahlen ausdrückbaren

Wert an, wenn die beiden Bernoullischen Funktionen gleichartig,
verschwinden aber, wenn dieselben ungleichartig sind.

Die Integraldarslellungen lassen sich noch beliebig weit
ausdehnen; doch müssen uns diese Betrachtungen genügen.
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IV. Die Definitionen nach J. W. L. Glaisher.

Nachdem Dr. Glaisher schon in einer frühem Bekanntmachung
«On series and products involving prime numbers only»42) auf die
Bernoullische Funktion gekommen ist, widmet er derselben eine

eingehende Besprechung in der gleichen englischen Zeitschrift,
betitelt «On the Bernoullian Function» .M) In dieser 168 Seiten
umfassenden Abhandlung gibt dieser berühmte englische Mathematiker
eine grosse Menge von Formeln; ja er begnügt sich auch nicht mit
einer einzigen Definition, sondern führt deren mehrere an. Wir treten
hier nur auf diejenige Definition näher ein, die uns für die

allgemeinste und bequemste erscheint, ohne dabei die übrigen zu

vernachlässigen, da wir alle aus der zu besprechenden Definition leicht
herstellen können, weil sie durch einfache algebraische Beziehungen
verbunden sind. Eine weitere Arbeit «On the definite integrals
connected with the Bernoullian Function >>44) von demselben Verfasser

gibt uns eine beträchtliche Anzahl von bestimmten Integralen mit
Bernoullischen Funktionen.

Die Formel, die Glaisher einer eingehenden Betrachtung unterzieht,

lautet anfänglich

„ xn 1 n_i n—1 „_.2B„00= - — ^x +-__B1x2 ' 2!

(n-l)(n-2)(n-3) n-4
4! v +- (i)

§ 21. Herleitung der Definitionsgleichung.

Wie schon Raabe, so gehl auch Glaisher aus von der bekannten

Beziehung für 0 < x <[ 16S)

n sin 4 n x sin 6 7t x /1
sin 2 vt x -j 4 f- 7t \

Durch Multiplikation mit dx und Integration zwischen 0 und x wird

1—cos2zrx 1—cos 4 7t x 1—cos6ttx (x x2

2n ' %7t
' \J7t f" 7C\2 2

multiplizieren wir mit (— 2n) und zerreissen dann, so folgt, weil

1 + 22 + 32+ ^S2 T'
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cos4ttx C0S67TX „ x! x 1

C0S2^+-y- +^^-+ -2.2jy-y+y
Durch wiederholle Integration und Multiplikation mil (—2n) entstehen
nacheinander

„ sin 4 ye x sin 6 ti x 22yc3 x8 x2 xsm2nxA- p— -J -3 (- +

cos 2 7t x +

2» ' 33 ' 2 (3 2 ' 3

cos4/rx cos&7tx
34

_ — 23/c4 }x4 x3 x2 B2^
' — 3! I 4 2 + 2 4 I'

cos 4 ti x cûs6 7cx
C0S27TX + —^

1

1̂xii-lq2n-l 2n t —

+ I2Z1»" K-w+Mr^ll- W

sin4yTX sin 6 TT x
sin 2yfx +i g211!-1 o2n+i

(_l)n^2n+l02n 2 n+1n+ - ;(2n)! W*>- (3)

Darin bedeuten Bn(x) die Klainmerausdrücke der obern Formeln; es

sind dies die «Bernoullischen Funktionen». Die beiden Formeln (2)
und (3), wie auch die frühem, sind rationale und inlegrierbare
Funktionen von x. Der erste Term von (2) isl von der (2n)tcn Ordnung;
der letzte Term der Bernoullischen Funktion in (2) ist vom 2tcn Grade

in x; der erste Term der Bernoullischen Funktion in (3) ist vom

(2n+l)ten Grade, während der letzte in Bezug auf x linear ist.
Also ist nach dieser Definition Bn(x) eine Funktion von x, die

keinen von x freien Ausdruck enthalten darf. Der Ausdruck, der

von x unabhängig ist in den obigen Entwicklungen, stellt stels den

Wert der Reihe 1 -4 1 1 f- ausgedrückt in Bernoul-
2 3 4n

tischen Zahlen, dar.

Diese Definition der Bernoullischen Funktion stimmt nun ganz

mit derjenigen von Raabe überein, wie auch Glaisher bei seinen ersten

Untersuchungen über diese Funktion die Raabesche Definition benutzt

hat, und es ist

B2n+l(X) B"(x) ™d B2n+2(X)=B'(X).
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Glaisher führt dann die Untersuchung über diese Bn(x)-Funktion
in ausführlicher Weise durch, wobei er Raabe in vielem wesentlich

ergänzt. Er berührt anfangs ganz kurz die Funktion mit inversem

Argument, dann die einfachen Ableitungen und gibt die Spezialwerte
für x 0 und x l. Sodann leitet er Reihenentwicklungen ab, in
welchen die Bernoullischen Funktionen als Koeffizienten auftreten.

Alles dies sind Eigenschaften, die mit der Raabeschen Auffassung
übereinstimmen und bei denjenigen von Schlömilch und Schläfli zu

entsprechenden Resultaten führen.

Glaisher erwähnt auch, dass die Bernoullischen Funktionen

eax—1
die Koeffizienten der Entwicklung — darstellen und leitet mit

Hülfe dieser Auffassung einige Eigenschaften her. Hernach gibt er
ähnliche Beziehungen von aufeinanderfolgenden Bernoullischen Funktionen
dieser Definition, entsprechend den Darstellungen bei den früher
betrachteten Definitionen, und erwähnt auch die Funktion mit negativem
Argument.45)

Uns interessiert diese Bn(x)-Funktion weniger, weil sie mit
derjenigen von Raabe übereinstimmt und weil dieselbe zu wenig allgemein
ist, da auf der rechten Seite die Reihe mit dem Gliede in x2 oder x

abschliesst. Auch Glaisher sah sich gezwungen, zur Vereinfachung der
Koeffizienten der Entwicklung nach Bn(x)-Funktionen

ea(2x-l) e-a(2x-l) f ß
a — 1 + (2a)2JB2(x) + -J-}

(2 a)+
B2l

ß4M-f| +

für die Klammerausdrücke einfachere Funktionen einzuführen, und

er lliut dies, indem er setzt

A2nW B2n(X) + (-l^ln-; A2n+l(X) B2n+l(*)' ("><>)¦

Er selbst sagt, dass diese neue Funktion An(x) als analytische Funktion
praktischer sei, da sie weniger komplizierte und systematischere Resultate

liefere. Da jetzt bei der geraden Bernoullischen Funktion durch
diese Setzung auch ein von x freier Term vorkommen darf, so steht
diese Funktion in enger Beziehung zu derjenigen von Schläfli.46)
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Nach obigen Erläuterungen werden somit

Jr(x2"-l2nx^+(2;A2n(x) ^-ix--|2nx2-+(29n)B1x--2

+ + (-l)n(2n2n_2)Bn-1x8 + (-l),1+lBni-

1 f-an+l_ 1 /«„ 1W2n ./^n+A 2n_,
A.M-iW -än+rlS^ -y(2«+ l)x"+[ 2 JV

2n+l\ 2n a „/2n+l\
Die Reihen brechen von selbst ab; beide lassen sich in die
allgemeinere Formel für ein beliebiges n zusammenziehen

Die Reihe geht so weit, dass rechts keine negativen Koeffizienten

auftreten dürfen; der letzte Term enthält I oder I je nachdem

n ungerade oder gerade ist.
Diese Definition wollen wir nun eingehender betrachten.

§ 22. Die Derivierten dieser Deflnition.

A. Die einfachen Differentialquotienten.

Wir gehen von der Deflnilionsformel (4) aus und differenzieren
dieselbe nach x ; dann wird
S n-1 1 / -,<. n-2 /n "Mt, n-3

^An(x) x —y(n-l)x +^2 JBix

n—M „ s

4 JVn~5 +-
-A-An(x) (n-l)An_1(x). (5)

Diese Formel geht für n 2m und n (2m+l) in die

entsprechenden Spezialformeln für die geraden und ungeraden Bernoullischen

Funktionen der Definitionen von Raabe und Schlömilch über.

Hier sind die zwei Spezialfälle in eine Formel zusammengefasst; nur
steht noch ein Faktor vor der Bernoullischen Funktion, der bei der
Schiäflischen Definition fehlt. Schon dies ist ein Grund, dass die

Definition von Schläfli den Vorzug verdient, da die einfachen Ableitungen
der x-Funklionen wieder reine %-Funktionen liefern.

Bern. Mitteil. 1900. No. 1486.
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B. Die wiederholten Ableitungen.

Solche finden sich bei Glaisher nirgends; dieselben sind jedoch
leicht zu erhalten; doch tritt stets ein komplizierender Faktor hinzu;

,1 Sx
wie leicht herzuleiten, wird, wenn symbolisch D

dxx

ü\(x) ll(^An_l(x). (6)

Schläflis Definition ist also auch in dieser Hinsicht einfacher, da

dieselbe auch hier keinen vorgesetzten Faktor zeigt.

C. Einfache Integralformeln.

Multiplizieren wir (5) mit dx und integrieren zwischen 0 und x,

so wird j An_1 (x) d x J -~p '

durch Trennung der geraden von der ungeraden Bernoullischen

f* 1
Funktion folgen JA2n(x)dx ——A2n+1(x) und (7)

o

A2n_l(x)dx=-ylTJA2n(x) + (-l)»|^[, (8)
0

wenn die später zu beweisenden Spezialwerte für A2n+i(0) 0 und

A2„(0) (—l)11^- eingesetzt werden.47)
u n

Aus obigen 2 Formeln ergeben sich für die obere Grenze x= 1

I A2n(x)dx=0; j A2„_i(x)dx 0. (9)

0 0

Für die obere Grenze x — werden unter Berücksichtigung von47)
dt

/l\ n»Bn 22n—1 /1
A2n [Y) =(_1) IT ' -^r- und A2-+i (^

j A2n(x)dx 0; I A2n-i(x)dx

0.

1 (-i)"^-^1' (io)(2n—1) K J
n 22n

Auch diese Formeln (7), (8) und (10) zeigen einen vorgesetzten
Faktor, der bei den entsprechenden Formeln von Schläfli wegfällt.
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§ 23. Die A„(x)-Funktion mit inversent Argument.

Glaisher tritt auf diese Funktion nicht näher ein; er gibt nur
die Hauptformel, ohne auf ihre Herleilung einzugehen.48) Wir
gelangen jedoch auf einfache Weise zu diesen Beziehungen, wenn wir
ausgehen von den später herzuleitenden Reihenentwicklungen (23)
und (24).49) Ersetzen wir in (24) x durch (1 —x), so wird unter
Anwendung von sin 2-1 TT (1—x) — sin2/^x

f _ sin 4 n x sin 6 n x
-|sin27rx + -^Tl-+ 32n+1 + j

p2n 2n+l

(-1)h+1—rin)f~ A2n+l(1 ~x)
und durch Vergleichung dieser Formel mit (24)

A2n+i(x) — A2n+i(l—x). («)

Setzen wir in (23) für x den Wert (1—x), so erhallen wir
unter Berücksichtigung von cos 2 X n (1—x) cos 2 X n x genau wieder
dieselbe Formel (23), also

A2„(x) A2n(l—x). (ß)

Diese zwei letzten Formeln (a) und (ß) lassen sich zusammenziehen

zu der allgemeinern Formel

A„(l—x) (— l)nAn(x). (11)

Aus dieser Formel ergeben sich unter Berücksichtigung der

Definitionsgleichung (4) mit Leichtigkeit

A2n(0) A2n(l) (-l)n-1^^ und (12)
d n

A2„+i(0) A2n+i (yj A2n+i(l) 0. (13)

Vervielfachung des Argumentes.

Die Herleitung der Formeln dafür isl hier bedeutend umständlicher

als bei Schlömilch und Schläfli, da Glaisher zuerst eine

Reihenentwicklung suchen muss, in welcher die Bernoullischen Funktionen als

Koeffizienten auftreten; von diesem Momente an ist das Verfahren

analog dem bei Schläfli.
Er geht aus von der bekannten, für 0 < x < 1 gellenden

Beziehung 50)



«71(1—2r) —a7T(l—2x) _ -1 e —e sin 2 n x 2 sin 4 vt x
-n-2 a* -an l^-J-a3 ' 22+a2

3 sin 6/r x
' 32+a2

Entwickeln wir die einzelnen Glieder der rechten Seile nach

Potenzen von a2 und nehmen die gleichartigen zusammen, so sind
nach (24) die Koeffizienten der Potenzen von a Bernoullische
Funktionen, und es wird, wenn zugleich mit a multipliziert und dann a n
durch a ersetzt wird,

ea(l-2x)_e-a(l-2s) {^fa l =iT —2aA1(x)--^-A8(x)
e —e ^1

-ÄA5(X) (y)

Es ist dies eine nach ungeraden Bernoullischen Funktionen
fortschreitende Entwicklung.

Analog wird aus der bekannten Gleichung50) '

a 71(1—2 x) — a7T(l—2x) „1 e +e 1 a2 cos 2 n x
an- — '

2 a 7r -An 2 ' l2-4-a2" e —e i

a2 cos 4 ye x
i 22+a2 '

durch Entwicklung nach Potenzen von a, Multiplikation mit 2 und
Ersetzen von an durch a

a(l-2x) ¦ -a(l-2x) (<? w+ — l+(2a)2A2(x) + A^-A4(x)
e —e

+ -^A6(x) + (ô)

also eine nach geraden Bernoullischen Funktionen fortschreitende
Entwicklung. Addieren wir diese beiden Entwicklungen (y) und (d),
nachdem wir in denselben a durch (—a) ersetzt haben, so resultiert
eine neue, nach aufeinanderfolgenden An(x)-Funktionen fortschreitende
Reihe, nämlich

a(2x—1) /2aia |Oa\3

2a-^--l+2aA1(x) + -i^-A2(x)+A^LA3(x) +
Setzen wir darin für 2 a den Wert a und multiplizieren dann

a

Zähler und Nenner mit e"2~, so wird
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ax
e o s a

.^f-l+A1(x)4.aai\2(x)4.-A3(x)-f-A4(x)4-... (14)

Es ist dies eine elegante Entwicklung, woraus ersichtlich ist, dass

[a"
1 eax

-—. in der Entwicklung a ¦—(n-l)lj ea—1

Von dieser Entwicklung geht, wie wir gesehen haben, Schläfli.

aus, indem er die Fakultäten der obigen Entwicklung auch noch zur
Bernoullischen Funktion mitnimmt; ausgehend von dieser Eigenschaft
leitet er dann die wesentlichen Eigenschaften der Bernoullischen
Funktion her. Bei Glaisher tritt diese Beziehung nicht so in den

Vordergrund, wie sie es verdiente; er leitet zwar einige Formeln
durch Koeffizienlenvergleichung gleichwertiger Entwicklungen her51)
und gibt später die Bernoullische Funktion noch als Koeffizient einer
andern Entwicklung. Ein reiner Koeffizient einer solchen Entwicklung
ist die Definition von Glaisher nicht.

Gestützt auf Koeffizientenvergleichung kommt nun auch Glaisher
auf die Vervielfachung des Argumentes. Ist k eine positive, ganze

Zahl, setzen wir in der letzten Entwicklung für x der Reihe nach

l k idie Werte x, x +— > x -\ -— und addieren dann alle
K K

diese Entwicklungen, so wird die Summe

S An(x) + An(x + y) + + a/ ' k_1

-M'
a 2 a (k—l)a

in -f-e-ll+e^eM- + e"^~

¦H > -)—t -7^=rA«(kx); daher

ek-l
A»« + An(x + |) +.••• + An (x + lyL^—1— An (kx) (15)

Setzen wir x 0, so müssen wir die zwei Fälle n gerade
und n ungerade unterscheiden; es werden für

n ungerade

An(y) + An(-|) + + An(^-J 0 und für (15")
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n gerade

n+A.m+ +A.(i=i)
Tn( 1 |Bin

Aus diesen Formeln lassen sich mit Leichtigkeit verschiedene

Spezialwerte für die Argumente —-, —-, — und —- berechnen; für
2 o 4 b

einzelne Argumente können wir auch direkt von der
Definitionssummenformel ausgehen.

A. Berechnung von A„(—]• Aus den Formeln (15aund b) folgt

sofort für k — 2

A2n+1 (±)-0 und i..(A) (-!)¦^-ì (!•>

B. Berechnung von Ag„ -j- )• Die ungeraden Bernoullischen

Funktionen können wir mit Formel (15a) nicht berechnen, da wir
stets auf die identische Gleichung 0 3= 0 geführt werden. Gehen wir
von der Summenformel für A2n+i(x) aus, so gelangen wir auf «Eulersche

Zahlen»; da wir jedoch dieselben zu unsern Untersuchungen nie

herbeigezogen haben, so wollen wir auch hier nicht auf diese Sache eintreten,
besonders da diese Untersuchungen für alle betrachteten Definitionen
in analoger Weise durchgeführt werden können.

Dagegen wird aus (15b) unter Berücksichtigung des Wertes für
1

A2n(y in Formel (16)

C. Berechnung von As„ -=- )• Glaisher geht von der trig.

Summenformel aus, um diesen Wert zu erhalten; ganz einfach
erhalten wir dieselbe aus (15b) für k 3 unter Anwendung von

A2n(y A2n(yj ; es wird dann

m)=(-D"{^}£. m
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D. Berechnung von A2n \-w-)- Setzen wir in (15b) k 6 und

erinnern uns, dass A2n( y j A2n(y und A2n y A2n( y
so wird

•^t)-<-4^}£-»^(t)-*-(t
die Werte für A2n -q- und A2n -~- eingesetzt, gibt

l\ ^ Bn I 1 1

4n U2"-1 32n-f 6:

Auf gleiche Weise könnten wir die Werte der geraden Bernoullischen

Funktionen für die Argumente —-, —, —^ u. s. w. berechnen,
8 let lO

würden aber zu komplizierten Formeln gelangen.
Glaisher gibt dann eine grosse Zahl von Reihenentwicklungen, in

denen diese Spezialfunktionen, sowohl die Bn(x)- als auch die An(x)-
Funktion, ja sogar noch weitere etwas von diesen abweichende

Definitionen für die Argumente —-, —-, —, —-, — und ¦+- als Koeffi-
2 3 4 0 8 12

zienten auftreten52); auf die weitern von Glaisher eingeführten
Definitionen werden wir später noch zu sprechen kommen.53)

Im Verlaufe seiner Arbeit führt dann Glaisher noch eine Menge,
den Eulerschen Zahlen ähnliche Zahlen J, I, H, P, Q, R und T ein,
die in Beziehungen stehen mit algebraischen Reihenentwicklungen.54)
Er widmet den Untersuchungen dieser Zahlen und Entwicklungen
grosse Aufmerksamkeit; ihm gebührl das Verdienst, diese zuerst
eingeführt zu haben; doch können alle diese Operationen auch an der
Schläflischen Definition ausgeführt werden; die entstehenden Formeln
werden ebenso einfach, ja in vielen Fällen sogar bedeutend einfacher.

§ 24. Die Funktion mit negativem Argument.
Glaisher gibt diese Funktion weder so elegant, noch so einfach

wie Schläfli; die A„(x)-Funktion findet sich überhaupt nichl mit
negativem Argument; dagegen ist die Bn(x)-Funktion für x (—x) kurz
erwähnt.

Er geht aus von den Entwicklungen nach Bernoullischen
Funktionen, d. h., den Formeln (y) und (ô) des vorigen §, die mit ent-
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sprechender Abänderung auch für die B„(x)-Funktion gelten; addieren

wir beide, so folgt nach zweckmässiger Umgestaltung der linken Seite

-^=^ x + aB2(x) + -^-B3(x) + ^B4(x) + (20)

Es ist dies eine neue Entwicklung nach Bernoullischen Funktionen;
aber auch hierin sind die Bernoullischen Funktionen nicht reine
Koeffizienten der zugehörigen Entwicklung; diese Formel zeigt deutlich den

Zusammenhang dieser Funklion mit der Definition von Schlömilch,
der gerade den n-fachen Wert der (n—l)ten Ableitung einer solchen

Entwicklung als nto Bernoullische Funklion tp(z, n) definiert.

Gestützt auf obige Beziehung (20) kommt jetz.1 Glaisher auf die

Funktion mit negativem Argument; er multipliziert dieselbe mit e_ax
und erhält

-^T=r=e-ax(x + aB2(x)+ —B3(x)+|rB4(x) + }.

Durch Entwicklung von e~ax und nachherige Koeffizienlenver-

gleichung wird
'n—1N

-Bn(—x) Bn(x)-(n—l)xBn_1(x) + l
g

)x2Bn_2(x)

-+ +(-i)n-v-2B2(x)+(-irixn.
Dies setzt er symbolisch gleich55)

-B (-x) (E-xr1B1(x), (21)
wobei E ein Operalionsfaklor ist, definiert durch

EB (x) Br+i(x);
es resultiert dann

(-I)""1 Bn (1+x) (E-xr'B^x). (22)

Weitere Bernoullische Funktionen mit negativem Argument finden
sich keine mehr; diese symbolische Darstellung ist keineswegs bequem
zum Operieren; hier ist entschieden jede andere und besonders die
Schläflische Definition vorzuziehen.

§ 25. Diskussion dieser Funktion.

Der einzige Unterschied dieser An(x)-Funktion, der dieselbe
äusserlich nur unwesentlich von der Definition von Schläfli

unterscheidet, ist der, dass Schläfli den Faktor —- vor der Klammer der
n!

rechten Seile der Gleichung der nteu Bernoullischen Funktion hat,
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während Glaisher nur— Bei der graphischen Darstellung ist dann

augenscheinlich, dass der Faktor — das Konvergenzgebiet der Funktion

um so mehr erweitert, je höher der Grad der Bernoullischen Funktion

steigt, und dass schon deshalb die Definition von Schläfli vorzuziehen ist.

Die acht ersten Bernoullischen Funktionen dieser Definition
nehmen folgende Werte an:

A!(x)=X-y
A2(x) yX2-

1
J

1

J% +12

A3(x)=yX3-
1

2 1

1-s! + —-x.
2 "6

A4(x) yX4-
1

3 1

1
2

Tx +TX
l

Ï20"

A5(x)=yX5 —
1

4
1

Tx4+Tx-
1

30
X. „

A6(x) |x«-|x5 + Ax,_A.x2 + _L.

A7(x)=ix'-lx6 + |x5-4-^8+-à-^
A8(x) 4xs--lx' + ^x°-^x4 + -ìx2-^.
Wir erkennen daraus, dass die zwei ersten Bernoullischen

Funktionen dieser Definition genau mit denjenigen gleich hoher
Ordnung bei Schläfli übereinstimmen; die Funklion A2(x) besitzt also

ebenfalls ein Minimum bei x —- vom Werte — —• Die Gleichung
là d'i

für A3(x) weist analog x(3, x) zwischen 0 und 1 sowohl ein Minimum
als ein Maximum auf. Beide liegen bei gleichem Werte von x wie
für die x (3, x)-Funktion; doch wird hier der Wert der Funktion
gerade 2!-mal so gross wie bei #(3, x).

Entsprechend könnten wir weiterfahren; wir finden, dass die
Stellen der Maximal- und Minimalwerte nicht ändern, dass aber die

zugehörigen Funktionswerte für diese Definition bedeutend grösser
werden, je höher der Grad der Funktion ist; die Funktion nimmt
rasch sehr grosse Werte an.ie)

Die Figuren zu § 18 gelten auch für diese Definition.
Bern. Mitteil. 1900. No. 1487.
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§ 26. Verwandlung dieser Definition in trigonometr. Reihen.

Schon bei der Herleitung der Definitionsgleichung ist Glaisher

zu trigonometrischen Reihen als Werte für Bernoullische Funktionen

gelangt; wir brauchen nur für die Bn(x)-Funktion in den Formeln (2)
und (3) die allgemeinere An(x)-Definition einzusetzen; dann resultieren

(2n—1)! | cos4 nxA2n(X) (-I)»"1 t-l 1}2n J C0S 2 « X
2 n \ 22n

COS 6 TT X

32n

a x / -.xn+i (2n)! / • « sininx
A2n+i(x) (—1) + „nv .;„,, sin2 nx +02n 2n+l " " " * I 02n+l2 TT l 2

sin 6 TT x

32u+1

(23)

(24)

Wir wären auch zu denselben Resultaten gelangt, wenn wir uns

auf die Theorie der Fourierschen Reihen und Integrale gestützt und

für die Funktion f(x) die Bernoullische Funktion An(x) eingeführt
hallen ; wie schon bei Schläfli, so gelangen wir auch hier rascher ans

Ziel als Schlömilch, weil das entstehende Integral leichter zu lösen ist.

§ 27. Integrale mit An(x)-Funktionen.

Während Glaisher in seinen zwei ersten, diesen Gegenstand
behandelnden Schriften gar keine Integrale mit Bernoullischen Funktionen

gibt, behandelt er die Integraldarstellungen dieser Funktion sehr
eingehend in seiner dritten, bereits erwähnten Schrift «On the definite

integrals connected with the Bernoullian function.»

Er geht darin von den Summenformeln des Sinus und Cosinus

aus57) und leitet auf analoge Weise, wie die Untersuchungen von § 20

des vorhergehenden Abschnittes zeigen, seine Integrale her. Trotz
des Unterschiedes beider Definitionen bleibt ja die Art des Herleilens
dieselbe; wir wollen deshalb hier nicht noch einmal dieselben

Ableitungen vornehmen, sondern begnügen uns mit der Angabe der
erhaltenen Resultate; ein Vergleich der entsprechenden Formeln, die

stets sehr ähnlich aussehen, zeigt jedoch, dass diejenigen der Definition
von Schläfli noch etwas einfacher aussehen, vorausgesetzt, dass sie in
der Form nicht ganz übereinstimmen.
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A. Einfache Integrale.

1. Mit der ungeraden Bernoullischen Funktion. Gestützt auf (8)

werden für die Spezialwerte der obern Grenze x —, —, — und —
d O 4: O

(25)(2n-l)f A2n-i(x) dx (-l)n Ç=i. *¦
o

(2n-l) fAan^W dx (-l)n Ç=i.^. (26)

/4 .2n,g2n_2 „
A2n-i(x) dx (-1)" +1 • IJ. (27)

0

to i\ T6a ^ /• 1V, 62n+2.32n+3-22n-6 Bn

(2n-l)J A2n-i(x)dx (-l) X _T __.
o

Hier kompliziert also der vor dem Integral stehende Faktor (2n—1).
2. Mit der geraden Bernoullischen Funktion. Gestützt

aufFormel (7) werden, wenn wir zur Abkürzung die von Glaisher

eingeführten Zahlen wählen,58)
i

(28)

(29)

2n | A2„Wdx (-l)n+1-2^r. (30)

2n | A2n(x)dx 0.

o

n I A2n(

o
x_

2n I A2„(x)dx (—1)H
o

i
n I A2n(x)dx

En

42n+l' (31)

2.1 | A2n(x)dx (-l)n+1-2^r. (32)

B. Integrale mit trig. Funktionen.

Durch analoges Verfahren wie in § 20B werden

A2n+i(x) sin 2 r rt x d x (—l)n+1 —(2"2'n,1 • (33)J (2r7F)2n+1
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i A2n+i(x)cos2 rnx dx 0. (34)
o

A2n(x)cos2rygxdx (—l)n+1 (2n—1)1
(3&)fo

I A2„(

(2r7r)2n

1(x)sin2r^xdx 0. (36)
ö

Auch hier bedeutet r eine positive ganze Zahl; die Formeln (33) und

(35) weisen wieder einen Faktor mehr auf, als die entsprechenden
der Schläflischen Definition.

C. Integrale von Produkten.

Gestützt auf die Multiplikation der Summenformeln (23) und

(24) werden durch nachherige Integration

jA2m+i(x)A2n+i(x)dx (-Dm+n (2(m+'2n+2)l Bm+n+1- (3?)

C\ MX MAx—( lVn+n (2m-l)! (2n-l)lI A2m(x)A2n(x)dx — (—1) (2m+2n) ""M-n-
5

I A2m+l(x)A2n(x)dx= I A2m(x)A2n+l(x)dx 0.

5" o

Für n m werden die zwei erstem Formeln

(38)

(39)

PjA2n+i(x)}2dx -l^-|lB2n+1 und (40)

(A2n(x)fdx lMl!B2, (41)/
Wir könnten auch hier wieder als obere Grenze —- und — wählen,

Li tE

worauf diese Integrale den 2ten (4ten) Teil der obigen Integrale (37)
und (38) oder (40) und (41) ausmachen würden.

Ein Vergleich mit den Formeln bei Schläfiis Definition zeigt,
dass die Formeln der %(n, x)-Funktion wieder einfachere Gestalt

aufweisen.

Auch diese Integralbetrachtungen könnten natürlich beliebig weit

ausgedehnt werden.59)
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§ 28. Andere Definitionen von Glaisher.

Da Glaisher im Laufe seiner Untersuchungen zu Entwicklungen

kommt, welche nach fortschreitenden Funktionen j An(x)—2nAn y x H

laufen, so führt er auch diese Funktion als eigene Definition ein,

indem er setzt A'n(x) An(x) — 2nAn (y x )¦

Er führt dann die Betrachtung dieser A'„(x)-Funktion entsprechend
derjenigen der An(x)-Funktion durch und gelangt auch zu ganz
entsprechenden Resultaten, ohne aber neue Gesichtspunkte aufzudecken.

Vorteile bietet diese Funktion keine, da keine der Formeln eine

wesentliche Änderung erfahren.60)
In derselben Arbeit führt Glaisher noch zwei weitere Definitionen

der Bernoullischen Funktion ein, die in sehr engem Zusammenhang
mit den früher erwähnten Definitionen stehen, da er setzt

V„(x) nAn(x) und U„(x) n A'„ (x).
Diese beiden schmiegen sich jeweilen eng an die An(x)- resp. A'n(x)-
Funktion an.

Trotzdem jetzt die Definilionsformeln den allgemeinen Nenner—¦

der rechten Seite nicht mehr besitzen, werden die daraus

abgeleiteten Formeln nicht einfacher; nach Glaisher sollen sie sich besser

zur symbolischen Darstellung eignen als seine früher erwähnten
Definitionen. Während Glaishers B„(x)-Funklion mit der Raabeschen

Definition übereinstimmt, stimmt seine V„(x)-Funklion mil der Schlö-
milchschen tp (x,n)-Funktion überein. Die Untersuchung dieser beiden
Funktionen geht ähnlich vor sich, wie die Betrachtung seiner erstem
Definitionen; doch wird dabei die symbolische Darstellungsweise
angewandt, wo sie überhaupt anzuwenden isl.61)

Endlich führt derselbe Mathematiker noch zwei weitere Definitionen
der Bernoullischen Funktion ein, die mit der An(x)- resp. A'n(x)-
Funktion verbunden sind durch die Beziehungen

an(x)=An(x +yj und a„'(x) A„'( x +y )•

Auch hier erfolgen die allerdings nur kurzen Betrachtungen darüber
in entsprechender Weise wie bei den erstem Definitionen.62)
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V. Folgerungen.

§ 29. Znsammenhang der verschiedenen Definitionen.

Wir geben vorerst eine Übersicht der Definitionen, die wir ein-
lässlich betrachtet haben; alle übrigen können ja aus denselben

hergeleitet werden; deshalb führen wir dieselben auch bei den

Vergleichungen der einzelnen Funktionen nicht an.

Es waren

B-rxl-
x2n+1 1

x2»4-
1 (**)* x2-1 1 (**]* x2-3B (x)-2n+T~Yx + ¥\l/V "TU/ a

(—lf~l 2n \

^iy^/2n+l\+" +~~2n~ Un-i;Bn x2. (2)

Die Reihen brechen ab mit dem Glied in x2 oder x, je nachdem n

eine ungerade oder eine gerade Zahl ist.

'n\ _ « /nN
^(x,n) xn—fnx- + (jB1x--(4]B2xn-4

n\1 n—6+WV + (3)

Hier bricht die Reihe ab mit dem Gliede in x2 oder x, je nachdem

n gerade oder ungerade ist.

*<»• *> - i {'"- t """, +2 <-1>'"1 (»"»)B' *-") <4>

A=l x '
Die Reihe bricht von selbst ab infolge von „, )•

„ / > X 1 n—1 i n 1 n_2
Bn(x) ~-^X +-ÖT-BlXn 2 '2!

\ fn 9\ Cn 3"\
BU—4 i /r\2x + — (5)(n-l)(n-2)(n-3) n_4

JI V
Die Reihe schliesst mit dem Gliede in x2 oder x für ein gerades oder

ungerades n.
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AnW-l|xn-|nxn"1 + (2)B1Xn"2-(4n)B2Xn"+ --| <6>

Der Exponent von x darf nie negativ werden.

Die einzelnen Definitionen können wir in zwei Gruppen teilen;
die eine Gruppe enthält die Definition von Raabe, diejenige von Schlömilch

und die erste von Glaisher, also die Funktionen B(x), tp(x, n)
und Bn(x). Es sind dies alles Funktionen, bei welchen kein von x

freier Term vorkommen darf. Die zweite Gruppe enthält die
Funktionen, welche einen selbständigen, von x freien Ausdruck aufweisen ;

es sind dies alle übrigen, also die Funktionen von Glaisher und von

Schläfli, nämlich An(x), A'n(x), Vn(x), Un(x) und %(n,x).

Sämtliche Funktionen stehen mit denjenigen der gleichen Gruppe
in engem Zusammenhang; etwas komplizierter sind die Beziehungen
der Definitionen der einen Gruppe zu denjenigen der andern Gruppe;
wir erhalten folgende Beziehungen, welche den Zusammenhang der
einzelnen Definitionen veranschaulichen:

/. Gruppe:

R>rM_y(x.2m+1) WM- p(x>2m+2> mB (X) - -2m+T~; ()~~ 2m+2 -
B" 00 B2m+iM; B' (*) B2m+2 00- (8)

ç»(x,n) nBn(x). (9)

X(n,x)= J; An(x); An(x) (n—1)! %(n, x). (10)

II. Gruppe

%(«, x)

///. Gruppen gegenseitig:

B'(x) (2n+1)! z(2n+2,x) + (-l)n+1 -^- (11)

B"(x) (2n)! %(2n+l,x). (12)

B'(x) A2n+2(x)-A2n+2(0); B"(x) A2n+1(x). (i3)

^(x,2n) (2n)!x(2n,x)+(-l)nBn;

tp(x,2n+l) (2n+l)! z(2n+l, x). (14)

?(x,2n)=2nA2n(x)+(-l)I1Bli; ^(x,2n+l) (2n+l)A2n+1(x). (15)

Aus den obigen Beziehungen lassen sich die Werte für die

übrigen Formeln durch einfache algebraische Umwandlung finden.
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Gestützt auf die Tabellen I—IV (Seile 92—95), wo die Werte
der für unsere Betrachtungen wichtigsten Definitionen für die einzelnen

Argumente zusammengestellt sind, können wir obige Beziehungen auf
ihre Richtigkeit prüfen.

§ 30. Vergleichung der einzelnen Definitionen.

A. Betreffs ihrer Herleitung.

Die Herleitungen der einzelnen Definitionen der Bernoullischen
Funklion sind sehr verschieden. Überblicken wir alle, so erkennen
wir bald, dass die einfachste und eleganteste Herleilung der Definitionsgleichung

von Schläfli stammt, der ohne alle Umwege zu derselben

gelangt. Zudem steht dieselbe mit der Fundamentalgleichung der
Bernoullischen Zahlen in innigem Zusammenhang; dies bietet uns
daher den Vorteil, dass wir aus einer Grundgleichung' sowohl die

Bernoullischen Funktionen, als auch die Bernoullischen Zahlen ohne

grosse Schwierigkeit herleiten können; diese Gleichung nennen wir
die «Fundamentalgleichung der Bernoullischen Funktionen und der

Bernoullischen Zahlen»; dieselbe lautet

bmy y e

a mi e-i e-! (16)

der erste Bruch rechts führt auf die Bernoullischen Funktionen, der
zweite dagegen auf die Bernoullischen Zahlen.

Keine der übrigen Definitionen zeigt diesen Zusammenhang; bei
all denselben braucht es grösserer Umwandlungen und längerer
Rechnungen, bis wir auf die gewünschte Definitionsgleichung gelangen.63)

B. Betreffs der Derivierten.
Stellen wir die einfachen Ableitungen der verschiedenen

Definitionen zusammen, so ergibt sich, dass die Ableitungen der Funktionen
nach Raabe und nach Schlömilch eine unerwünschte Komplikation
durch den Hinzutritt einer Bernoullischen Zahl für die ungerade
Bernoullische Funktion zeigen. Die Definition nach Glaisher weist zwar nur
eine Formel auf; dagegen tritt vor die Ableitung noch ein Faktor,
während bei der Schläflischen Definition die Derivierte einer Bernoullischen

Funklion wieder eine reine Bernoullische Funktion ist; letztere
Definition ist somit die bequemste.

Was die mehrfachen Ableitungen anbetrifft, so lassen sich

diejenigen der Raabeschen Definition nicht darstellen, weil dort der
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Exponent nur ungenügend angedeutet wird im Funktionssymbol. Ein

Vergleich der übrigen zeigt, dass bei der Schlömilchschen Definition
verschiedene Formeln nötig sind zur Darstellung der geraden oder

ungeraden wiederholten Ableitungen der geraden oder ungeraden
Bernoullischen Funktion. Bei Glaishers Definition fallen die unbequemen
Bernoullischen Zahlen weg; ebenso ist zur Darstellung all der
Ableitungen nur noch eine Formel nötig; doch zeigt dieselbe zwei
vorgesetzte komplizierende Faktoren. Schläfiis Definition ist auch hier
die einfachste, da die wiederholten Ableitungen derselben stets reine
Bernoullische Funktionen sind.64)

C. In Bezug auf die Integraldarstellungen.
Das von den Derivierten Gesagte gilt ebenfalls von den

einfachsten Integralen, da dieselben ja nur Umkehrungsfunktionen ersterer
sind. Auch die übrigen Integraldarstellungen sprechen betreffs ihrer
Einfachheil zu gunsten der Definition von Schläfli, da selbst die
entsprechenden Formeln der Definition von Glaisher meist einen
vorgesetzten Faktor mehr enthalten.65)

D. In Bezug auf die Funktion mit inversem Argument.

Die Formeln dafür lauten bei allen Definitionen gleich; ihre
Herleitungen sind aber sehr verschieden. Raabe geht zur Ableitung
seiner obigen Formel ziemlich weit auf seine einleitenden Untersuchungen

zurück; Glaisher stützt sich auf die Definilionssuinmenformeln
des Sinus und Cosinus und stellt die beiden gefundenen Formeln zu

einer allgemeinern zusammen. Sehr elegant und kurz sind die Her-

leilungen von Schlömilch und von Schläfli, wobei Schläfli mit Vorteil
die Koeffizientenvergleichung verwendet.66)

E. Betreffs der Funktion mit negativem Argument.

Es geben auch hierin alle Funktionen ziemlich ähnliche Werte,
mit Ausnahme der symbolischen Darslellungsweise von Glaisher. Der

Nenner im zweiten Term des Ausdruckes für die 7 (n,—x)-Funktion
ist keine wesentliche Erschwerung, da die andern Definitionen, mit
Ausnahme derjenigen von Raabe, auch einen vorgesetzten Faktor

aufweisen.67)

F. Betreffs andrer Formeln.

Wir haben bei den Definitionen von Raabe und Schlömilch mehr
als bei den beiden andern näher betrachteten Funktionen die gerade und

die ungerade Bernoullische Funktion trennen müssen ; die Definitionen
Bern. Mitteil. 1900. No. 1488.
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von Glaisher und von Schläfli sind daher allgemeiner gehallen, und

es ist das dem Umstände zuzuschreiben, dass die beiden ersten
Definitionen kein von der Variabelen freies Glied enthalten dürfen;
dies ist auch der Grund, dass bei den Differenlialquotienten und

Integraldarstellungen dieser Funktionen die lästigen Zusatzglieder mit den

Bernoullischen Zahlen auftreten. Die Formeln, welche eine Summe

von aufeinanderfolgenden Bernoullischen Funktionen darstellen,
entscheiden wieder zu Gunsten der Funktionen von Glaisher und von

Schläfli, da dieselben nur je eine Formel aufweisen, während die

übrigen auch hierbei einen Unterschied zwischen geraden und ungeraden
Bernoullischen Funktionen machen müssen. Die entsprechenden
Formeln dieser Summe bei Glaisher und bei Schläfli sind ganz von

gleicher Form; schon ihre Herleitung ist ziemlich ähnlich, da beide

durch Koeffizienlenvergleichung aus Entwicklungen nach Bernoullischen
Funktionen zum Ziele gelangen. Glaisher zeigte im Laufe seiner
Untersuchungen, also nichl etwa als Ausgangspunkt derselben, dass die

An(x)-Funktionen sich geben lassen als

L (n-1)! J in a
eax

e— 1

Er kommt zu dieser Thatsache, wie wir gesehen, auf ziemlich
umständliche Art und Weise, ausgehend von einer Formel, die selbst

eine sehr komplizierte Herleitung aufweist; zudem isl seine Bernoullische
Funktion kein reiner Koeffizient der Potenz von a, da stets im Nenner
eine Fakultät sein muss. Schläfli aber geht direkt von dieser
Entwicklung aus, indem er definiert

x(n,x) =nte Bernoullische Funktion [yn] in y
exy

—1
Diese Entwicklung bildet also seinen Ausgangspunkt, auf welchen

sich alle Untersuchungen stützen; daher gestaltet sich seine Theorie
der Bernoullischen Funktion viel einheitlicher und ist derjenigen von
Glaisher überlegen.66)

G. Betreffs Entwicklung in Reihen.

Alle Definitionen lassen sich leicht als trigonometrische Reihen

darstellen und zwar die geraden Bernoullischen Funktionen als Cosinusreihen

und die ungeraden als Sinusreihen.
Raabe und Glaisher gelangen durch fortgesetzte Differentiation

f 1 1 68)
der bekannten Reihe für n j~j^~ — x}, woraus successive die ein-
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zelnen Bernoullischen Funktionen entstehen, zu ihren diesbezüglichen
Resultaten.

Elegant leitet Schlömilch, wie gesehen, seine Reihen her,
gestützt auf die Fourierschen Reihen und Integrale. Genau auf
dieselbe Weise würden wir auch bei den übrigen drei Definitionen zum
Ziele gelangen; das Ziel würde zudem noch eher erreicht, da die

aufgestellten Integralformeln das zu lösende Integral, welches die
Koeffizienten der Fourierschen Entwicklung darstellt, mit geringer Mühe

auswerten.65)

Höchst interessant und wichtig ist die Herleitung dieser Formeln
nach Schläfli, der gestützt auf die Theorie der Eulerschen Integrale
und der Gammafunktion eine Reihenentwicklung so transformiert, bis

er schliesslich zu den entsprechenden Beziehungen gelangt. Seine

Resultate bieten den grossen Vorteil, dass sie nur Spezialwerte sind
einer von ihm selbst aufgestellten Hauplformel

X=oo

z - j*
A=l

(2nfj {x(n,?)-x(n,e))y [l+icolgfo -&)n] o>. (17)
o

Durch Trennung der reellen von der imaginären Komponente
erhält er die beiden ganz allgemeinen Formeln

cos(2Ä7r© 5-J (2n)—± 2-Z__^|Lx(n)0) und (18)

1=1 l 2

jl=oo

(n n\2^0__)

sin (2 X n e —^)
«"¦¦i Xn

(2nf | {x(n,tp)—x(n,&)\mlg-7t(tp-9)dip. (19)
o7

Aus Formel (18) resultieren dann die wichtigen
trigonometrischen Summenformeln

A=oo
„Mn-1 2 ^i^ C0S2À7TX '. ,_,„.

X (2 m, x) - (-l)m -r—ssr Zi ^~ Und (20)
(2«) £1 l
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to i 1 \ / i\m-i 2 ^ sin2^?rx
X(2m+l,x) (-l) 2m+1 2j ,2m+i

• (21)
^ 7C' /1=1

Bei dieser Definition haben wir, wie sonst bei keiner andern,

ursprünglich alle diese Reihenentwicklungen in derselben Formel
vereinigt, was sehr zu Gunsten dieser Definition spricht.

Wir haben auch schon erwähnt, dass mit Hülfe dieser Funktion
als Reihenentwicklung Schläfli die Raabesche Restformel herleitet und

ebenso den Zusammenhang derselben mit der Riemannschen Reihe

nachweist; es sind dies Beziehungen, welche die Allgemeinheit der
Schläflischen Definition trefflich beleuchten.69)

H. Betreffs Entwicklungen nach Bernoullischen Funktionen.

Entwicklungen, in welchen die Bernoullischen Funktionen als

Koeffizienten auftreten, lassen sich aus jeder Definition herleiten; aber

nur bei Schläfli sind die Bernoullischen Funktionen reine Koeffizienten
solcher Entwicklungen; auch hier liefert diese Definilion die
einfachsten Formeln.70)

§ 31. Diskussion der „Bernoullischen Funktion."
Unsere früher hergeleiteten Reihenentwicklungen der Bernoullischen

Funklion haben gezeigt, dass dieselben nur gültig sind für

0<x<l71); deshalb haben wir in unsern Untersuchungen
hauptsächlich das Intervall x 0 bis x 1 berücksichtigt, wohl aber auch

Gleichungen aufgestellt, um den Verlauf der Funktion ausserhalb dieses

Intervalles kennen zu lernen.72) Gestützt auf diese Beziehungen hat
sich uns die Frage aufgedrängt, wie weit sich das Konvergenzgebiet
für die verschiedenen Definitionen überhaupt erstrecke. Um diese

Frage zu entscheiden, stellen wir die Funktionen graphisch dar. Wir
tragen die Werte für das Argument x (z) als Abscissen auf und die

zugehörigen Funklionswerte y als Ordinalen; die einzelnen Werte sind

in den Tabellen I—IV zusammengestellt; den Verlauf der verschiedenen
Funktionen zeigen die Tabellen V—VIII.

1. Die Bernoullischen Funktionen ersten Grades. Dieselben

stellen bei allen Definitionen eine Gerade dar; bei der Definition von
Raabe, wie auch bei derjenigen von Schlömilch ist diese Gerade die
Winkelhalbierende durch den ersten und drillen Quadranten, geht also

durch den Ursprung; bei den Definitionen von Glaisher und Schläfli
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schneidet sie die Abscissenaxe im Punkte x —, aber ebenfalls unter
di

einem Winkel von 45°.

2. Die Bernoullischen Funktionen zweiten Grades. Dieselben
stellen eine gewöhnliche Parabel dar, und zwar ist die Parallele zur

Ordinalenaxe durch den Punkt x —- die Hauptaxe der Parabel mit
d

dem Parameter p — • Bei den Definitionen von Raabe und von

Schlömilch schneidet diese Parabel die Abscissenaxe in den beiden Punkten

x 0 und x 1, bei den andern Definitionen innerhalb dieses
Intervalles. Dass dem so ist, beweist die Untersuchung einer einzelnen

Funklion, da das Verfahren bei allen dasselbe ist; wir wählen dazu

diejenige von Schläfli

X(2,x)-y=.y-y +i12 y =6x2—6x+l.
Transformieren wir diese Gleichung durch x x' + — und } y' ~ ^pd ai

1 1
so werden «' — .r'2 und p —; durch ähnliche Transformation der

2 4

übrigen Definitionen gelangen wir stets auf dieselbe Gleichung.

3. Die Bernoullischen Funktionen höheren Grades. Alle diese

Funktionen stellen Parabeln höheren Grades dar, da zu einem einzigen
Werte von y stets mehrere Werte von x gehören; der Grad steigt
mit dem Exponenten des ersten Gliedes. Im Intervall von 0 bis 1

weisen dieselben entweder ein Maximum oder ein Minimum oder beide

zugleich auf, und es verlaufen die nte und die (n+4)te Funktion
entsprechend.

Es besitzen die Funktionen mit geradem Exponenten n 2, 6,

10, (4 X—2) ein Minimum bei x — und gehen auf beiden
et

Seiten der Ordinalenaxe mit positiven Funklionswerten ins Unendliche,

während die Funktionen für n 4, 8, 12, IX ein Maximum

bei x — aufweisen, beidseitig schwach negativ werden, um aber
d

wieder mit beiden Ästen der Kurve mit positiven Funktionswerten

ins Unendliche zu gehen.
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Etwas abweichend davon verhalten sich die Kurven der Bernoullischen

Funktionen mit ungeraden Exponenten; dieselben gehen sowohl

mit positiven Funklionswerlen auf positiver Seite der Ordinalenaxe
ins Unendliche, als auch mit negativen auf negativer Seite. Alle diese

Kurven ungeraden Grades schneiden die Abscissenaxe in den Punkten

0, — und 1, und es sind die Kurven für n 3, 7, 11, (iX—1)
d

im Intervall von x 0 bis x — positiv und von x= —bisx l2 it
negativ; von den Punkten x 0 und x l aus gehen sie absolut

gleichwertig ins Unendliche. Für n 5, 9, 13, (4 A+l) nehmen

die Funktionen zwischen x 0 und x —- negative Werte an, zwi-
d

sehen x — und x 1 dagegen positive; in kurzer Entfernung
d

ausserhalb dieses Intervalles finden sich nochmals zwei Schnittpunkte
mit der Abscissenaxe, worauf auch diese Kurven absolut gleichwertig
ins Unendliche laufen.

Es interessiert uns nun zu wissen, wie sich die Kurven im
Unendlichen verhallen; denn dass dort die zwei Äste der einzelnen
Funktionskurven zusammenhangen, ist bekannt, da ja die Parabeln

unikursale oder rationale Kurven sind und sich alle Punkte derselben
darstellen lassen durch algebraische Funktionen eines variabelen
Parameters.

Wir greifen, da alle Funktionen höhern Grades der verschiedenen
Definitionen analoge Form haben, diejenigen von Schläfli heraus und

untersuchen vorerst

A. Die ungerade Bernoullische Funktion. Wir wählen dazu

y ö Y "V "Y

X(5,x) y w 48- + -T2 1ST' 0der

6x5 — 15x4 + 10xs — x — 720y 0.

Die Schnitte dieser Kurve mit der unendlich fernen Geraden erhalten

wir, wenn wir die Gleichung mit z homogen machen durch die
x' y'

Formeln x — und y jL- und dann z 0 setzen; diese Formeln
z z

vorerst eingesetzt, gibt, wenn zugleich mit z5 multipliziert wird,
6x'5—15x'4z + 10x'3z2 —x'z4 —720y'z4 0;

diese Gleichung wird für z 0 zu x'& 0, d.h.,
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die Kurve schneidet die unendlich ferne Gerade in der Richtung
der positiven Ordinatenaxe in fünf zusammenfallenden Punkten.

Zur nähern Untersuchung dieser zusammenfallenden Punkte im
Unendlichen transformieren wir die unendlich ferne Gerade, welche
wir parallel der Abscissenaxe annehmen können, ins Endliche, indem
wir sie auf die Abscissenaxe projizieren; dazu dienen die Formelnlx' lxy —7 und x —r ; also y' — und x' —.

y y y y
Für y oo wird y' 0, d. h.,

die unendlich ferne Gerade wird auf die Abscissenaxe projiziert
und letztere ins Unendliche.

Durch die angedeutete Substitution entsteht, wenn mit y'5 multipliziert

wird,
6x'5 — 15x'y + lOx'Y2 — x'y'4 — 720 y'4 0. (a)

Dies ist die Gleichung der transformierten Kurve; in dieoer entspricht
der Nullpunkt dem unendlich fernen Punkt der Ordinatenaxe der

ursprünglichen Kurve.
Die Gleichung beginnt erst mit Gliedern vierten Grades; also ist

der neue Nullpunkt 0' ein vierfacher Punkt; die Tangenten in
demselben erhalten wir durch Nullsetzen der Glieder niedrigsten Grades,
also durch y'4 0, was uns sagt, dass alle vier Tangenten des

vierfachen Punktes mit der Abscissenaxe zusammenfallen. Für y' 0 wird
x'5 0, d.h., die Abscissenaxe schneidet die Kurve im vierfachen
Punkte 0' in fünf zusammenfallenden Punkten.

Zur nähern Untersuchung der Kurve in der Nähe dieses
vierfachen Punktes geben wir dem x' kleine Werte.

a) x' positiv 0,01. Die Gleichung (à) geht dann über in
6 .0,015— 15 • 0,0iy + 10 • 0,013y'3 —0,01 y'4 — 720y'4= 0;

da y' selbst klein isl, so können wir infolge der vierten und fünften
Potenz, in denen das kleine x' vorkommt, die beiden ersten Glieder

vernachlässigen; dann folgt, wenn durch y'2 dividiert wird,

0,00001 720,01 y'2; y' + y/^J^
d. h., zu einem positiven kleinen x' gehören zwei reelle absolut
gleichwertige, ein positives und ein negatives y\ Geben wir dem x' grössere
positive Werte, so steigt der absolute Wert der y' ziemlich rasch.

b) x' negativ — 0,01. Für diesen Wert wird aus («) unter
Vernachlässigung der beiden ersten Glieder und durch Division durch y'2
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719,99 y'2 — 0,00001 ; y' + sj- 0,00001
imaginär.

ftiXekkthrtùno

719,99
Dies ergibt sich auch aus andern negativen Werten für x', somit folgt,
dass auf der negativen Seite der Ordinatenaxe keine Kurvenpunkte
liegen. Der neue Nullpunkt erscheint daher als ein vierfacher Punkt

von der Art, dass die Kurve in ihm
eine Spitze bildet, und die Abscissenaxe

ist Rückkehrtangente in demselben mit
fünffachem Berührungspunkt. Dasselbe

gilt für den unendlich fernen Punkt der
Ordinatenaxe der ursprünglichen Kurve;
derselbe ist ein vierfacher Punkt der
Parabel, in welchem alle vier Tangenten

mit der unendlich fernen Geraden zusammenfallen; wir können den

Punkt als Rückkehrpunkt zweiter Ordnung bezeichnen.
Da wir diese Ausführungen auch auf die Bernoullischen Funktionen

höhern Grades ausdehnen können, bei welchen die vielfachen Punkte

nur in höherem Grade der Vielfachheit auftreten, so ergibt sich der Satz :

Die ungeraden Bernoullischen Funktionen höhern, (2m-\-l)ien
Grades, analytisch interpretiert, stellen Parabeln hohem Grades dar;
bei denselben ist der unendlich ferne Punkt in der Richtung der positiven

Ordinatenaxe ein 2m-fâcher Punkt, in welchem alle 2m
Tangenten mit der unendlich fernen Geraden zusammenfallen. Die Kurve
bildet in ihm eine Spitze und die unendlich ferne Gerade ist Rückkehrtangente

mit (2m + 1)-fächern Berührungspunkt; der Punkt ist ein

Rückkehrspunkt von der Ordnung m.

B. Die gerade Bernoullische Funktion. Etwas anders gestaltet
sich der Verlauf dieser Funktion im Unendlichen. Zur Untersuchung
wählen wir

ca ì
x4 x3 x2 1

X(4,x) y -^ Î2- + ^4 W °der

30 x4 — 60 x3 + 30 x2 — 720 y — 1 0.

Die Schnittpunkte mit der unendlich fernen Geraden werden

gestützt auf die homogene Gleichung
30x'4 — 60x'3z + 30x'2z2 — 720y'z8 — z4 0,

für z 0 xri 0, d. h.,
die unendlich ferne Gerade wird von der Kurve in vier zusammenfallenden

Punkten geschnitten in der Richtung der positiren Ordinatenaxe.

Projizieren wir die unendlich ferne Gerade wieder durch die



— 89 —

frühere Substitution auf die Abscissenaxe ins Endliche, so folgt, wenn
mit y'4 multipliziert wird,

30x'4 — 60x'V+ 30x'2y'2 — y'4 — 720y'3 0. (ß)
Dies ist die Gleichung der transformierten Kurve; da sie erst mit
Gliedern dritten Grades beginnt, so ist der neue Nullpunkt 0' ein

dreifacher Punkt; die Tangenten in demselben erhalten wir aus

y'3 0, d. h., alle drei Tangenten fallen in der Abscissenaxe zusammen,
und diese berührt die Kurve in vier zusammenfallenden Punkten; also

ist auch der unendlich ferne Punkt der Ordinatenaxe ein dreifacher
Punkt der Kurve, dessen drei Tangenten mit der unendlich fernen
Geraden zusammenfallen.

Zur noch genauem Untersuchung dieser Kurve in der Nähe des

dreifachen Punktes transformieren wir die Gleichung (ß) wie folgt:
30x'2(x'—y')2 y'8(y'+720).

'>--,'H±yggp"
t-.-xy+V/'"(y'+,20>-l).30

x' |b'±±v/y^4V/a+z20):}
Die Quadratwurzel wird nur für y' 0 selbst zu Null.

Geben wir jetzt dem y' kleine Werte, so wird für
a) y' positiv 0,1.

S<4{o,,±V/^/^T}4{„,1±o,,M).
3-/ 0,447; x'= —0,347.

Ebenso würde ein grösseres y' zwei verschiedene reelle Werte liefern.
Somit gehören zu einem positiven y' zwei verschiedene reelle Werte
von x', wovon stets der eine positiv, der andere negativ ist.

b) i/ negativ und klein. In diesem Falle wird die Quadratwurzel

stets imaginär und somit auch der Wert für x'; daraus

folgt, dass die Kurve ganz oberhalb
der Abscissenaxe liegl und von der
Ordinatenaxe nicht symmetrisch geteilt
wird. Der dreifache Punkt
unterscheidet sich also nicht wesentlich von
einem gewöhnlichen Kurvenpunkt, nur

ist die Krümmung der Kurve in der Nähe desselben eine schwächere,
Bern. Mitteil. 1900. No. 1489.
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Da diese Untersuchungen auch ausgedehnt werden können auf

die geraden Bernoullischen Funktionen mit höhern Exponenten, so

ergibt sich der Satz:

Die geraden Bernoullischen Funktionen höhern, 2mtm Grades

stellen ebenfalls Parabeln höhern, 2mtm Grades dar; bei denselben ist
der unendlich ferne Punkt in der Richtung der Ordinatenaxe ein

(2m—l)-facher Punkt, in welchem alle (2m—1) Tangenten mit der

unendlich fernen Geraden zusammenfallen, welche die Kurve in 2m
zusammenfallenden Punkten berührt. Die Kurve liegt ganz auf der

einen Seite der unendlich fernen Geraden, und der (2m—1)-fache
Punkt unterscheidet sich nicht wesentlich von einem gewöhnlichen

Kurvenpunkt, nur ist die Krümmung in der Nähe desselben eine

schwächere.

Da diese Untersuchungen für alle Definitionen analog durchgeführt
werden können und auch entsprechende Resultate liefern, so sind wir
über den Verlauf aller Bernoullischen Funktionen im Endlichen wie im
Unendlichen genügend aufgeklärt.

Die Tabellen V—VIII zeigen nun deutlich, dass das Gülligkeils-
gebiel der einzelnen Definitionen ein ziemlich verschieden grosses isl;
am kleinsten isl das Konvergenzgebiel der Schlömilchschen Definition;
das beste Gebiet liegt hier zwischen —1 und +2; ausserhalb
desselben nimmt die Funktion sehr rasch grosse Werle an. Etwas, aber

nur wenig grösser ist das Konvergenzgobiet der Definitionen von Raabe

und von Glaisher, was aus den Tabellen V und VIII ersichtlich ist.
Die Parabeln der Definition von Schläfli sind diejenigen, welche sich

der Abscissenaxe am weitesten, sowohl nach der positiven wie nach

der negativen Seite hin anschmiegen und zwar um so mehr, je grösser
der Grad der Funktion ist; so erstreckt sich das beste Gebiet für
n 6 schon zwischen —3 und +4; bei den noch höhern Bernoullischen

Funktionen wird dieses Gebiet bedeutend vergrössert.

Es ist dies ein weiterer Vorzug der Definition von Schläfli,
wieder bewirkt durch die Fakultät im Nenner.

§ 32. Entscheidung.

Gestützt auf all unsere frühem Betrachlungen, gelangen wir zu

folgendem Resultat:
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Die Definition der Bernoullischen Funktion nach L. Schläfli ist die
für die Theorie zutreffendste, weil

1. ihr Konvergenzgebiet sich am weitesten ausdehnt,

2. alle Formeln einfachere Gestalt annehmen,

3. dieselbe die allgemeinste ist und

4. die ganze Theorie sich einheitlicher aufbaut, infolge der treff¬
lich gewählten Grundbeziehung zwischen den Bernoullischen
Zahlen und Funktionen und der Anwendung des Prinzipes
der Koeffizientenvergleichung.

¦»*<-



Tabelle T.

Definition nach J. Raabe: BMX).

Arg. n 0. n l. n 2. n 3. n 4. n 5.

x -4. — 4,000000 10,000000 — 30,000000 100,000000 —354,000000 1300,000000

x= —3. — 3,000000 6,000000 — 14,000000 36,000000 — 98,000000 276,000000
x —2. — 2,000000 3,000000 — 5,000000 9,000000 — 17,000000 33,000000
x —1. —1,000000 1,000000 — 1,000000 1,000000 — 1,000000 1,000000
X —3/4. — 0,750000 0,656250 — 0,546875 0,430664 — 0,321289 0,233276
X — ',<2. — 0,500000 0,375000 — 0,250000 0,140625 — 0,062500 0,023438
X — 'A. — 0,250000 0,156250 — 0,078125 0,024414 0,000977 — 0,003052

x= 0. ' 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
X 7/4. 0,250000 —0,093750 0,015625 0,008789 — 0,004883 — 0,004028

x= 1/2. 0,500000 -0,125000 0,000000 0,015625 0,000000 — 0,007813
X 3/4. 0,750000 —0,093750 — 0,015625 0,008789 0,004883 — 0,004028

x= 1. 1,000000 0,000000 0,000000 0,000000 0,000000 0,000000
X — /4. 1,250000 0,156250 0,078125 0,024414 — 0,000977 - 0,003052
X 3/2. 1,500000 0,375000 0,250000 0,140625 0,062500 0,023438
X 7/l. 1,750000 0,656250 0,546875 0,430664 0,321289 0,233276

x= 2. 2,000000 1,000000 1,000000 1,000000 1,000000 1,000000

x= 3. 3,000000 3,000000 5,000000 9,000000 17,000000 33,000000

x= 4. 4,000000 6,000000 14,000000 36,000000 98,000000 276,000000

x= 5. 5,000000 10,000000 30,000000 100,000000 354,000000 1300,000000

CO
DO



Tabelle II.
I>efinition nach O. Schlömilch: cd(z, n).

Arg. n=l. n 2. n 3. n 4. n 5. n 6.

z= —4. -4,000000 20,000000 — 90,000000 400,000000 — 1770,000000 7800,000000

z=-3. — 3,000000 12,000000 -42,000000 144,000000 -490,000000 1656,000000

z —2. — 2,000000 6,000000 —15,000000 36,000000 — 85,000000 198,000000

z —1. — 1,000000 2,000000 — 3,000000 4,000000 — 5,000000 6,000000
Z — 3/4. — 0,750000 1,312500 — 1,640625 1,722656 — 1,606445 1,399658

z - Vü- — 0,500000 0,750000 — 0,750000 0,562500 — 0,312500 0,140625
Z - 1(4. - 0,250000 0,312500 — 0,234375 0,097656 0,004883 — 0,018311

z= 0. 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
z '/*¦ 0,250000 —0,187500 0,046875 0,035156 — 0,024414 - 0,024170
Z 1/2- 0,500000 —0,250000 0,000000 0,062500 0,000000 — 0,046875

z 3A- 0,750000 —0,187500 — 0,046875 0,035156 0,024414 - 0,024170

z= 1. 1,000000 0,000000 0,000000 0,000000 0,000000 0,000000
Z 6/4. 1,250000 0,312500 0,234375 0,097656 — 0,004883 — 0,018311

z 3/2. 1,500000 0,750000 0,750000 0,562500 0,312500 0,140625
Z 7/4. 1,750000 1,312500 1,640625 1,722656 1,606445 1,399658

z= 2. 2,000000 2,000000 3,000000 4,000000 5,000000 6,000000

z= 3. 3,000000 6,000000 15,000000 36,000000 85,000000 198,000000

z 4. 4,000000 12,000000 42,000000 144,000000 490,000000 1656,000000

z= 5. 5,000000 20,000000 90,000000 400,000000 1770,000000 7800,000000

CO
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Tabelle III.
I>efinition nach L. Schläfli: t (n, x).

Arg. n l. n 2. n 3. n 4. n 5. n 6.

x —4. — 4,500000 10,083333 —15,000000 16,665278 — 14,750000 10.833366

x -3. — 3,500000 6,083333 — 7,000000 5,998611 — 4,083333 2,300033
x -2. — 2,500000 3,083333 — 2,500000 1,503472 — 0,708333 0,275033

x —1. —1,500000 1,083333 — 0,500000 0,165278 — 0,041667 0,008366

x —3A. —1,250000 0,739583 — 0,273438 0,070388 — 0,013387 0,001977
x — v». —1,000000 0,458333 — 0,125000 0,022049 - 0,002604 0,000228
x — v*. - 0,750000 0,239583 — 0,039063 0,002680 0,000041 0,000008

x= 0. — 0,500000 0,083333 0,000000 — 0,001389 0.000000 0,000033
x 7*. — 0,250000 —0,010416 0,007813 0,000076 — 0,000203 —0,000001
x 7j. 0,000000 —0,041667 0,000000 0,001,215 0,000000 —0,000033
X 3/4. 0,250000 —0,010417 — 0,007813 0,000076 0,000203 —0.000001.

x= 1. 0,500000 0,083333 0,000000 —0,001389 0,000000 0,000033
X 74. 0,750000 0,239583 0,039063 0,002680 — 0,000041 0,000008
X 3/2. 1,000000 0,458333 0,125000 0,022049 0,002604 0,000228
X Vi. 1,250000 0,739583 0,273438 0,070388 0,013387 0,001977

x= 2. 1,500000 1,083333 0,500000 0,165278 0,041667 0,008366

x= 3. 2,500000 3,083333 2,500000 1,503472 0,708333 0,275033

x= 4. 3,500000 6,083333 7,000000 5,998611 4,083333 2,300033

x= 5. 4,500000 10,083333 15,000000 16,665278 14,750000 10,833366
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TabelleV.

Definition nach J. Raabe.

1,406500

250

250 656

500
375 375

1,878750 156

lì-MM .0.125 -0.

/
It 2.440

li
:ò 049

/:>,070
0.016 /

i0,016
078

L0.250

0,431 O0,431 /.0.547 \ /\ /0,141 <w
0.141 oS

0.0240.024 0,009 0,018 0.009

0,321 o

0.063 y+ 0,001 -0,005 4.0,005 0,001

Sw^

S .0,063

0-0,321

\/
0,233 on 0,233

_ 0.0230.O23 0.003 .0,004 -0,008 -0,004 0.003ó: >¦
0-1



Tabelle "VI.

Definition nach Schlömilch.

cf (1, Z)

(f (2, Z)

cf (3, Z)

cf (4. Z)

<f(5, Z)

f(6,Z)

500
313

1.641

/ /
/

/ /
/

313

# I1,723
0,75

/ /
-0.I8B

/ //0.250
* ¦ *

/
f 03,0703.070

/;0,234

/
0.047 /

0,047

0.234

b 0,563 0,563 <j

0,063

0,035 ^,—-O—
0.098

- 0,035^»¦O

01,4001,400 Ç

0.313

1.641 0.005 10,024
— O— -0.0055*/*=

0.024

O-0.313

Vj 0,141 O 0.141

=5ï^** ..•O.
0,018-0.018 0.024 0.0240.047



Tabelle VII.
Definition nach L. Schläfli.

600

250

X(i,X)

740

250

458
459

0.500

240 250

240

0.083

XiUì 083

0100,010 _0 -0

1,503 Ô
1,250

500

1.500

273

M*)
0.008

0 .0.008-0.039

.0,125

273

0,585/y500 S
S

?^ 0.165

«- 0,022 0,022 ^Xm .0.0010.OO1 0.001

0,708tf

0.214

0,042 „.*•
t.0.003 _._Q**~.^X(5,X) g +0,00020.00004

> .0,000040,003 .0.0002-0.042

0.276

0,064 _.0.0000.OO8 0.0002Xm 0,0002 4.0,000030,00003

—O-—"O» ¦¦»¦-o-
0 _0,00O0O1 .0,00003 -0,000001 1



Tabelle Vili.
Definition nach W. Glaisher.

ni,5oo

jft.m
,1,083 n,0M /

Ar(X) ¦l\ • axT
1 / 2 /

\ 0,740

^Co,250

<>0,740

/ 1/ '
/l.«1/

/ // /Il 0,458 JJ0,458
Co.500 / /

XJ),24o/^
^^"0,240 / /

^^,7507^,^.3 °JX" / 01,969
[1.000 /
W //A2(X) .i y 0^»^„ ^jy^^ 1 / / '

jfs -°^T^ ^010 / - //y ' A 2,4*0

/cJ.250 «T 0,5*7 /«' ¦ 1

TJ.SW
>^"o,250

* fp 3,053

' //
10,992 / ;
2 S'A3(X)'

> 0,992
0 + 0,016 o 1_—.^«^O^S i

\ v<^o!o78
0

_ 0,016 ' / ¦ i\ JT //
;/

\ /0,422 OX
- 0,547J\Y \

;
/

.Oo,422

/
• •

/;
/;f \o.1J2 .' / :

A4(X) / V^^°'6 » + 0,0005 °'007 + 0,0005 ^X 0,132 i

1 +0,016 _^.«^ in
f_i -0,008 -o,e108 •

/•
/•/•/00,321

*/

•¦•
•
•

¦

•
•

A6(X)
J''004 ,0.001 0 o +0,005 y'

' _^O'0,063 I
1,004

2
1 .»»^ — '¦¦..—0—^»™-~ i "»M—*-—"" f• O
1 y'.0,063
t

» .0,005 0 .0,001 /
f

*

\ / «
«

• /
» »0.321

1

\/ 1
»• »

A
« » 4>

/ q+0,237
•

P 0,237/ \ /
A6(X) 'j N^'t 0.001 + 0.004 0 4-0,004 1 + 0,001 r_,.^0,027 2

'-1
_ 0,00006 .0.004 -0,00006
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Anmerkungen.

BtT" Während der Drucklegung vorliegender Arbeit erschien in den

«Mitteilungen» der naturforschenden Gesellschaft in Bern 1900, von J.H.Graf
herausgegeben, und mit Noten versehen, ein Brief L. Schläfiis an einen Freund, betitelt
«Praktische Integration.» Derselbe wurde veranlasst durch Fragendes Freundes
über die Richtigkeit verschiedener Resultate von J. L. Raabes Differential- und
Integralrechnung, Band I, 1839. In dieser Abhandlung gibt Schläfli Beziehungen, die

sehr grosse Ähnlichkeit zeigen mit seinen später aufgestellten Belationcn der

Bernoullischen Funktionen. Stammt dieser Brief wirklich aus dem Jahre 1840,

was nach den vorliegenden Untersuchungen von J. H. Graf als bewiesen
anzunehmen ist, so ist Schläfli, zwar ohne den Namen der Funktion zu nennen,
schon vor J. Raabe auf diese Funktion gekommen. Es ist dies ein weiterer
Beweis für Schläflis schöpferische Thätigkeit.

Folgende wenige Thatsachen sollen einige Ähnlichkeiten hervorheben:

a) Die auf Seite 7 (89) der «Mitteilungen» der naturforschenden Gesell¬

schaft in Bern 1900 gegebenen Koeffizienten c^ c2, c3, stimmen

genau überein mit denjenigen bei der Herleitung der Definition der
Bernoullischen Zahlen.

b) Die von Schläfli in der angeführten Arbeit, Seite 10 (92) angewandte
Formel für c2n ist nicht identisch mit der später von ihm gebrauchten.
Daher werden die B-Werte nicht gleich den eigentlichen Bernoullischen

Zahlen. (Vergleiche Tabelle auf Seite 10 (92) dieses Briefes.)
Trotzdem tritt eine unverkennbare Ähnlichkeit der Beziehungen hier
und später bei der Bernoullischen Funktion ein; vergleiche in diesem

bereits erwähnten Briefe

1. Formel (e\ Seite 11 (93) und B"(z) von Raabe,

2. » zwischen (e) u. (f), » 11 (93) » B' (z) »

3. » (f), » 11 (93) » 'B (z) » »,
welche bis auf die jedem Gliede vorgesetzten Nenner übereinstimmen.

c) Formel (1) ist analog gebaut wie unsere Formel (III) (25); nur zeigt
sie eine Fakultät im Nenner; letztere hat Schläfli später durch
zweckmässige Wahl der Definitionsgleichung wegzuschaffen gewusst. Formel
(m) gleicht unserer Formel III (23), zeigt aber eine unliebsame Zuthat
durch ein Suuunenglied.

d) Formel (y) entspricht unserer Formel III (24); sie liefert auch die¬

selben Werte, trotzdem darin die B-Zahlen andere Werte haben.

e) Auch die unterste Formel auf Seite 13 (95) dieses Schläflischen Briefes,

welche Beziehungen seiner ^-Funktionen für die Argumente 0, — und

1 gibt, entspricht ganz unserer spätem Formel III (10).
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Natürlich sind durch diese wenigen Aufzählungen die Analogien beider
noch lange nicht erschöpft.

') Vergleiche das Verzeichnis der benutzten Litteratur am Schlüsse der
Arbeit.

2) Siehe Saalschütz «Vorlesungen über die Bernoullischen Zahlen, ihren
Zusammenhang mit den Sekantenkoeffizienten und ihre wichtigsten Anwendungen,»
wo sich auf den Seiten 204—207 ein grösseres Litteraturverzeichnis befindet.

3) Zum Studium sehr zu empfehlen ist die schon in Anmerkung 2

angeführte Arbeit von L. Saalschütz. Siehe Litteraturverzeichnis I

4) Jakob Bernoulli (1654—1705) gab in seinem epochemachenden Werke
über die Wahrscheinlichkeitsrechnung, Ars conjectandi, Mutmassungskunst als

Erweiterung der gemeinen ars coraputandi oder Rechnungskunst, nicht nur eine

beinahe vollständige Theorie der Kombinatorik und der figurierten Zahlen, sondern
fand auch die nach ihm benannten Zahlen, die bekanntlich in der Reihen- und

Interpolationsrcchnung von Wichtigkeit sind, und auf welche sich die Theorie der
Bernoullischen Funktion stützt.

5) Siehe Journal für reine und angewandte Mathematik, herausgegeben

von A. L. Creile, Band 42. Seite 348-376.
6) Quarterly Journal of pure and applied Mathematics, Vol. XXfX, pag. 1.

7) Messenger of Mathematics, Vol. XXVI, No. 10-12 und Vol. XXVlf,
No. 2—8.

8) Vergleiche J. Raabe «Die Jakob Bernoullische Funktion», Seite 1—16.
9) Seite 13 der eingangs erwähnten Schrift: J. Raabe «die Jakob Bernoullische

Funktion.»
10) Vergleiche Raabes zweite diesbezügliche Arbeit. Journal von Creile.

Band 42.

n) Es sind dies die beiden schon früher gefundenen Formeln (17b).
12) Seite 97 u. ff. und Saalschütz «Vorlesungen über die Bernoullisehen

Zahlen». Anmerkung 1, Seite 7 und 8.

13) Vergleiche Wallis «Opera mathematica.» Oxon. 1695 und «Arithmetica
infmitorum.»

u) Siehe A. G. Kästner «Geschichte der Mathematik,» Band 3, Seite 111 u. ff.

15) Vergleiche «Ars conjectandi.» Basilea 1713. Seite 97 u. ff.

,6) Ist Formol 18a, nur identisch anders geschrieben.
17) Vergleiche Raabes erste Arbeit über diesen Gegenstand, Seite 17—23.

18) Wo Bi'(z) AB'(z).
dz

19) Raabo spricht sieh im Vorwort seiner ersten auf die Bernoullische
Funktion bezüglichen Schrift folgendormassen darüber aus: «Die Eigenschaften
dieser Funktion B(z) sind Analogien zu denen der Legendreschen Funktion .T(z),
die das Eulersche Integral zweiter Art vorstellt. Beinahe alle Eigentümlichkeiten
die bei dieser r(z) durch Produkte angedeutet sind, sprechen sich bei jener
B(z) durch Summen aus: so dass gestützt auf eine, in der niedern Algebra
übliche Terminologie, wo von einer arithmetischen und geometrischen Progression
die Rede ist, auch die hier einzuführende Funktion B (z) eine arithmetische, und

Bern. Mitteil. 1900. No. 1490.
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das Eulersche Integral r(z) eine geometrische Funktion von z genannt werden
dürfte».

20) Siehe auch Tabelle V am Schlüsse dieser Arbeit.
21) Raabe gibt diese vier Formeln, ohne auf ihre Herleitung näher

einzutreten, in seiner zweiten, diesen Gegenstand behandelnden Schrift in Crelles

Journal, Band 42, Seite 352.

22) Zum genauem Studium verweisen wir wieder auf Raabes Arbeit im
42. Band von Crelles Journal, Seiten 359—362.

dp
23) Hierin bedeutet wie gebräuchlich D1'

dxp
24) Siehe Compendium der höhern Analysis von 0. Schlömilch, Teil I

Seite 277 und Teil II, Seite 208.

25) Siehe auch §§ 29 und 30 vorliegender Arbeit.
26) Vergleiche J. Worpitzky «Studien über die Bernoullischen und Eulerschen

Zahlen». Journal von Creile, Band 94, Seite 203 u. ff.

27) Vergleiche § 31 vorliegender Arbeit, sowie Tabelle VI.

f1
28) Über die Ausmittlung von f exzcos knz dz, die ziemlich umständlich

o
bewerkstelligt wird, siehe Schlömilch «Comp, der Analysis», Band I, Seite 361,
§ 78. IL

29) Siehe Journal von Creile, Band 94, Seite 220. Formeln 52.

30) Vergleiche Zeitschrift für Mathematik und Physik. Band I, Seite 202
und Comp, der Analysis von 0. Schlömilch, Band II, Seite 218 u. ff.

31) Wir bezeichnen in Zukunft Koeffizient stets durch [••••], z. B.Jy11]

Koeffizient von yn.

32) Vergleiche § 31 und Tabellen V—VIII.
33) Siehe § 16, Formel (12).
34) Vergleiche auch Tabelle VII am Schlüsse dieser Arbeit.
35) Vergleiche § 12.

36) Siehe § 20, Formeln (40) und (41).
37) Vergleiche Dr. J. H. Graf: «Einleitung in die Theorie der Gammafunktion

und der Eulerschen Integrale», Seite 30, Formel (36), wie auch bei
andern Autoren.

38) Nach Definitionsgleichung (2).
39) Vergleiche auch § 20, Formeln (29), (31) und (33).
40) Wir verweisen auf die darüber bekannten Arbeiten: «Über Bernoullische

Zahlen und Funktionen», Vorlesungen an der Berner Hochschule von Dr. J. H.
Graf. S. S. 1898 und «Über eine Verallgemeinerung der Bernoullischen Funktionen
und ihren Zusammenhang mit der verallgemeinerten Riemannschen Reihe» von
Dr. Alfred Jonquière. Stockholm 1891. Bihang till K. Svenska Vet.-Acad. Hand-

lingar. Band 16. Afd. 1. No. 6.

41) Siehe Dr. J. H. Graf «Einleitung in die Theorie der Gammafunktion»,
Seite 49, 3. Zeile, wie auch bei andern Autoren.
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41 Siehe «Quarterly Journal of pure and applied mathematics». Vol. XXVIII,
pag. 1-174.

43) Siehe gleiche Zeitschrift, Vol. XXIX, pag. 1—168.

") Vergleiche «Messenger of mathematics», Vol. XXVI, pag. 152—182 und
Vol. XXVII, pag. 20—98.

451 Vergleiche darüber «Quarterly Journal», Vol. XXVII, pag. 4—18.
4a) Über ihren Zusammenhang siehe § 29, Formel (10).
47) Siehe § 23, Formeln (12), (13) und (16).
48) Vergleiche «Quarterly Journal». Band XXVIIII,- § 18, pag. 11.

49) Siehe § 26, Formeln (23) und (24).
60) Siehe Schlömilch «Compendium der Analysis». Seite 140, Formel 27,

und Seite 141, Formel 32. Diese gehen durch Substitution von X a und

x tt(1—2x) in unsere Formeln über.
61) Vergleiche den mehrfach erwähnten Band des «Quarterly Journal»,

pag. 7—18, wie auch an andern Stellen.
62) Ebendort, pag. 26-83.
53) Siehe § 28.

64) «Quarterly Journal», Band XXIX, §§ 58, 75, 85, 88, 109, 115, 119,

123, 132, 134, 143 und 146.

") Vergleiche «Quarterly Journal», Band XXIX, § 18.

5<5) Vergleiche Tabellen IV und VIII.
") Siehe Formeln (23) und (24) von § 26.

68) Vergleiche «Quarterly Journal», §§ 47, 58 und 75 und «Messenger of
mathematics», § 73.

59) Siehe «Messenger of mathematics», Bände XXVI und XXVII.
60) Siehe «Quarterly Journal», §§ 174—216.
61) Vergleiche «Quarterly Journal», §§ 217—311.
62) Siehe «Messenger of mathematics», §§ 99—102 und § 108.

63) Vergleiche vorliegende Arbeit, §§ 1, 7, 14 und 21.

64) Siehe diese Arbeit §§ 2, 8, 15 und 22.

65) Vergleiche vorliegende Arbeit, §§ 6, 13, 20 und 27.

66) Siehe diese Arbeit, §§ 3, 9, 16 und 23.

67) Vergleiche unsere §§ 3, 10, 17 und 24.

68) Siehe Schlömilch «Comp, der Analysis», Band H, Seite 129, wo für
ß nx und x<l diese Reihe erhältlich ist.

69) Vergleiche Anmerkung 40).

70) Siehe auch Rogel «Die Entwicklung nach Bernoullischen Funktionen»
in den Sitzungsberichten der königlich-böhmischen Gesellschaft der Wissenschaften.
Mathematisch-naturwissenschaftliche Klasse. Prag 1896.

71) Vergleiche unsere §§ 5, 12, 19 und 26.
72) Siehe § 3, Formel 18, § 10, Formel 16 und § 17, Formel 19.

") Vergleiche Tabelle VII.
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