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H. Renfer.

Die Definitionen

der

Bernoullischen Funktion

und Untersuchung der Frage,
welche von denselben fiir die Theorie die zutreffendste ist.

[Historisch-kritisch beleuchtet.]

Einleitung.

Die Vorgeschichle des hier zu behandelnden Gegenstlandes ist
ziemlich rasch erschopft, was schon aus der spirlichen Litteratur iiber
diese Funktion hervorgehen dirfte, sind es doch d&usserst wenige
Autoren, die sich mit einer speziellen Unlersuchung der Bernoullischen
Funktion befreundet haben.!) Weit grisser ist die Anzahl der Schriften
iiber die Bernoullischen Zahlen, auf deren Theorie sich diejenige der
Bernoullischen Funktion aufbant.®) Die vorliegende Arbeit selzt die
Kenntnis der Theorie der Bernoullischen Zahlen®) voraus, wenigstens
in Bezug auf ihre wichtigsten Eigenschaften und Beziehungen und
die gebriuchlichsten Rekursionsformeln. Wo es notig ist, wird jeweilen
auf die betreffende Litleratur verwiesen.

Eingefiihrt in die algebraische Analysis wurde die Bernoullische
Funktion von Professor Dr. J. L. Raabe in Zirich durch seine Arbeit
«Die Jakob Bernoullische Funktion», die im Jahre 1848 im Verlage
von Orell, Fissli & Cie. in Zirich erschien. Raabe gelangle gestiilzt
auf Reihensummierungen und mit Hiilfe der Bernoullischen Summen-
formel auf diese Funktion; gemiss letzterer Beziehung benannle er
dieselbe nach dem grossen Basler Mathematiker Jakob Bernoulli.*)

Als Beleg diene der Anfang des Vorworles der oben erwihnten Schrift:
Bern. Mitteil. 1900. ) -No. 1478.
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«Bei der Suminalion der ohne Ende fortlaufenden Reihe
a, 2".ax 3™ . a,x°

e, + p™.a xP?
+ (00", x" 4 (042)"a, X" 4 (p8)"a,x" T

e EERRREREE + (p—[—p)mapx‘!p—l
+@p+1)"a, x4 (2p +2)" a,x T  (2p4-83)" a,x T+

e + (2p+p)m a, xip—1
+(8p+1)"a, x* -} (3p42)" a x4 (8p4-8)"a xTH?

_f_ ........ + (3 p+p)m ap X4p_“1
—- ininf.
an der dussersien Grenze ihrer Konvergenz, wobei m eine ganze und
posilive Zahl, Null mitbegriffen, vorstelll und a;, a,, a;...... a

endliche Konslanlen sind, wird man auf einen Ausdruck geliilirt, de?
die von Jakob Bernoulli eingefiihrten, nach ihm benannten Zahlen
impliziert, und welcher zur Summierung der Reihe mil dem allgemeinen
Gliede r™, wo r alle ganzen Zahlenwerle von 1 aufwirts gezihll an-
nehmen kann, von ihm benulzt worden ist. Diesen Ausdruck, in
seiner Allgemeinheil, nenne ich die «Jakob Bernoullische Funktion»
oder kiirzer die «Bernoullische Funktion»; und bezeichne solche,
gleich wie die Bernoullischen Zahlen, die sie enthall, durch B, B,
By wsens dargestellt zu werden pflegen, durch B (z), falls
z die allgemeine Grisse oder Variabele dieser Funktion isl.»

Im Jahre 1851 erschien eine zweile Abhandlung Raabes iiber
denselben Gegensland, belitell «Zuriickfihrung einiger Summen wund
bestimmten Integrale auf die Jakob Bernoullische Funktion.»® Durch
diese Arbeit wird seine friithere Schrift bedeutend erweitert und
erganzt.

Nach Raabe hat sich dann auch Dr. O. Schlimilch. Professor an
der polytechnischen Schule zu Dresden, einlisslich mit dieser Funktion
beschiftigt. Seine im Jahre 1856 in der Zeilschrift fir Mathematik
und Physik, Band I, Seite 193 u. ff. verdffentlichle Abhandlung « Ueber
die Bernoullische Funktion und deren Gebrauch bei der Entwickiung
halbkonvergenter Reihen» stellt die Bernoullische Funktion elegant als
Nullwert von Differentialquotienten dar. Diese Darstellung ist sehr
interessant; die Ausdriicke fir die Spezialwerte der verschieden hohen
Derivierten sind ziemlich einfach anzusehen, doch sind die Operationen,
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‘welche damit auszufihren sind, wie wir sehen werden, oft schwierig
und erfordern viel Zeit. Die Schlomilchsche Definition stimmt nicht
mit derjenigen von Raabe iiberein; doch ist die Beziehung zwischen
beiden sehr einfach aufzuslellen, was wir in einem spitern Abschnilt
dieser Arbeit darstellen werden. Eilwas erweitert findet sich die
vorhin erwibnte Abhandlung auch in Schlomilchs «Compendium der
hohern Analysis.» Braunschweig 1866, Seite 207 u. ff. des II. Bandus.

Wie aus den hinterlassenen Manuskripten von Professor Dr.L.Schlifl:
in Bern hervorgeht, hat sich auch dieser eingehend mit der Bernoullischen
Funktion beschifligt. Seine Definition slimmt mit den beiden vorher
erwihnten nicht tiberein; er kommt, allerdings auf ganz anderem Wege,
zu einer den friihern aber nahe verwandien Funktion, ndmlich als Zu-
sammenhang mit den Koeffizienlen einer Binomialenlwicklung. Das
Interessante seiner Definition ist, dass dieselbe aus der gleichen
Fundamentalbeziehung herstammt, wie die Definitionsgleichung der
Bernoullischen Zahlen. Immerhin ldsst sich seine Definition mit den
beiden vorhergehenden in-einfache Beziehungen bringen.

Schliesslich hat sich in den letzten Jahren noch der englische
Mathematiker Dr. J. W, L. Glaisher sehr eingehend mit dieser Funktion
befasst. Yon demselben exisiieren zwei in englischen mathematischen
Zeitschriften erschienene Abhandlungen tber diesen Gegenstand. Nach-
dem derselbe in seiner ersten Arbeil «On the Bernoullian Function,»®)
die allgemeine Theorie der Bernoullischen Funktion ausfiihrlich ent-
wickelt hatte, gab er in seiner zweilen Schrift «On the definite Inte-
grals connected with the Bernoullian Function»?) meist Integral-
darstellungen der Bernoullischen Funktion, wie es ja schon der Titel
sagt; es finden sich jedoch auf Seite 21 einzelne Spezialwerle dieser
Funktion, so dass die letzigenannte Schrift zu den vorliegenden Unter-
suchungen ebenfalls herbeigezogen werden musste.

Es handelt sich nun darum, nachzuweisen, welche dieser ver-
schiedenen Definilionen von Raabe, Schlomilch, Schlifli und Glaisher,
und letzterer hat selbst wieder von einander abweichende aufgestelit,
fir die Theorie die zutreffendste ist. Um diese Frage enlscheiden
zu konnen, miissen wir uns vorerst mit den einzelnen Definilionen ver-
traut machen. Wir betrachten daher der Reihe nach die verschiedenen
Definitionen, miglichst erschipfend und mit Weglassung alles Neben-
sichlichen. Gestitzt auf diese Betrachtungen treffen wir dann unsere
Folgerungen und den Entscheid der Frage. Die einzelnen Abschnitle
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-gliedern sich im Wesentlichen gleicharlig, nur lassen sich bei der
einen Definilion diese Eigenschaften, bei der andern jene leichter
aus der Grundgleichung ableiten. Im ganzen soll der historische Gang
moglichst innegehalten werden.

Endlich sei der Vollstindigkeit halber noch bemerkt, dass sich
-bei einzelnen Arbeiten tiber die Bernoullischen Zahlen hie und da eknige
Bemerkungen iber die Bernoullische Funktion finden. Am Schlusse
dieser Arbeit findet sich deshalb ein Verzeichnis simtlicher benutzter
Quellen und Werke.

Die dieser Arbeil beigefiigten Tabellen und Kurven wurden
~selbst berechnet und dargestelit.

. Die Bernoullische Funktion nach J. Raabe.

§ 1. Herleitung der Definition.

Wie schon in der Einleilung erwihnt, gelangt Raabe auf diese

Funktion bei der Entwicklung vonzxm in eine Potenzreihe unter
Anwendung des binomischen Satzes. Der Weg der Herleitung ver-
mitlelst Summation von Differenzreihen ist so ausgedehnt, dass hier
auf eine Wiedergabe desselben verzichlel werden muss, da dies den
Bahmen der vorliegenden Arbeit weit liberschreilen wiirde, umfasst
die Ableitung dieser Definition in Raabes erster Schrift ja nicht weniger
als dreizehn Druckseiten; zudem ist die Herleilung ziemlich einfach
und bietet durchaus keine Schwierigkeiten.$)
Raabe definierl darin

m-1
Z 1. m 1 m m—1 1 m m—3
1 [ T . " . o .
(2) m-1 g “ 2 (1)81/ 4 \3) Pyt

1 m m—>5
..I_ F 5 B3 7 _— _{_ ...... ( [)
als die «Bernoullische Funktion.»

Aus dem Grunde, dass der Funklionsexponent m nicht in der
ganzen Allgemeinheil einer absoluten Variabelen auftritt, hat Raabe
denselben in der Bezeichnung der Bernoullischen Funktion unbeachtet
gelassen. Da sich eine Verschiedenheil der Bernoullischen Funktion
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mil geradem und ungeradem Exponenten ergibt, so bezeichnel er die
Bernoullische Funktion mit geradem Exponenten 2m durch B''(z)
und diejenige mil ungeradem Exponenten (2 m+1) durch B'(z), wobei
m — ganz und positiv, weshalb sich folgende zwei Definilions-
gleichungen ergeben

utich] 2 /2m |
Z 1 oy 1 (el 2m—1 1 2m—3
B0 = 2111—]—1#“?Z +—2"<1)BZ "_"4:_"(3)1324

(_1)’1‘— - 2m
..... 4 <2m_1>Bm.z. (2)

2m
A2 2m--1
rooy & 1 omys
B =5nts —3? +2( 1 )Blz
2m--1 — (_1)‘“—1 2m-}1
e, 22 £m 2
4( 3 )BZ‘ t + (Zm—l B2 (3)

Aus diesen beiden Hauplgleichungen ist ersichtlich, dass nach
Raabe auf der rechten Seite kein von der Variabelen freier Term
vorkommen darf, eine Beslimmung, welche, wie wir sehen werden,
die so definierte Bernoullische Funktion zu wenig allgemein macht.

Bedeulend rascher gelangt Raabe in seiner zweiten Arbeil zu
der nimlichen Definitionsgleichung. Ausgangspunkl dieser Herleilung

ist die bekannte Beziehung
k=oo

{9 2 smkkx'
k=1

Dieser Ausdruck wird mehrmals nacheinander mit dx multipliziert
und zwischen den Grenzen 0 und X integriert; so entstehen successive
die Bernoullischen Funktionen mit den Exponenten 2,3, 4,.......
namhch

k=oco
x2 . 22 1—coskx
1.2~ " -

und sei noch abkiirzend, wie gebriuchlich, bezeichnet
k:.zOO.
1 1 1 1 1 g
= — = L~ ininf. =S8
o km 1m + 2111 —} 3m + 4m+ m?
so werden

k=co

x2 Ecoskx
Ty =7 x —28, —l—2ku1 %




k=o0
= %* sink x
—=7r-———282x+22 _—
3! 2! -k
2m41 2m 2m—1 2m—3
S G— P M. | Y- TN - | . N T
(2m+-1)! (2m)! (2m—1)! 4(2m—3)!
k=oco :
i1 x? m mp1 N sinkx
+=2(=—1) SZm—Zs_!-+2(—1) S, 32 (—1)"F k2‘1 T ()
2m--2 2m-+4-1 2m 2m—2
X X X
— —_ B s S T
(2m--2)! 7 (2m--1)! 25, (2m)! T28, (2m—2)! +
k=00
X2 mi2 N cosKkx
~+2&4f%m§r+u—n“4%ww+ze4J+;%Emﬁ- 8)
Beide gelten fiir alle Werle von x=0 his x=2n; m darf gel1eln
von0,1,2,..... ; eine Ausnahme bildet nur m = 0; denn fiir diesen

Wert bleiben die Grenzwerte x =0 und X =27z ausgeschlossen.
Beriicksichtigen wir, dass

2
B =—=(©2m)! ——— 8§, ,

S : : (2m)! . (2m4-1)!
und multiplizieren wir () mit W qnd (3) mit n)Zm i
so werden
k=oco x 2m+-1
2(—1)" ! (2m)! sinkx ('27,)

1 /x 2m
(2=t = K2t 2m-1 ——?(27!:)
+?<JWGﬁ B +“ﬁ*amqﬁmﬂ'

k=00 ( . )2m+2

2(—1)"(2m+41)! Ecoskx__ 27 i ( )2m+1
(2ﬂ)8m+2 s k2m+2— 2m‘+2 T 9 \9g
1 /2m+1) x \°™ (—1)™ 1 2m+1) x \2
(0 )lan) = S (anen)o(a)
(—D"

T3 m--2 Batr

In diesen beiden letzten Gleichungen ersetzl Raabe (%) durch x und

fiihrt die Beziehungen (2) und (3) ein; dann werden



k=o0c0
9 (—1)" " 2 sin 2k 7z x
k=c0
2 (=" 2 cos2kmwx  (— 1)‘“
B, (X) - ( Zm-f-z (2 +1)! y 2n1+2 2m+2 m-{-l (5)
k=

Durch nbmn Substitution hat sich aber das Giilligkeilsgebiet
verkleinert; die Beziehungen (4) und (5) gelten nur noch fir 0 <x<{1,
inklusive Grenzen, wenn der Fall m = 0 ausgeschlossen wird.

Aus diesen ziemlich komplizierten Formeln leitet Raabe die
Mehrzahl der Eigenschaflen der Bernoullischen Funktion ab, weshalb
seine Ableilungen oft etwas lang und umstindlich werden.

Da wir zu spilern Vergleichungen noch die Bernoullische Funktion
mit dem Exponenten (2m —1) nolig haben, so geben wir Raabes
Definitionsformel fiir dieselbe, nimlich

Féan Zii__l_,‘hn—i L(Zm_—l L2m—2
B =gr—57  +g5( , B Eoeen
(=) 2m—1) PR
"""" + 2m—2 \2m—3 By_y%. (6)

§ 2. Die Derivierten der Bernoullischen.Funktion.
A. Die einfachen Differentialquotienten.

Wir konnen dieselben aus den Definitionsgleichungen (2) und
(3), oder viel einfacher aus (4) und (5) auf folgende Weise finden:
1. Fiir die ungerade Bernoullische Funktion wird nach (2)

J _, 2m+2 ,2mt : 2m
3z 0 W=7 2m+f2” —(2m+1)5
1 21Tl+1 2m—1
—2— ( 1 ) B12 m., z = "I— """
(—1)™ ! /2m-1
...... +—2m (2ni-—1 B 2z

2mt1 1

f z ,2m ! 2m 2m—1
(2m—}—1| ) — gt —{——é— 1 B,z

1/2m\ o (—n®~t/ 2m
T(3)-B2Z ot e emt Bm‘}

%B'(z):(z m--1) B/ (2). oy
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2. Fir die gerade Bernoullische Funktion bedienen wir uns der
Formel (3); es wird

6 7 2m 2m L2m—1 1 2m ’ 2m--2
B @=r" ———u -{——zf | ) Bi2m—1)z

1 /2m —_ (—1)™ 2/ 2m
i, ( —3) 5 S— e e i A 2
4 (% )32‘2"‘ e +on—2 \em—3) Bu?

(—1)™ 1/ 2m .
+ 2m 2m—1 i

2m
Z 1 9m—1 1 2m—1 2m—
—2mj-—— = 2*" -}-—2—< 2,

2m 2 1
1 2m—1 ’m—-4 (_1)111—2 2m—1 2‘
_T( 8 ) L T 2m—3) B2 i
+ (‘””l)m—l Bm
-éa—ZB”(z)—_— 2m. B+ (—1D"'B_. (8)

Es tritt hier eine Komplikation durch Hinzulritt einer Bernoullischen

Zahl auf. ,
Noch einfacher ergeben sich dieselben Formeln aus (4) und (5),

wie ersichllich isl aus

_ . k=00
0 2(—1)" (2 m-}-1)! sin 2k 7z 7
—B'(@)= 5 — 2k ———
P 7 (2 n‘)_m+2 P kZ m-4-2
k=oco
_2(—1""@em)! @uw41) sin 2Kk 7z
(2P T Im
d
5——B’(z) (2m--1) B"'(z). (7)
Analog wird
k=oco
9 g(—1)"* (2m)! 2 cos 2k 2
—B'(z)= 2k 7 - —
ox ( ) (2 Iv)2m-|—1 o k2m+1
_2(=1 _1(21n—1)‘2m2 cos 2k szz
(2 )2m | k2m T 2m
Ziehen wir die Formeln (5) und (6) in Betracht, so wird dieses zu
0 -
—B"(z)=2m."B(z)}(—1)" " B_. (8)

0z
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B. Die wiederholten Differentialquotienten.

Da Raabe den Exponenlten der Funktion nicht, oder nur un-
geniigend andeutet, so lassen sich die wiederhollen Ableitungen nicht
direkt durch die Bernoullische Funktion, wohl aber duarch (rigono-
melrische Summenformeln darstellen; wire bei dem Funktionszeichen
der Exponent bericksichligt worden, so konnten die Derivierlen mit
Leichtigkeit angegeben werden.

Durch successives Differenzieren der Beziehungen (4) und (5)
gelangen wir zu folgenden einfachen Gleichungen, wenn man symbolisch
selzt :
' B, =2 r)® Ableitung von B

k=0c0

2(—1)"*"(2m)! 2 cos2k 7z
r = :
By (&)= (@)t i (Im—2r e (9)

k=0

__q\m+r | .
B’2r(z)= 2( 1) (2m+1). 2 cos2k z (10)

(2”)2m—2r+2 — k2m-2r+2

C. FEinfache Integralformeln.

Aus den Gleichungen (7) und (8) resuitieren durch Multiplikation
mit dz und Integration zwischen den Grenzen 0 und z

s B(2)
fB (z)dz= | und (11)
1Y)

b dy B@ (=D B
bf B(z)dz= T + om & (12)

Fihren wir dieselben Operalionen an den Formeln (4) und (5)
aus, so erhallen wir zwei weilere Inlegralformeln einfachster Art, wenn
als obere Grenze z-——=1 gewihlt wird; denn es werden

. 2( 1)‘““(2m)1k=m T
(B”(Z)dz: FE 2 2m+1fsin2knzdz.
¥ () e L
1 k=00 1
1™ !
B’(z)dz:—_—-z( D (?m-{—l). 2 = cos 2k zwzdz
(2ﬂ)2m+2 K2mte
, k=1 g

1
(—Dn~
Smi2 Bm+1fdz.

Bern. Mitteil. 1900. No. 1479.
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1 1
Nun ist fsiannzdz: fcos2kn:zdz=0, somit

0

: 1 " ! (___1)m—1 |
B (Z)d& =0 (13) und J B (Z) dz =mBm+1. (14)

0

§ 3. Die Bernoullische Funktion mit inversem
und mit negativem Argument.

Raabe widmet diesen beiden Betrachtungen nur wenig Aufmerksam-
keit; doch sind die Grundformeln schen bei ihm wie folgl hergeleitet.
Er erhoht in Formel (25) seiner so langen Ableitung der Definitions-
formel®), d. h., in

m m-1 m m m—1 m—1
(14a)" —ma ~—a —]—(1> {(1—{—3) —a }al

m
2

+ ( >{(1+a)m—2_am—2} tyfr e 4 (miz) [ —etl o,
m
+ (m——1) ‘(1"‘3)”‘3} a, ;=20

m um die Einheit und beachtet die bekannten Ergebnisse (26) und
(29) seiner Schrift und die Definitionsgleichung der Bernoullischen
Funktion, wonach

1 h—1
=5 gy =0 0y, = (—1)" "B,
wobei h geht von 1 bis oo, so resultiert die Gleichheit
B(14-z) — B(z) ==z". (15)

Ersetzen wir in der urspringlichen Formel (1) z durch (—z),
so wird :

. _(—Z)m+1 _-}_ | m. J__(ﬂl) L m—1
B—)="g 5% T35()Bt
1 /M m—3 ‘
.__4_(2)]}2(—-2) 4+ — e
m-}-1
OB =—gqm —et T X
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gL 1

b= — (] )B

O=m1 T 2" T\
e B.z _l_-—- ......
L \2)>

B(z) 4 (—1)™B (—z) =— 1™ (16)

Spezialisieren wir diese lelzte Beziehung auf die gerade und
ungerade Bernoullische Funktion, so erhalten wir

B'(—2z)=—B"(z) —z’™ und B (—z)=DB'() 42" (16%

Addieren wir die Formeln (15) und (16), so erkennen wir, dass

B (1}2) 4 (—1)® B (—z) = 0. | (i7)

Aus der lelzten Gleichung ergeben sich zwei Beziehungen, die uns

iiber die geraden und ungeraden Bernoullischen Funkiionen nihern

Aufschluss geben. Je nachdem m gerade oder ungerade, wird, wenn
wir vorher z durch (—z) erselzen,

B(1—z) 4 (—1)" B(z) = 0. (179)
B"'(1—z) =— B''(z); B'(1—z)=-=B'(2). (17)

Fir z=0 folgt aus (15) B(1) = B(0), und da laut Definitionsgleichung
B(0) =0, so wird

B(0) = B(1) = 0. (17¢)

1
Ist der Exponent gerade und z=—-2—, so enlsteht nach (17%)

1 71
|l 2 Y prr
B (2)_ B (2)

und dies kann nur Null sein; somit ist

1
B(O)=B(—2-)=B(1)=O. (1749)
Es sind dies alles Resultate, die uns bei der Diskussion der
Bernoullischen Funktion gute Dienste leisten werden.

Spiter %) leitet Raabe dieselben Eigenschaften aus unsern Formeln
(4) und (5) ab. Er ersetzt in (4) z durch (1—z); dann wird

k=occ
ey 2(—=D"(2m)! sin 2k 7z(1—z)
B"(1—z)= (2ﬁ)2m+1 2 2mt ’
k=1

Da aber sin2k 7 (1—z)=-—sin2k =z, so wird
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k=occ
—9(—1)"t! ! i
B'(1—2) = 2((2 1;2n]+(12m). 2 j‘l‘ng?gj—z T
7T k=1
' B(1--2) = —B"/(2).") (17Y)
Desgleichen wird , o
k=oco
¢ =n" _2(=D"@m+1)! N cos 2k 7 (1—2)
B(l Z)+ +2 m-[-l (2 )2m+2 kél k2m|—2
Da cos2kz(1-—2z)=cos2ksrz, folgl
k=co
(— 1) __2(=1)"2m4-1)! 2 cos2ksrz
B'(1—z) 4+ = ZRerr
( ) }_2 (2 )2m+2 | k2m+2
_-B’(z)—{—( 1) B, somit
B'(1—z) == B’(z). 11) (17°)

Dass die Funktion B(z) bei der Annahme eines ganzen, positivén

Exponenten m die Summe der m™ Polenzen aller Zahlen 1 his (z—1)
darstelll, kann nun gestitzt auf die schon gefundenen Beziehungen
leicht gezeigl werden. Zum ersten Mal sind solche Reihensummierungen
von Jakob Bernoulli allgemein gelost worden, der in seinem fiir die
Theorie der Wahrscheinlichkeitsrechnung so wichtigen Werke «ars
conjectandi» 1713 mit Hiilfe der von ihm eingefiihrten Bernoullischen
Zahlen, von denen er die 5 ersten berechnet'?), solche Summierungen
vornimmt. Vor ihm haben verschiedene Mathematiker wohl spezielle
Potenzreihen summiert; der Englinder Wallis summierte die vierten,
finften und sechsten Potenzen'®); auch Faulhaber fiihrte in seiner
«academia algébrae» 1631 solche Operationen aus'!); aber Jakob
Bernoulli*®) gebiihrt das Verdienst, diese Aufgabe allgemein gelost zu
haben.

Ganz einfach lisst sich diese Aufgabe durch Anwendung der
Bernoullischen Funktion ausfiihren. Wir gehen von Formel (15) aus,
erhohen successive das Argument z je um die Einheit und erhalten,
wenn wir schliesslich alle diese Gleichungen addieren und z um K
Einheiten fortschreitet,

B(k-}z)=B(z) |2z} (1+z)‘“,+ Q42"+ -+ k— 14z)™. (18)
Daraus geht fir z==0. die gewiinschle Summationsformel .von
Jakob Bernoulli hervor, nimlich
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Bk)= 1" 2" 438" 4. ... + (k—1)". (182)
Eine weitere wichtige Formel ergibt sich aus (17%). Erselzen wir
darin z der Reihe nach durch i, gf, j—, ¢
n n n
alle diese Gleichungen und dividieren, da jedes Glied doppell auftritt,
durch 2, so folgt fiir die gerade Bernoullische Funktion

B,,(%)JFB,,(_?T%_B,;(%%L ..... +B~(E_:_1):o. (a)

) ) . ) ) ) 1 2
Selzen wir weiler fir z wieder successive die Werle e

L , addieren dann

%,‘---7%—1— in (18) ein, so wird fiir die gerade Bernoullische
Funktion

1) i ) 1 2m 1 2m 1 >2m
r I Rl S o V2 i Rl Nl =
(k)= (34 (5) () 04

:
(ot )= () (2 (4 2) ()
(et )= () + () (e ) e ()

— — e — — — — ——— e o— o —— c— — — e e e ——

n
_I_(2+nn1)2m_{_ ..... +(k—.1+€_)2m
B (k) = (O (1 2) "2+ 2)”
oo (k2 1)

Addieren wir alle diese Gleichungen, so liefert die erste Kolonne
der rechten Seite gemiss (a) Null; simltliche iibrigen Potenzen mit



— 14 —

1 2m 2m
dem Exponenten (2m), also von (—n—) bis zu (k——2—}—%> lassen

1
sich gestiitzt auf (182) darstellen durch e B’/ (nk); deshalb wird

B”(k)—[—-B” (k _I—%_) _l_BH (k +_§_>+ ...... +B” (k +I'I—E_1‘)
1
, = B"'(nk). (19)
Raabe weist dann nach, dass diese Formel gilt fir k = beliebig

rational gebrochen und positiv, dann fir alle irrationalen positiven
Werle von Kk, schliesslich zeigt er, dass dieselbe auch fir negative
reelle Werte von k die Giiltigkeit nicht verliert.1?)

Um den entsprechenden Satz fiir die ungerade Bernoullische
Funktion zu erhalten, verfihrt er wie folgt: Ausgehend von (7), wird

B’ (z) = (2m+-1) B"/(z). *¥)
¢
Er erselzt darin z durch (z -+ %), summiert beidseilig von k =0 bis

k=n—1 und erhilt unter Anwendung von (19)
kmn——l k=n——1

kZ:)B’l(z+§)=(2m+1)goB”('z +-fj—) =(2—?;ﬂ B” (nz).

Nach (7) ist aber auch B’ (nz) = (2m+-1) B""(nz), daher
k==n—1

1, e k
—l;zTB 1(HZ)=kZ=OB IKZ +—n—>'

Wird beidseitig mit dz multipliziert und in Beziehung auf z

"integriert, so folgt
k=n—1

By =§OB' (%) +m, @)

wo M als Inlegralionskonstante von z unabhingig ist. Um diese zu

bestimmen, setzen wir z=—0, dann wird
k=n—1

0=M—|—2B’ (%)

k=0

=[G () ()




Durch VYergleichung zweier fiir dasselbe bestimmte Integral ge-
fundener Ausdriicke, erhilt Raabe dann

p (L) +5(2) 12 oo 1w (")
n n n n
m—1
2m--2 2ot | Tm
Setzt er die erhallenen Werle in die vorhin erhaltene Formel (3)

ein, so wird

1 2 —1
O+ B (kL) 4B (o 2) b B (2
1 (—1)" "+ —1]
—— W B'(nz) — (2 m+2) n2m+1 Bm-l—l,

eine Formel, die gleich wie (19) fiir simtliche reelle Werte von z und
fir ganze und posilive Werle von n identisch Bestand hat.

(20)

Diese letzien zwei Beziehungen zeigen, wie schon Raabe andeutet,
eine gewisse Ahnlichkeit mit dem Gauss’schen Fundamentalsatz in der
Theorie der Gamma-Funktion

(). I"(a _|__:l_) r<a + _:“i_) ....... I‘(a +H_El) | )

_na+_.'_1 —

= I'(na).n 2@m) ?

nur finden sich hier alles Produkte, wihrend bei der Bernoullischen
Funktion Summen auftreten.!?) Es wiire wahrscheinlich sehr interessant,

simtliche Analogien beider Funktionen herauszusuchen; doch wirde
uns das zu weil von unserem Thema wegleiten.

§ 4. Diskussion der Bernoullischen Funktion.

Raabe diskutiert seine aufgestellten Definitionsformeln in keiner
einer Arbeilen; doch miissen wir auf diese Frage auch bei dieser
Definition eintreten, damit wir spiter mit den andern vergleichen
konnen. Wir kommen am beslen zum Ziel, wenn wir bei den
Bernoullischen Funktionen mit niedrigen Exponenten anfangen und
allmdhlich zu denjenigen mit hohern fortschreilen.

Setzt man fiir m der Reihe nach 0, 1, 2, 3,...... , S0 erhalten
die acht ersten Bernoullischen Funktionen folgende Werle:



Bo(z) =z .
1
Bl(z)_:—z—z(z-—-l)
Bg(z):%'ﬁ——;—zz—l-—é—z
B3(2)2%74—-——%-Zg+—1—z2
1 . 1 1 /|
s e D e g — 73—
By(z) 52 2z—|—-3z 50
1 1 5 1
—_— 96 ___ _— 45 g4 2
Be)=gr—g7+t13 e’
1
R
Nl L2, T 4 T . L
b)=g @ —g ¢t "+t @™

- Fiir uns sind diejenigen Werte am wichtigsten, fiir welche z
innerhalb des Intervalles 0 und 1 liegt; fiir z ausserhalb nehmen die
Funktionen rasch grosse Werte an; auch kinnen diese Werte aus den
innerhalb dieses Intervalles liegenden berechnet werden. Die Tabelle I
am Schlusse dieser Arbeit gibt die Werlte der sechs ersten Bernoullischen
Funktionen fiir verschiedene z von — 3 bis - 4.

1. Bo(z) = z. Diese Funktion stellt somit eine Gerade dar, die
durch den Ursprung der Zahlenebene geht und den Winkel der
Koordinatenaxen halbiert, indem sie durch den ersten und dritten
Quadranten lauft.

1 ; , ; .
2. Bl(z):—z— z2 — —z. Am meisten interessieren uns die,

2
Maximal- und Minimalwerle der Funktion. Nach der bekannten Regel
aus der Theorie der Maxima und Minima entwickelter Funktionen er-

halten wir hier ein Minimum fiir z=—2m- Es ist leicht einzusehen
dass vonn z = 0 bis z = 5 diese Funktion fortwiahrend abnimmt und

1
negativ bleibl; der kleinste Werl muss somil Bl(u«)_—_% sein.
\

Yon z = 5 bis z=1 beginnt die Funktion fortwihrend grosser zu

-

werden, um fiir z=1 den Nullwert zu erreichen, von wo an die
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- Funktion weiter zunimmt. Der Anblick der Gleichung sagt uns iiber-
haupt sofort, dass diese Funktion eine Parabel darstellt, die durch den
Ursprung gehl.

1 1L 1 . _ "
3. By = 5 z8 — 5 2} e Wir erhalten ein Minimum fiir

1 L & g . 2 1 I &0 -
=5 + 5 \/3 und ein Maximum fir L= — \/3; zudem wird

diese Funktion fiir z=—:— zu 0; daher folgt:

: 1 . , : .
Zwischen z =20 bis 2=—5" ist diese Funktion stets positiv und

weisl ein Maximum auf bei z =%—%\/§; im Intervall von z -_:—;—.
bis z=1 ist dieselbe negativ mit dem berechneten Minimum bei
f= —;— —}—% \/_3— Wie wir spiler sehen werden, stelll diese Gleichubg
eine Parabel hoherer Ordnung dar.

4. Bs _—=% 24 — -;— 28 4+ %T z2. Die Rechnung ergibt zwei

Minima, bei z=—=0 und z=1 und ein Maximum bei ZZ"Q”' Diese

Funktion ist im ganzen Zwischenraum von O bis T positiv und besitzt
eine Maximalstelle fir z = %, wofiir Bs (%) ::6—14—wird. Es slellt
dieselbe wieder eine Parabel hoherer Ordnung dar; diese geht durch
den Nullpunkt, der aber Kkein Doppelpunkt ist; gleichwohl ist die
Abszissenaxe Doppellangente; sie berihrt in z=—=0 und z = 1.

Bei der Diskussion der hohern Bernoullischen Funktionen konnen
wir nicht mehr analog verfahren, da wir auf Gleichungen vierten und
noch hohern Grades gelangen; wir begniigen uns hier mit der
graphischen Darstellung der zwei folgenden, hiohern Bernoullischen
Funktionen. Bei einer spiter zu untersuchenden Definition der Ber-
noullischen Funktion werden wir einen ausreichenden Weg der Dis-

kussion der hohern Bernoullischen Funktionen kennen lernen.??)

§ 5. Entwicklung der Bernoullischen Funktion in {rig. Reihen.

Schon bei der Ableitung der Definitionsgleichung gelangte Raabe
zu Reihen, welche die Bernoullischen Funktionen darstellen, ebenso
Bern. Mitteil. 1900. 1480.
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bei der Herleitung der Differentialquotienten. Wir verweisen hier nur
auf die diesbeziiglichen Formeln (4), (5), (9) und (10). Dieselben
zeigen viel Abnlichkeit mit den Reihenentwicklungen der iibrigen
Definitionen der Bernoullischen Funktion.

§ 6. Die Bernoullische Funktion als bestimmtes Integral.

Es handell sich nicht darum, eine erschipfende Darstellung aller
Integrale der Bernoullischen Funktion zu geben; wir wihlen nur die
zuom Vergleich mit den andern Definitionen wichtigen.

Durch Multiplikation mit cos2rmzzdz, resp. sin2rmzzdz und
Integration zwischen den Grenzen 0 und 1 entstehen aus den Formeln
(9) und (10) unter der Vorausselzung, dass r und k ganze Zahlen
seien, die vier leicht herzuleilenden Formeln.?!)

1 =
[B”(z)cos‘arnzdz:& (21)
s _

1 m—1

. (—1)" " r@em41)

B (2)sin2rzrzdz = - 22)
6[‘ ( (2 - I‘)2 m+1 (

1
fB' (z)sin2rsrzdz=0. (23)
0 .

1 m

-1 -9\

fB'(z) cos 21wz dy = L= 1) ng‘ﬁj 4. (24)
. (27cr)y” 7" '

Multiplizieren wir (4) mit B”"(z)dz und integrieren zwischen 0
und 1, so folgt, da die Doppelsumme durch die verschwindenden
Integrale zur einfachen Summe wird,

1 B k:OO 1
; ( I 2“ -
anz(z) dz — _iilﬁlzﬁ —4%;@ rsm2 2Kkzredz.
‘ (2 7) kT
) 0

.1 .
Der Werl des Integrales rechts ist 5 somit
P s Sw 2 (2m)
” 22m)!° Y 1 2m)!?
2
B (z)dz = Imt2 e ks Spmge
J @) " - (27)"F +
Wird S4m+2 durch Bernoullische Zahlen ausgedriickt, so resulliert
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2 _ I'(2m—+-1) | -
J B0 = e T emt2) .. . anfg) Demir (9

Ebenso wird aus (5)

Y rm-}-2)
th@NL—@m+%@m+& ..... @m+@%ma

0

2m--2

Mit Zuziehung der Gammafunklion gelangt Raabe zu einer An-
zahl bestimmter Integrale, welche durch die Bernoullische Funktlon‘
dargestelll werden konnen.

oI {__El_ﬁtl__}z - (26)

o m-}-1 oo -
Bekanntlich 1st —%{H;—LI—Q — | e~ kuy2mdy, Setzen wir diesen
i
Wert in Formel (4) ein, so wird
_ k=oco
%(——l)erl(Qn)t“)m+1 B"(z) = f 2 e *sin2k -z | 0™ du.
0 k=1
. k=00 ,
Da aber E e 'sin2krz = — S_}_{:Qn‘ , 50 wird
- e }-e —2cos2mz
2
. i qum EVT AT By
e' e "—2cos2rz 2sin27z .

Ebenso wird

o0 __a—u 2m--1
f (cos2cz—e ")u du=%(—1)m(2n)2m+gB'(z)

e"J-e "—2cos27mz

0
1 @)™
V Ty 2m2
Durch partielle Integration findet Raabe eine weilere Anzahl von
bestimmten Integralen, ausgedriickt durch Bernoullische Zahlen oder
* Funktionen. Ebenso erhilt er noch andere kompliziertere Formeln,
wenn er die Summenformeln oder andere zweckmiissig gewihlie, mit
den Bernoullischen Funktionen in Beziehung stehende Ausdriicke in
Partialbriiche zerlegl. Alle diese Beziehungen erfordern aber eine
ziemlich umstindliche Herleilung.22)

(28)



Il Die Bernoullische Funktion nach 0. Schlomilch.
§ 7. Herleitung der Definition.

Ausgangspunkt ist die Summation der uns schon bekannten
Potenzreihe

1P} 2P |- 3P_|_ 4P + (k—1)".
Das Problem bietet uns keine Schwierigkeiten, wenn die Fille fiir
p=1, p=2, p=3,....... successive behandelt werden, d. h.,

wenn man jeden Fall auf den vorhergehenden zuriickfiihrt; eine all-
gemeine Formel ist dagegen auf diese Weise nicht zu finden, wohl
aber durch Differentialrechnung.

Obige Reihe entsteht durch p-malige Differentiation einer andern
Reihe, so dass ist

ekx___l 28)
PP 2P 3P + (k—1)F = {Dp - ’ .
e” —1x—p
Um die Differentiation auszufiihren, zerlegen wir die rechte Seite
kx—1 i
in zwei Faktoren xx a ° = = ¢(x) . w(x); dann wird nach der
e —_—

Regel der Differentiation von Produkten

0" {ewn] =@ y* @+ (§) ¢ @v O

+(3)er@w (@)
Zur Berechnung der Werte ¢(0), ¢'(0), ¢"(0),..... benutzen wir die
bekannte Formel iiber Bernoullische Zahlen 2¢)
e 1 9% B, 2'By 5, 2°B,
o= —x T YT Ve !

Wo — 7t <y < 7.

1 ;
Durch passende Uminderung, wobel noch y = ) x gesetzt wird, geht

diese Formel tiber in

X . 1 Bl2 B24 B36
Ot TR TR M TR A




Daraus erhalten wir fir x=0 folgendes Wertesysiem:

90(0)= 1.
1
P'(0)=—=5 ¢''(0)= B
gD”’(O) — O 90””(0) s Bg.
g0’!’.’:’(0)= 0 ?!IIIII(0)= B3.
g0y = o P0)=(—1)""Ba. (@)
Zur Bestimmung von y®(0), v*'(0),...... dient
kx
e —I1 2 k®* ., k* .
__..x_____k_.l__z_‘_x_!_ﬁx _l_..4_lx + .......
Fiir y"(0) verschwinden alle Ableitungen, die x. enthalten, und
kp+1
P 0) = .
VO =~ @

Setzen wir die Werte (8) und (y) in Formel () ein, so folgt gestiitzt
auf eine leicht einzusehénde kleine Verinderung

1P ahL P .. .. .. + (k—1)P = k™ -ikp—{-l b B, k"*
- p+1 2 2 \1/1
1 Y p—3 1 p\ p—5
__4_(3)sz 4_?(5)]331{ msdarimmans

Wihrend die linke Seite nur Sinn hat fir k als ganzen, positiven
Wert, grosser als 1, kann die rechte Seite verallgemeinert werden;
wir erhalten dann einen Ausdruck, der eine ganze, ralionale Funktion
darstelll. Um aber nicht Funktionen (p--1)t® Grades betrachten zu
miissen, und um der hdichsten Potenz von k oder z, wie allgemein
iiblich, den Koeffizienten 1 zu verschaffen, ersetzt Schlomilch p durch

(n-—1), multipliziert mit m und definiert unter, Vernachlissigung der
linken Seite

?(Za n) =:Zn — —;“ n Zn_1 + (g) Bl zn._Q_ (:) B, Zn—4
n n—6
'{" (6) Bgz ——+ ........ (1)

als die «Bernoullische Funktion n'" Ordnung.»

Die Herleitung dieser Fundamentalbeziehung verlangt, dass rechter
Hand kein von z freier Term vorkommen darf; es ist dies eine Eigen-

schaft, welche die Allgemeinheit dieser Definition wesentlich ein-
schrinkt. %) |
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Durch Vergleich erhalten wir folgende Definitionsformeln, welche
die Bernoullischen Funktionen als Nullwerte von Differentialquotienten
darstellen

0(z, 1) = “Di—l‘ezx_l ’ - Dn{" | (@)

e —1 [x%O

Ausgehend von diesen beiden Hauptgleichungen hat Schlémilch
die verschiedenen Eigenschaften der Bernoullischen Funktion genauer
untlersucht. Diese Definition stimmt nicht ganz mit derjenigen von
Raabe iiberein.?®) Die Resultate, zu denen Schlomilch gelangl, ent-
sprechen denjenigen, die Raabe gefunden. Schlomilch ist der erste,
welcher gezeigt hat, dass die Bernoullischen Funktionen Differential-
quotienten sind; dass sich dadurch die Darstellung hiibscher gestaltet,
ist nicht zu bezweifeln; nur ist das Operieren damit hie und da
ziemlich umstindlich.

ex _1 x X

x=0

§ 8. Die Derivierten der Bernoullischen Funktion.
A. Die einfachen Differentialquotienten.

Um die Eigenschaften der Ableitungen von ¢(z, n) zu erfahren,

zx_l

differenzieren wir die gebrochene Funktion (m—1)-mal nach

—1
X und einmal nach z und erinnern uns, dass die Reihenfolge der
‘Operationen beliebig ist; demnach wird ' e

1) " —1 " —1 , «x
D, D212 =D2x
z X {ex _1] X ex __1 + ex___l

=D;“[ A 1 ]
e —1

Dies liefert fir x = 0 unter Beriicksichtigung der DeﬁnitionsQleich-
ungen (2) DZL[;“) = ¢(z,n—1) 4 "V (0).

Trennen wir die gerade und die ungerade Bernoullische Funktion,
so folgt unter Anwendung friiherer Beziehungen
0
5, ¢ 2m)=2m. ¢(z,2m—1) und (3)
0 cé m—
—— @ 2mt)=Cn+1) {¢ (@ 2m) + (—1)" " Ba| (@)
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Diese heiden Formeln entsprechen ganz denjenigen von Raabe. _In-
folge der etwas andern Definitionsgleichung zeigt hier die Ableitung
der ungeraden Bernoullischen Funktion den Zusatz einer Bernoullischen
Zahl, wihrend bei Raabe die gerade.

B. Die wiederholten Differentialquotienten.

Schlomilch gibt dieselben nicht; doch sind sie durch successive
Differentiation einfach zu finden; es resullieren, ausgehend von (3)
und (4), folgende Formeln

27 om o
5,22 ‘P(Zagm)———‘(?l_)!<2l>{¢(z,2m_21)+(m1) 1Bm_l}j
8214—1 iy

FPCyES] 9”(7"_2 m) = (24-}-1)! (21_}_1>§0(Z,2m—2l—1).
22
2 g 2mt1) = (22) (2m+1)¢(z,2m+1—-21). . (5)
dz°" 21
82ﬂ.+1 , 2[]1—{—1
¢ @ 2ne = @A4D)! (_214_1) (o2, 2m—21)
+ (_1)mﬁ_}'—1Bm—l}'J

Die wiederholten Ableitungen der Bernoullischen Funktion sind wieder
Bernoullische Funktionen; nur treten hier noch Faktoren und Ber-
noullische Zahlen dazu, welche die Darstellung etwas komplizieren.

C. Einfache Integralformen.

Multiplizieren wir die Formeln (3) und (4) mit dz und inte-
grieren zwischen den Grenzen O und z, so erhalten wir

o(z, 2'm—1)dz=f%nm); m>1 und

o : (6)
fso(z,zln)dz———%%{jﬁw +(—1)" Bp.z. |

0 : )
Die Integrale der Bernoullischen Funktion, nach Schlomilch definiert,
sind wieder gleiche Funktionen, dividiert durch eine bestimmte Zahl;
fir die gerade Funktion tritt noch ein Produki einer Bernoullischen
Zahl mit einer Variabelen auf, das je nach dem Exponenten m ent-
weder addiert oder subtrahiert wird.
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. 1 .
Fir die obere Grenze 2= 5 erhalten wir unter Anwendung

der im folgenden § 9 zu beweisenden Formeln

1
5 _q\m lg2m
f¢(z,2m—1)dz= (—1) gsz 1% B, und
m

v L)
f; (2, 2m) dz = (—1)" B,

V) J

§ 9. Die Funktion mit inversem Argument.

ZX

Wir erselzen in die Grgsse z durch 1—z; dann geht

e —1

—ZzX

durch leichte Umwandlung dieses tiber in 1 — e—__;-m:l, und es wird

e(l—z}x—_ e-—zx_l
Dn[X—-x—} =-——Dnlx—-_—x—}.
x e —1 | _, x IR B

Ersetzen wir x darch — &, so wird

(1—2z)x 2k
D“lxe__x__:l __-(_1)nn',j=56,c —1
x e —1 ) _, d ¥ =1} .

Somit folgt nach Definitionsgleichung
¢(1—z,n)=(—1)"¢(z,n). (8)
Daraus ist ersichtlich, dass die Bernoullische Funktion fir 2= 5

bis z=1 in entgegengesetzier Reihenfolge dieselben Werle annimmt,

welche sie von z=—0 bis z=—;— hatte und zwar mit dem nimlichen

oder mit enigegengesetztem Vorzeichen, je nachdem die Funktion von
gerader oder ungerader Ordnung ist, was die Diskussion erleichtert.

Fir die gerade Funktion folgt aus (8) und der Definitions-
gleichung (1) fir x = 0, dass
¢(1,2m) = ¢(0,2m) = 0. (9)

Fir die ungerade Funktion wird fiir z=0 und z = 57 wie leicht ein-

zusehen ist,
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¢(L,2m+1)=¢ (-é— 2m+1) =¢(0,2m41)=0.  (10)

Wir suchen nun einen Wert fir ¢ (?, 2m). Dazu ersetzen wir in

der Definitionsformel (2) n durch 2m und z durch A, dann wird

2!
. 1.
go(%ﬂm):Dim{xe:_—}} =20 " 25
¢ — x=0 e'2_+1 -
Es ist identisch gleich
1y L3
2 2 X 1
X = X - o1 =¢(?X)—¢(X).
e?4-1 e2—1

Durch 2 m-malige Differentiation nach x und Multiplikation mit 2 erhalten
wir fiir x = 0 unter Beriicksichtigung von go(gm)(O) = (—-1)”‘_1 B, die

1 m 277 —1
Formel @ (?: 2m ) = (—1) ?n:l_Bm' (11)

Diese Berechnungen der geraden und ungeraden Bernoullischen
- Funktion fiir verschiedene Argumente sind nur Spezialfille eines all-
gemeinen Satzes, den Schlomilch wie folgt erhilt. Er setzt in der

Definitionsgleichung (2) fiir das Argument z der Reihe nach z, (z + %),

2 k—1 : ;
(z—!—T),-----n,(z—l— —k_)’ addiert die so erhalienen Aus-

aus der Klammer und erhilt die Summe

dricke, nimmt ¢ (x) =

- x 2x 3x (k—1)x
s= 07 [o7 (1 o ¥ oF s )]s 0ol
N .
x—0
Durch Summation der geometrischen Reihe in der Klammer folgt

ZX — !
S=DZ[ o = I—R—Isa(m
l ex—1 M | ]x:O
und durch leichte Veridnderung, wenn schliesslich x-=k§&, wird

1 nf,e"™—1 1
S=——D, 1§ = } k{————l} " (0).
Bern. Mitteil. 1900. No. 1481.
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Fiir n = gerade = 2 m wird
pts2m (o 2m) b (1425 2m)
| — o (K2, 2m) - (—1)" (P —1) Bu. (12)
Fir n— ungerade = (2 m - 1) folgt
wammHm+¢G4v;dm+4)+ ------ .+¢(v+fgi2m+ﬂ

° £

— o ¢ (kz, 2m41). (13)

Wir sehen hier wieder die Zweispurigkeit der géraden und
ungeraden Bernoullischen Funktion.

) 1 ) .
Setzen wir z=—0 und k=?, so finden wir aus dieser all-

gemeinen Formel fir cp( ,Zm), also fir die gerade Bernoullische

2 _
Funktion, den schon friher gefundenen Wert (11). Ebenso lassen

sich Ausdriicke finden fir

1 ) 1 1
90(—-,2111 ) @(T,2m> und gp(—é—,2m>.

Fir die ungerade Funklion kommen wir auf diese Weise zu kemen
Spezialwerlen.

§ 10. Die Funktion mit negativem Argument.

Um diese Funktion zu untersuchen, berechnet Schlomilch vorerst
¢(z}1,n). Nach Definitionsgleichung (2) wird durch Subtraktion

5 (z—1)x X
¢ z+1,n) — ¢(z,n) =D, JXEx— : }
l x==(

e —1
ZX X k
=|): .[Xw } =[): {xe“} —nz" L
G _1 x—=) x==0
¢@+1;m) = (z,n) + 02 (14)

Durch Anwendung von (8) entsteht daraus
¢(—zm)=(—1)"{ ¢z, n) + nz (15)
Es sind dies zwei wichtige Formeln; (14) dient dazu, aus einer

Bernoullischen Funktion eine neue Bernoullische Funktion gleichen
Grades, aber mil einem um die Einheit erhohten Argument zu be-

n--1 l



rechnen; (15) wird gebraucht zur Verwandlung einer Bernoullischen
Funktion mit negativem Argument in eine solche mil positivem.

Mit Hiilfe von (14) findet Schlomilch eine Beziehung zur Darstellung
der Werte der Bernoullischen Funktion auch ausserhalb des Inter-
valles von O bis 1. Lisst man nimlich z der Reihe nach die Werte
z+1, z-}-2, z4+3,----- y(z-}-k—1) annehmen, wo k = positiv und
ganz, und addiert dann die so erhaltenen Gleichungen, so wird

oletkm=p(n) ol + @)+ o)
. e )T (16)

Geben wir hierin dem k einen beliebigen ganzzahligen Wert,
so konnen wir auch hohere Werle der Bernoullischen Funklion, ganze
und gebrochene, berechnen, da z nicht ganzzahlig zu sein braucht und
wir ja die Bernoullische Funktion im Intervall von 0 bis 1 genau
kennen. Diese Formel wird uns die zur graphischen Darstellung der
einzelnen Funktionen notigen Werte liefern, wenn wir nicht vorziehen,
solche direkt aus den Definitionsformeln zu berechnen.

Schléomilch verwandelt eine Bernoullische Funktion mit negativem
Argument noch durch folgende einfache Formel, die er erhilt, indem

er in (8) fir z den Wert (z -+ ?> setzt, in eine Funktion mit positivem

Argument ¢ (% — 2, n) =(—1)"¢ (—%— -+ z, n), 17

die in einigen Fillen gute Dienste leistet. Aus dieser Formel ist auch

N 1 1\ . .
ersichtlich, dass ¢ (“Q“ -}z, n) eine gerade oder ungerade Funktion
ist, je nachdem n einen geraden oder ungeraden Wert hat. Daraus

1st auch go(%, n) als Maximal- oder Minimalwert erkennbar.

Einzelne spezielle Werle, die Schlomilch nicht oder auf ganz
andere Weise herleitel, findet J. Worpitzky gestiitzt auf Schlomilchs
Definition wie folgt:2®)

1. Berechnung von ¢ (%, n)-

Wir erselzen in (2) z durch 1. dann wird

’1 n X n 22[]_1
(p( 5 ,n) _—_2[)!{;0(?)—9&(1&)}‘;“-—DXGO(X)OF:T‘
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Weil D.""'o(x),=0 und D." ¢(x);=(—1)"B,, so wird fiir
1 ' .
n = ungerade = (2m-+1) ¢ (?, 2m-|—1) =) und fiir

1 2°™ —1
n==gerade =2m % (?, 2 m) = (—1)“—2—2mT1 B.. (18)

2. Berechnung von ¢ (%, n)

b 4 3w w 1
. ) ez et —1 o4 —
Es ist identisch — = e~
e -1 e —1 e —1
somit wird nach Definition (2)

r ] Tl )l
X ex—l—l I n SD 4 Sp 4

, wo w=2x, und

a f 1 N
Nach (17) ist qp(—i—i—, n) = (—1) @(T, n); daher wird fir
/
n=gerade ==2m. Dim_l :2 =0 und far
. e “]"1 x=0
n = ungerade = (2m+1). Dim{——fz ]
€ "I‘l x=0
= ;
om 1 7 \4
Ebenso ist identisch
Di_l‘ ex?—l ] =%D2_1[ _ 1 n X1 - XBL}. ()
g—l [xzo ed--1 ez-]-1 ezl =0
= n—1
Es sind Di_l[ xe%—m} __ 2 o {(—l)n—l ] @ %, n)-
e‘é‘_l__l o n.2
n—1 1 1 1
Dx {i“—} == 211__1@(2711)
ed -1 )i
132»1{ B } =%¢(%, n)
e?‘l"l x=0

Substituieren wir diese letzten drei Werte in («), so resultiert fiirn=2 m

1 1 22m—-1+1
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Setzen wir in dieser interessanien Beziehung zwischen den

1 1 1
Bernoullischen Funktionen mit Argument —- und — fir ¢ (——,2111)

2 4 2
den friiher gefundenen Wert, so erhalten wir
90( : ,Zm) == (—1) 2“1_1 ) (20)

§ 11. Diskussion dieser Definition.

Wir konnten natirlich bei dieser Diskussion gleich verfahren
wie bei Raabe. Schlomilch geht aber ganz anders vor, und wir wollen
uns deshalb an seine Darslellungsweise halten.

Setzen wir fir n der Reihe nach 1, 2, 3,...... , S0 nehmen
die acht ersten Bernoullischen Funktionen folgende Werle an:
0(z,1) =1
0z, 2) = 2t—z=1z(z—1).
3 1 1
¢ (z,8) = z3-——-—2—22+~§-z =1 (z—l)(z—-——g—)-
¢ (z2,4) =2*—22% }z22 =2z*(1z—-1)%
5 b 1
—_—d__ " a4 g ___ T
¢(z,5) =1z 2z+32 5L
5 1
. ___ a6 9,5 g4 T 42
¢ (z,6) = 2°—32> 5 5
7 7 7 1
N LT I D AT N R
¢z, 7)) =z 24—{—22 62—]—64.

¢ (z, 8) — 28— 4727 +—1§£z‘3-——;—z4+%z2.
Schlomilch beginnt seine Diskussion mit dem einfachsten Fall,
fir n=2 und fiihrt sie mittelst den Differentialformeln (3) und
(4) weiter.
Die erste Funktion ¢ (z,1)=z stellt wieder eine Winkelhalbierende
durch den Ursprung und den ersten und dritten Quadranten dar. Hin-
sichtlich der zweiten Funktion ¢ (z, 2) =1z (z—1) erhellt unmittelbar,

. : 1 : :
dass sie von z=0 bis 2= 5" negativ bleibt und fortwidhrend ab-

, 1 | . o :
nimmt; der Wert ¢ 5 2) =— ist ihr absolutes Minimum inner-

halb dieses Intervalles.
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., 1 0 : o
Nach (4) wird 5 57 ¢ (z,8) = ¢ (2, 2) 4 B,. Die rechte
Seile ist anfangs fiir z= 0 positiv, nimmt dann Kkontinuierlich ab und

1
g’ Woraus folgt, dass es

1 :
erhill fir z = 5 den negativen Wert —

, 1 ' " :
zwischen z=0 und 2= einen, aber auch nur einen Wert gibt,

fiir welchen der Ausdruck verschwindet. Diesem Verhalten von
¢'(z,8) gemiss, steigl anfangs ¢(z, 8), erreicht zwischen z =0 und

ZE?I ein Maximum und fillt dann wieder. Jenes Sieigen fingt an

mit ¢ (0, 3)=0; das nachherige Fallen hort auf mit go( L — 3) == ():
die Funktion ¢(z, 3) bleibt also positiv wihrend des Intervalles von
0 bis —;—-; dazwischen liegt ein Maximum.

1

Formel (3) gibt T % ¢(z,4) =¢(z,3), und da nach dem

Vorigen die rechte Seite, mithin auch ¢'(z,4) positiv ist, so findet
bei ¢(z,4) ein fortwihrendes Wachstum statt; dieses beginnt mit
¢ (0, 4) = 0; mithin ist ¢ (z, 4) positiv und zunehmend.

)
In Gleichung ; 3. ¢ (z, 5) = ¢ (z,4) — Bz ist die rechte Seite

anfangs fiir z = 0 negativ, wird aber immer grosser und erreicht fiir

, ) . o
L= % ihren grossten Wert(l — —25) B2, welcher positiv ist. Aus

diesemVerhalten von ¢’(z,5) folgt, dass ¢ (z,5) erst ab- und nachher wieder
zunimmt. Die Abnahme fingt mit ¢ (0,z) =0 an; die Zunahme hort

mil 90( ) 5) auf; somit bleibt ¢ (z, 5) negativ von z =0 bis z =—;—

und besitzt innerhalb dieses Intervalles ein Minimum.

0
Weil ferner %—a——go(? 6) = ¢(z, 5) und die rechte Seile,

also auch ¢'(z, 6) immer negativ ist, so nimmt ¢(z, 6) immer ab, mit
¢ (0, 6) =0 anfangend; somit ist ¢(z, 6) negativ und abnehmend.

‘Wir iiberblicken augenscheinlich den Fortgang dieser Schliisse,
deren Gesamtiergebnis sich graphisch darstellen lissi, wenn man z als
Abszisse und ¢ (z, n) als zugehorige rechiwinklige Ordinate konstruiert;
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dann werden im Intervall von O bis 1 die Funktionen gerader Ord-
nung charakterisiert durch

Fig. 1. 5
L1} i 1 E

Fig. 1, wenn n =2, 6, 10, 14, ....... , (4 k—-2),
Fig. 2, wenn n =4, 8, 12 16, ....... , (4K)
und die Funktionen wungerader Ordnung durch
Fig. 3. Fig. 4.

4 \.L/ \/ 1

Fig. 3, wenn n=3, 7, 11, 15, .. ..... , (4 k—1),

Fig. 4, wenn n =5, 9, 13, 17,....... , (4 k+-1).
Auf eine genauere graphische Darstellung der verschiedenen
Bernoullischen Funktionen werden wir im leizten Abschnift eintreten.??)

§ 12. Verwandlung der Bernoullischen Funktion
in trig. Reihen.

Mit Hiilfe der Schlomilchschen Definition als Differentialquotient
lisst sich diese Funktion in eine nach cosinus oder sinus der Vielfachen
eines Bogens fortschreitende Reihe entwickeln.

Aus der Theorie der Fourierschen Reihen und Inlegrale ist bekannt

3
(7)— a,1-a, cos——l—a cos ——+ . s——;i

—" """" (O§Z§H)5
‘obel a _2 Ift(z) COS—]-(E—Ti dz
\\'0 ei k= - ;

0

Es sei f(z) =¢(z,2m) und n=1; dann wird
ga'(z,Zm):%30-+31005ﬁz+3200s2nz—{—ascos8nz—{— ......

1
a, =2 fcp(z, 2m)cosk zzdz
Ot./

2m 1 5
=2D_ {ga(x) f(e“-———l) cosk sz zdz
. x=0
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Die Integration lisst sich jetzt leicht ausfiihren, doch miissen wir die
zwei Fille getrennt betrachten:

9m

1. k=0, dann erd—z—a _-D' go(x) (e —1)dz

(2“"(0)—( —1)"B

2m Xz
2. k>0, daher a, =2D_ go(_x) (e cosk sz zdz
0

1 28)
—fcosk:rz dz]}-
s x=0

ak=2[’im{sﬂ(x) U] |

2k o
™ (2m)! '
(k)™

Diese Formel wird fir k= gerade a = 2(—1)

» k=ungerade a_ = 0.
Demnach wird die gesuchte Reihenentwicklung

¢(2, 2m) = (—1)" By - (1)~ ((Z;EL{COZ;O‘J” L4 B
-+ %Smﬂf- N } (21)

fir 0<z<1.
Auf ganz analoge Weise finden wir einen Ausdruck fiir die
ungerade Bernoullische Funktion, so dass ist

(2m—1)! [sin2 sz sind 7z z
2m—1 2m—1 —I— 2m—1
7T 2 4

¢ (Za 2m_1) - (__1)m 2

sin 6 7z z
AL o }
fir 0<z<1; n>1.
Schlomilch findet diese Formel (22) durch Differentiation der
Reihe (21). Beide Formeln erinnern uns an die Raabeschen Definitions-
formeln (4) und (5), von denen ja Raabe die meisten Eigenschaften
seiner Bernoullischen Funktion herleitet.

(22)

Diese Reihen lassen darauf schliessen, dass die Bernoullische
Funktion in enger Beziehung zu den Kreisfunktionen steht, was auch
J. Worpitzky in einer Studie iiber «Bernoullische und Eulersche
Zahlen» beweist.??)
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Er zeigl, dass der Spezialwert einer geraden Ableitung der
Cotangente eines Argumentes, multiplizierl mit dem Argument selbst,
sich durch eine Bernoullische Zahl wie folgt ausdriicken lasst

Dim {xcolg x} e 2" Bu.

xX=

Ebenso lisst sich der Nullwert der geraden Ablelmngen der
trig. Tangente durch eine Bernoullische Zahl oder durch eine Bernoullische

. . 1° . .
Funktion vom Argument --- ausdriicken, so dass ist

2
V 2 2m_
Djm { lgx } — 2 m—1 @ﬁ*i*l) m.
x=0 m
Schliesslich ist auch der Nullwert der geraden Ableitung der

Sekante durch eine Bernoullische Funktion darstellbar, indem wird

4m+2 ( 1 )

§ 13. Die Rernoullische Funktion in bestimmten Integralen.

Dim { sec X }x=0= (—~—1)m

Ausser den einfachen Integralwerten in § 8 dieses Abschniltes
gibt Schlomilch weder in seinem Compendium, noch in der erwihnten
Abhandlung in Band I der Zeitschrift fiir Mathematik und Physik
andere Integralausdriicke mit Bernoullischen Fuanktionen, abgesehen
von der Bernoullischen Funktion, welche der Restausdruck bei der
Summierung der allgemeinen Differenzenreihe enthilt, und dem Rest-
gliede der Maclaurinschen Summenformel, das unter dem Integral-.
zeichen ebenfalls eine Bernoullische Funktion aufweist.’®) Auch bei
Worpitzky finden sich keine Integralformeln der Bernoullischen
Funktion, doch lassen sich den Raabeschen Formen entsprechende.
Ausdriicke mit Leichtigkeit aufstellen.

II. Die Bernoullische Funktion nach L. Schiafli.

§ 14. Herleitung der Definition.

Schlifli geht aus von der Summe

Sw== 172" 8" 4™ - ()
- gibt er dem m die Werte 0, 1, 2,.... » M, S0 erhilt er (m-{-1)
Summen Sy, S;, Sz, . ... .. , Sm. Diese mu]lnphzneren wir der Reihe

_ Bern. Mitteil. 1900. No. 1482



SO o - 1 Ta—

. yl y2 m
O S , S
nach mit y° 11’ 91 o SO folgt

0
S()Oz':: 1 —I— 1 + 1 + ....... -l—- 1_
Siyt 2y 8y ...y =y
1 + + 1! T ' 1!
Sey2 ¥ @yy (33') ....... [x—DLyp
21 2l + 21 1 B + 2!
Swy™ __ y™ (Zy)m Gy , [x—1)y]"
ml— m T oml U oml T +

_— e e e— — e e—— e . e e e e, e eetem et danmm

Addieren wir die senkrecht untereinanderstehenden Kolonnen, so er-
halten wir, wenn bis ins Unendliche ausgedehnt wird,
m=oco

Sp¥ =—1y e —1

e T e, 1 ..... . e —_— ey
P N N S E o
Wir denken uns die Gleichung mit y multipliziert und dann
zerrissen; so erhalten wir eine Beziehung, aus welcher wir die
Bernoullischen Zahlen ebenso leicht herleiten kénnen wie die Bernoul-
lische Funktion. Wir definieren daher

v m-+-1 Xy
S e

m! T g e’ —1

m=:(
als die Fundamentalgleichung der Bernoullischen Zahlen und Bernoul-
lischen Funktionen.

Der erste Bruch fiir sich betrachtet fiihrt auf die Bernoullische
Funktion, wihrend der zweile auf die Bernoullischen Zahlen leitet.

Wir nehmen deshalb an, es sei

n==00

y - n
= > 20,5y und &)

definieren x(0, Xx) = Konstante = 1 und y(n, x) als n* Bernoullische
Funktion. Die Koeffizienten der Potenzen von y sind also die Ber-
noullischen Funktionen, und wir wollen fiir die n** Bernoullische Funktion
% (0,x) einen Ausdruck suchen. Es wird



- G5 =

ye’ y )
o—-1 == 71 exY=:1+CIIy—-}_.c2y ;{» ...... _]L C;,yl—{— ...... }X
X yu . xn—], yn-—), }
{1+ + + (n—A)! + 3
Der allgemeine Term, Welcher y’1 liefert, lautet
Koeffizi n [n]al) cixn_4
oeffizient von y — |y e
. A=00 ni
i 16_‘__2 axr
»Daher wird —s __ll-o i

Diese Gleichung stellt denselben Wert dar wie Beziehung (2); durch
Vergleichung beider folgt als Wert fir yx(n, x)

=03 n—4 =t
. X cox X
x(n’x)ﬁg (—A! (n 1)!+2 m—a!

Bei der letzten Summe ist ersichtlich, wie auch schon frither, dass
infolge der Fakultit im Nenner A nur bis A=n gehen darf.
Aus der Theorie der Bernoullischen Zahlen ist bekannt, dass bei
y
o7 —

Entwicklung von

- folgende Koeffizienten c, auftreten:

. 1 —1 BZ, )
C=1; ¢, =— 2;021_1——0, Cg)=(— 1) ehlk

daher wird, wenn wir noch fir A den Wert (21) selzen,
=3

| K 1 B n—2ﬁ.
AL e R o 1)r+2( B (21)1 m—en

Da aber @0 (nf——2).)'=- (—2!17), so definieren wir die «n*

Bernoullische Funktion» durch

he=

x(n,x)=-$— . n-‘u1+2(_1) ( ) n—zi.}_ 3)

i=1
Wir konnen die obere Grenze in der Summe weglassen, wenn

/
wir bedenken, dass fiir 4 =—g— der Ausdruck kz) == 1, ebense
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. .. . .. n .
x®=1 wird und fiir ein grosseres A zufolge von (n ‘H‘) = 0, wenn

p posiliv, die Summe stets zu Null wird; die Reihe bricht also von selbst
ab. Der Hauptunterschied dieser Definition gegeniiber den beiden ersten
ist der, dass auf der rechten Seite auch Terme mit x° also solche, die
x gar nicht mehr enthalten, vorkommen diirfen, was diese Definition

: . 1 .
viel allgemeiner macht. Auch der vorgeseizie Faktor FY leistel gute

Dienste, da er das Konvergenzgebiet der Funktion vérgriissert.“) Die
kiirzere Schreibweise durch Einfihrung der Summenformel konnte bei
den iibrigen Definitionen auch angewendet, werden.

§ 15. Die Derivierten dieser Funktion.
A. Einfache Differentialquotienten.

Wir wollen vorerst die gerade und ungerade Bernoullische
Funktion trennen. Ist n gerade, so wird fiir

1. n=gerade = 2m.

|

6 N1 am—1 _ 2M (2m—1) om 2
a—x,g(2m, x)—@ﬁm l 2mx — ) X
A=m 9 l
m m—24—
4 ¥ (1)t B, 2m—22)x "
21/ 4
e l
_ 1 [ go-t_ 2m—1 om»
@m—1)! | 2
: {A-:m
i=m—1 9 1
i—1fa— 2m—2j—1
+§1(—1J ( . )B,_x

0
7% x(2 m,x) = %(2m—-1, x).
2. n = ungerade = (2m--1). Dann ist

% c(@m+1,x) = (?E:T)' { 2m4-1)x°"

— (2 m+1)£§_‘}_ x%aiz (__1)1—-1 (2 m+1) B, (2 m-1—24) xzm_zi._
i=1 24 |



s G =

i=m
o . ;]) -! {xgm . 3;1_ (21 +§ (_1)1—1 (22':) B, xzm—2j.}.

8
5 ¥(@mA-1,x) = y(2m, x).

Wir haben beide Funktionen getrennt betrachtet wegen der obern
Grenze; wir hitlen aber ebenso gut direkt von (3) ausgehen konnen

und dann erhalten
0

10, %) = z(n—1, x). )
Die Able-ituhg einer Bernoullischen Funktion wird gefunden,
indem man den Exponenten um die Einheit vermindert.

B. Die wiederholten Differentialquotienten.

Gestiitzt auf (4) werden
D? x(n, x) = D x(n—1, x) = x(n—2, x). .
D3 y(n, x) = x(n—3, x).

Vg, x) = (o2, x). )

Die wiederholte Ableitung einer Bernoullischen Funktion wird

gefunden, indem man den Exponenten um die Zahl, welche die Anzahl
der Ableitungen angibt, vermindert.

Wir finden hier den ersten grossen Vorteil dieser Funktion
gegeniiber den zwei friilhern Definilionen; es treten keine Bernoul-
lischen Zahlen zu den Ableitungen; die Definition ist demnach all-
gemeiner und liefert einfachere Resultate.

C. Einfache Integralformen.

Da die Differentialformeln sich einfacher gestallen, so thun dies
auch die Integralformeln. Auech hier kiénnen wir vom allgemeinen
Fall ausgehen und es resultiert

f;(ﬂ—l, x)dx = {-Z(“: X) }0

0
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m—-i ' Bm
(2m)!

Da, wie wir spiler sehen werden, x(2m, 0) = (—1) und

x(2m--1, 0) = 0, so entstehen die beiden Beziehungen

fx(zmml x)dx = x(2m, x) 4 (--1)™ _T‘BI;TDW_ und .(6) '

fx (2m, x)dx = ¥ (2m-1, x). N _ (7) |
0
Durch Integration wird somit der Exponent um die Einheit erhdht.
Das bestimmte Integral zwischen den Grenzen O und x einer Bernoul-
lischen Funktion ist wieder eine Bernoullische Funktion mit um die
Einheit erhohtem Exponenten und —- einer Bernoullischen Zahl fiir
die ungerade Bernoullische Funktion.

Wir haben hier insofern eine Vereinfachung, als das Argument
bei der Bernoullischen Zahl fehlt, das bei Raabe und Schlémilch nocbh
hinzutritt.

Fir die obere Grenze x = % wird nach (7)
1

J‘z (2m, x) dx = x(2m—{-1, %) =0

und nach (6)

1 .

? ‘ l)l Blﬂ
fz(2m-1,x)dx::x( m, u) -+ (— ___-_(2"])! .
0

Selzen wir fir x(zm, -—2~) den spiter zu beweisenden Werl%®) ein,

1
' B oo Bm 22 u)_l
so wird J;@ m—1,x) dx =(—1) 2m)! : .

§ 16. Die Bernoullische Funktion mit inversem Argument.

Ersetzen wir in (2) den Wert x durch (1—x), so wird

=37 .
= 2 x(n, 1—x)y", d.h
e’ —1

n==0



(1—x)y
n e

x(n, 1—x) ﬁ_[y] in —L———i—-

Nun wird
— 00
y o7 oX(—Y) ' )
A (s —Z 20, %)(—y) —2 2 (0, )Y =1
’ n=0 n=0

somit ist x(n, 1—x) = (—1)" g(n, x). (8)

Daraus folgt fiir x = 0 unter Anwendung der Definitionsgleichung (3),
wenn n == gerade == 2m
Bm

x2m, 0) = x(2m, )= (=" -

: (9)

!
dagegen fir n = ungerade — (2m--1), wenn x auch = ;_

;é(?m-[—lz 0) = x<2 m-}-1, —‘1)—) = y(2m+41,1)=0, d.h.,, (10)
alle Bernoullischen Funktionen ungerader Ordnung verschwinden fiir

die Argume-}zte 0. —i)— und 1.

. ; 1 ;
Wir fragen uns nun, was wird aus 2(2[(1, 5 ) Um diesen

X /

Wert ausmitteln zu konnen, miissen wir vorerst tiber die Verviel-
fachung des Argumentes aufgeklirt sein.

Wir denken uns die yx-Funktionen y (n, x), %(n,x—l——i—),

' 2 N k—1 '
¥ (n, % +—k ) R R (u, X |- Tcm) aufgefasst als Koeffizienten

von y* in den dazu gehirenden Entwicklungen; dann addieren wir
diese; die Summe T wird, wenn wir dieselbe als geomelrische Pro-
gression summieren,

1 S | . xy
T==— -J*y ye*l = i ——— also
¢ —1 ek —1 ek —1
k—1 & ye
20y %) ~f g { X e g X = =[y"]in ——
’ ek —1

n=0oo

= ()
Es ist aber —) 0 — k( )L ks X(":I\X)( )

eiz‘——, 1 e(Y) —1 ,}WU
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[yn] = ! T X(nvkx)'

kK"
Daraus ergibt sich

z (n, x)‘*‘%(n’x—l-—ll;) +x(n,x+%)
+.....—I—x(n,x’+ k—ki)= 3 k) o

als wichtige Formel, die iiber jede Vervielfachung des Argumentes

1

P ]

Auskunft gibt. Infolge von S bricht die Reihe links von selbst

ab. Die beiden entsprechenden Formeln der friihern zwei Definitionen
lieferten stets zwei getrennte Werte, je nachdem die Bernoullische
Funktion gerade oder ungerade war. Wir ersehen auch daraus, dass
die so definierle Bernoullische Funktion die allgemeinere ist; zudem
ist diese Herleitung vorliegender Formel wesentlich einfacher als bei
Raabe und Schlémilch. '

Aus derselben lassen sich verschiedene Spezialwerte berechnen.

I. Verdopplung des Argumentes. k= 2.

1
20, %) -+ x(n,x +-§—) —:—2-,—}_—1 2 (@, 2X).

Ersetzen wir in (8)die Grisse x durch (x + —é—;) und selzen diesen

Wert in die letzte Formel ein, so wird

n 1 1
y(n, x) 4 (—1) g (n, Tl x) = o x(n, 2x). (a)
Ist darin x ==0 und n = ungerade = (2m-}-1), so wird
¥ (2 m--1, é") ==0; dagegen wird fiir

% =0 und n = gerade = 2m, wenn fiir y(3m, 0) der bekannte Wert
geselzt wird,
1 m 2‘)m-—1_’1 Bm
Ii. Verdreifachung des Argumentes. k =3.
1 2 1 |
%(n, Xx) + X(n! X +"3_) —I'_ X (D, X +"§') = —3;1? Z(n, 3){). (ﬁ)

.

Unter Anwendung von (8) wird fir x =0



T

" n 1
x.(na 0) + Z(ﬂa _;> + (_1) b4 (I’l, ‘g) = ”5,;,1_:1 X(na 0),

n = ungerade liefert die identische Gleichung 0 = 0; dagegen ist
fiir n = gerade. wenn fiir y(2m, 0) der gefundene Wert gesetzt wird,

1 m 1 g™ lg B,

Aus Gleichung (@) resultiert. fiir x:—;— und n=2m

X (2 m, %) — g2m-1 { X (2 m, %) + ¢ (2m,'%~)}. (y)

Einen Wert fiir x(2m ) erhalten wir, wenn wir in (8) fiir

"6

X =6 und n =2m selzen; es ist dann

(o3 x(em ) r (o) = e (en )

1
Daraus folgt, wenn fiir x(2m, 2) der frither gefundene Wert (12)

geselzt wird,

1 - 1 (22m— _1) (1 32m—~1) _Bm

Setzen wir die gefundenen Formeln (13) und (14) in () ein,

. , 2
so ist, was zwar einfacher aus Formel (8) fir x = und n=2m

hervorgeht,
m 1 32 m-—-1 —1 B

2 m
x(gm’§>=(”1) 2T gm-T T (2m)! \1a)

Wir hitten schon dort die zwei Sitze aufstellen kénnen:

1. Jede zwei geraden Bernoullischen Funktionen, deren Argumente
sich zu 1 erginzen, sind nach absolutem Wert und nach Vor-
zeichen einander gleich.

2. Jede zwei ungeraden Bernoullischen Funktionen, deren Argu-
mente sich zu 1 erginzen, sind wohl dem Vorzeichen nach
entgegengesetzt, dem absoluten Werte nach aber gleich.

Bern. Mitteil. 1900. No. 1483.
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II1. Vierfaches Argument. Kk = 4.
1 1 5 3
2(0,X) + 7 (“’ X -} 1‘) |- % (", X |- ‘2) + X(n, x - T)

1
= 411::1“ 7 (0, 4x).
Fir x = 0 wird unter Anwendung von Formel (8) und Einsetzen der’

Werte fir x(2m, 0) und y <2m

1
ﬁ) fiir die gerade Bernoullische

’ 2
Funktion
1 3 m 22111—1_1 Bm
Z <2m* T) = Z (2 m, 4) — (__1) 24111—1 ) (2 m)! : (16)
1 K
Auf idhnliche Weise lassen sich (2 m, ;), ¥ (Qm, w;w), e o
/

7 . ’ :
x(Zm,--S—) und andere y-Funklionen berechnen; die Ausdriicke

werden aber ziemlich kompliziert.

§ 17. Die Bernoullische Funktion mit negativem Argument.

Wir konnen auf zwei getrennten Wegen das Verhalten der Ber-
noullischen Funktion mil negalivem Argument untersuchen, VYorerst
gehen wir von der Definitionsformel (2) aus, miissen aber dabei die
geraden und ungeraden Funktionen getrennt betrachten.

1. Die gerade Bernoullische Funktion. Wir erselzen in (3) n
durch 2m und x durch (— x); dann wird

: [ 2m 2m Im-—1
1(2 imn, — \) s (2[“)7 ] l- . 2 - X
A=1n l
R 9 )

IZ (—1H (m) B, yhm-2l 4
i=1 24 ]
. . 2 m x?m-—l
Durch Addition und Subtraktion desselben Ausdruckes —ﬁﬁ_ﬁﬁ_‘-_

und passendes Zusammennehmen wird

2m-—1

X
z(2m, —x) = %(2m,x) +m

2. Die ungerade Bernoullische Funktion. Durch analoges Ver-
fahren wird
1 [ Zm-+4-1 72ﬂi’;1_ ‘2111

y(2m-}-1, —x) = m l — X 3
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A=m

+2( i1 (?..m—l—l)]3 (—x )2m+1 ~2\

(2111—|—1)x2m. :

Hier addieren und subtrahieren wir T nun ist
x2111

2 Y= 5 SRR, -
x(2m-+4-1, —x) x(@m+41,x) @m)!

Eine allgemeine Formel fiir die Bernoullische Funktion mit negativem
Argument finden wir aus folgender Betrachtung:

Ersetzen wir in Formel (2) den Wert x durch (1-}-x), so ist

=00

(14x)y
S‘ n ye
> 1oy = (a)
n=_0 i
(14x)y y S
ye X ”-1 n
—g— =veT 4+ —1—_yey+2x(n,X)y.
, e n=>y0
Durch Reihenentwicklung von e*7 folgt
(14x)y B n-—l 11 N=00
ye '
Te 1 - (n~—l)' 2 x (0, X)y". )

n==1 n=>0
Vergleichen wir die Koeffizienten von y” der Gleichungen (a)
und (8), so erhallen wir

n—1

X
X(n 1+X) ] 1)' + }((n '() (17)
Ersetzen wir darin x durch (—x), s0 wird unter Beriicksichtigung von (8)
n—1 ]
NPIILS IS S .

Diese Formel geht fir n = 2m und n =(2m--1) in die eingangs dieses
Paragraphen hergeleiteten tiber. Sie dient zur Berechnung der Ber-
noullischen Funktion mit negativem Argument. Auch hier zeigt sich
wieder die Vereinfachung, da Raabe und Schlomilch je zwei ent-
sprechende Formeln nitig haben.

Um die y-Funktion auch ausserhalb des Intervalles 0 bis 1 zu
untersuchen, dient eine Formel, welche wir erhalten, indem wir in
(17) fir (x--1) der Reihe nach setzen (x-4-1), (x }2),..... , (x4-k)
und simtliche so entstandenen Gleichungen addieren; es wird dann
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200 k0 = 1 (0,%) + gy [ 7 - (T
+(2+x)“‘ P —I—(k——l—}—x)““l}. (19)

Eine weitere Formel zur Untersuchung der Bernoullischen Funktion

mit negativem Argument, die uns gule Diensle zur numerischen Aus-
rechnung und Kontrolle der Werte leistel, finden wir, wenn wir in

(8) fiir x den Wert (x —|——é~) selzen; dieselbe geht dann iiber in

(o )mrelnl 0 o

1 :
Diese Formel charakterisiert uns den Punkt x *«é—als Maximal- oder
Minimalstelle.
§ 18. Diskussion dieser Definition.

Setzen wir in der Definitionsformel (3) der Reihe nach fiir n
die Werte 1, 2, 3, . ... .. , 50 nehmen die acht ersten Funktionen
dieser Definition folgende Werte an, die nacheinander diskutiert

werden sollen:

2(2,x) = ;2 — ; + 112

23,3) = —f—— Y +—15—

) =
2,8 = —gp — g s

2(8,%) 77‘260 21; T 2?;8 1::0 + 30;40'
%(1,%) 5(})‘;0” 1:4;) + 1210 4;;0 + 30240
2(8,%) 40,:20 — 10}:);0 -+ sgio ~ 17);130

x? 1

+ 60480 ~ 1.209600
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Wir gelangen hier zu dhnlichen Resultaten wie friher; da aber
auf der rechten Seite auch Terme vorkommen diirfen, die von der
Variabelen befreit sind, so ist leicht ersichtlich, dass nur die ungeraden
Bernoullischen Funktionen fir die Werte x = 0 und x = 1 erfiillt sind;
das Glied der geraden Bernoullischen Funktion, das die Veridnderliche
nicht enthilt, gibt fir das Argument 0 und 1 sofort den Wert der
ganzen Funktion an.

x(1,x) =x — -ﬁ;m stellt eine Gerade dar, die aber fir diese
Definition nicht mehr durch den Ursprung geht.
%(2,x) ist die Gleichung einer Parabel; die Funktion besitzt ein
2 2/ 12
x (3, x) besitzt im Intervall 0 bis 1 sowohl ein Maximum als

- . 1
Minimum bei x = 1 vom Werle y (2 1) ==

ein Minimum, und zwar liegt ersteres bei x =~;~—%\/§, das letztere

—%) = (; diese Kurve,

analytisch gesprochen, ist eine Art Parabel hohern Grades.

dagegen bei x——z-%w—l——é—\/g; zudem ist y (3,

/

1

Die Funktion y (4, x) besitzt bei x = é— ein Méximum_‘vom Werte

m57760 ; zudem ergeben sich zwei Minima bei x=0 und x =1, so
1
dass x (4, 0) = x (4, 1) = — =55~

Was x(5, x) anbetrifft, so isl diese Funktion als ungerade Ber-

noullische Funktion erfiillt fir x =0, x :~—1~ und x =1; sie weist

2
ein Maximum auf zwischen ) und 1, wie auch ein Minimum zwischen
1
0 und 5

d

Alle diese hohern Bernoullischen Funktionen stellen Parabeln
hoherer Ordnung dar.

Wir erhalten somit folgende Bilder des Verlaufes der Bernoul-



— 46 —

lischen Funktion zwischen den Grenzen 0 und 1; im wesentlichen
stimmen sie mit den bei Schlémilch dargestellten iiberein.

: Figur 1. /—r\
Ny Y% P i N
’ \_E_/ ‘. v Y N

Figur 2.

Die Funktionen sind charakterisiert durch®¢)

Figur 1, wenn n=2, 6, 10, . . . . . , (4k—2),
» 2, » n=4,8 12 ... .. , 4Kk,
» 3, » n=38 7,11, ..... , (4k—1),
» 4 > m=5,9 13 ... .. . (4k--1).
Figur 3. Figur 4.

§ 19. Entwicklung der Bernoullischen Funktion in Reihen.

Wir konnten hier analog verfahren wie Schlomilch®S); zudem
wiirden wir noch viel rascher ans Ziel kommen, da das Integral, welches
bei dieser Herleitung auszuwerten ist, leicht dargestellt werden kann.3®)
Schlifli geht aber ganz auf seine Arlt und Weise vor; er untersucht
vorerst, was wird aus

a « a? o o"
7115_'_1“_‘_77—#”', ...... Jr"i",;Jr ......... -, -
n=—
Multiplizieren wir mit xl, so wird
n=00 2 i=o0 3
X nl - aX
2 Tn -——[a ] mn 2 I—a (a)
n=1 i=1
Laut Theorie der Gammafunktion gilt fiir ein beliebiges a die
ot a1 —a 1— b—1 cme I o T(l_"a) F(b)
Beziehung®’) fx (1—x) " " dx=2isinamw Th—at1) '

substituieren wir fir a den Wert (1—n) und setzen b =1, so wird



1 1 n--1
*114_“2isinnnfx O ()

D

Diese Formel gibt uns ein Mittel an die Hand, obige Summe durch
ein bestimmtes Integral auszudriicken. Ist t die Integrationsvariabele,
so wird nach (3)

1 1 e—j—1 (_ 1)1 {‘ «—A—1
etz t e T d t-
(a—2A) 2i sin (¢—A4) ﬂ(f dt 2isina v '

Die Summe geht dann iiber in

d=0cc i=00
a‘(
la— 2 1—1
—a 2 smanf (—1)
=1 i=1

- a {.ta X dt
~ 2isinam tx ot

~——

Der gefihrliche Punkt des Integrales ist t=—x; fiir diesen
wird der Nenner zu Null, so dass der Wert des Integrales oo ist,

wir miissen daher die Schlinge um (— x) gehen lassen, diesen Pol
also ausschliessen, und wir betrachien

=00 1
S ﬂ . (14 ta thv (
Hl—am 2isine t (t+4-x) 2

Dieses Integral ist aber kein Schlingenintegral mehr; denn es nimmt
nach einem ganzen Umlauf seinen urspriinglichen Wert an. Wir
dirfen dann auch spiter, ohne den Wert des Integrales zu verindern,
eine additive Konstante beifiigen, welche wir so auswihlen, dass sie
fir unsere Zwecke passt.
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Durch Substitution von t“= e“*" wird
’ Logt 1 ‘
21na(——-+~)
o * o ‘
at” al 1 2izae 2in 2
i Qi T lem —ien 9j ’ 2ig )
2isinasw  Gler e 217 plem 4

n=0oco

.1 Logt 1 e
T 2 27‘("’ i ’7_2_) (2t7za) %)

N=

Somit ist [an] = (n Logt -+ %) (2iz)"

2iz *\ 2ix
Deshalb wird, wenn wir die Gleichungen (e) und () beriicksichtigen,

' (2in)" Logt 1
2 gz ) M3 T2)

- - . Log x [ xdt
) (e )y @

wobei die zugefiigle Konslanle den Werl hat

Log x xdt

e x(“’ 2m) ((Fx)

Wir wollen nun darnach trachten, x auf die Peripherie des Einheils-
kreises zu bringen; zu diesem Zweck miissen wir uns aber zuerst
iiber Logt und Log (—x) ins Klare setzen; vor dem Nullpunkt wollen wir
uns hiiten, weil in demselben eine starke Transcendenz vorbanden ist.

Log (—x)=—in(—p) 4+ 2i7n @; @=Konstante. p =0, so-
bald (—x) auf der Peripherie des Einheitskreises liegt.

Wenn t=e""* """ wird Logt=— i + 2img.

¢ = Bogen von 0 bis 1; wenn L =x, soll ¢ = @ werden. Dann sind

Y 1\, Loglt 1 __Logx
Logl=2in (go ?), @ = 277 5 @_Konstanle__vzf;;-,
—'%’E""—_——“2ilrd50.
Selzen wir diese Werte ein, so wird aus (d)
A=o00 " n
x* _ (2im) { x dt
;1 ' CT % (0, ¢) — x (n, @)}TE_‘F}Y ()

-1 -Xx,0



Der Klammerausdruck unter dem Inlegralzeichen wird dann in
dem Momente zu Null, sobald ¢ — @ geworden; somit ist

2in @ 2in
X =8 ; t=—o So;

ezin'@ _ ein(go-[—@)-—iﬂ(gp—@); e2iﬂ90 — ei n(go+@)+i;'r(ga——@);
Lix o THO)—im(5-0) _ in(p10) +in(p-6)

=—o ' "#T®) g5y (¢p—6) m;

e = %{ 1-}icotg ((p—@)'ft}-

Substituieren wir diese Werle ins Integral (¢), so erhallen wir

X" (2176)n 1
2 ”)‘:ﬁ:"‘g;[— {x(n,ga) — x(n, @)}né—{l-H colg (¢—0) 7z 2i 7z d.

Ty
\\_}

i . 2i : . .
Selzen wir jelzt x = e m@’ so bewegt sich die Variabele auf
dem Einheitskreis von O bis 1, und es wird

l:ooezm Ol ) 1 i l
2 o = (2in) f{x(n,go)—x(n,@)}E—{l—}—icotg(gpwﬂ));zjdgp, (1)
=1 o

Wegen i" solllen wir die Fille fiir n= gerade oder n = ungerade

trennen; um dies zu vermeiden, ziehen wir vor, beide Seilen mit
7T

(——i)n= e % zu multiplizieren; dann wird (n) zu

A=o0o (2 al@—2%
e 2

ln
A=1

:(2n)nJ{x(ﬂ,@)—x(ﬂ,@)}—}g{1+i60lg(§0—@)n de. (21)

Diese Formel gill auch fir &= ¢, da dieselbe dafiir nicht unstelig
wird. Wegen der Cotangente ldsst sich anfangs leicht glauben, das
Integral werde unstetig; doch ist ja im Nenner der Cotangente der
Sinus, der sich aufden Bogen (¢ — @) reduzieren lisst. Dadie y-Funktionen
algebraische Funktionen nt® Grades sind, so geht die Klammer in
tiefster Anniiherung iiber in (¢"—o"); somit verhill sich das Integral
Bern. Mitteil. 1900. . No. 1484.
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wie 520—: ; ein solcher Ausdruck ist aber endlich und daher auch
das Gesamlintegral fir ¢ == 6

Herausheben der Komponenten.

In obiger Formel (21) sind sowohl reelle als imaginire Besland-
teile enthalten. Wir wollen nach dem Moivreschen Grundsalz der
Trennung des Reellen vom Imaginiren die einzelnen Komponenten
herausnehmen, da wir zerlegen kinnen

A=o0 (27110 A=00 Nz
N _..2005(2,1 @—7)

i=1 i=1
=00
R
—+i Z sin (2175@— i:—) (o)
A=1
A. Die reelle Komponente.
Dieselbe wird
=00 nz ‘
cos (24760 — —- 9,0 (!
2 - ( n : ) =( ) IZ(D)ED)WX(I]:@)}dSD (1))
s ) 2, |

Dieses Inlegral muss ausgemitielt werden. Wir wissen, dass durch
Integration der Grad einer Bernoullischen Funktion um die Einheit

sleigl; somit wird fir n gerade oder ungerade
1

1 ,
f 2 (n,@)dg ={ 7 (0+1,¢) }G: 0

denn die ungeraden Bernoullischen Funklionen verschwinden fiir die
Argumente 0 und 1 und die geraden weisen denselben Wert auf, der
hier das eine Mal mil negatlivem Vorzeichen genommen werden muss.
Es zeigt sich nur die Ausnahme fiir n=0; doch miissen wir diesen
Fall ausschliessen, da sonst links alle Nenner zur Einheit werden.
Ferner ist x(n,@) in Bezug auf ¢ als Konstante zu belrachlen,

1
a]sof%(n,@)dgp:x(n, ®); daher wird (»)

0
=00

2c05(2ln@—~) (27;)?%@,9).

2’11

A==1
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2 v 00%(2l7rt9—~m)
10, 0) = ——— > : : (22)

(2 72)" —- A
Dies ist wieder eine weil allgemeinere FKFormel als die ent-
sprechende der friihern Definitionen; aus derselben erhalten wir leicht

die den friihern gleichwertigen Beziehungen; die einzige Bedingung
ist 0 <<o<L1.
Die Formel konvergiert ganz unzweideutig fir n =2, 3, 4,

fiir n=1 miissen wir die Konvergenzfrage noch genauer priifen; es
wird fiir n=1

l=o0 =
cOS (23.750 — - [') RN sin2d7c6
Z ] T Z A

:—'76%(1,@)=——ﬂ' (@——%")

Der hochste Werl von sin24 sz © kann nur 1 sein; dann niherl sich
die Summe der Reihe der Stammbriche, welche divergent ist. Die
Folge davon ist, dass die Werle ® =0 und ©=1 ausgeschlossen
werden missen. Ist n nahe bei Null, so schreitet der Zihler fort
nach 2720, 470, 6n06,...... Die Summe dieser Ausdricke wird

aber oo gross; die Konvergenz erscheint daher sehr verdéchtig; aber
fir 272 0 = ist

}.:OO l:oo

sindy sindy o Y
= 2 -2 Ty YT 2T 2
i=1 A=1

Wir selzen A= u; dann dirfen wir ein sehr kleines i als du
belrachten, so dass ist

=00
sin _ T Y
2 L =T
d=1
it = A durchliuft die Wertereihe g, p-f-p, p-2 ¢, .. ... , d.h., wenn

y klein genug gewihll, so gehl u von 0 bis oo; somil wird die Summe

U._

2 sin w du—'f?lqu 2

Also ist der Ausdruck konvergent, da wir hier einen endlichen Wert
erhalten.
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Wir kehren wieder zu unsrer reellen Komponente (22) zuriick
und wollen die Fille n — gerade == 2 m und n = ungerade = (2m--1)
trennen.

Fiir n = 2m wird cos (24 720 — m 7z) = (—1)"™ cos 24726, also

l:OO

c0s247z 6 et (272)°™
2"—7@.—;—‘——( 1) 1Lﬁ)—x@ﬂh®)- (23)
1=1

Dies ist eine den Raabeschen Definitionsformeln entsprechende Be-
ziehung; nur fehlt hier wieder der listige Zusalz der Bernoullischen Zahl.

Setzen wir darin @ =0 und beriicksichtigen den Wert fiir
x(2m, 0), so wird

" A=o0 "
1 1 (2w "B
g _Iém == S2m = ? (2[1])' A (24)

Da ¥ (2m, 0) =y(2m, 1), so wiirden wir die nimliche Formel erhalten
fiir 6=1.

Fir n = (2m 4 1) wird cos (227;@—- mrcm—ﬁ) =

2
(—1)"sin 247z ©; dies in (22) geselzt, gibt

=00

sin 247 6 gy 1 m
ol e — = (D" @A @mt1,0).  (25)
=1

1 . L . y
Fir 6= 0, 37 1 resultiert daraus die identische Gleichung

0==0; dieselbe entsteht ebenfalls, wenn wir (23) nach & ableilen.
Differenzieren wir {(25) nach 6, so entsteht wieder Formel (23); alles
dies sind Kontrollen der Richtigkeit.

Spezialfille dieser ungeraden Bernoullischen Funktion sind losbar
und sehr zu vereinfachen, wenn ein Mittel gefunden wiirde, um die
ungerade Bernoullische Funktion durch Bernoullische Zahlen oder durch
geeignele bestimmte Integrale auszudriicken; doch stésst man gerade
bei letzterer Aufgabe auf die Summierung von komplizierten Aus-
driicken. So wird z. B. fiir @=—i- aus Formel (25)

A=00 . x T
sin 4 - 1 1

2 m—1 2m-41
e — (1) 5 @)y (2 m-}-1, —4—)
A=1



sin A — | 1 1 1
Es wird e
l?m-{—l 2m--1 2m-41 2m-+41
e 3 b 7
=00
e =
...... — 1 (22‘_1)2m+1 = 2m+11
A=
, m—1 1 m
somit Hypry =(—1) 1—2—(27r)2 +1x(2 m-1, %) (26)
1 1 1 1

Ahnliche Formeln konnte ir flir @ =—, —, —, —, «««. 3
iche Formeln konnten wir fiir 5’83 13 ab

leiten; jedesmal kommen wir auf Funklionen, die den Bernoullischen
Funktionen nahe verwandt sein miissen, da sie ganz ihnlichen Summen-
- formeln geniigen.®?)

B. Die imaginire Komponente.

Zuriickgreifend auf Formel (21) und (¢) wird, wie leicht einzu-
- A=o00 ni

_ sin (2470 — 27
sehen 1ist, 2 o
i=1

1o "
=5 " | {200,9)— 2(n, 0)] colg m(p-—0)dp. (@D)

0
Es ist dies wieder eine ganz allgemeine, siamtliche Fille einschliessende

Formel.

Fir n = 1 wird, da sin <2Zn9— g—)z—coszlx@,
l=0c0 1
2 Lsg%if_”_:_”[ {2(1, 8) — 2(1, 9) | cotg 7z (p—0) dg.
L =1

Nach lingern Umwandlungen, wobei als Inlegralionskonstante
Log 2 genommen ist, wird, wenn © als Konslanle weggelassen, also
bei verindertem ¢ = ¢,

A=00
N cos2Amw O :
2‘ — = Log (2sinsz ¢,).
A=1
Es ist auch, wenn (¢ — @) =¢, gesetzl, da die Grenzen (— ©) und

=00 n

sin (2 Am® — —
(1— @) werden, 2 - =
i=1 A
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1—6@
n 1
= (27) “gf{x(nz%‘l— 0) — (0, ©) Jeolg 7w ¢, dg,.
)
Das Inlegral rechis bezeichnen wir mit S; es lisst sich zerlegen in

1—@
S =f{ x(n, ¢, -} 6) —y(n, ©) } cotg 7z ¢, do,
0

+0
- f{ x(n, (')_991) — x(n, 0) } colg 7z pldspl’
by

wenn im zweilen Integral zudem noch ¢, durch (— ¢,) ersetzl wird.
Wir konnen nun parliell integrieren, indem wir seizen

1
fcotg e, do, = - Log (2sin 7z ¢,).

Die finiten Teile der partiellen Integration aus beiden obigen
Integralen der Summe S werden, wie wir uns durch Ausfiihrung der

Integration tberzeugen konnen, zu Null; es bleiben nur die infiniten
Teile, und es wird
A=00 nsm

sin (247w0 — 27
2 i

i=1

e
| 2 :
:—2—(27:) ;[vLog(Q sin7zz ¢ ) y (n—1,0—¢)d ¢,
5

1 1 1—6 ;
== g (2 =)" s fLog (2sinzzg) y(n—1,¢, -}- 0)dg,.
b

Da fir n=(2m 1) der Wert sin (217:@—-11171—-1):

2
—¢08(2A7w O—mr) = — (—1)" cos 247z 0, so wird
A:OO
E (—1)"™ ! cos2A 7 6
2m-1
Bl A

e
=@ f Log (2sin 7 ¢,) 7(2m, 6—g) dg,

0
1—6
—en" f Log (2sin 7w ¢,) z (2m, ¢-1-6) dg,.
0
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Fir ® = 0 verschwindet das erste Integral, und es ist

i=00
1 m : ' :
; Bl = (—1)"(2 7;)2 fLog @sinzz o)y (2m, p)de, (28)
= y

wenn wieder ¢ als Inlegrationsvariabele gewihlt wird.

Mit Hiilfe dieser Definition als Reihenentwicklung ldsst sich die
Raabesche Restformel ableilen; dann konnen wir den Zusammenhang
derselben mil der Riemannschen Reilhe nachweisen; diese Beziehungen
sprechen deutlich fiir die Allgemeinheit dieser Definition. Alles hier
- auszufiilhren, wiirde aber den Rahmen vorliegender Arbeit wesentlich
iiberschreiten. )

§ 20. Integrale mit Bernoullischen Funktionen.

Schlifli selbst gibt in seinen Vorlesungen keine Integraldarstel-
lungen der Bernoullischen Funklion. Dieselben gestalten sich aber
wesentlich einfacher als die entsprechenden der frithern Definitionen.
Dieser § liesse sich beliebig weil ausdehnen; es taucht eine grosse
Mannigfaltigkeit an Integralen der Bernoullischen Funktion auf. Wir
geben hier nur die zum Vergleich wichtigen. Gute Hiilfe bei all diesen
Darstellungen liefern uns die Formeln (23) und (25).

A. Einfache Integrale.
1. Fiir die gerade Bernoullische Funktion.
Es inleressieren uns einige Spezialfille der Formel (7); selzen

. . . ; 1
wir darin fiir die obere Grenze der Reihe nach 3 1 und %, S0
1
3 —1)" /3
wird vorerst f y(2m, x)dx = (1) "m\—/H BZm--|-1’ wobei (29)
s ‘ (27)
1 ' 1 1
Bzm+1 =, e gZmtl = JRESE! - 2t
A=00

k'_ — P 1 . 1 .
sl (3l_2)2111+1 (3 ,-{_1)2111—[—1

Die Funktion HZm-{—l lasst sich unter Anwendung der Formel

] ] b o
K" I'(a)
0
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aus der Theorie der Gammafunktion*!) in ein bestimmtes Inlegral
verwandeln, so dass wird

. 1 o;Zm { e—x_e—2x} ‘ '
Ry = @m)] T dx, somit folgt
0
= 1 I 75 ( 2
3 1"V 3 X*Mle *—e” “Fldx
fx(2m,x)dx= (2m+)1 v f e 19X 30,
. @yt rEemt1), 1—¢
1
Analog ist f 4(2m x)dx—wll wobei  (31)
. X ’ (2 n)z m-1 2m+4-1?
1 1 1
H2m+1=1_ gZutl -+ —om41 72m
ey A—1
B IE— = (=1)™

P (2].’__1)2m+1'
Durch Anwendung derselben Formel (&) wird

o0 2m
Homp1 = F(9m—[—1)f = dxwzr(2m+1)f cofx 4%

m—1 2m
also fx(mn,x)dx: (;;1)1 2 [‘ xx — dx
(2 7r) re m+1)6 e -}-e

0

(—1)[]1—-1 fochZI.ll
= 2m-+1 cof x dx. (32)
@)yt rEentn),) of
Entsprechend folgt

X

6 _ m—1,/ o5
fx(2m, x) dx :( (;L)zml/lg Gypyyr  Wobei  (33)

0

1 1 1
G2m+1="1+ oZmil - FEES =S p2mt1

L ' )A—l ( )1—1
—I- —l— ...... 2 (31 2)2m+1 —|— (3) 1)2m+1._

Wie friiher durch Integrale dargestelit, w;rd



2111 —x_I_e—-‘.’.x} ] .
2m+1 F(2m—|—1) 146 —3x X, somi

% . (_l)m——l \/_?T [’C’;Zm { e—x+e—2x}
J% (2 m, X) dx = (zn)21n+1r(2 m+1)6 1+e—-—3x dx. (34)

2. Fiir die ungerade Bernoullische Funktion.

Hier vereinfachen sich die Werte bedeutend, da wir alle durch
Bernoullische Zahlen ausdriicken konnen. Gestiitzt auf (6) werden,

G

) . g 1
wenn wir wieder der Reihe nach fiir die obere Grenze 5 % und

1
5 und fiir die untere Grenze stets 0 setzen, folgende Formeln auf

einfache Weise, durch Einselzen der von friher her bekannten

Formeln (9), (13), (16) und (14), entstehen
1

5 ; e ! 32" _1 B,

y(2m—1, x)dx = (—1) 2 T @m)l (35)
(4]

L Am—1 | o2m—1

i w2 42T —1 By
fx(zm—l,x) dx = (—1) oim T @m)! (36)
0

1

. 1 62m— _|_32m-1+22m-— -1 B

fx(2m—1 X)dx = (—1)" — P Bl 37)

0

B. Iﬁtegra.le mit trig. Funktionen.

Nehmen wir r als posilive ganze Zahl an, so wird nach (25)

1
fx(2m+l,x)cos 2rxdx

0 1 A=o0c
—1)" 19
((21))2m+1 f 2 Sm;n}:ﬁx cos 2r w x dx;
1

da aber sin24zzx.cos2rzex dx =20 fiir alle Werte von 4, so folgt

1
fx(Zm—{—l,x) cos 2r zx dx = 0. (38)
0 .
Bern. Mitteil. 1900. No. 1485.
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Da wir auf die Auswertung eines analogen Integrales kommen,
wenn wir die gerade Bernoullische Funktion mit sin 2rszzx dx kombi-
nieren, so wird, was auch direkl hiille gezeigl werden konnen,

1
fx(z m, X)sin2rzxdx =0. (39)
0
Wir verbinden nun gleichartige Bernoullische Funktionen und
trig. Funktionen; es wird

1
fx(Qm, X)ecos2rzxdx

Q
1 111-1 l
( ) fz 0052; X cos 2rse X dx.
275)

1
Der Ausdruckf cos 2 7c A X .cos2rz xdx verschwindet fiir alle Werle

V]

des ganzzahligen A4, mit Ansnahme von A ==r; dafiir wird
! 1
f cosgzrnxdx_——_—g-
0
Von der Summalion unter dem Integralzeichen bleibt somit nur
1 1
5 ——13;—, daher wird
1 (__1)111—1
x(2m,x)cos2rzxdx = 5 (40)
s (27r)

Die entsprechenden Erliuterungen gelten' auch fiir die ungerade
Bernoullische Funktion verbunden mit sin2rzxdx; also

"L . (—p™ "
Jx(2m+1,x) sin2rz xdx = (41)

(27er) 2m AT

0

Daraus ergibt sich der

Satz : Die Integrale einer Bernoullischen Funktion verbunden mit
einer ungleichartigen trig. Funktion werden zu Null, verbunden mit
einer gleichartigen nehmen sie einen bestimmten Wert an.

Wir kionnten auch Integrale mit den (rigonomeltrischen Funktionen

im Nenner untersuchen; doch wiirden uns diese Unlersuchungen zu
weil vom eigentlichen Thema wegfiihren.



C. Integrale von Produkten der y-Funktion.

Wir gehen wieder von den Formeln (23) und (25) aus und
unterscheiden:

1. Beide Bernoullischen Funktionen seien gerade. Dann wird

1
J:f‘ x(2m, x)z(2n, x)dx
b A=00 =00

(—1)™ 2 (—1)" e f 2 2 c0s? 2 4 7¢ X
(2 ﬂ)zm (2 75)‘311 lam T.2n

Bekanntlich sind

vo| =

! 1 1 (% 1
605221nxdx:_——§—; cos%lnxdx:r; coszzlnxdx:g-
Q. E' h
Somit resultieren, da die Doppelsumme verschwindet, wenn wir fir
A=00
N 1 . . .

EmEEm Samton den Wert in Bernoullischen Zahlen selzen,

|

die drei Formeln

: _____ m-n
f%(zll],x)x(2n,x)dx=:( 1) Bujn

(2m—-2n)!
0
5 +
- _'_4 1 ("_“l)m nB111+n
f,{(Zm, x)%(2n, x)dx == o T @miznl (42)
0

1
1 ( _1\)m+n Bm-f—n

f/(‘.?.m X) x(2n, x)dx == CREET]

0

)
1 1
1 ] 4
Also folgt Fx)dx=2 | F(x)dx =4 | F(x)dx, (43)
0 0 0

wobei F(x)=»(2m, x) 4(2n, x) ist.

Lassen wir m =n werden, so verindert sich (43) nicht, nur

dass dann F(x) == 1 v (2m, x)} wird, wihrend die Formeln (42) iiber-
gehen in :



: B2m )
f{x(Zm,x)} dx = @m)’
’ 1L
; 1  Bom
af{”(Qm’ 0 O =5 (44)
1
! 1 B2m
{x(Zm,x)}dx-:T- (4m)! )

2. Beide Funktionen seien ungerade. Es wird

L
f x(Cm4-1x)x(@n-}-1,x)dx

0 l=o0l=00
(=P le(—1) e f' 2 2 Sin?2 A7 x
- 2m 2n--1 m n+1
@)™t (2m)™t -l = e

Es sind bekanntlich

1 1
. 1 [ 1 (8 1
sin22lmxdx=?; sin%ﬂnxdx:z; sin22lrsxdx=—8_-
0

0

A==00
, " 2 1 .
Deshalb resultieren, wenn fiir BT = Sy ntonye der Wert in
=l

Bernoullischen Zahlen gesetzt wird, da die tbrigen Integrale der Doppel-
summe zu Null werden,

J rEmHL Y@ de = (1™ mif51+iz)1'

1

- m+n _j_-_ Bm+n+1
fx(2m+1,x)x(2n—|—1,x)dxr-—(—1) 9 ! (2n1+2n+2)! (45)

0

1

4 m--n 1 Bm n
J ¥ @m1,x) 7@, N de= ()™ o |

Es wird also auch hier die Beziehung gelten

1 1
. 4 ]
JG(x)dx=2fi}(x)dx=4Jt}(x)dx, wobei (46)

0

G(x) = x(2m+1,%) £ (2041, ).



Lassen wir wieder m = n werden, so erfihrt die Beziehung (46)
keine Anderung, nur dass G(x):{x(2m—|—1,x) }2 wird; die Formeln
(45) gehen dann tber in

1
2 Bm 1
J{%(zm—l—lﬁ X)} dX=—(4—n?_}j_2)! )

2 2 1 Bomt1
f{x(2m+1,x)g dx =gt 7)

f remt o o=l

3. Eine Bernoullische Funktion sei gerade, die andere wun-
gerade. Dann wird

1
f x(@m-}-1,x) x (2m, x)dx

0 1 0O A=00
(—1)™1 g (~1)"“12 sin24d7zzx.c0824 %
= Tmf1 an m-|—1 2n dx.
22y (2 =) A
1
Weil fsillzlnx.cos22nxdx=(), so wird
¢
31
f y(@m--1, x) y(2m, x)dx == 0. (48)

Wir erkennen daraus den
Satz: Die Integrale eines Produltes zweier Bernoullischen Funktionen
nehmen einen bestimmten durch Bernoullische Zahlen ausdriickbaren
Wert an, wenn die beiden Bernoullischen Funktionen gleichartig, ver-
schwinden aber, wenn dieselben ungleichartig sind.

Die Integraldarstellungen lassen sich noch beliebig weitl aus-
dehnen; doch miissen uns diese Belrachlungen genugen.
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IV. Die Definitionen nach J. W. L. Glaisher.

Nachdem Dr. Glaisher schon in einer friihern Bekanntmachung
«On series and products involving prime numbers only»**) auf die
Bernoullische Funktion gekommen ist, widmet er derselben eine
eingehende Besprechung in der gleichen englischen Zeitschrift, be-
litelt «On the Bernoullian Function».**) In dieser 168 Seiten um-
fassenden Abhandlung gibt dieser beriihmle englische Mathematiker
eine grosse Menge von Formeln; ja er begniigl sich auch nicht mit
einer einzigen Definition, sondern fiihrt deren mehrere an. Wir treten
hier nur auf diejenige Definition niher ein, die uns fiir die all-
gemeinsie und bequemste erscheint, ohne dabei die ibrigen zu ver-
nachlissigen, da wir alle aus der zu besprechenden Definition leicht
herstellen konnen, weil sie durch einfache algebraische Beziehungen
verbunden sind. Eine weilere Arbeit «On the definite integrals
connected with the Bernouwllian Function»**) von demselben Verfasser
gibt uns eine belrichlliche Anzahl von bestimmten Integralen mit
Bernoullischen Funktionen.

Die Formel, die Glaisher einer eingehenden Belrachtung unter-
zieht, laulel anfinglich
B 5 == ); - é—x““l -+ E‘zi—l— le"_'2

_n 1)(n4!2) (n d)Bzanf;_i___ ...... (1)

§ 21. Herleitung der Definitionsgleichung.

Wie schon Raabe, so gehi auch Glaisher aus von der bekannten
Beziehung fir 0 <'x <(1%)
si ) sin 6 ’
sin 2 7z x - ‘““2’” o+ 5“‘3’”‘ NI :,K(%_x).

Durch Multiplikation mit dx und Integration zwischen 0 und x wird

1—cos2x | 1—cosdzex | 1—cosb7 X X KX
27 + 8 + 18 ¢ s e = (_2_ o ?) ’

multiplizieren wir mit (— 2s) und zerreissen danun, so folgt, weil
2 .

1 1 . 7T
1_I_§_l_3_2+ ...... :62:—5—,
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cos4m cos B x x?2

cos2 7 x -+ + e =2ﬂ2{?_i+_1_},

Durch w1ederholte Integration und Multiplikation mit (—2 ) entqtehen
nacheinander '

sin 4 s¢ X sin 6 7z x 2278 | x3 %2 X
SIS R il BNcaeaieie i P B SR O I
L L 21{3 2F3}
cosdrx cos 67z X
cos 2 7 X -}- 5 +- - 34 |
286 [ xt x® | x2  Be
= '{'Z—?+?_T}
s 4 - 6 .
00527cx+0% 2171; X T CoS 2152\
2 3
(-_1)11—-12211—-176211 - an
= BRI — En—1] B, (x)+4(—1) (2)
stn@arx - sin4 .z x sin 67z x

‘)n -1 + 32114—1_—
(_1)n+1 2211 ﬁ2n+1
+ ...... —_— (2 n)' 13211+1(X). (3)

Darin bedeuten B,(x) die Klammerausdriicke der obern Formeln; es
sind dies die «Bernoullischen Funktionen». Die beiden Formeln (2)
und (38), wie auch die friihern, sind rationale und integrierbare Funk-
lionen von x. Der erste Term von (2) ist von der (2n)*® Ordnung;
der letzte Term der Bernoullischen Funktion in (2) ist vom 2t Grade
in x; der erste Term der Bernoullischen Funklion in (3) ist vom
(2n-}-1)ter Grade, wihrend der letzte in Bezug auf x linear isl.
Also ist nach dieser Definition B,(x) eine Funklion von x, die
keinen von x freien Ausdruck enthalten dar{. Der Ausdruck, der
von x unabhingig ist in den obigen Entwicklungen, stelll slets den

Wert der Reihe 1 —}———l— n—{— + ----- , ausgedriickt in Bernoul-

lischen Zahlen, dar.

Diese Definition der Bernoullischen Funktion stimml nun ganz
mit derjenigen von Raabe iiberein, wie auch Glaisher bei seinen ersten
Untersuchungen tber diese Funklion die Raabesche Definition benutzt
hat, und es ist

By ()= B"(x)  und By ()= B’ (x).
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Glaisher filhrt dann die Unlersuchung tber diese B,(x)-Funktion
in ausfiihrlicher Weise durch, wobei er Raabe in vielem wesentlich
erginzt. Er beriihrt anfangs ganz kurz die Funklion mit inversem
Argument, dann die einfachen Ableitungen und gibt die Spezialwerle
fir x=0 und x=1. Sodann leitet er Reihenentwicklungen ab, in
welchen die Bernoullischen Funktionen als Koeffizienten auftreten.

Alles dies sind Eigenschaften, die mit der Raabeschen Auffassung
iibereinstimmen und bei denjenigen von Schlomilch und Schlifli zu
entsprechenden Resultaten fiihren.

Glaisher erwihnt auch, dass die Bernoullischen Funklionen

ax

: e —1 . :
die Koeffizienten der Entwicklung — N darslellen und leitet mit
e ——

Hiilfe dieser Auffassung einige Eigenschaften her. Hernach gibl er dhn-
liche Beziehungen von aufeinanderfolgenden Bernoullischen Funktionen
dieser Definition, entsprechend den Darstellungen bei den friiher be-
trachteten Definitionen, und erwihnt auch die Funktion mit negativem
Argument. %)

Uns inleressiert diese B,(x)-Funktion weniger, weil sie mit der-
jenigen von Raabe iibereinstimmt und weil dieselbe zu wenig allgemein
ist, da auf der rechten Seile die Reihe mit dem Gliede in x? oder x
abschliesst. Auch Glaisher sah sich gezwungen, zur Vereinfachung der
Koeffizienten der Entwicklung nach B,(x)-Funklionen

ea (2x—1) _l_ e——a 2x—1)

Bl
2 : -—=1+(2a>2=B2(x)+~2—}

" —e~

2 a)* B,
4- 5 134(,()_?}_,_ ........

fiir die Klammerausdriicke einfachere Funktionen einzufiihren, und
er Lthut dies, indem er setzt

n— Bn
Ay, (x) =B, (x) + (—1) ' on Apnp1(®) =By, (x).  (n>0).

Er selbst sagt, dass diese neue Funktion A,(x) als analytische Funktion
praktischer sei, da sie weniger komplizierte und systematischere Resul-
tate liefere. Da jelzt bei der geraden Bernoullischen Funktion durch
diese Setzung auch ein von x freier Term vorkommen darf, so steht -
diese Funktion in enger Beziehung zu derjenigen von Schlifli.*%)
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Nach obigen Erliulerungen werden somit

.__ 1 on 1 2n—1 2“) ng
A, (xX)= on {x — 3 2nx —}—(2 B, x

o o1 s ol (_; 1" (zjn—z) B x4 (—1)""' B, }

1 feapn 1 on 4 (20N any
A ()= a1 {x 5 (2n+1)x +( 9 B x

ond1\ L. . _/2n+1
_( | )B2x2 S (=1 ( n )th}.

Die Reihen brechen von selbst ab; beide lassen sich in die all-
gemeinere Formel fiir ein beliebiges n zusammenziehen

1) a n oy I n—2 I n—i ~
An(")—T<" 2 " +<2)Bl" —\g)Br T @

Die Reihe geht so weit, dass rechts keine negativen Koeffizienten

auftreten diirfen; der letzte Term enthilt (ni 1) oder (2), je nach-

dem n ungerade oder gerade ist.
Diese Definition wollen wir nun eingehender betrachten.

§ 22, Die Derivierten dieser Definition.
A. Die einfachen Differentialquotienten.
Wir gehen von der Definitionsformel (4) aus und differenzieren

dieselbe nach x; dann wird

0 o n—1 1 n—2 n—1 n—3
Fm = ) (1B

n—1 _ :
__( i )Bzxn 5+..._ .......
0

T ox A, (x)=m—1A_,®). : (5)

Diese Formel geht fir n=2m und n=(2m-}1) in die ent-
sprechenden Spezialformeln fiir die geraden und ungeraden Bernoul-
lischen Funktionen der Definitionen von Raabe und Schlomilch iiber.
Hier sind die zwei Spezialfille in eine Formel zusammengefasst; nur
steht noch ein Faktor vor der Bernoullischen Funktion, der bei der
Schldflischen Definition fehlt. Schon dies ist ein Grund, dass die
Definition von Schlifli den Vorzug verdient, da die einfachen Ableitungen

der y-Funktionen wieder reine x-Funktionen liefern.
Bern, Mitteil. 1900. No. 1486.
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B. Die wiederholten Ableitungen.

Solche finden sich bei Glaisher nirgends; dieselben sind jedoch
leicht zu erhalten; doch tritt stels ein komplizierender Faktor hinzu;

; ) a4
wie leicht herzuleiten, wird, wenn symbolisch s PR
X
A n
D"A (x)=A! ) An—l(x)' (6)

Schliflis Definilion ist also auch in dieser Hinsicht einfacher, da
dieselbe auch hier keinen vorgesetzien Faktor zeigt.

C. Einfache Integralformeln.
Multiplizieren wir (5) mit dx und integrieren zwischen 0 und x,

. P ] _Ax) |
8o wird J An_l(x)dx_{——n—_j— }O,

durch Trennung der geraden von der ungeraden Bernoullischen

. . 1
Funktion folgen f A, (x)dx= e Agpy1(® und (7)

0
x 1 n Bn
fAzn—l(x)dx_W_—_l_{A2n(x)+(_1) 2—11' ’ (8)
(] ;
wenn die spiter zu beweisenden Spezialwerte fir Asnyy;(0)=0 und
Aen( )= (—1)" 3"

2n
Aus obigen 2 Formeln ergeben sich fiir die obere Grenze x =1

1 1
ngn(x)dx: : rAzn—l(X)dX—_—O- (9)
6.;

0

eingeselzt werden.*")

Fiir die obere Grenze x = — werden unier Beriicksichtigung von*7)

2
1 aB. 27°—1 1
Azn (?) = (*-'1) -;1— . —éﬁ—— und A2 n41 (ﬁéﬁ) =——R ]
1 1
i 2
Agn(x) dx =0 Agn_1(x)dx
: .

1 B, 2°%—1

:.(—2m (—1)“?.?-—. (10)

Auch diese Formeln (7), (8) und (10) zeigen einen vorgeselzien
Faktor, der bei den entsprechenden Formeln von Schlifli wegfillt.
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§ 23. Die A,(x)-Funktion mit inversem Argument.

Glaisher ftritt auf diese Funktion nicht niher ein; er gibt nur
die Hauptformel, ohne auf ihre Herleitung einzugehen.*®) Wir ge-
langen jedoch auf einfache Weise zu diesen Beziehungen, wenn wir
ausgehen von den spiler herzuleilenden Reihenentwicklungen (23)
und (24).%%) Erselzen wir in (24) x durch (1—x), so wird unter An-

wendung von sin2 47z (1—x)=—sin24xx
) sin4d zzx |, 8in6 s x
»——{sm2nx—[— g2t -+ g2+l +}
_ 2211ﬂ_2n-|—1
— (_1)n—|-1 @ n)[— A2n+1 (1 —-X)

und durch Vergleichung dieser Formel mil (24)
Aont1(x) = — Agp 1 (1—X). ()

Setzen wir in (23) fir x den Wert (1—x), so erhallen wir
unter Beriicksichtigung von cos 2 A 7z (1—x) = cos 2 4 7r X genau wieder
dieselbe Formel (23), also |

Azn(X) = Agn(1—X). )

Diese zwei lelzlen Formeln (a) und (B) lassen sich zusammenziehen
zu der allgemeinern Formel

An (1—x) == (—1)"Aa (x). (11)

Aus dieser Formel ergeben sich unter Beriicksichtigung der
Definitionsgleichung (4) mit Leichtigkeit

Aoy (0) == As, (1) = (__1)11—1 B.

2n

md  (12)

A2n+1(0) == A2n+1 (—;—-) = Agn_l_]_(l) = 0. (13)

Vervielfachung des Argumentes.

Die Herleitung der Formeln dafiir ist hier bedeutend umstind-
licher als bei Schlomilch und Schlifli, da Glaisher zuerst eine Reihen-
entwicklung suchen muss, in welcher die Bernoullischen Funktionen als
Koeffizienten auftreten; von diesem Momente an ist das Verfahren
analog dem bei Schlifli. |

Er geht aus von der bekannten, fir 0 <x<C1 geltenden Be-
ziehung ™)
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1-2 —am(1-2
egn’( x)_e an( x)

1 __sin2mx 2sin4 /s x
27 AT = Tife T ofa
3 sin 6 sz x
2 ,32+32 N I

Entwickeln wir die einzelnen Glieder der rechlen Seile nach
Potenzen von a? und nehmen die gleichartigen zusammen, so sind
nach (24) die Koeffizienten der Potenzen von a Bernoullische Funk-
tionen, und es wird, wenn zugleich mit a multipliziert und dann a

durch a ersetzt wird,

a(l—2x) —a(l—2x) . 3
e —8 2a
a b0 -___———-—2aA(x)—( )
e —¢

Az (x)

(2&1)5
A (X) — —<oenn ()
Es ist dies eine nach ungeraden Bernoulhschen Funktionen fort-
schreitende Entwicklung.
Analog wird aus der bekannten Gleichung®) -

1. ot TUTEN Y gm0 I a?cos 2 7z x
92 ean_e—-—an m 9 12+a2
a? cos 4 X
I 2_2+_32 N

durch Entwicklung nach Polenzen von a, Multiplikation mit 2 und
Ersetzen von asz durch a
pa(1—2%) + o= 2(1—2x) )4

2 (2
a o -——He—a - ] + (2 a) Az(X) + 3] 4 )
A @)

also eine nach geraden Bernoullischen Funktmnen fortschreitende Ent-
wicklung. Addieren wir diese beiden Entwicklungen (7) und (d),
nachdem wir in denselben a durch (—a) ersetzt haben, so resultiert
eine neue, nach aufeinanderfolgenden A,(x)-Funktionen fortschreitende

Reihe, nimlich

=AW+ AW+

Setzen wir darin fir 2a den Wert a und multiplizieren dann

e (2 a)3

2 a

a
Zihler und Nenner mit e2, so wird
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eax

a
a—

i 14aA (x) 4 a?A,(x) + "‘;f Ay(x) —]—-%4_[ A(x) -+ (1)

Es isl dies eine elegante Entwicklung, woraus ersichtlich ist, dass

n ax

a : . )
An(x)= [(n—l)l] in der Entwicklung a e

Yon dieser Entwicklung geht, wie wir gesehen haben, Schlifli.
aus, indem er die Fakultiten der obigen Entwicklung auch noch zur
Bernoullischen Funktion mitnimmt; ausgehend von dieser Eigenschaft
leitet er dann die wesentlichen Eigenschaften der Bernoullischen
Funktion her. Bei Glaisher tritt diese Beziehung nicht so in den
Yordergrund, wie sie es verdiente; er leilet zwar einige Formeln
durch Koeffizientenvergleichung gleichwertiger Entwicklungen her ®!)
und gibt spiter die Bernoullische Funktlion noch als Koeffizient einer
andern Entwicklung. Ein reiner Koeffizient einer solchen Entwicklung
ist die Definition von Glaisher nicht, -

Gestiitzt auf Koeffizientenvergleichung kommt nun auch Glaisher
auf die Vervielfachung des Argumentes. Ist k eine posilive, ganze
Zahl, setzen wir in der letzten Enlwicklung fiir x der Reihe nach

1 k—
die Werte x, x-}- o » X 4 kl und addieren dann alle
diese Entwicklungen, so wird die Summe
. 4 k—
S= A9+ (x ) e (x5 )
. a 2a (k—1)a
:[an] in aa eu{l—]—ek—{—e Edewommefom = }
e—1
Tl
=[an] in (—i—) ; = Ax(kx); daher
k
e —1 :

1 ' k—1 1
Setzen wir x =0, so miissen wir die zwei Fille n— gerade
und n — ungerade unterscheiden; es werden (ir
n == ungeradz

A (%)4-,&(%) e A (5-:;-3\ —0 und fir (15%)



n = gerade
1 2 k—1
s () P ()t ()
— 1y 2 _ e b
= 0" - s
Aus diesen Formeln lassen sich mit Leichtigkeit verschiedene
1

1
= g e et ; fiir
5" 8 1 und 6 berechnen
einzelne Argumente konnen wir auch direkt von der Definitions-
summenformel ausgehen.

A. Berechnung von An(é)- Aus den Formeln (152 uzd b) folgt

Spezialwerte fiir die Argumente

sofort fir k =2

1 i o 2211—-—1_1 Bn )
A2n+1 (—2—> =0 und Aon (-—2—> = (—1) 2211 e~ (16)

B. Berechnung von Ag, (—i—) Die ungeraden Bernoullischen

Funklionen konnen wir mit Formel (15*) nicht berechnen, da wir
stets auf die identische Gleichung 0 =0 gefiihri werden. Gehen wir
von der Summenformel fiir Az, (x) aus, so gelangen wir auf «Eulersche
Zahlen»; da wir jedoch dieselben zu unsern Untersuchungen nie herbei- -
gezogen haben, so wollen wir auch hier nicht auf diese Sache einlreten,
besonders da diese Untersuchungen fiir alle betrachteten Definitionen
in analoger Weise durchgefiihrt werden konnen.

Dagegen wird aus (15%) untler Beriicksichtigung des Wertes fiir

Asgn (é—) in Formel (16)

1 an 2211—1___1
AZn(T)—(—l) - T 17

3
Summenformel aus, um diesen Wert zu erhalten; ganz einfach er-
halien wir dieselbe aus (15°) fiir k =3 unter Anwendung von

1 2 .
Agy (‘3“) =" (?) ; es wird dann

1 n 3‘211—-1__1 Bn
Agn (?)_(‘_1) { 3an_1 }4n‘ (18)

C. Berechnung von Ag, (i) Glaisher geht von der (rig.
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6

. 1 2 1 5
erinnern uns, dass Azp (?) == Agn(?) und Az, (—6—) == Agn(F),

so wird

1 T W | }Bn (1) 1
2A2n (F)—m—(——l) { 62n_1 2[1 —'2A2n ‘3— “—Azn —é— ;

die Werte fir As, (%) und Azp (%) eingesetzt, gibt
1 1

1 n B 1
Aen (F) - (=1 4; { gZi—1 2 gfn—i  gan—1 el } (19)
Auf gleiche Weise kionnten wir die Werte der geraden Bernoul-
1 1
8’ 12" 16
wirden aber zu komplizierten Formeln gelangen.

Glaisher gibl dann eine grosse Zahl von Reihenentwicklungen, in
denen diese Spezialfunktionen, sowohl die B,(x)- als auch die A,(x)-
Funktion, ja sogar noch weitere etwas von diesen abweichende De-
finitionen fiir die Argumente —-;—, -531,-, 7}, %—, % und i}é als Koeffi-
zienten auftreten®®); auf die weitern von Glaisher eingefiihrten De-
finitionen werden wir spiter noch zu sprechen kommen. %)

Im Verlaufe seiner Arbeit fiihrt dann Glaisher noch eine Menge,
den Eulerschen Zahlen ahnliche Zahlen J, I, H, P, Q; R und T ein,
die in Beziehungen stehen mit algebraischen Reihenentwicklungen.’*)
Er widmet den Untersuchungen dieser Zahlen und Entwicklungen
grosse Aufmerksamkeit; ihm gebiihr( das Verdienst, diese zuerst ein-
gefiihrt zu haben; doch konnen alle diese Operationen auch an der
Schliflischen Definition ausgefiihrt werden; die entstehenden Formeln
werden ebenso einfach, ja in vielen Fillen sogar bedeutend einfacher.

D. Berechnung von As, (i) Setzen wir in (15*) k =6 und

lischen Funktionen fiir die Argumente u. s. w. berechnen,

§ 24. Die Funktion mit negativem Argument.

Glaisher gibt diese Funktion weder so elegant, noch so einfach
wie Schléfli; die A,(x)-Funktion findel sich {berhaupt nichl mit nega-
tivem Argument; dagegen ist die B,(x)-Funktion fiir x = (— x) kurz
erwahnt.

Er geht aus von den Entwicklungen mach Bernoullischen Funk-
tionen, d. h,, den Formeln (y) und (J) des vorigen §, die mit ent-
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sprechender Abénderung auch fiir die B,(x)-Funktion gellen; addieren
wir beide, so folgt nach zweckmissiger Umgeslaltung der linken Seile

S =B gy B0 B e (20)

e'—1
Es ist dies eine neue Entwicklung nach Bernoullischen Funktionen;
aber auch hierin sind die Bernoullischen Funktionen nicht reine Koeffi-
zienlen der zugehorigen Entwicklung; diese Formel zeigt deutlich den
Zusammenhang dieser Funkiion mit der Definition von Schlomilch,
der gerade den n-fachen Wert der (n—1)%» Ableilung einer solchen
Entwicklung als n* Bernoullische Funktion ¢(z, n) definiert.

Gestiitzt auf obige Beziehung (20) kommt jetzl Glaisher auf die
Funktion mit negativem Argument; er multipliziert dieselbe mit e **
und erhailt :

e—ax_l — a;r a2 as
——— = {x+aB,(x) + 57 By() + gy By +--oo- |
Durch Entwicklung von e
gleichung wird

** und nachherige Koeffizientenver-

n—1

— By (—x)=Ba(x) —(nh—1)x Bn_l(sz -+ ( o ) x? B, 9 ()
— e (DT B () - (=1 T

Dies selzt er symbolisch gleich®®)
—B (—x)=(E—x)"" "B, (), (21)
wobei E ein Operalionsfaktor ist, definiert durch
EB (x) =Br1(x);
es resultiert dann
(—1)" 7" Ba (14-%) = (E—x)""" B, (x). (22)
Weitere Bernoullische Funktionen mit negativem Argument finden
sich keine mehr; diese symbolische Darstellung ist keineswegs bequem
zum Operieren; hier ist entschieden jede andere und besonders die
Schliflische Definition vorzuziehen.

§ 25. Diskussion dieser Funktion.

Der einzige Unterschied dieser An(x)-Funktion, der dieselbe
dusserlich nur unwesentlich von der Definition von Schliafli unler-

. . e 1
scheidet, ist der, dass Schlifli den Faklor o1 Yor der Klammer der

rechten Seile der Gleichung der n'* Bernoullischen Funktion hat,
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wihrend Glaisher nur _rll— Bei der graphischen Darstellung ist dann

. _ 1 . :
augenscheinlich, dass der Faktor o~ das Konvergenzgebiet der Funktion

um so mehr erweitert, je hoher der Grad der Bernoullischen Funktion
steigl, und dass schon deshalb die Definition von Schlifli vorzuziehen ist.

Die acht ersien Bernoullischen Funklionen dieser Definition
nehmen folgende Werle an:

Al(x)—-—-xw%.

M) =43 — x| o

As(x)=—.13—x3—%~x2—{- %x

M) =3t — X X — e

M) =3 — g — o g
R
PN W B U AV

Wir erkennen daraus, dass die zwei ersten Bernoullischen
Funktionen dieser Definition genau mit denjenigen gleich hoher Ord-
nung bei Schlifli dbereinstimmen; die Funktion As(x) besitzt also

ebenfalls ein Minimum bei x=~}2— vom Werle _QIZ' Die Gleichung

fir As(x) weist analog (3, x) zwischen 0 und 1 sowohl ein Minimum
als ein Maximum auf. Beide liegen bei gleichem Werte von x wie
fiir die % (3, x)-Funktion; doch wird hier der Wert der Funktion
gerade 2!-mal so gross wie bei %(8, x).

Entsprechend konnten wir weiterfahren; wir finden, dass die
Stellen der Maximal- und Minimalwerte nicht dndern, dass aber die
zugehorigen Funktionswerte fir diese Definition bedeutend griasser
werden, je hoher der Grad der Funktion ist; die Funktion nimmt
rasch sehr grosse Werte an.®®)

Die Figuren zu § 18 gelten auch fiir diese Definition.
Bern. Mitteil. 1900. No. 1487,
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§ 26. Yerwandlung dieser Definition in trigonometr. Reihen,

Schon bei der Herleitung der Deﬁnitionsgleichuhg ist Glaisher
zu trigonometrischen Reihen als Werlte fiir Bernoullische Funktionen
gelangl; wir brauchen nur fiir die B,(x)-Funktion in den Formeln (2)
und (3) die allgemeinere A,(x)-Definition einzusetzen; dann resultieren

—1 (2n—1)! cos4 L x
Agn(X)=(—1)n 1—2(211—_171;)2—11{0052717)( +—-—2—2n——
c0s 6 7z X
_|__,__§2_1.1.__+} (23)
fi 2n)! ) sin4d zx
A2n+1(X):(—1) +1—22—£7v2)n?{ sin 2 7z x —l— _22—n—i-T—

sin 6 7z X
+_-;2511__+ ...... } (24)
Wir wiren auch zu denselben Resultaten gelangt, wenn wir uns
auf die Theorie der Fourierschen Reihen und Integrale gestitzt und
fiir die Funktion f(x) die Bernoullische Funktion A.(x) eingefiihrt
hiitlen; wie schon bei Schlifli, so gelangen wir auch hier rascher ans
Ziel als Schlomilch, weil das enlstehende Integral leichter zu losen ist.

§ 27. Integrale mit A,(x)-Funktionen.

Wihrend Glaisher in seinen zwel ersten, diesen (Gegenstand be-
handelnden Schriften gar keine Integrale mit Bernoullischen Funklionen
gibt, behandelt er die Integraldarstellungen dieser Funktion sehr ein-
gehend in seiner dritlen, bereits erwihnlen Schrift «On the definile
integrals connecled with the Bernoullian function.»

Er geht darin von den Summenformeln des Sinus und Cosinus
aus®?) und leitet auf analoge Weise, wie die Untersuchungen von § 20
des vorhergehenden Abschnittes zeigen, seine Integrale her. Trotz
des Unterschiedes bheider Definitionen bleibt ja die Art des Herleitens
dieselbe; wir wollen deshalb hier nicht noch einmal dieselben Ab-
leitungen vornehmen, sondern begniigen uns mit der Angabe der er-
haltenen Resultate; ein Vergleich der entsprechenden Formeln, die
stets sehr dhnlich aussehen, zeigt jedoch, dass diejenigen der Definition
von Schléfli noch etwas einfacher aussehen, vorausgeseizi, dass sie in
der Form nicht ganz iibereinstimmen,
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A. Einfache Integrale.
1. Mit der ungeraden Bernoullischen Funktion. Gestiitzt auf (8)

werden fiir die Spezialwerte der obern Grenze x — ; ; 1 und %
7 —1 B,
C@n—1) | Aeny(x)dx = (—1)* 2 T oy ' (25)
0
l 2
8 n 8 11__‘1 Bn
o 4211_'_2211 Bn .
(2n—1) Azn_l(X)dX‘—‘(———l) - Ty (a7)

; . 671 9.3 392" 6 B,
(@ n-——l)f Agn—1(x) dx = (—1) as 2-1_ '
6 4n
0

Hier kompliziert also der vor dem Integral stehende Faktor (2n—1).
2. Mit der geraden Bernoullischen Funktion. Gesliilzt auf
Formel (7) werden, wenn wir zur Abkirzung die von Glaisher ein-

gefiihrien Zahlen wiihlen, ®®)
1

(28)

)
2an2n(x)dx=O. (29)
0
L1
4 n41 In
2an2n(X)dX=(—1) oy (30)
5
L]
3 ' nt1 En
n {'Azn(x)d":(“ﬁl) i JREEEN (31)
&
L3
2 nt1  In

)
B. Integrale mit trig. Funktionen.

Durch analoges Verfahren wie in § 20® werden

1
. a1 2n)!
JAgnH(x) sin2rzxdx =(—1) + Efﬂr)l% (33)
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. ,
fA2n+1(x) cos2rzxdx=0. (34)
s ,

1

Ahd&ﬂms2rnxdx::0—lf+l(zn_JJI‘ (35)

(2r7t)2n

0

1 -
[Agn(X) sin2rzxdx =0. (36)

[ 8

0
Auch hier bedeulet r eine posilive ganze Zahl; die Formeln (33) und
(35) weisen wiader einen Faktor mehr auf, als die entsprechenden
der Schliflischen Definition.

C. Integrale von Produkten.

Gestiitzt auf die Multiplikation der Summenformeln (23) und
(24) werden durch nachherige Integration

1
{AZ nt1(%) Az (x) dx = (—1)* "

[
0

2m)! (2n)!
2mF-2n1-2)!

Bm—i—n—{-l- (37)

f Aam(3) Ann(0) dx = (1) BB CR g (o)

1 L ‘
fA2m+1(x)A2n(x)dx=fA2m(x)A§n+1(x)dx=0. (39)
S

y

&

Fiir n = m werden die zwei ersiern Formeln

1 2
{‘ {A2n+1(x)}2dx e (i(r?_r'l_)g—l Ban 1 und  (40)
5
1 . T
f {AZH(X)} dx = {(2—(1:“‘;)"1!")-1—}- Bone (41)

0

Wir konnten auch hier wieder als obere Grenze % und -i— wihlen,

worauf diese Integrale den 2t%n (4t) Teil der obigen Inltegrale (37)
und (38) oder (40) und (41) ausmachen wiirden.

Ein Vergleich mit den Formeln bei Schliflis Definition zeigt,
dass die Formeln der y(n,x)-Funktion wieder einfachere Gestalt
aufweisen.

Auch diese Integralbetrachtungen kinnten natiirlich beliebig weit
ausgedehnt werden. ®®)



§ 28. Andere Deflnitionen von Glaisher,

Da Glaisher im Laufe seiner Untersuchungen zu Entwicklungen
: . n 1
kommt, welche nach fortschreitenden Funktionen {An (x)—2" Ay ( o x)}
N

laufen, so fiihrt er auch diese Funklion als eigene Definition ein,
indem er setzt A'n(x) = An(x)—2" Ay (é x)-
Er fiihrt dann die Betrachtung dieser A’,(x)-Funktion entsprechend
derjenigen der A,(x)-Fanktion durch und gelangt auch zu ganz ent-
- sprechenden Resultaten, ohne aber neue Gesichtspunkte aufzudecken.
Vorteile bielet diese Funktion keine, da keine der Formeln eine
wesentliche Anderung erfahren. ®0)

In derselben Arbeit fiihrt Glaisher noch zwei weilere Definitionen
der Bernoullischen Funktlion ein, die in sehr engem Zusammenhang
mit den friher erwihnten Definitionen stehen, da er selzt

Vo(x)=nA,(x) und © Uu(x)=nA',(x).
Diese beiden schmiegen sich jeweilen eng an die A,(x)- resp. A'y(x)-
Funktion an.

. - . 1
Trolzdem jelzt die Definitionsformeln den allgemeinen Nenner?

der rechten Seite nicht mehr besitzen, werden die daraus abge-
leiteten Formeln nicht einfacher; nach Glaisher sollen sie sich besser
zur symbolischen Darstellung eignen als seine frither erwihnlen De-
finitionen, Wihrend Glaishers B,(x)-Funktion mit der Raabeschen
Definition ibereinstimmt, stimmt seine V,(x)-Funktion mit der Schli-
milchschen ¢ (x, n)-Funktion iiberein. Die Untersuchung dieser beiden
Funktionen geht dhnlich vor sich, wie die Betrachtung seiner erstern
Definitionen; doch wird dabei die symbolische Darstellungsweise an-
gewandt, wo sie tberhaupl anzawenden isl.®")

Endlich fiihrt derselbe Mathematiker noch zwei weitere Definitionen
der Bernoullischen Funktion ein, die mit der A,(x)- resp. A'n(x)-
Funktion verbunden sind durch die Beziehungen

an (X) = An (x—l—%) Cund e/ (X) =AY (x—]—%).

Auch hier erfolgen die allerdings nur kurzen Betrachlungen dariiber
in entsprechender Weise wie bei den erstern Definitionen. %)



V. Folgerungen.

§ 29. Zusammenhang der verschiedenen Definitionen.

Wir geben vorerst eine Ubersicht der Definilionen, die wir ein-
lisslich betrachtet haben; alle iibrigen konnen ja aus denselben her-
geleilel werden; deshalb fiihren wir dieselben auch hei den Ver-
gleichungen der einzelnen Funktionen nicht an.

Es waren »
B (x) = ;i:i — % X" - _;_ (21n) B, x*" % (2;) B,x""—
e +(_"—g_—l (2311) B.x. (1)
B’ (x)= % = _;_ gl _;_(2 H;I_I) B, xzn_%(znjl) B, 202
bk ETT O Nt @

Die Reihen brechen ab mit dem Glied in x2 oder X, je nachdem n
eine ungerade oder eine gerade Zahl ist.

o5, =" — x5 ) Bt — () mant
_I_ (2) B3Xn_-6 —_ + ......... (3)

Hier bricht die Reihe ab mit dem Gliede in x? oder x, je nach-
dem n gerade oder ungerade ist.

2y x) = o [ et +§1 (—1y+ (2“1) Bl @)

n
Die Reihe bricht von selbst ab infolge von (2 Z)-

X 1 .- n—1 —9
By (x) = —-——-—Ex e 51 B, x"

_ (n—1) (n;-!2) (=) p ot 6)

Die Reihe schliesst mit dem Gliede in x* oder x fiir ein gerades oder
ungerades n.
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1 n 1 n-— ’n n-—2 n —4
Der Exponent von x darf nie negativ werden. |

Die einzelnen Definitionen konnen wir in zwei Gruppen teilen;
die eine Gruppe enthilt die Definition von Raabe, diejenige von Schlo-
milch und die erste von Glaisher, also die Funktionen B(x), ¢(x,n)
und Bnh(x). Es sind dies alles Funktionen, bei welchen kein von x
freier Term vorkommen darf. Die zweile Gruppe enthilt die Funk-
tionen, welche einen selbstindigen, von x freien Ausdruck aufweisen;
es sind dies alle iibrigen, also die Funktionen von Glaisher und von
Schlafli, nimlich An(x), A’n(x), Va(x), Un(x) und g(n, x).

Sidmtliche Funktionen stehen mil denjenigen der gleichen Gruppe
in engem Zusammenhang; etwas komplizierter sind die Beziehungen
der Definitionen der einen Gruppe zu denjenigen der andern Gruppe;
wir erhalten folgende Beziehungen, welche den Zusammenhang der
einzelnen Definitionen veranschaulichen:

I. Gruppe:

ooy _ 9% 2m--1) rron . e(x, 2m--2)
B (x) = By my1 (%) B'(x) = By, 1 5(x)- (8)
(X, n) =1 By (x). )
Il. Gruppe:
1
20, x) = =0T An(x); An(¥) = (0—1)! y(@m,x).  (10)
III. Gruppen gegenseilig:
’ n}1 Bn+1
B (x) = (2n+1)! x(2n4-2, x) 4 (—1) onte - (11)
B (x) = 2n)! x(2nd-1,%). (12)
B (x) = Ay 0 () — Ay, 5 (0); B (x) = A, (x). (13)
¢(x,2n) = (2n)! (21, x)4-(—1)" By;
¢(x,2n41) = 2n+4-1)! x(2n-4-1, x). (14)

¢(x,2n)=2n4, (x)4+(—1)"B; ¢(x,2n+1)=2n414A, ,(x). (15)

Aus den obigen Beziehungen lassen sich die Werte fiir die
uibrigen Formeln durch einfache algebraische Umwandlung finden.
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Gestiitzt auf die Tabellen I—IV (Seite 92—95), wo die Werte
der fiir unsere Betlrachtungen wichligsten Definitionen fiir die einzelnen
Argumente zusammengestellt sind, konnen wir obige Beziehungen auf
ihre Richtigkeit priifen.

§ 30. Vergleichung der einzelnen Definitionen,

A. Betreffs ihrer Herleitung.

Die Herleilungen der einzelnen Definitionen der Bernoullischen
Funktion sind sehr verschieden. Uberblicken wir alle, so erkennen
wir bald, dass die einfachste und eleganleste Herleilung der Definitions-
‘gleichung von Schlifli stammt, der ohne alle Umwege zu derselben
gelangl. Zudem steht dieselbe mit der Fundamentalgleichung der
Bernoullischen Zahlen in innigem Zusammenhang; dies bietet uns
daher den Vorteil, dass wir aus einer Grundgleichung sowohl die
Bernoullischen Funktionen, als auch die Bernoullischen Zahlen ohne
grosse Schwierigkeit herleiten konnen; diese Gleichung nennen wir
die «Fundamentalgleichung der Bernoullischen Funktionen wund der
Bernoullischen Zahlen» ; dieselbe lautet

m=0co i
syt ye'’ y
T — (16)
m==() e'—1 e'—1
der erste Bruch rechts fiihrt auf die Bernoullischen Funktionen, der
zweile dagegen auf die Bernoullischen Zahlen.
Keine der iibrigen Definitionen zeigt diesen Zusammenhang; bei
all denselben braucht es grosserer Umwandlungen und lingerer Rech-

nungen, bis wir auf die gewiinschie Definitionsgleichung gelangen. )

B. Betreffs der Derivierten.

Stellen wir die einfachen Ableitungen der verschiedenen De-
finitionen zusammen, so ergibt sich, dass die Ableitungen der Funktionen
nach Raabe und nach Schlomilch eine unerwiinschte Komplikation
durch den Hinzutritt einer Bernoullischen Zahl fiir die ungerade Ber-
noullische Funktion zeigen. Die Definilion nach Glaisher weist zwar nur
eine Formel auf; dagegen tritt vor die Ableitung noch ein Faktor,
wihrend bei der Schliflischen Definition die Derivierte einer Bernoul-
lischen Funktion wieder eine reine Bernoullische Funktion ist; letztere
Definition ist somit die bequemste.

Was die mehrfachen Ableitungen anbelrifft, so lassen sich die-
jenigen der Raabeschen Definilion nicht darstellen, weil dort -der
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Exponent nur ungeniigend angedeutet wird im Funktionssymbol. Ein
Vergleich der tibrigen zeigt, dass bei der Schlomilchschen Definition
verschiedene Formeln notig sind zur Darstellung der geraden oder
ungeraden wiederholien Ableitungen der geraden oder ungeraden Ber-
noullischen Funktion. Bei Glaishers Definition fallen die unbequemen
Bernoullischen Zahlen weg; ebenso ist zur Darstellung all der Ab-
leitungen nur noch eine Formel notig; doch zeigt dieselbe zwei vor-
geselzle komplizierende Faktoren. Schliflis Definition ist auch hier
die einfachste, da die wiederholten Ableitungen derselben stets reine
Bernoullische Funktionen sind. ®4)
0. In Bezug auf die Integraldarstellungen.

Das von den Derivierten Gesagte gilt ebenfalls von den ein-
fachsten Integralen, da dieselben ja nur Umkehrungsfunktionen ersterer
sind. Auch die 4ibrigen Integraldarstellungen sprechen betreffs ihrer
Einfachheil zu gunsten der Definition von Schlifli, da selbst die ent-
sprechenden Formeln der Definition von Glaisher meist einen vorge-
selzlen Faktor mehr enthalten. %)

D. In Bezug auf die Funktion mit inversem Argument.

‘Die Formeln dafiir lauten bei allen Definitionen gleich; ihre
Herleitungen sind aber sehr verschieden. Raabe geht zur Ableitung
seiner obigen Formel ziemlich weit auf seine einleitenden Untersuch-
ungen zuriick; Glaisher stiitzt sich auf die Definitionssummenformeln
des Sinus und Cosinus und stellt die beiden gefundenen Formeln zu
einer allgemeinern zusammen. Sehr elegant und kurz sind die Her-
leitungen von Schlémilch und von Schlifli, wobei Schlifli mit Vorlteil
die Koeffizientenvergleichung verwendet. ¢¢)

E. Betreffs der Funktion mit negativem Argument.

Es geben aoch hierin alle Funklionen ziemlich dhnliche Werte,
mit Ausnahme der symbolischen Darstellungsweise von Glaisher. Der
Nenner im zweilen Term des Ausdruckes fir die yx(n, —x)-Funklion
ist keine wesentlliche Erschwerung, da die andern Definitionen, mit
Ausnahme derjenigen von Raabe, auch einen vorgesetzten FKaklor
aufweisen. )

F. Betreffs andrer Formeln.

Wir haben bei den Definitionen von Raabe und Schlomilch mehr
als bei den beiden andern nidher betrachleten Funktionen die gerade und

die ungerade Bernoullische Funktion trennen miissen; die Definitionen
Bern. Mitteil. 1900. No. 1488.
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von Glaisher und von Schlifli sind daher allgemeiner gehalten, und
es ist das dem Umstande zuzuschreiben, dass die beiden ersten
Definitionen kein von der  Variabelen freies Glied enthalten diirfen;
dies ist auch der Grund, dass bei den Differentialquotienten und Integral-
darstellungen dieser Funktionen die listigen Zusatzglieder mit den
Bernoullischen Zahlen auftreten. Die Formeln, welche eine Summe
“von aufeinanderfolgenden - Bernoullischen Funktionen darstellen, enl-
scheiden wieder zu Gunsten der Funktionen von Glaisher und von
Schlifli, da dieselben nur je eine Formel aufweisen, wihrend die iib-
rigen auch hierbei einen Unterschied zwischen geraden und ungeraden
Bernoullischen Funktionen machen miissen. Die entsprechenden
- Formeln dieser Summe bei Glaisher und bei Schlifli sind ganz von
gleicher Form; schon ihre Herleitung ist ziemlich dhnlich, da beide
durch Koeffizientenvergleichung aus Entwicklungen nach Bernoullischen
Funktionen zum Ziele gelangen. Glaisher zeigle im Laufe seiner Unter-
suchungen, also nicht etwa als Ausgangspunki derselben, dass die
An(x)-Funktionen sich geben lassen als

R S I
(n—1)! e’ —1

Er kommt zu dieser Thatsache, wie wir gesehen, auf ziemlich um-
stindliche Art und Weise, ausgehend von einer Formel, die selbst
eine sehr komplizierte Herleilung aufweist; zudem ist seine Bernoullische
Funktion kein reiner Koeffizient der Potenz von a, da stets im Nenner
eine Fakultit sein muss. Schlifli aber geht direkt von dieser Ent-

wicklung aus, indem er definiert
- . . e’
%(n, x) = n* Bernoullische Funktion =— [y"] in y—-—?—T—-
e —_—

Diese Entwicklung bildet also seinen Ausgangspunkt, auf welchen
sich alle Untersuchungen stiitzen; daher gestallet sich seine Theorie
der Bernoullischen Funktion viel einheitlicher und ist derjenigen von
Glaisher iiberlegen. %®) |

G. Betreffs Entwicklung in Reihen.

Alle Definitionen lassen sich leicht als trigonomelrische Reihen
darstellen und zwar die geraden Bernoullischen Funktionen als Cosinus-
reihen und die ungeraden als Sinusreihen.

Raabe und Glaisher gelangen durch fortgesetzte Differentiation

1 68
der bekannten Reihe fiir 71:{‘2_— x}, woraus successive die ein-
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zelnen Bernoullischen Funklionen entstehen, zu ihren diesbeziiglichen
Resultaten. o

Elegant leitet Schlomilch, wie gesehen, seine Reihen her, ge-

stiitzt auf die Fourierschen Reihen und Integrale. Genau auf die-

selbe Weise wiirden wir auch bei den iibrigen drei Definitionen zum
Ziele gelangen; das Ziel wiirde zudem noch eher erreicht, da die
anfgestellten Integralformeln das zu losende Integral, welches die Koeffi-
zienlen der Fourierschen Entwicklung darstellt, mit. geringer Miihe
auswerten. %)

Hiochst interessant und wichtig ist die Herleitung dieser Formeln
nach Schlifli, der gestiitzt auf die Theorie der Eulerschen Integrale
und der Gammafunktlion eine Reihenentwicklung so transformiert, bis
er schliesslich zu den entsprechenden Beziehungen gelangt. Seine
Resultate bieten den grossen Vorieil, dass sie nur Spezialwerte sind
einer von ihm selbst aufgeslellten Hauptformel

A=o00 | nﬂ)
el (2171'9——2'

e

i=1 :
= (27)" f (10, ¢)— 20, 0)} 5 [1-Hicotg(y -6)] dg. (17)

Durch Trennung der reellen von der imaginiren Komponente
erhill er die beiden ganz allgemeinen Formeln

li:locos (éin@——fg—{) z_@_yti

2]
7 5 %0, 8) und (18)
d==1
- , n
2°° sin (24w 6 — 22
i=1 A

:(2n)uf{x(n,go)-—x(n,@)}cotgn(sa-—@)dso- (19)

Aus Formel (18) reéultierén dann die wichtigen trigono-

metrischen Summenformeln

=00

' et 2 21 '
x@m, x) = (—1)"" —— 2 2 und (20)
| (27) e A o |
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=00

o qym—1 2 2 sin24 7z x .
x(2m—+1,x) = (—1) @t e PECES! @1

Bei dieser Definition haben wir, wie sonst bei keiner andern,
urspriinglich alle diese Reihenentwicklungen in derselben Formel ver-
einigt, was- sehr zu Gunsten dieser Definition spricht.

Wir haben auch schon erwihnt, dass mit Hiilfe dieser Funktion
als Reihenentwicklung Schlifli die Raabesche Restformel herleitet und
ebenso den Zusammenhang derselben mit der Riemannschen Reihe
nachweist; es sind dies Beziehungen, welche die Allgemeinheit der
Schléflischen Definition trefflich beleuchten. °)

H. Betreffs Entwicklungen nach Bernoullischen Funktionen.

Entwicklungen, in welchen die Bernoullischen Funktionen als
Koeffizienten auftreten, lassen sich aus jeder Definilion herleiten; aber
nur bei Schlifli sind die Bernoullischen Funktionen reine Koeffizienten
solcher Entwicklungen; auch hier liefert diese Definition die ein-
fachsten Formeln. )

§ 31. Diskussion der ,,Bernoullischen Funktion.*

Unsere friiher hergeleiteten Reihenentwicklungen der Bernoul-
lischen Funktlion haben gezeigl, dass dieselben nur giiltig sind fir
0 <x<<C17"); deshalb haben wir in unsern Untersuchungen haupt-
sichlich das Intervall x =0 bis x =1 bericksichtigt, wohl aber auch
Gleichungen aufgestellt, um den Verlauf der Funktion ausserhalb dieses
Intervalles kennen zu lernen.’) Gestiitzt auf diese Beziehungen hat
sich uns die Frage aufgedringt, wie weit sich das Konvergenzgebiel
fir die verschiedenen Definitionen tiberhaupt erstrecke. Um diese
Frage zu entscheiden, stellen wir die Funklionen graphisch dar. Wir
tragen die Werle fir das Argument x (z) als Abscissen auf und die
zugehorigen Funktionswerte y als Ordinaten; die einzelnen Werle sind
in den Tabellen [—IV zuasammengestellt; den Verlauf der verschiedenen
Funktionen zeigen die Tabellen V—VIII.

1. Die Bernoullischen Funktionen ersten Grades. Dieselben
stellen bei allen Definitionen eine Gerade dar; bei der Definilion von
Raabe, wie auch bei derjenigen von Schlomilch ist diese Gerade die
Winkelhalbierende durch den ersten und dritten Quadranten, geht also
durch den Ursprung; bei den Definitionen von Glaisher und Schlifli
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schneidet sie die Abscissenaxe im [;unkte % e %, aber ebenfalls unter
einem Winkel von 45°,

2. Die Bernoullischen Funktionen zweiten Grades. Dieselben
stellen eine gewohnliche Parabel dar, und zwar ist die Parallele zur

Ordinatenaxe durch den Punkt x-:-——;— die Hauptaxe der Parabel mit

1 . .
dem Parameter p=wl~~ Bei den Definitionen von Raabe und von

Schlomilch schneidet diese Parabel die Abscissenaxe in den beiden Punkten
Xx=0 und x =1, bei den andern Definitionen innerhalb dieses Inter-
valles. Dass dem so ist, beweist die Untersuchung einer einzelnen
Funktlion, da das Verfahren bei allen dasselbe ist; wir wihlen dazu
diejenige von Schlifli
2
e )=y=1 2 4o
12y = 6x*—6x-|-1.

. 1
Transformieren wir diese Gleichung durch x =x’ - 5 und y =y’ - 5

1 : .
so werden ¢y — Ti 2% und p = durch dhnliche Transformation der
iibrigen Definitionen gelangen wir slets auf dieselbe Gleichung.

3. Die Bernoullischen Funktionen hoheren Grades. Alle diese
Funktionen stellen Parabeln hiheren Grades dar, da zu einem einzigen
Werte von y stels mehrere Werle von x gehoren; der Grad sleigt
mit dem Exponenten des ersten Gliedes. Im Intervall von 0 bis 1
weisen dieselben enlweder ein Maximum oder ein Minimum oder beide
zugleich auf, und es verlaufen die n* und die (n}4)* Funktion ent-
sprechend.

Es besilzen die Funktionen mit geradem Exponenten n =2, 6,
10, om5s 5 , (4 A—2) ein Minimum bel x.-_:—% und gehen auf beiden
Seiten der Ordinatenaxe mit positiven Funktionswerten ins Unendliche,
wihrend die Funktionen fir n=4, 8, 12,..... , 41 ein Maximum

1 : e .
bei X= aufweisen, beidseitig schwach negativ werden, um aber

wieder mit beiden Asten der Kurve mit positiven Funklionswerten
ins Unendliche zu gehen.
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Etwas abweichend davon verhalten sich die Kurven der Bernoul-
lischen Funktionen mit ungeraden Exponenten; dieselben gehen sowohl
mit positiven Funktionswerlen auf positiver Seite der Ordinatenaxe
ins Unendliche, als auch mit negativen auf negativer Seite. Alle diese
Kurven ungeraden Grades schneiden die Abscissenaxe in den Punkten

O,% und 1, und es sind die Kurven fir n=3, 7, 11, ....,(44—1)

im Intervall von x =20 bisx=%— positiv und von x=%bisx=1

negativ; von den Punklen x =0 und x =1 aus gehen sie absolut
gleichwertig ins Unendliche. Fir n==>5, 9, 18,.....,(44-}1) nehmen

’ : . 1 ; ;
die Funktionen zwischen x =0 und X=— negative Werte an, zwi-

1 . . '
schen x =5 und x = 1 dagegen positive; in kurzer Entfernung

ausserhalb dieses Intervalles finden sich nochmals zwei Schnittpunkle
mit der Abscissenaxe, worauf auch diese Kurven absolut gleichwerlig
ins Unendliche laufen.

Es inleressiert uns nun zu wissen, wie sich die Kurven im Un-
endlichen verhalten; denn dass dort die zwei Asle der einzelnen
Funktionskurven zusammenhangen, ist bekannt, da ja die Parabeln
unikursale oder rationale Kurven sind und sich alle Punkte derselben
darstellen lassen durch algebraische Funktionen eines variabelen
Parameters. |

Wir greifen, da alle Funktionen hohern Grades der verschiedenen

Definitionen analoge Form haben, diejenigen von Schlifli heraus und
untersuchen vorerst

A. Die ungerade Bernoullische Funktion. Wir wihlen dazu
X8 %4 X
15\ =y=-155 — 35 t 7~ 7m0 oder
6x> —15x* -} 10x® —x — 720y = 0.
Die Schnitte dieser Kurve mit der unendlich fernen Geraden erhalten
wir, wenn wir die Gleichung mit z homogen machen durch die

! I

. . x 2 .
Formeln x = re und y=—y-Z*— und dann z = 0 setzen; diese Formeln

vorerst eingeselzt, gibt, wenn zugleich mit z® multipliziert wird,
6x'® — 15x"*z 4 10x"322 — x"2* —720y"z* = 0;
diese Gleichung wird fir z=0 zu 2'5=0, d. h,,
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die Kurve schneidet die unendlich ferne Gerade in der Richtung
der positiven Ordinatenaxe in fiinf zusammenfallenden Punkten.

Zur ndhern Untersuchung dieser zusammenfallenden Punkte im
Unendlichen transformieren wir die unendlich ferne Gerade, welche
wir parallel der Abscissenaxe annehmen konnen, ins Endliche, indem

wir sie auf die Abscissenaxe projizieren; dazu dienen die Formeln
E !

y=-% und x=—;§,—; also y :——31(— und x m—;-—
Fiir y = oo wird y' =0, d. h,,

die unendlich ferne Gerade wird auf die Abscissenaxe projiziert
und letztere ins Unendliche.

Durch die angedeutete Substitution entsteht, wenn mit y’® multipli-
ziert wird,
6x’° — 15x"y }-10x"3y'? — x"y'* — 720yt = 0. (e)
Dies ist die Gleichung der transformierten Kurve; in dieser entspricht
der Nullpunkt dem unendlich fernen Punkt der Ordinatenaxe der ur-
.sprijnglichen Kurve.
~ Die Gleichung beginnt erst mil Gliedern vierten Grades; also ist
der neue Nullpunkt O’ ein vierfacher Punkt; die Tangenten in dem-
selben erhalten wir durch Nullsetzen der Glieder niedrigsten Grades,
also durch y'* =0, was uns sagl, dass alle vier Tangenten des vier-
fachen Punktes mit der Abscissenaxe zusammenfallen. Fiir y' = 0 wird
x'®=0, d. h., die Abscissenaxe schneidel die Kurve im vierfachen
Punkte Q" in fiinf zusammenfallenden Punkten.
Zur nihern Untersuchung der Kurve in der Nihe dieses vier-
fachen Punktes geben wir dem x’ kleine Werte.
a) a' = positiv = 0.01. Die Gleichung (@) geht dann iiber in
6.0,01°—15.0,01*y" - 10.0,013y'2—0,01y'*— 720 y'* = 0;
da y’ selbsl Kklein ist, so kinnen wir infolge der vierten und fiinften
Potenz, in denen das kleine x’ vorkommt, die beiden ersten Glieder
vernachlissigen; dann folgt, wenn durch y’2 dividiert wird,
iz 0,00001
0,00001 = 720,01 y'%; y’ —I—\/72001
d. h., zu einem positiven kleinen x” gehéren zwei reelle absolut gleich-
wertige, ein positives und ein negalives y'. Geben wir dem x" grossere
positive Werte, so steigt der absolule Wert der y’ ziemlich rasch.
b) 2’ = negativ = — 0,01. Fir diesen Wert wird aus () unter
Vernachlissigung der beiden ersten Glieder und durch Division durch y’2



— 88 —

i . 0,00001
719,99y'2 = — 0,00001; y' = i\/w*719’99
Dies ergibt sich auch aus andern negativen Werlen fiir x’, somil folgt,
dass auf der negaliven Seite der Ordinatenaxe keine Kurvenpunkte
liegen. Der neue Nullpunkt erscheint daher als ein vierfacher Punkt
von der Art, dass die Kurve in ihm
eine Spitze bildet, und die Abscissenaxe
ist Rickkehrtangente in demselben mit
. oy fiinffachem Beriihrungspunkt. Dasselbe
o Ly Rackkebtsis gilt fiir den unendlich fernen Punkl der
Ordinatenaxe der urspriinglichen Kurve;
derselbe ist ein vierfacher Punkt der
_ Parabel, in welchem alle vier Tangenten

mit der unendlich fernen Geraden zusammenfallen; wir konnen den
Punkt als Riickkehrpunkt zweiter Ordnung bezeichnen.

Da wir diese Ausfihrungen auch auf die Bernoullischen Funktionen
héhern Grades ausdehnen konnen, bei welchen die vielfachen Punkte
nur in hoherem Grade der Vielfachheit auftreten, so ergibt sich der Satz :

Die ungeraden Bernoullischen Funktionen hohern, (2m-|-1)tn
Grades, analytisch interpretiert, stellen Parabeln hihern Grades dar;
bei denselben ist der unendlich ferne Punkt in der Richtung der posi-
tiven Ordinatenaxe ein 2m-facher Punkt, in welchem alle 2m Tan-
genten mit der unendlich fernen Geraden zusammenfallen., Die Kurve
bildet in ihm eine Spitze und die unendlich ferne Gerade ist Riickkehr-
tangente mit (2m-}-1)- fachem Beriihrungspunkt; der Punkt ist ein
Riickkehrspunkt von der Ordnung m.

= imaginir.

B. Die gerade Bernoullische Funktion. Elwas anders geslallet
sich der Verlauf dieser Funktion im Unendlichen. Zur Untersuchung
wéhlen wir

4 3 2
W=y — g — 7;0 otle
30x*—60x*}30x*—T20y —1=0,

Die Schnitlpunkte mit der unendlich fernen Geraden werden
gestiitzt auf die homogene Gleichung

30x"*—60x"%z 4 30x"322 — 720y’ z® —z* =0,
fir z=0 't=), 4.}, '

die unendlich ferne Gerade wird von der Kurve in vier zusammen-
fallenden Punkten geschnitten in der Richtung der positiven Ordinatenaxe.

Projizieren wir die unendlich ferne Gerade wieder durch die
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friihere Substitution auf die Abscissenaxe ins Endliche, so folgt, wenn
mit y’* mullipliziert wird,
30x"* — 60x'3y’ -}-30x"2y'2 —y’'t — 720y'3 =0. B)

Dies ist die Gleichung der transformierlen Kurve; da sie erst mit
Gliedern dritlen Grades beginnt, so ist der neue Nullpunkt O’ ein
dreifacher Punkt; die Tangenten in demselben erhalien wir aus
y'3=0, d. h., alle drei Tangenlen fallen in der Abscissenaxe zusammen,
und diese beriihrt die Kurve in vier zusammenfallenden Punkten; also
ist auch der unendlich ferne Punkt der Ordinatenaxe ein dreifacher
Punkt der Kurve, dessen drei Tangenten mit der unendlich fernen
Geraden zusammenfallen.

Zur noch genauern Untersuchung dieser Kurve in der Nihe des
dreifachen Punktes transformieren wir die Gleichung (3) wie folgt:

30x2(x'—y')? = y'2(y'-}-720).

\/ y' 3y 4 720)

Ay +\/ G +720) .

:_{y £\ 4\/ EEED) }

Die Quadratwurzel wird nur fir y’' =0 selbst zu Null.
Geben wir jetzt dem y’ kleine Werte, so wird fiir
a) y' = positiv=0,1.

{0 lJr\/()()1+4\/0()(>1 720, 1 , 2ot +o04)

= 0,447 ; r, =—0.347.
Ebenso wiirde ein grobseres y' zwei versclnedene reelle Werle liefern.
Somit gehdren zu einem posiliven y’ zwei verschiedene reelle Werte
von x’, wovon stels der eine positiv, der andere negativ ist.

b) y' = negativ und klein. In diesem Falle wird die Quadrat-
wurzel stels imaginir und somit auch der Wert fir x’; daraus
folgt, dass die Kurve ganz oberhalb
der Abscissenaxe liegl und von der
Ordinatenaxe nicht symmetrisch geteilt
wird. Der dreifache Punkt unter-
scheidet sich also nicht wesentlich von
einem gewohnlichen Kurvenpunki, nur

ist die Krimmung der Kurve in der Nihe desselben eine schwichere,
Bern. Mitteil. 1900. No. 1489.
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Da diese Untersuchungen auch ausgedehnt werden konnen auf
die geraden Bernoullischen Funktionen mil hiohern Exponentlen, so
ergibt sich der Satz:

" Die geraden Bernoullischen Funktionen hohern, 2m*" Grades
stellen ebenfalls Parabeln hiohern, 2m** Grades dar; bei denselben ist
der wunendlich ferne Punkt in der Richtung der Ordinatenaxe ein
(2m—1)-facher Punkt, in welchem alle (2m—1) Tangenten mit der
unendlich fernen Geraden zusammenfallen, welche die Kurve in 2m
zusammenfallenden Punkten berithrt. Die Kurve liegt ganz auf der
einen Seite der unendlich fernen Geraden, wnd der (2m—1)-fache
Punkt wunterscheidet sich nicht wesentlich von einem gewdhnlichen
Kurvenpunkt, nur ist die Kriimmung in der Ndhe desselben eine
schwichere.

Da diese Unlersuchungen fiir alle Definitionen analog durchgefiihrt
werden konnen und auch entsprechende Resultate liefern, so sind wir
tiber den Verlauf aller Bernoullischen Funktionen im Endlichen wie im
Unendlichen geniigend aufgeklart. '

Die Tabellen Y—VIII zeigen nun deullich, dass das Giltigkeils-
gebiel der einzelnen Definitionen ein ziemlich verschieden grosses ist;
am kleinsten ist das Konvergenzgebiel der Schiémilchschen Definition;
das besle Gebiet liegl hier zwischen —1 und -~2; ausserhalb des-
selben nimmt die Funktion sehr rasch grosse Werle an. Elwas, aber
nur wenig grosser ist das Konvergenzgebiet der Definitionen von Raabe
und von Glaisher, was aus den Tabellen ¥ und VII ersichtlich ist.
Die Parabeln der Definition von Schlifli sind diejenigen, welche sich
der Abscissenaxe am weilesten, sowohl nach der posiliven wie nach
der negativen Seite hin anschmiegen und zwar um so mehr, je grosser
der Grad der Funktion ist; so erstreckt sich das beste Gebiet fir
n =06 schon zwischen —3 und -}-4; bei den noch hohern Bernoul-
lischen Funktionen wird dieses Gebiet bedeutend vergrossert.

Es ist dies ein weiterer Vorzug der Definition von Schlafli,
wieder bewirkt durch die Fakultit im Nenner.

§ 32. Entscheidung,.

Gestiitzt auf all unsere friilhern Betrachiungen, gelangen wir zu
folgendem Resultat: |
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Die Definition der Bernoullischen Funktion nach L. Schlifli ist die
fiir die Theorie zutreffendste, weil : ;

1. ihr Konvergenzgebiet sich am weitesten ausdehnt,
2. alle Formeln einfachere Gestalt annehmen,
3. dieselbe die allgemeinste ist und

4. die ganze Theorie sich einheitlicher aufbaut, infolge der treff-
lich gewdihlten Grundbeziehung zwischen den Bernoullischen
Zahlen und Funktionen und der Anwendung des Prinzipes
der Koeffizientenvergleichung.
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Tabelle III.

Definition nach L. Schlafli: i (n, x).

Arg. n=1. n==2, n=3 n=+¢ n==5 n==6
x=—4 — 4,500000 10,083 333 —15,000000 16,665278 —14,750000 10,833366
x == — B, — 3,500000 6,083333 — 7,000000 5,998611 — 4083333 2,300033
x=—2 — 2,500000 - 3,083333 — 2,500000 1,503472 — 0,708333 . 0,275033
x=—1. — 1,500000 - 1,083333 — 0,500000 0,165278 — 0,041667 0,008366
X o= eolify, — 1,250000 0,739583 — 0,273438 0,070388 — 0,013387 0,001 977
X =—1 — 1,000000 0,458333 — 0,125000 0,022049 — 0,002604 0,000228
X=—1 — 0,750000 0,239583 — 0,039063 0,002680 0,000041 0,000008
x= 0. - —0,500000 |  0,083333 0,000000 —0,001389 0,000000 0,000033
= . Y — 0,250000 —0,010416 0,007813 0,000076 — 0,000203 —0,000001
x= /. 0,000000 —0,041667 0,000000 0,001,215 0,000000 —0,000033
= Yy 0,250000 —0,010417 — 0,007813 0,000076 0,000203 —0,000001,
H=. . L - 0,5600000 0,083333 0,000000 —0,001389 0,000000 0,000033
x= i 0,750000 0,239583 0,039063 0,002 680 — 0,000041 0,000008
x= 1,000000 0,458333 0,125000 0,022049 0,002604 0,000228 - -
x= 1,250000 0,739583 0,273438 0,070388 0,013387 0,001977
E= & 1,500000 1,083333 0,500000 0,165278 0,041 667 0,008 366
2= J 2,500000 3,083 333 2,500000 1,503472 0,708333 0,275033
x= 4 - 3,600000 6,083333 7,000000 5,998611 -4,083333 |- - 2300033 -

= b 4,500000 10,083333 ©15,000000 16,665278 14,750000 10,833 366
; ".
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Definition nach J. W. L. Glaisher: A  (x).

Tabelle 1IV.

Arg. n=1 M=y n—3 n—4 n—>s n—_~6.
X =— 4, —4,500000 10,083333 —30,000000 99,991 667 —354,000000 1300,003 968
x=—3 —3,500000 6,083333 —14,000000 35,991 667 — 98,000000 276,003 968
X=— 2 — 2,500000 3,083333 — 5,000000 9,020833 — 17,000000 33,008968
X=— 1. —1,500000 1,083333 — 1,000000 0,991 667 —  1,000000 1,003968
X =— 3 —1,250000 0,739583 — 0,546875 0,422331 —  0.321289 0,237 245
Xx=—10 —1,000000 0,458333 — 0,250000 0,132292 —  0,062500 0,027406
X=—1 — 0,750000 0,239583 — 0,078125 0.016081 0,000977 0,000916
x= 0. —0,500000 0,083333 0,000000 0,008333 0,000000 0,003 968
x= 1 —0,250000 —0,010416 0,015625 0,000456 — 0,004833 — 0,000060
Xx= 1 0,000000 —0,041666 0,000000 0,007292 0,000000 — 0,003968 -
x= 3, 0,250 000 --0,010416 — 0,015625 0,000456 0,004833 — 0,000060
x= 1. 0,500000 0,083333 0,000000 0,008333 0,000000 0,003 968
X= %, 0,750 000 0,239583 0,078125 0,016081 —  0,000977 0,000916
x= 3 1,000000 0,458333 0,250000 0,132292 0,062500 0,027406
X= 1,250000 0,739583 0,546 875 0,422331 0,32128Y 0,237245

= £ 1,500000 1,083333 1,000000 0,991 667 1,000000 1,003 968
x= 3 2,500000 3,083333 5,000000 9,020 833 17,000000 33,003 968
x= 4 3,500000 6,083333 14,000000 . 85,991667 - 98,000000 276,003968
x= b. 4,500000 10,083 333 80,000000 99,991 667 354,000000 1300,003 968
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TabelleV,
Definition nach J. Raabe.
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Tabelle V1.
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Definition nach Schlémilch.
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Tabelle VII.

Definition nach L. Schisfli.
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Tabelle V1I1I.
Definition nach W. Glaisher.
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Anmerkungen.

I~ Wihrend der Drucklegung vorliegender Arbeit erschien in den «Mit-
teilungen» der naturforschenden Gesellschaft in Bern 1900, von J. H. Graf heraus-
gegeben, und mit Noten versehen, ein Brief L. Schliflis an einen Freund, betitelt
« Praktische Integration.» Derselbe wurde veranlasst durch Fragen des Freundes
iiber die Richtigkeit verschiedener Resultate von J. L. Raabes Differential- und Inte-
gralrechnung, Band I, 1839. In dieser Abhandlung gibt Schldfli Beziehungen, die
sehr grosse Ahnlichkeit zeigen mit seinen spiter aufgestellten Relationen der
Bernoullischen Funktionen. Stammt dieser Brief wirklich aus dem Jahre 1840,
was nach den vorliegenden Untersuchungen von J. H. Graf als bewiesen anzu-
nehmen ist, so st Schldfli, zwar ohne den Namen der Fumktion zu nennen,
schon vor J. Raabe auf diese Funkiion gekommen. Es ist dies ein weiterer
Beweis fiir Schliflis schopferische Thitigkeit.

Folgende wenige Thatsachen sollen einige Ahnlichkeiten hervorhehen:

a) Die auf Seite 7 (89) der «Mitleilungen» der naturforschenden Gesell-
schaft in Bern 1900 gegebenen Koeffizienten ¢y, cqy €5, ..... stimmen
genau iiberein mit denjenigen bei der Herleitung der Definition der
Bernoullischen Zahlen.

b) Die von Schlifli in der angefiihrten Arbeit, Seite 10 (92) angewandte
Formel fiir c,, ist nicht identisch mit der spdier von ihm gebrauchten.
Daher werden die B-Werte nicht gleich den eigentlichen Bernoul-
lischen Zahlen. (Vergleiche Tabelle auf Seite 10 (92) dieses Briefes.)
Trotzdem tritt eine unverkennbare Ahnlichkeit der Beziehungen hier
und spiter bei der Bernoullischen Funktion ein; vergleiche in diesem
bereits erwihnten Briefe

1. Formel (e), Scite 11 (93) und B”(z) von Raabe,
2. »  zwischen (e) u. (f)), » 11 (93) » B (z) » »
3. » (f), » 11 (93) » 'B (Z) » » )

welche bis auf die jedem Gliede vorgesetzten Nenner iibereinstimmen.

¢) Formel (1) ist analog gebaut wic unserc Formel (II) (25); nur zeigt
sie eine Fakultit im Nenner; letztere hat Schlifli spiler durch zweck-
missige Wahl der Definitionsgleichung wegzuschaffen gewusst. Formel
(m) gleicht unserer Formel III (23), zeigt aber eine unliebsame Zuthat
durch e¢in Summenglied.

d) Formel (y) entspricht unserer Formel II[ (24); sie liefert auch die-
selben Werte, trotzdem darin die B-Zahlen andere Werte haben.

e) Auch die unterste Formel auf Seite 13 (95) dieses Schliflischen Briefes,

welche Beziehungen seiner ¢-Funktionen fiir die Argumente O,—;— und
1 gibt, entspricht ganz unserer spétern Formel IIL (10).
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Natiirlich sind durch diese wenigen Aufzihlungen die Analogien beider
noch lange nicht erschdpft.

1) Vergleiche das Verzeichnis der benutzten Litteratur am Schlusse der
Arbeit.

2) Siehe Saalschiitz «Vorlesungen iiber die Bernoullischen Zahlen, ihren
Zusammenhang mit den Sekantenkoeffizienten und ihre wichtigsten Anwendungen,»
wo sich auf den Seiten 204—207 ein grosseres Litteraturverzeichnis befindet.

3) Zum Studium sehr zu empfehlen ist die schon in Anmerkung 2 an-
gefithrte Arbeit von L. Saalschiitz. Siche Litteraturverzeichnis!

4) Jakob Bernoulli (16564—1705) gab in seinem epochemachenden Werke
iiber die Wahrscheinlichkeitsrechnung, Ars conjectandi, Mutmassungskunst als
Erweiterung der gemeinen ars computandi oder Rechnungskunst, nicht nur eine
beinahe vollstindige Theorie der Kombinatorik und der figurierten Zahlen, sondern
fand auch die nach ihm benaunten Zahlen, dic bekanntlich in der Reihen- und
Interpolationsrechnung von Wichtigkeit sind, und auf welehe sich die Theorie der
Bernoullischen Funktion stiitzt.

) Siehe Journal fiar reine und angewandte Mathematik, herausgegeben
von A. L. Crelle, Band 42, Seite 348—376.

6) Quarterly Journal of pure and applied Mathematics, Vol. XXIX, pag. 1.

7) Messenger of Mathematies, Vol. XXVI, No. 10—12 und Vol. XXVII,
No. 2—8.

8) Vergleiche J. Raahe «Die Jakob Bernoullische Funktion», Seite 1—16.

9) Seite 13 der eingangs erwiihnten Schrift: J. Raabe «dic Jakob Bernoul-
lische Funktion.»

10) Vergleiche Raabes zweite diesbeziigliche Arbeit. Journal von Crelle.
Band 42.

11y Es sind dies die beiden schon frither gefundenen Formeln (17D),

12) Seite 97 u. ff. und Saalschiitz «Vorlesungen tber dic Belnoulllschen
Zahlen». Anmerkung 1, Seite 7 und 8.

13} Vergleiche Wa]lls «Opera mathematica.» Oxon. 1695 und «Arithmetica
infinitorum.»

14) Siehe A. G. Kiistner «Geschichte der Mathematik,» Band 3, Seite 111 u. ff.

1) Vergleiche «Ars conjectandi.» Basilea 1713. Seite 97 u. ff.

16) Ist Formel 18", nur identisch anders geschricben.

17) Yergleiche Raabes erste Arbeit iiber diesen Gegenstand, Seite 17--23.

18) Wo Bi' (z) = —B (7).

') Raabe spricht sich im Vorwort seiner ersten auf die Bernoullische
Funktion beziiglichen Schrift folgendermassen dariiber aus: «Die Eigenschaften
dieser Funktion B(z) sind Analogicn zu denen der Legendreschen Funktion I'(z),
dic das Eulersche Integral zweiter Art vorstellt. Beinahe alle Eigentiimlichkeiten
die bei dieser I'(z) durch Produkte angedeutet sind, sprechen sich bei jener
B(z) durch Summen aus: so dass gestiitzt auf eine in der niedern Algebra iib-
liche Terminologie, wo von einer arithmetischen und geometrischen Progression
die Rede ist, auch dic hier einzufiihrende Funktion B (z) eine arithmetische, und

Bern. Mitteil. 1900. No. 1490.
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das Eulersche Integral I'(z) eine geometrische Funktion von z genannt werden
diirfte», )

20) Siehe auch Tabelle V am Schlusse dieser Arbeit.

21) Raabe gibt diese vier Formeln, ohne auf ihre Herleitung niher einzu-
treten, in seiner zweiten, diesen Gegenstand behandelnden Schrift in Crelles
Journal, Band 42, Seite 352.

22) Zum genauern Studium verweisen wir wieder auf Raabes Arbeit im
42. Band von Crelles Journal, Sciten 359—362.

P
dx?P

24) Siehe Compendium der hohern Analysis von O. Schlémilch, Teil I
Seite 277 und Teil II, Seite 208.

25) Siehe auch §§ 29 und 30 vorliegender Arbeit.

26) Vergleiche J. Worpitzky «Studien iiber die Bernoullischen und Eulerschen
Zahlen». Journal von Crelle, Band 94, Seite 203 u. ff.

27) Vergleiche § 81 vorliegender Arbeit, sowie Tabelle VL
1

28) Uber die Ausmittlung von f e*“ cos k mz dz, die ziemlich umstindlich

28) Hierin bedeutet wie gebriuchlich D =

bewerkstelligt wird, siehe Schlﬁmilct? «Comp. der Analysis», Band I, Seite 361,
§ 78. 1L

29) Siehe Journal von Crelle, Band 94, Seite 220. Formeln 52.

3} Vergleiche Zeitschrift fiir Mathematik und Physik. Band T, Seite 202
und Comp. der Analysis von O. Schlomilch, Band II, Seite 218 u. ff.

31) Wir bezeichnen in Zukunft Koeffizient stets durch [], z. B.,[y“]
= Koeffizient von y™.

32) Vergleiche § 31 und Tabellen V—VIIL

%) Siehe § 16, Formel (12).

%) Vergleiche auch Tabelle VII amn Schlusse dieser Arbeit.

33) Vergleiche § 12.

36) Siehe § 20, Formeln (40) und (41).

37) Vergleiche Dr. J. H. Graf: «Einleitung in die Theorie der Gamma-
funktion und der Eulerschen Integrale», Seite 30, Formel (86), wie auch bei
andern Autoren.

%) Nach Definitionsgleichung (2).

89) Vergleiche auch § 20, Formeln (29), (81) und (83).

40) Wir verweisen auf dic dariiber hekannten Arbeiten: «Uber Bernoullische
Zahlen und Funktionen», Vorlesungen an der Berner Hochschule von Dr. J. H.
Graf. S.S. 1898 und «Uber eine Verallgemeinerung der Bernoullischen Funktionen
und ihren Zusammenhang mit der verallgemeinerten Riemannschen Reihe» von
Dr. Alfred Jonquiere. Stockholm 1891. Bihang till K. Svenska Vet.-Acad. Hand-
lingar. Band 16. Afd. 1. No. 6.

1) Siehe Dr. J. H. Graf «Einleitung in die Theorie der Gammafunktion»,
Seite 49, 3. Zeile, wie auch bei andern Autoren.
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42} Siehe «Quarterly Journal of pure and applied mathemalics». Vol. XXVIII,
pag. 1—174.

43) Siehe gleiche Zeitschrift, Vol. XXIX, pag. 1—168.

) Vergleiche «Messenger of mathematics», Vol. XXVI, pag.152—182 und
Vol. XXVII, pag. 20—98.

45} Vergleiche dariiber «Quarterly Journal», Vol. XXVII, pag. 4—18.

46) UJber ihren Zusammenhang siehe § 29, Formel (10).

47) Siehe § 23, Formeln (12), (13) und (16).

48) Vergleiche «Quarterly Journal». Band XXVIIIL; § 18, pag. 11.

4%) Siehe § 26, Formeln (23) und (24).

80) Siehe Schlomileh «Compendium der Analysis». Seite 140, Formel 27,
und Seite 141, Formel 32. Diese gehen durch Substitution von A=a und
x = 7 (1—2X) in unsere Formeln iiber.

1) Vergleiche den mehrfach erwiihnten Band des «Quarterly Journal-
pag. 7—18, wie auch an andern Stellen.

52) Ebendort, pag. 26 —83.

53) Siehe § 28.

) «Quarterly Journal», Band XXIX, §§ 58, 75, 85, 88, 109, 115, 119,
123, 132, 134, 143 und 146.

55) Vergleiche «Quarterly Journal», Band XXIX, § 18.

56) Vergleiche Tabelien IV und VIIL

57) Siehe Formeln (23) und (24) von § 26.

58) Vergleiche «Quarterly Journal», §§ 47, 58 und 75 und «Messenger of
mathematics», § 73.

59} Siehe «Messenger of mathematics», Binde XXVI und XXVIL

60) Siehe «Quarterly Journal», §§ 174—216.

61} Vergleiche «Quarterly Journal», §§ 217—311.

62) Siehe «Messenger of mathematics», §§ 99—102 und § 108.

%) Vergleiche vorliegende Arbeit, §§ 1, 7, 14 und 21.

64) Siehe diese Arbeit §§ 2, 8, 15 vnd 22.

65) Vergleiche vorliegende Arbeit, §§ 6, 13, 20 und 27.

¢6) Siehe diese Arbeit, §§ 3, 9, 16 und 23.

67) Vergleiche unsere §§ 3, 10, 17 und 24.

%) Siehe Schlomilch «Comp. der Analysis», Band II, Seite 129, wo fir
f=nx und x<C1 diese Reihe erhaltlich ist.

%) Vergleiche Anmerkung 49).

70) Siehe auch Rogel «Die Entwicklung nach Bernoullischen Funkiionens
in den Sitzungsberichten der kéniglich-b6hmischen Gesellschaft der Wlssenschaften.
Mathematisch-naturwissenschaftliche Klasse. Prag 1896.

1) Vergleiche unsere §§ 5, 12, 19 und 26.

72) Siehe § 3, Formel 18, § 10, Formel 16 und § 17, Formel 19.

3) Vergleiche Tabelle VIL




	Die Definitionen der Bernoullischen Funktion und Untersuchung der Frage, welche von denselben für die Theorie die zutreffendste ist : historisch-kritisch beleuchtet
	Einleitung
	Die Bernoullische Funktion nach J. Raabe
	Die Bernoullische Funktion nach O. Schlömilch
	Die Bernoullische Funktion nach L. Schläfli
	Die Definition nach J. W. L. Glaisher
	Folgerungen
	[Tabelle I - VIII]
	Anmerkungen


