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A. Droz-Farny.

Sur un théoreme de Steiner.
Etude géométrique et développements.

Le journal de mathématiques belge, Mathesis, proposait en 1894,
sous la signature de I’éminent géométre E. Lemoine, la question
937 : '

Soit un triangle ABC, et soient A1 Bi Ci les symétriques de

Vorthocentre H, par rapport aux milieux des hauteurs; A‘, B‘, €',

les symétiriques des pieds Hy Hy H. des hauteurs par rapport

auwx milieux M, My, M. des cotés BC, AC, AB.

1° Il y a une ellipse qui passe par les six points A, B, G, A’
B’ C.

20 Elle est normale aux hauteurs en Ai1 Bi Cu.

3° Elle est tangente aux cotés en A" B’ (.

4° Elle a pour centre, le centre O du cercle circonscrit.

5% La somme de ses demi-axes égale le rayon R du cercle cir-
conscrit. '

6° Elle a pour équation : Sa \/ ==
7° Si le cercle ABC et I'ellipse sont fixes, il y a une infinité de
triangles ABC.

En 1895, j'ai donné dans Mathesis, page 258, une solution
complétement synthétique de la question. En 1896, j'ai publié en
outre dans le Journal de Mathématiques spéciales de Mr. de Long-
champs p. 229—233 une solution géométrique de la question 501,
proposée par Mr. le commandant E. Barisien et contenant quelques
propriétés nouvelles de la figure.

Monsieur Barisien avait rencontré cette figure dans ses belles
recherches sur les cercles de Chasles, ces cercles concentriques a
une ellipse et de rayons respectifs a-+b et a—b et qui jouissent de
si nombreuses propriétés.

Les diverses propriétés retrouvées par MM. Lemoine et Barisien,
avaient été éludides autrefois par le grand géométre bernois Steiner,
qui les avait publiées dans le journal de Borchardt, volume 55,
pages 356—378, sous le titre: Vermischtie Sidtze und Aufgaben. Voir
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ses ceuvres réunies, tome II, pages 671 el suivantes. De nombreuses
propriélés nouvelles de cette figure onl été énoncées sans demonstra-
tions par Mr. Boklen dans le Journal de Hoffmann.

Nous les rencontrerons dans la 2m¢ partie de notre élude. Lire
aussi la si intéressante étude historique de la question dans Mathesis,
année 1898, page 61, due au savant géomeétre Mr. Brocard (Colonel
du génie & Bar-le-Duc).

Soient donc dans un triangle ABC, A’, B/, G’ les symétriques
des pieds des hauteurs H, H, H. par rapport aux milieux My My M,
des cotés BC, CA, AB et A; By Ci les symélriques de l'orthocentre H
par rapport aux milieux des hauteurs.

On démontre aisément que les droites AA’, BB’, CC’ se cou-
pent en un point Q, réciproque de l'orthocentre. Il existe donc une
conique qui touche les cotés de ABC en A" B’ (/.

Une proposition connue (Mémoire sur les transversales réciproques,
Annales de U'Ecole Normale, 1866) due & Mr. de Longchamps prouve
que cette conique est l'enveloppe des transversales réciproques de celles
qut tournent autowr du poimt H. (Voir note II).

Le centre de celle courbe, d’aprés un cas particulier d’un
théoréme de Newton, sur le lieu des centres des coniques ayant
quatre tangentes communes, est & l'intersection des droites joignant
M., My, M, aux milieux Ny, Nn, N, des droites AA’, BB’, CC’; ces
droites étant paralleles aux hauteurs AH,, BH,, CH., le centre de la
conique E coincide avec le centre O du cercle ABC. (Noir 3 autres
démonstrations dans la note I).

AH, .« AiH,
2~ 2
A’0=0A:; donc E passe par Ar B1 Ci et les tangentes en ces points
sont paralleles aux tangenles menées en A’ B’ C/, aulrement dit: Les
hauteurs du triangle ABC sont normales a la conique E.

Les perpendiculaires élevées en A’, B’, ¢’ sur les colés se coupent
en un point N, symélrique de Porthocentre par rapport a4 0. Ce
point est évidemment 'orthocentre du triangle anticomplémentaire de
ABC; donc:

Les hauteurs du triangle anticomplémentaire sont aussi normales
a la conique E.

Menons par O et par A:i des paralléles a BC ; la premiére ren-
contre E en S et la seconde AG en P. On voil facilemenl que les

Comme OM, = , la droite A’O passe par A1 et
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segments A'C et Ay P délerminés par la tangenle AC sur les tan-
gentes paralleles A1 P et A’C sont toujours de méme sens; donc:
E est une ellipse.

" 2
Ensuite d’aprés un théoréme connu 0S8 == A’C. AsP.
Mais si 'on méne par H une paralléle & AC qui renconire BC

en D, I'égalité AA: — HH, entraine A1P = H,D, d’ou
2 __2
0S = A’ C.A1 P = BH,. H,D == HH,

Donc les demi-diamétres de E paralléles aux cités de ABC sont
égaux aur seqgments inferieurs HH,, HH,, HH. des hauteurs.

Nous connaissons maintenant deux demi-diametres conjugués,
OA’ et 0S. Pour appliguer la conslruction de Chasles, nous élevons
en A’ sur BC la perpendiculaire xA’y, de maniére que XA’ = A’y =
HH,, et que O et x soient de part et d’autre de BC, on aura:

Ox = a-b; Oy = a—b
el les axes de E sont dirigés suivant les bissectrices de I'angle xOy.
Comme BH, = A’C, A’x = HH,, on voit que x apparlient a la cir-
conférence ABC, donc R =a-+tb
En outre Oy = ON = (a—b) == OH
HN = 2 (a—b).

Si, entre le rayon d’une circonférence et les axes d'une ellipse
de méme centre, on a la relation R = a-+b, on peut inscrire 4 la
circonférence une infinité de triangles qui sont en méme temps cir-
conscrits a lellipse et celle-ci esl normale aux hauteurs de chacun
des triangles. Celte proposition est rendue presque évidenle par ce
qui préceéde; on I'établit par un calcul facile, en prenant pour axes
de coordonnées, les axes de I’ellipse et en considérant d’abord un
triangle isoscéle dont les sommets ont pour coordonnées (a-|-b; 0)

et (—a; + \/(a+4b)? —a?), puis en appliquant le théoréme de Poncelet.

Ces triangles jouissent des propriéteés suivanies:

1° L’orthocentre décrit une circonférence de centre O el de rayon
(a—b); le centre de gravité décrit une circonférence de centre O

—b . .
el de rayon ?—3— ; le centre du cercle d’Euler décrit une circon-

férence de centre O el de rayon a_—2—_.

Bern. Mitteil. 1900, No. 1495.
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20 Le cercle d’Euler reste constamment tangent aux deux cercles

décrits sur les axes de E, ce qui est évident puisque

a =% (R+O0H) et b = %(R—OH)

On sait que dans tout triangle on a:

OH® = R® (1—8 cosA. cos B. cosC.)
et OH® = 9R® — (AB® 4-BC® 4 ACY)
De la:
3° Dans chaque triangle ABC on a:

a. b.

A, ’ =
cos cos B. cos C 5 (afb)?

4° Dans chaque triangle ABC on a:

SR
2 AB = 4 (22°42b° 4 5 ab)

De la aisément comme AB =— 2 R sin A.
X 2 sin A = 2 | %})—)2
EcoszA = £ —(;_?Tl;)—)z
2 cos2A=——-1—(§—‘|i%)2

6° Dans chaque triangle ABC, le produit des segments supérieurs

des hauteurs esl constant et égal a: i
AH. BH. CH = 8 R3 cos A. cos B. cosC
— 4 ab (a+Db)

7° Dans chaque triangle ABC, le produit des segments inférieurs

des hauteurs est constant et égal a: '
HH,. HH,. HH, = 8 R3 cos? A cos? B. cos® G

2 a2 b?
a-}-b

8° En représentant par x, y, z les coordonnées normales de O
dans le triangle ABC, on a:

ab (a-b)

Xy &= 5
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x2 4+ y2 4 z2= a4 b? | ah.
9° Le produit des distances du cenlre O a I'un des cotés de ABC
et 4 la droile joignant les points milieux des 2 autres cotés

est constant el égal a:

ab

R2Z cosA. cosB. cos C = 5

10° Le produit des distances du centre O aux cotés du triangle
complémentaire de ABC est conslant et égal a:
a® b ab (afb)  a% b®
8 2 " 4 (a}b)

11° Le produit des diamétres de l'ellipse, paralléles aux cotés de

ABC est constant et égal a
2 p2
18 2 b

atb

II=e partie.

Des formules connues:

a=Dhbcos C-}-ccos B
b=acos C-| ccos A
¢ =acos B4 b cos A

“on déduit en éliminant les cotés:
— 1 cos C cos B
cos C— 1cos A| =0
cos B cos A — 1

d’ou 1a formule bien connue aussi:

I) cos? A - cos? B | cos?C 4 2 cos A. cos B cos C = 1
Portons AC’ = BH,, AB’ = CHp; on sait qu'il existe une
ellipse E tangente aux (rois cotés aux conjugués isotomiques des pieds
des hauteurs et dont le centre est 0. (figure I)..
A est donc le pole de B’C’ et par conséquent AQ bisecte B'C’.
Théoréme: Soient A’B’C’ les conjugués isotomiques des pieds des
‘hauteurs et « @ % les points milieux des droites B'C’,
A'C/, A’B’, les trois droites Ae, BB, Cy se coupent au
centre O du cercle circonscril au triangle ABC.
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Calcul de Aa: On a AC BH, = a cos B
' AB’ CH, = a cos C

——9
donc B'C'" = a% cos? B 4 a2 cos? C — 2 a2 cos A cos Bcos G

!

=4 R2 sin2 A [cos? B cos® C — 2 cos A cos B cos C]
Or: AC 4-AB" = 2 Ca + 2 Aa
donc: 2 Aa = 2 R? sin? Afcos? B 4 cos? C}-2 cos Acos Bcos C)
= 2 R? sint A (d’aprés formule I)
Ae = R sin? A
Oa = R cos? A

Cherchons sur la droite OA, les points X el y tels que O soit
le milieu de x y et que x et y divisent Ae harmoniquement.
On aura: 0x2 =0y2 = Oa. OA = R2 cos? A
Ox = Oy= R cos A
Donc vy = AH

Théoréme: Le diamélre de la conique E dirigé suivant OA est égal
au segment supérieur AH de la hauleur AH,.

Triangle orthique d’'un triangle ABC.
Le triangle orthique H, H, H. est inscrit au cercle d’Euler de
ABC. Le liew du centre Qs du cercle circonscrit a ce triangle est donc

. a—b )
une circenférence de centre O et de rayon 5 L’orthocentre H du

triangle ABC est le centre du cercle inscrit au triangle orthique, donc:
Le liew du centre H du cercle inscrit est une circonférence de centre O
et de rayon (a—bh)

Le rayon du cercle circonscrit a H, Hp He resle constant

-+b . .
R’ = -g = azi_ ; il est facile de démontrer que le rayon r’ du cercle
inscrit & Hy H, H. reste aussi conétant.
En effet: a’ = a cos A; b = b cos B; ¢/ = ¢ cos C.
donc 2p' =Sacos A= 3 2 R sin A cosA=RZIsin2A

2p = 4 R sin A sin B sin C
2 surface du triangle orthique = 2 §" = a’ b’ sin 2 G
2 8" = ab cos A cos B sin 2 C '
= R2sin 2 A sin 2 B sin 2 G
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!
r’=—%—=2BcosAcosBcosC=a¥%
On a done:
,_a—]—b_ , _ab
R= =" =%

Si d’un point P, on méne les quatre normales possibles & une
ellipse, on sait d’aprés un théoreme de Joachimsthal que (rois des
pieds des normales et le point diamélralement opposé sur 1'ellipse au
quatriéme pied sont quatre points d’une méme circonférence. Celle
remarque nous permettra de construire les quatriémes normales des
points N et H & lellipse. ;

Soit donc un triangle ABC inscrit dans le cercle de rayon
R = a+b et circonscrit & l'ellipse E [figure 2] OH fait avec un. des
axes de E un certain angle ¢. Construisons la symétrique de OH par
rapport aux axes de E et soit Q son point d’intersection avec le
cercle. Comme 0Q = a-|b et OH = a—b et comme 1'angle QOH est
divisé en parties égales par les axes de E, on sait d’aprés Chasles,
que HQ est normale a I'ellipse en son point milieu P et que
PH =P(Q = le demi-diamétre conjugué & OP.

La perpendiculaire abaissée de O sur la tangente en P est égale
en représentant par « l'angle de OP avec son diamétre conjugué a
OP sin « el par conséquent d’aprés un théoréme bien connu d’Apol-
lonius en représentant la distance de O a la tangente par d on a:

d. HP = OP. HP sin a« = ab. '

Supposons une seconde ellipse I inscrile dans le triangle ABC
el admetlant pour foyers O et H. .Son centre sera le centre Os du
cercle des neuf points du triangle. Soit R le symétrique de H par
rapport & BC. OR sera le grand axe de l'ellipse = et coupera BC au
point de contact. Mais d’aprés un théoréme connu de géométrie, les
symétriques de l’orthocentre d’un triangle par rapport 4 ses coOlés
appartiennent a la circonférence circonscrite au triangle, donc OR le
grand axe de l'ellipse = est égal a a-}-b.

On a donc pour celle ellipse 23" = a-Db
2¢' = O0H = a—b
2b’ = 2 Vab
On sait que les pieds des perpendiculaires abaissées des foyers
d’'une ellipse sur les tangentes sont sur le cercle principal de Iellipse
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et que le produit des deux perpendiculaires abaissées des foyers sur
une tangente quelconque est égal au carré du demi petit axe. Comme
d’aprés une relation précédente :

d. HP = ab = b’

il en résulte que la tangente 4 E au point P est aussi tangente a X
d’ou le théoréme énoncé par Mr. Biklen [Dr. O. Boklen, Oberstudien-

rath & Stoutgart]

Théoréme: Les deux ellipses E et = ont 4 tangentes communes, les
3 cotés du triangle ABC et une quatriéme tangente dont
le point de contact avec E est le pied P de la 4™ nor-
male de H a Uellipse. Comme H et N sont symétriques
par rapport & O, le point diamélralement opposé de P sur
E est le pied de la 4™ normale de N a E. Le point P
est un des points d’intersection du cercle d’Euler de ABC
avec lellipse E. ‘

Transformons I’ensemble des deux ellipses E et = ainsi que le
cercle principal de =, ou cercle d’Euler de ABC, par polaires réci-

proques, par rapport 4 une circonférence de centre O et de rayon ¢ = \/ab.
(voir figures 3’ et 3"') .

L’ellipse E d’axes AA; = 2 a et BB1 = 2 b se transforme sui-
vani une ellipse égale E’ tournée autour de O de 90°

L’ellipse = de foyers O et H de grand axe CC: = a-+b [0C=a
et 0C1 = b puisque OH = a—b] se transforme suivant un cercle =’
décrit sur C’'C:’ comme diamétre; OC’ = b et OCt’ = a, le cercle
principal de X tourné de 180° Enfin le cercle principal S se trans-
forme suivant une conique S’ de foyer O égale & la conique = tournée
de 180° autour de O.

Les deux coniques E’ et 8’ ainsi obtenues, ayant la méme posi-
tion relative que les coniques E et =, il en résulle qu’aux points
d’intersection de E et S correspondent 4 tangentes communes des
coniques E’ et S’ dont trois forment un triangle inscrit dans une
circonférence de centre O et de rayon (a-}-b). En revenant a la figure
primitive on a le théoréme suivant de Mr. Biklen.

Théoréme : Le cercle principal de la conique = ow le cercle d’Euler
du triangle ABC coupe Plellipse E en 4 poinis: un de ces
points P est le pied de la 4™ normale abaissée de H sur E.
Les trois autres points As Bs Cs forment un triangle cir-
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conscrit & wune circonférence fire de centre 0 et de

rayon ab
(a-tb)
Les triangles variables H, Hy, H; et Az Bz Cz sonl inscrits dans un
. ) a+b
méme cercle variable, mais de rayon constant R = ig et ont un
rayon de cercle inscrit constant r = ak
- a-}-b’

Ces triangles jouissent de nombreuses propriétés provenant de
I'invariance de R et r.
Ces propriétés seront démontrées en note 4 la fin du travail.

Démonstration analytique d’un dernier théoréme de Mr. Boklen.

Soient de nouveau I'ellipse E, le point H, HP la 4™° normale i E;
HP étant égal au demi-diamétre conjugué & OP; o étant I'angle ex-
cenirique de P, OH est égal & (a—b) et forme un angle ¢ avec le
grand-axe de E.

Le cercle d’Euler de ABC de centre Qs, point milien de OH °
passe ainsi que nous I'avons vu par P el le pied de la perpendicu-
laire abaissée de O sur la tangente en P & E. [fig. 4]

| D’aprés un théoréme de Laguerre, on peut considérer ce cercle

comme un cercle de Joachimsthal et par conséquent les normales 3
la conique E, aux points Az, Ba, Cz sont concourantes en un point Q,
situé sur la normale au point p, diamétralement opposé & P sur E.

Si d’un point Q quelconque, pris sur la normale fixe au point p
(x" y') de lellipse E, on abaisse les trois autres normales i E, leurs
pieds sont sur une circonférence qui passe aussi par le point diamé-
tral P de p (coordonnées —x’—y’) d’aprés le théoréme de Joachimsthal.

Celle circonférence passe aussi par le pied N de la perpendi-
culaire abaissée du centre O de I'ellipse sur la tangente au point P
(théoréeme de Laguerre). Si le point de concours Q des normales se
déplace sur la normale en p, le lieu du centre du cercle de Joachims-
thal est une droite, la perpendiculaire & NP en son point milieu.

Le cercle d’Euler passant par P et N est donc bien un cercle
de Joachimsthal. ' ‘ .

Le symétrique du centre O de Pellipse par rapport au centre
du cercle J (ici H) et le symétrique Q" du point Q de concours des
normales par rapport & O sont évidemment sur la normale en P.
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cette droite par rapport aux axes.

En effet soient x’, y’ les coordonnées de p et «, B celles du
point Q; I’équation du cercle de Joachimsthal sous la forme que lui a
donnée Mr. de Longchamps sera:

xxf !
X2 +y2 —l—xx’—l—yy'-—u \-az—+% 1) =0
. b2 a2 ¢
ol u = a2 | —y,ﬁ=b2+ X

On aura pour les coordonnées de son centre.

_ , ux’ , x' / b2\ b2 gx’
2x__x+az——“x+ag(32+“y—1‘-‘azyr
L ’ uy’_ a2 ay’
2y Sl | + b2 - b2 x’

On a donc pour les coordonnées du point H:
X =2x Y = 2y
Or XY = af

Les points Q, Q' H sont donc sur une hyperbole équilatére de
centre O el dont les asymptotes coincident avec les axes de E.
~On a donc¢ bien HL = Q'M.}
Donc PL 4+ PM = PH -} PQ'.

Or comme PH = b’
on sait que PL = l;—b’ et PM =—;—b’

___fi_br = b "l' PQ'

b
D — W
oncab—l—b

Il en résulte PQ' = r. PH. "Le lieu du point Q" est donc une
ellipse coaxiale a la proposée; il en sera de méme pour le lieu du
point Q. Voici d’ailleurs son équation:

Les coordonnées du point P sont: — x’ = a cos ¢;

—y =bsin ¢ ,
b2 x" a2ay
2y 7T hex

nous avons trouvé pour H: x =

Mais on sail aussi que:
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X = (a—b) cos ¢ et Y = — (a—b) sin ¢
R _b2Bacos g '
[)o.nc. (a—b) cos ¢ = #1551 v
: a2 qab sin ¢
L R Bl e
ou: sin -—9 B ; COS L
' = a@—ny ¥ b (a—b)
et pour le lieu du point Q I'ellipse
ol 2
et =1

h? 32
= (a—b)? i (a‘— b)2

1 Note relative & un probldme de Steiner.

Une conique est inscrite dans un triangle ABC. Soient A’, B/, ¢/
les points de contact sur les colés BC, AC, AB. Déterminer le cenire M
de la conique.

1re golution (fig. 5).

On sait que dans loute conique a centire, le produit sur deux
langentes paralléles, des segments déterminés par une tangente variable
quelconque est égal au carré du demi-diamétre de la conique, paralléle
aux tangentes fixes.

Menons a nolre conique, une tangente parallele 4 BC, qui coupe
AB et AC respectivement en £ et y et dont le point de contact
soif «.

On a d’aprés le théoréme cité:
| e B. A’'B = a 7. A'C

A « coupe BC en A’”'; on aura: a¢f: A”'B = « y: A’'C
II e B AC =«ay. A'B

A'B  A"C

A'C  A'B

De ces deux égalités on déduit:

Il en résulte que les points A’ et A’’ sont isotomiques sur BC.

Le point milieu A, de A’A’" est donc aussi le point milieu de BC.
Bern. Mitteil. 1900. No. 1496.
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Soit D le point milieu de AA’. La droite DA, paralléle 8 AA’’ divisera
donc aussi aA’ en parlies égales. Or oA’ est un diaméire de la
conique. :

Le centre M. point milieu de e A’ est donc situé sur DA,.
Théoréme : Une conique est tangentle aux trois colés d’un triangle ABC.

aux points A/, B’, C’. Soient A, B, C, les points milieux
des cotés. Les trois droites qui joignent les points mi-
lieux des droites AA’, BB’, CC’ respeclivement aux points
A, B, C, se coupent au centre M de la conique.

 IIme golution (méme figure).

Le pole de la droite AA, doit se trouver sur le rayon conjugué
de AA, par rapport 3 AB et AC; or A, étant le milieu de BC, ce
rayon sera paralléle & BC. Il doit aussi se trouver sur la polaire B’ C’
de A par rapport a la conique. Le point L, ou ces deux droites se
‘croisent sera le pole cherché. A’ L sera donc la polaire de A,. Soit N
le second point d’intersection de A’ L avec la conique, par consé-
quent, le point de contact de la deuxiéme tangente menée de Ao a
celle courbe. Les 4 points A" (AA,, A" L), N et L sont harmoni-
ques; comme AL est paralléle 4 A’ A’/, il en résulte que A’ Ao =A, A”'.
Le diamétre passant par A,, doit diviser en parties égales la po-
laire A’ N de ce point; il est par conséquent parallele & AA"/; il
divise donc aussi AA’ en parlies égales en D; d'ou le théoreme.

IIIme solution (fig. 6).

D’aprés la méthode de Schroeter.

On sait que les paires de tangentes paralléles & une conique
donnée, déterminent sur une langenle fixe, une série involulive. Le
point de contact sur cetle derniére est le centre de l'involution, La
réciproque de cetle proposition est exacte.

Soit M le centre cherché; menons les droites syméiriques de
AC et AB par rapport au point M. Ces droiles sont tangentes a la
conique et si elles rencontrent BC respectivement en y et 3, les
paires de points B 3 et C y déterminent sur la tangente B C I'invo-
lution produite par les paires de tangentes paralléles. Cetle involution
est donc parfaitement déterminée.

Projetons centralement, du sommet A sur la paralléle bi, ¢1, & BC,
(b, milieu de AC) cette involution: On obtient ainsi les deux paires
de poinls ¢1, y1, et b, fi,. B, élant le point milieu de A y el les deux

L]
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droites AC et y & élant paralléles, on a évidemment pour A, comme

milien de BG: M p, paralléle de A, c1, et M jy1, paralléle de A, bi);

s intersection de MA, avec bi, c1, '
shh sdy s

Donc: — = = ——ou: sbh. = . '
577 = s - ou: sh. s3, = sc. sy

s est donc le point central de l'involution sur la droite b, ¢, et
comme elle est parallele 2 BC, la projeclion centrale de s sur BC
sera aussi le point central de I'involution sur BC, c’est-i-dire le point de
contact de celle droile avec la conique. La droite qui joint le point
milien de AA: au point milieu de BC passe donc bien par le cenire M
de la conique.

Note seconde (fig. 'f).

Une transversale fourne autour d’un point fixe P et coupe les
colés d’un triangle ABC, BC en A’, AC en B’, el AB en C’. Soient
sur le coté BC, A’ le point isotomique de A’; sur AC, B’’ l'isoto-
mique de B’ el sur AB, C'’ lisotomique de C’.

A’" B'" C'" est une ligne droite, la transversale réciproque de
A’ B’ ' (nomenclature de Mr. de Longchamps; démonstration évi-
dente par application du théoréme de Ménélaiis).

Quelle est I'enveloppe de A’ B"” C'’, lorsque A" B’ C’ tourne
autour du point P.?

B el C, A" et A’”” sont les couples d’une involution ponctuelle
dont les points doubles sont A,, le point milien de BC et le point
infini sur BC.

De méme A el B, C' et C'’ sont les couples d’une in-
volution centrale dont les points doubles sont C, et le point oo de AB.

Or les ponctuelles A’ et C’ sont perspectives; il en résulte que
les ponctuelles A’' et C'' sont homographiques el par conséquent la
droite A’" G’ enveloppe une conique tangente aux ‘trois cotés du
triangle. Comme il.est facile de le voir, le point « isotomique sur
BC, du point d’intersection de ceite droite avec PA sera le point de
conlact de BC avec son enveloppe. A« el AP étlant conjuguées iso-
tomiques, il en résulte que A e, B, Cy se croisent en un méme
point, le pownt de Gergonne de la conique, point réciproque de P.

Il est facile de trouver le cenire de la conique enveloppée. On
pourrait utiliser le théoréme de la nole précédente. D’aprés ce
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théoréme, le centre M se trouve sur la droite A, D qui joinl les points
milieux de BC et A «. Soit G le centre de gravité du triangle ABC;
PG coupe A, D en M. Les triangles MGA, el GAP élanl semblables
on a: GP = 2 GM.

M est donc un point fixe de la droite GP, donc les trois trans-
versales telles que Ao D passent par ce point qui sera le centre de la
conique.

M est le complémentaire de P qui est le réciproque du point
de Gergonne de la conique. ' '

Si par ex: on fait tourner une transversale autour de I'ortho-
centre du triangle, les transversales réciproques enveloppent une
conique, tangente aux trois colés du triangle, aux poinis isolomiques
des pieds des hauteurs et donl le centre coincide avec le centlre du
cercle circonscrit.

Note troisiéme,

Dans cetle derniere note, nous développerons quelques formules,
dont " chacune d’elles fournirait un théoréme commun aux 1iriangles
variables H, Ho H et Az Bz Ce

Dans. tout triangle on a:

cos A -}- cos B 4 cos C = 144 sin—A— sin B sin G

2 2 2
A B C
r=pig 2.tg2.lg2
R = P
4 cos ;A_ cos Ecos E
2 2 2
r . A ., B . C
donc T_4 sin 3 sin 9 sin 5

et par conséquent:
Formule 1: cos A 4 cos B 4+ cosC = 1 -} 7;—
~ Donc dans chaeun des triangles variables Ha Ho He el Ae Bz Ce

" la somme des cosinus de leurs angles reste toujours conslante. Dans
~ce qui suit, nous ne ferons plus que citer la formule.
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Comme 1 + cos A = 2 00527

52 _éi + COS‘L:; 4 cos‘«’_g =% [3 -+ cos A -}~ cos B cos C]

A
APy . 2
Formule 2: E: c0S 2 R
A

sin® ——|— s1n“’ + sin* — = EI (1—cos? —3—

' E A
—_ b

= 3 C0S 5

Formule 3: 2 sin? i — 1 __r

2 2 R
. .. A . B . G r
Formule 4: sin 5 sin 5 sin 5 = R
abce 4RS S
== = 2 R
2p 2p p
donc
Formule 5: ab;c =2 Rr

2p

La perpendiculaire abaissée du cenire O du cercle circonscrit a
pour valeur X = R cos A. '

Sx =R Z3cos A

Formule 6: Z x = R - r (formule de Carnot)

aclg A4 bctg B} cectg C=22 Rs nA—C%%—

Formule 7: S actgA = 2 (R-}r)
Soit H Porthocentre; on sait que AH = 2 X

Formule 8: AH +BH+4CH = 2 (x-}y+2)=2 (R r)

1___,a b ¢C P
_+h’ +v =9 tistis—%
1

1 1 1
Formule 9 : T+—h_'+?=—r—

Formule 10: v' + 1" 41" =4 R 4 r
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1 1 1 i
Formule 11: = —+ —77 + T =

On a comme conséquence d’une formule d’Euler
2 2 2

or 4+ oy’ orr = (R* + 2 R
3R+ 2R (@ + ' 4+ 1)

3R2E4 2R (4R + 1)

I

I

2 2 2
Formule 12: 0¥ + 0J7 + 07 = 11 R? 2 - Rr
2 _
Comme 4] = —Pp—a bc
2 2 2 - s L S2

AT.BT o = (‘;4 b) (v c)a‘“’h202=p4 a® b ¢?
—_ S 4 R S®
AJ.BJ.CJ='F§abc= pe

Formule 13: AJ. BJ. CJ = 4 R r&

’ _D p—a / '—a
A = Ay Al =3 ; done JJ = A
COS—2- CoS 3 CcoS =

abce , .
d’ou

7. [, J B C
T cos% €0S 3 C€OS 5

Formule 14: JJ'. JJ''. JJV/' = 16 R% r
1072 4 J7J77? — 16 R®

Formule 15: 17 4+ JJV7? = 16 R?
14 T — 16 R?

Ces formules dérivent immédiatement des formules connues
AH® 4+ BC® = % R% 1le rayon de la circonférence cir-

conscrite au triangle J* J// )/’ étant égal a 2 R.
A

On trouve aisément aussi J’’ J//" —= 4 R cos =
2 C

W T T — 48 RP—16R? [cos* 5+ cos® 2 4 cos®

Formule 16: JV® + 1% + 77> —= 16 R® — 8 Rr
Formule 17: )37 4 JVJ'* 4 V)% —32R L8R,

Porrentruy ce 1 Aout 1900,
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