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A. Droz-Farny.

Sur un théorème de Steiner.
Etude géométrique et développements.

Le journal de mathématiques belge, Mathesis, proposait en 1894,
sous la signature de l'éminent géomètre E. Lemoine, la question
937:

Soit un triangle ABC, et soient Ai Bi Ci les symétriques de

1''orthocentre H, par rapport aux milieux des hauteurs ; A', B', C,
les symétriques des pieds Ha Hb Hc des hauteurs par rapport
aux milieux Ma, Mb, Mc des côtés BC, AC, AB.

1° Il y a une ellipse qui passe par les six points A, B, C, A'
B' C.

2° Elle est normale aux hauteurs en Ai Bi Ci.

3° Elle est tangente aux côtés en A' B' C\
4° Elle a pour centre, le centre O du cercle circonscrit.
5° La somme de ses demi-axes égale le rayon R du cercle cir¬

conscrit.

6° Elle a pour équation: ^a W^ q

7° Si le cercle ABC et l'ellipse sont fixes, il y a une infinité de

triangles ABC.

En 1895, j'ai donné dans Mathesis, page 258, une solution

complètement synthétique de la question. En 1896, j'ai publié en

outre dans le Journal de Mathématiques spéciales de Mr. de Long-
champs p. 229—233 une solution géométrique de la question 501,
proposée par Mr. le commandant E. Barisien et contenant quelques

propriétés nouvelles de la figure.
Monsieur Barisien avait rencontré cette figure dans ses belles

recherches sur les cercles de Chasles, ces cercles concentriques à

une ellipse et de rayons respectifs a+b el a—b et qui jouissent de

si nombreuses propriétés.
Les diverses propriétés retrouvées par MM. Lemoine et Barisien,

avaient été étudiées autrefois par le grand géomètre bernois Steiner,
qui les avait publiées dans le journal de Borchardt, volume 55,

pages 356—378, sous le titre: Vermischte Sätze und Aufgaben. Voir
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ses œuvres réunies, tome II, pages 671 el suivantes. De nombreuses

propriétés nouvelles de cette figure ont été énoncées sans démonstrations

par Mr. Böklen dans le Journal de Hoffmann.
Nous les rencontrerons dans la 2mc partie de notre élude. Lire

aussi la si intéressante étude historique de la question dans Mathesis,
année 1898, page 61, due au savant géomètre Mr. Brocard (Colonel
du génie à Bar-le-Duc).

Soient donc dans un triangle ABC, A', B', C les symétriques
des pieds des hauteurs Ha Hb Hc par rapport aux milieux Ma Mb M0

des côtés BC, CA, AB et Ai Bi Ci les symétriques de l'orlhocentre H

par rapport aux milieux des hauteurs.

On démontre aisément que les droites AA', BB', CC' se

coupent en un point Q, réciproque de l'orthocenlre. Il existe donc une

conique qui touche les côtés de ABC en A' B' C.
Une proposition connue (Mémoire sur les transversales réciproques,

Annales de l'Ecole Normale, 1866) due à Mr. de Longchamps prouve
que cette conique est l'enveloppe des transversales réciproques de celles

qui tournent autour du point H. (Voir note II).
Le centre de cette courbe, d'après un cas particulier d'un

théorème de Newton, sur le lieu des centres des coniques ayant

quatre tangentes communes, est à l'intersection des droites joignant
Ma, Mb, M0 aux milieux N„ Nb, Nc des droites AA', BB', CC; ces

droites étant parallèles aux hauteurs AHa, BHb, CHC, le centre de la

conique E coïncide avec le centre O du cercle ABC. (Voir 3 autres
démonstrations dans la note I).

Comme 0Ma —^ —^-, la droite A'O passe par Ai et
et et

A'O —OAi; donc E passe par Ai B\ Ci et les tangentes en ces points
sont parallèles aux tangentes menées en A' B' C, autrement dit: Les

hauteurs du triangle ABC sont normales à la conique E.
Les perpendiculaires élevées en A', B', C sur les côtés se coupent

en un point N, symétrique de forthocentre par rapport à 0. Ce

point est évidemment l'orthocenlre du triangle anticomplémenlaire de

ABC; donc:
Les hauteurs du triangle anticomplémentaire sont aussi normales

à la conique E.
Menons par 0 et par Ai des parallèles à BC ; la première

rencontre E en S et la seconde AC en P. On voit facilement que les
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segments A'C et Ai P déterminés par la tangente AC sur les

tangentes parallèles Ai P et A'C sont toujours de même sens; donc:

E est une ellipse.

-2
Ensuite d'après un théorème connu OS — A'C AiP.
Mais si l'on mène par H une parallèle à AC qui rencontre BC

en D, l'égalité AAi HHa entraîne AiP HaD, d'où
2 2

OS A' C.Ai P BHa. HaD HHa

Donc les demi-diamètres de E parallèles aux côtés de ABC sont

égaux aux segments inférieurs HHa, HHb, HHC des hauteurs.

Nous connaissons maintenant deux demi-diamètres conjugués,
OA' et OS. Pour appliquer la construction de Chasles, nous élevons

en A' sur BC la perpendiculaire xA'y, de manière que xA' A'y
HHa, et que O et x soient de part et d'autre de BC, on aura:

Ox a+b ; Oy a—b

et les axes de E sont dirigés suivant les bissectrices de l'angle xOy.
Comme BHa A'C, A'x HHa, on voit que x appartient à la

circonférence ABC, donc R aA-b

En outre Oy ON (a—b) OH

HN 2 (a—b).
Si, entre le rayon d'une circonférence el les axes d'une ellipse

de môme centre, on a la relation R a+b, on peut inscrire à la

circonférence une infinité de triangles qui sont en môme temps
circonscrits à l'ellipse et celle-ci est normale aux hauteurs de chacun

des triangles. Cette proposition est rendue presque évidente par ce

qui précède; on l'établit par un calcul facile, en prenant pour axes

de coordonnées, les axes de l'ellipse et en considérant d'abord un

triangle isoscele dont les sommets ont pour coordonnées (a+b ; 0)

et (—a; + V(a+b)2 —a2 puis en appliquant le théorème de Poncelet.

Ces triangles jouissent des propriétés suivantes:

1° L'orlhocentre décrit une circonférence de centre 0 et de rayon
(a—b); le centre de gravité décrit une circonférence de centre 0

a jj
et de rayon —-— ; le centre du cercle d'Euler décrit une circon-

a 5
férence de centre 0 el de rayon ——.

d

Bern. MitteU. 1900. No. 1495.



- 138 —

2° Le cercle d'Euler reste constamment tangent aux deux cercles

décrits sur les axes de E, ce qui est évident puisque

a - (R+OH) et b i (R-OH)
2 2

On sait que dans tout triangle on a:

ÖH2 R2 (1—8 cos A. cos B. cosC.)

et ÖT? 9R2 — (AB2 +BC2 + ÂC2)

De là:
3° Dans chaque triangle ABC on a :

a. b.
cos A. cos B. cos C

2 (a+b)2

4° Dans chaque triangle ABC on a:

Zi Alf 4 (2a2 +2 b2 + 5 ab)

De là aisément comme AB 2 R sin A.

5o 2 si"2 A 2 + (^+F)2

^.cos A 1
(a+b)'

^1 ca * 2 ab

^cos2A=_1___2
6° Dans chaque triangle ABC, le produit des segments supérieurs

des hauteurs est constant et égal à:

AH. BH. CH 8 R3 cos A. cos B. cos C

4 ab (a+b)
7° Dans chaque triangle ABC, le produit des segments inférieurs

des hauteurs est constant et égal à:
HHa. HHb. HH0 8 R3 cos2 A cos2 B. cos2 C

_
2 a2 b2

'~ a+b
8° En représentant par x, y, z les coordonnées normales de O

dans le triangle ABC, on a:
ab (a+b)

x y z o
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x2 _|_ y2 _[_ z2 a2 + b2 _J_ ab_

9° Le produit des distances du centre 0 à l'un des côtés de ABC

et à la droite joignant les points milieux des 2 autres côtés

est constant et égal à:

~2~
R2 cos A. cos B. cos C

10° Le produit des distances du centre O aux côtés du triangle
complémentaire de ABC est constant et égal à:

a3 b3 ab (a+b) _
a2 b2

8
:

2 — 4 (a+b)

11° Le produit des diamètres de l'ellipse, parallèles aux côtés de

ABC est constant et égal à

a2 b2
16

a+b

IIme partie.
Des formules connues:

a b cos C + c cos B
b a cos C + c cos A

c a cos B + b cos A,

on déduit en éliminant les côtés:

— 1 cos C cos B

cos C — 1 cos A =0
cos B cos A — 1

d'où la formule bien connue aussi:

I) cos2 A + cos2 B + cos2 C + 2 cos A. cos B cos C 1

Portons AC BH0, AB' CHb ; on sait qu'il existe une

ellipse E tangente aux trois côtés aux conjugués isolomiques des pieds
des hauteurs et dont le centre est 0. (figure I)..

A est donc le pole de B'C et par conséquent AO bisecte B'C.
Théorème: Soient A'B'C les conjugués isotomiques des pieds des

hauteurs et a ß in les points milieux des droites B'C,
A'C, A'B', les trois droites Aa, Bß, Cij se coupent au

centre O du cercle circonscrit au triangle ABC.
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Calcul de A«: On a AC BHC a cos B

AB' CHb a cos C

-fidonc B'C a2 cos2 B + a2 cos2 C — 2 a2 cos A cos B cos C

4 R2 sin2 A [cos2 B + cos2 C — 2 cos A cos B cos C]

Or: ÄC2 + Â¥'2 2 çTa + 2 ha

donc: 2 Ää 2 R2 sin2 A [cos2 B +cos2 C+2 cos A cos B cos C]

2 R2 sin4 A (d'après formule I)
A« R sin2 A
Oa R cos2 A

Cherchons sur la droite OA, les points x et y tels que O soit
le milieu de x y et que x et y divisent A« harmoniquement.

On aura: Ox2 =0y2 O«. OA R2 cos2 A

Ox 0y= R cos A

Donc xy AH

Théorème: Le diamètre de la conique E dirigé suivant OA est égal

au segment supérieur AH de la hauteur AHa.

Triangle orthique d'un triangle ABC.

Le triangle orthique Ha Hb Hc est inscrit au cercle d'Euler de

ABC. Le lieu du centre Os du cercle circonscrit à ce triangle est donc

a j)
une circonférence de centre 0 et de rayon ——. L'orthocentre H du

triangle ABC est le centre du cercle inscrit au triangle orthique, donc:
Le lieu du centre H du cercle inscrit est une circonférence de centre 0
et de rayon (a—b)

Le rayon du cercle circonscrit à Ha Hb Hc reste constant

R' — J~ ; il est facile de démontrer que le rayon r' du cercle
u 2

inscrit à Ha Hb Hc reste aussi constant.

En effet: a' a cos A; b' b cos B; c' c cos C.

donc 2 p' I a cos A 2 2 R sin A cos A R^sin 2 A

2 p' 4 R sin A sin B sin C

2 surface du triangle orthique — 2 S' a' b' sin 2 C

2 S' ab cos A cos B sin 2 C

R2 sin 2 A sin 2 B sin 2 C
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S' ab
r' ——= 2 R cos A cos B cos C

p' a+b
On a donc:

r' _ î±5. r' - ab

2 ' a+b

Si d'un point P, on mène les quatre normales possibles' à une

ellipse, on sait d'après un théorème de Joachimsthal que trois des

pieds des normales et le point diamétralement opposé sur l'ellipse au

quatrième pied sont quatre points d'une même circonférence. Celte

remarque nous permettra de construire les quatrièmes normales des

points N et H à l'ellipse.
Soit donc un triangle ABC inscrit dans le cercle de rayon

R a+b et circonscrit à l'ellipse E [figure 2} OH fait avec un. des

axes de E un certain angle ip. Construisons la symétrique de OH par
rapport aux axes de E et soit Q son point d'intersection avec le
cercle. Comme OQ a+b et OH a—b et comme l'angle QOH est

divisé en parties égales par les axes de E, on sait d'après Chasles,

que HQ est normale à l'ellipse en son point milieu P et que
PH PQ le demi-diamètre conjugué à OP.

La perpendiculaire abaissée de O sur la tangente en P est égale

en représentant par « l'angle de OP avec son diamètre conjugué à

OP sin a et par conséquent d'après un théorème bien connu d'Apollonius

en représentant la distance de O à la tangente par d on a:

d. HP OP. HP sin a ab.

Supposons une seconde ellipse 2 inscrite dans le triangle ABC

el admettant pour foyers O et H. .Son centre sera le centre O9 du

cercle des neuf points du triangle. Soit R le symétrique de H par
rapport à BC. OR sera le grand axe de l'ellipse 2 et coupera BC au

point de contact. Mais d'après un théorème connu de géométrie, les

symétriques de l'orthocenlre d'un triangle par rapport à ses côtés

appartiennent à la circonférence circonscrite au triangle, donc OR le

grand axe de l'ellipse 2 est égal à a+b.
On a donc pour celte ellipse 2a' a+b

2c' OH a—b

2b' 2 Vâb
On sait que les pieds des perpendiculaires abaissées des foyers

d'une ellipse sur les tangentes sont sur le cercle principal de l'ellipse
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et que le produit des deux perpendiculaires abaissées des foyers sur

une tangente quelconque est égal au carré du demi petit axe. Comme

d'après une relation précédente

d. HP ab "b72

il en résulte que la tangente à E au point P est aussi tangente à 2
d'où le théorème énoncé par Mr. Böklen [Dr. 0. Böklen, Oberstudien-

ralh à Stoutgart]

Théorème: Les deux ellipses E et 2 ont 4 tangentes communes, les

3 côtés du triangle ABC et une quatrième tangente dont
le point de contact avec E est le pied P de la 4m*

normale de H à l'ellipse. Comme H et N sont symétriques

par rapport à 0, le point diamétralement opposé de P sur
E est le pied de la 4me normale de N à E. Le point P

est un des points d'intersection du cercle d'Euler de ABC
avec l'ellipse E.

Transformons l'ensemble des deux ellipses E et 2 ainsi que le

cercle principal de 2, ou cercle d'Euler de ABC, par polaires

réciproques, par rapport à une circonférence de centre 0 et de rayon q VaD-
(voir figures 3' et 3")

L'ellipse E d'axes AAi 2 a et BBi 2 b se transforme
suivant une ellipse égale E' tournée autour de 0 de 90°.

L'ellipse 2 de foyers O et H de grand axe CCi a+b [OC a

et OCi b puisque OH a—b] se transforme suivant un cercle 2'
décrit sur C'Ci' comme diamètre; OC b et OCi' a, le cercle

principal de 2 tourné de 180°. Enfin le cercle principal S se
transforme suivant une conique S' de foyer 0 égale à la conique 2 tournée
de 180° autour de 0.

Les deux coniques E' et S' ainsi obtenues, ayant la même position

relative que les coniques E et 2, il en résulte qu'aux points
d'intersection de E et S correspondent 4 tangentes communes des

coniques E' et S' dont trois forment un triangle inscrit dans une
circonférence de centre O et de rayon (a+b). En revenant à la figure
primitive on a le théorème suivant de Mr. Böklen.
Théorème: Le cercle principal de la conique 2 ou le cercle d'Euler

du triangle ABC coupe l'ellipse E en 4 points: un de ces

points P est le pied de la 4m* normale abaissée de H sur E.
Les trois autres points At Bt Ca forment un triangle cir-
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consent à une circonférence fixe de centre 0 et de

ray0n(^b)
Les triangles variables Ha Hb Hc et A2 B2 C2 sont inscrits dans un

a+b
même cercle variable, mais de rayon constant R —£— et ont un

et

rayon de cercle inscrit constant r a+b'
Ces triangles jouissent de nombreuses propriétés provenant de

l'invariance de R et r.
Ces propriétés seront démontrées en note à la fin du travail.

Démonstration analytique d'un dernier théorème de Mr. Böklen.
Soient de nouveau l'ellipse E, le point H, HP la 4me normale à E;

HP étant égal au demi-diamètre conjugué à OP; a étant l'angle
excentrique de P, OH est égal à (a—b) et forme un angle a avec le
grand-axe de E.

Le cercle d'Euler de ABC de centre O9, point milieu de OH

passe ainsi que nous l'avons vu par P et le pied de la perpendiculaire

abaissée de O sur la tangente en P à E. [fig. 4]
D'après un théorème de Laguerre, on peut considérer ce cercle

comme un cercle de Joachimslhal et par conséquent les normales à

la conique E, aux points A2, B2, C2 sont concourantes en un point Q,

situé sur la normale au point p, diamétralement opposé à P sur E.

Si d'un point Q quelconque, pris sur la normale fixe au point p

(x' y') de l'ellipse E, on abaisse les trois autres normales à E, leurs

pieds sont sur une circonférence qui passe aussi par le point diamétral

P de p (coordonnées —x'—y') d'après le théorème de Joachimslhal.

Cette circonférence passe aussi par le pied N de la perpendiculaire

abaissée du centre O de l'ellipse sur la tangente au point P

(théorème de Laguerre). Si le point de concours Q des normales se

déplace sur la normale en p, le lieu du centre du cercle de Joachimsthal

est une droite, la perpendiculaire à NP en son point milieu.
Le cercle d'Euler passant par P et N est donc bien un cercle

de Joachimsthal.

Le symétrique du centre O de l'ellipse par rapport au centre
du cercle J (ici H) et le symétrique Q' du point Q de concours des

normales par rapport à O sont évidemment sur la normale en P.
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Mais on peut démontrer que ces deux points sont isotomiques sur
cette droite par rapport aux axes.

En effet soient x', y' les coordonnées de p et a, ß celles du

point Q; l'équation du cercle de Joachimsthal sous la forme que lui a

donnée Mr. de Longchamps sera:

x2+y2+xx'+yy'-u 0^+ ™_+1^ 0

oùu a2 + ^=b2+a4£
On aura pour les coordonnées de son centre.

ux' x' / h2ß\ b2/9x'
2x — x' -\ —= — x' -| —( a2 -1- ' » ——" -y1 / a2 y'

2y _ y' + Eli "'»f' ' ^ b2 b2X'

On a donc pour les coordonnées du point H:
X 2x Y 2y

Or XY aß

Les points Q, Q' H sont donc sur une hyperbole equilatere de

centre O et dont les asymptotes coincident avec les axes de E.

On a donc bien HL Q'M.'
Donc PL + PM PH + PQ'.

Or comme PH b'

on sait que PL - —b' et PM =-^-b'
a b

Donc — b'-f-i-b' b' + PQ'
a r b '

Il en résulte PQ' y. PH. Le lieu du point Q' est donc une

ellipse coaxiale à la proposée; il en sera de môme pour le lieu du

point Q. Voici d'ailleurs son équation:

Les coordonnées du point P sont: — x' =acos^;
— y' =- b sin tp

b2 ß x' a2 a y'
nous avons trouvé pour H: x =- —„ ; y -—~v a2 y' ' J b2x'

Mais on sait aussi que:
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x (a—b) cos ç? et Y — (a—b) sin <p

n l u\ b2 ßa cos 9Donc: (a—b) cos a =—^-,—:—-1 a2 h sin tp

a2 a b sin w
— (a—b) sin ç> -T5 L

bJ a cos tp

h ß a a
ou: sin tp =-.. ¦¦¦¦.; cos ç» «= — —¦ -—j-rT a (a—b) T b (a—b)

et pour le lieu du point Q l'ellipse
ß2^ J f _ «

1,2 ~ a2 — 1

-^(a-b)2 -p-(a-b)a

lre Note relative à un problème de Steiner.
Une conique est inscrite dans un triangle ABC. Soient A', B', C

les points de contact sur les côlés BC, AC, AB. Déterminer le centre M

de la conique.

ire solution (fig. 5).

On sait que dans toute conique à centre, le produit sur deux

tangentes parallèles, des segments déterminés par une tangente variable

quelconque est égal au carré du demi-diamètre de la conique, parallèle
aux tangentes fixes.

Menons à notre conique, une tangente parallèle à BC, qui coupe
AB et AC respectivement en ß et y et dont le point de contact
soit «.

On a d'après le théorème cité:
I a ß. A'B a r. A'C

A a coupe BC en A"; on aura: aß: A"B a y: A"C
II a ß. A"C a y. A"B

De ces deux égalités on déduit:
AL AU

Il en résulte que les points A' et A" sont isotomiques sur BC.

Le point milieu A0 de A'A" est donc aussi le point milieu de BC.
Bern. Mitteil. 1900. No. 1496.
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Soit Die point milieu de AA'. La droite DA0 parallèle à AA" divisera
donc aussi a A' en parties égales. Or a A' est un diamètre de la

conique.
Le centre M. point milieu de a A' est donc situé sur DA0.

Théorème : Une conique est tangente aux trois côtés d'un triangle ABC'

aux points A', B', C. Soient A0 B0 C0 les points milieux
des côtés. Les trois droites qui joignent les points
milieux des droites AA', BB', CC respectivement aux points
Ao B0 C0 se coupent au centre M de la conique.

nme solution (même figure).

Le pôle de la droite AA0 doit se trouver sur le rajon conjugué
de AAo par rapport à AB et AC; or A0 étant le milieu de BC, ce

rayon sera parallèle à BC. Il doit aussi se trouver sur la polaire B' C
de A par rapport à la conique. Le point L, où ces deux droites se

croisent sera le pôle cherché. A' L sera donc la polaire de A0. Soit N

le second point d'intersection de A' L avec la conique, par conséquent,

le point de contact de la deuxième tangente menée de Ao à

celte courbe. Les 4 points A' (AA0, A' L), N et L sont harmoniques;

comme AL est parallèle à A' A", il en résulte que A' A0 =A0 A".
Le diamètre passant par A0, doit diviser en parties égales la
polaire A' N de ce point; il est par conséquent parallèle à AA"; il
divise donc aussi AA' en parties égales en D; d'où le théorème.

mme solution (fig. 6).

D'après la méthode de Schroeter.
On sait que les paires de tangentes parallèles à une conique

donnée, déterminent sur une tangente fixe, une série involutive. Le

point de contact sur cette dernière est le centre de l'involution. La

réciproque de cette proposition est exacte.

Soit M le centre cherché; menons les droites symétriques de

AC et AB par rapport au point M. Ces droites sont tangentes à la

conique et si elles rencontrent BC respectivement en y et ß, les

paires de points B ß et C y déterminent sur la tangente B C l'involution

produite par les paires de tangentes parallèles. Cette involution
est donc parfaitement déterminée.

Projetons centralement, du sommet A sur la parallèle bi, ci, à BC,

(b, milieu de AC) cette involution: On obtient ainsi les deux paires
de points ci, yx, et bi, ßi,. ßi, étant le point milieu de A y el les deux
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droites AC et y e étant parallèles, on a évidemment pour A0 comme
milieu de BC: M ßi, parallèle de A0 Ci, et M yx, parallèle de A0 bi,;
s intersection de MA0 avec bi, ci,

_ sbi sA0 s ci
Donc:—T —— —t-ou: s b. s ß, sci. s ris ;¦' s M s /Si r '

s est donc le point central de l'involution sur la droite by c/ et

comme elle est parallèle à BC, la projection centrale de s sur BC

sera aussi le point central de l'involution sur BC/ c'est-à-dire le point de

contact de cette droite avec la conique. La droite qui joint le point
milieu de AAi au point milieu de BC passe donc bien par le centre M

de la conique.

Note seconde (fig. T).

Une transversale tourne autour d'un point fixe P et coupe les

côtés d'un triangle ABC, BC en A', AC en B', et AB en C. Soient

sur le côté BC, A" le point isotomique de A' ; sur AC, B" l'isolo-
mique de B' et sur AB, C" l'isotomique de C.

A" B" C" est une ligne droite, la transversale réciproque de

A' B' C (nomenclature de Mr. de Longchamps; démonstration
évidente par application du théorème de Ménélaiis).

Quelle est l'enveloppe de A" B" C", lorsque A' B' C tourne
autour du point P.?

B el C, A' et A" sont les couples d'une involution ponctuelle
dont les points doubles sont A0, le point milieu de BC et le point
infini sur BC.

De môme A et B, C et C" sont les couples d'une
involution centrale dont les points doubles sont C0 et le point oo de AB.

Or les ponctuelles A' et C soni perspectives; il en résulte que
les ponctuelles A" et C" sont homographiques el par conséquent la

droite A" C" enveloppe une conique tangente aux trois côtés du

triangle. Comme iL est facile de le voir, le point « isotomique sur
BC, du point d'intersection de cette droite avec PA sera le point de

conlact de BC avec son enveloppe. A« el AP étant conjuguées iso-

tomiques, il en résulte que A a, B ß, C y se croisent en un même

point, le point de Gergonne de la conique, point réciproque de P.

Il est facile de trouver le centre de la conique enveloppée. On

pourrait utiliser le théorème de la note précédente. D'après ce
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théorème, le centre M se trouve sur la droite A0 D qui joint les points
milieux de BC et A a. Soit G le centre de gravité du triangle ABC;
PG coupe A0 D en M. Les triangles MGA0 el GAP étant semblables

on a: GP 2 GM.

M est donc un point fixe de la droite GP, donc les trois
transversales telles que Ao D passent par ce point qui sera le centre de la

conique.
M est le complémentaire de P qui est le réciproque du point

de Gergonne de la conique.
Si par ex: on fait tourner une transversale autour de l'ortho-

centre du triangle, les transversales réciproques enveloppent une

conique, tangente aux trois côtés du triangle, aux points isotomiques
des pieds des hauteurs et dont le centre coïncide avec le centre du

cercle circonscrit.

Note troisième.

Dans celle dernière note, nous développerons quelques formules,
dont chacune d'elles fournirait un théorème commun auv. triangles
variables Ha Hb H et A2 B2 C2

Dans tout triangle on a:

ABCcos A + cos B + cos C 1+4 sin—— sin -—- sin —
et et et

A B G
r P tg -p tg—. Ig—

4 cos A cos B cos C

~2~ T ~2~

r A B C
donc -5-= 4 sin-jr- sin-^r- sin—-

R 2 2 2

et par conséquent:

Formule 1 : cos A + cos B + cos C 1 +
Donc dans chaeun des triangles variables Ha Hb Hc el A2 B2 C2

la somme des cosinus de leurs angles reste toujours conslanle. Dans

ce qui suit, nous ne fqrons plus que citer la formule.
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A
Comme 1 + cos A 2 cos2 —-

d

2
A

I 2
B

cos2 — + cos2— + cos2-^- =-^- 3 + cos A + cos B+ cos C I

Formule 2: ^. cos2—— 2 -|———
^¦¦1 d d XI

sin2 — + sin2— + sin2— =2 (l—cos8 -jj-)

3-2cos24
Formule 3: ^, sin2 —p— 1

2 2 R

...A.B.C rformule 4: sin —- sin -^- sin
2 2 2 4 R

abc 4RS n _ S
2 R

2p 2p p

donc:

Formule 5: -=— 2 R r
2p

La perpendiculaire abaissée du centre O du cercle circonscrit a

pour valeur x R cos A.

2 x R 2 cos A

Formule 6: 2 x R + r (formule de Carnot)
cos A

a ctg A + bctg B + cctg C 2 2 R sin A.-^—-11 sin A

Formule 7: 2 a et g A 2 (R + r)
Soit H l'orthocentre ; on sait que AH -= 2 x

Formule 8: AH + BH + CH 2 (x+y + z) 2 (R + r)

1,1 1 a_i_'3ic P

~F ""h7" + Ì77 ~ 1^5 + 2ÏÏ + 2ÌT ~ IT
Formule 9: — + -p- + -py —

Formtt/e iO: r' + r" + r'" 4 R + r



— 150

Formule 11: \ + -Ì7 + -L __ J_
r ' r" r"' r

On a comme conséquence d'une formule d'Euler
2 2 2

01' + OJ" OJ'" 2 (R2 + 2 Rr')
3 R2 + 2 R (r' + r" + r'")
3 R2 + 2 R (4 R + r)

Formule 12: OJ' + OJ" + OJ'" 11 Ra 2 + Rr
2 r» g

Comme ~äj — — b e

"AT2. TT2 .-CJ2 P (P—) fr-*) (P-c) aW=-^ a2 b2 e2
p4 P

4 R S2

AJ BJ CJ —j a b e p2

Formule 13: AJ. BJ. CJ 4 R r2.

p p—a a
AJ' —a; AJ i-; donc JJ' — A

COS -3' cos "a COS^

JJ'. JJ". JJ'" + à b c— d'où
COS -j COS -Tj-

COS y
Formule 14: JJ'. JJ". JJ'" 16 R2. r

JJ'2 + J"J"'2= 16 R2

Formule 15: JJ"J+ J'J"" 16 R2

JJ7772 + J7!772 16 R2

Ces formules dérivent immédiatement des formules connues

AH + BC 4 R2, le rayon de la circonférence cil
consente au triangle J' J" J'" étant égal à 2 R.

On trouve aisément aussi J" J"' 4 R cos ^
"ÎJ78 + ÌJ772 + JJ77T2 48R2-16R2[cos2 \ + cos2| + cos2"§-]

Formule 16: JJ'2 + JJ"J + JJ'" 16 R2 — 8 Rr

Formule 17: J"J"" + J'J'" + J'J'"2 32R2 + 8Rr.

Porrentruy ce 1er Août 1900.
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