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V. Folgerungen.

§ 29. Zusammenhang der verschiedenen Definitionen.

Wir geben vorerst eine Ubersicht der Definilionen, die wir ein-
lisslich betrachtet haben; alle iibrigen konnen ja aus denselben her-
geleilel werden; deshalb fiihren wir dieselben auch hei den Ver-
gleichungen der einzelnen Funktionen nicht an.

Es waren »
B (x) = ;i:i — % X" - _;_ (21n) B, x*" % (2;) B,x""—
e +(_"—g_—l (2311) B.x. (1)
B’ (x)= % = _;_ gl _;_(2 H;I_I) B, xzn_%(znjl) B, 202
bk ETT O Nt @

Die Reihen brechen ab mit dem Glied in x2 oder X, je nachdem n
eine ungerade oder eine gerade Zahl ist.

o5, =" — x5 ) Bt — () mant
_I_ (2) B3Xn_-6 —_ + ......... (3)

Hier bricht die Reihe ab mit dem Gliede in x? oder x, je nach-
dem n gerade oder ungerade ist.

2y x) = o [ et +§1 (—1y+ (2“1) Bl @)

n
Die Reihe bricht von selbst ab infolge von (2 Z)-

X 1 .- n—1 —9
By (x) = —-——-—Ex e 51 B, x"

_ (n—1) (n;-!2) (=) p ot 6)

Die Reihe schliesst mit dem Gliede in x* oder x fiir ein gerades oder
ungerades n.
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1 n 1 n-— ’n n-—2 n —4
Der Exponent von x darf nie negativ werden. |

Die einzelnen Definitionen konnen wir in zwei Gruppen teilen;
die eine Gruppe enthilt die Definition von Raabe, diejenige von Schlo-
milch und die erste von Glaisher, also die Funktionen B(x), ¢(x,n)
und Bnh(x). Es sind dies alles Funktionen, bei welchen kein von x
freier Term vorkommen darf. Die zweile Gruppe enthilt die Funk-
tionen, welche einen selbstindigen, von x freien Ausdruck aufweisen;
es sind dies alle iibrigen, also die Funktionen von Glaisher und von
Schlafli, nimlich An(x), A’n(x), Va(x), Un(x) und g(n, x).

Sidmtliche Funktionen stehen mil denjenigen der gleichen Gruppe
in engem Zusammenhang; etwas komplizierter sind die Beziehungen
der Definitionen der einen Gruppe zu denjenigen der andern Gruppe;
wir erhalten folgende Beziehungen, welche den Zusammenhang der
einzelnen Definitionen veranschaulichen:

I. Gruppe:

ooy _ 9% 2m--1) rron . e(x, 2m--2)
B (x) = By my1 (%) B'(x) = By, 1 5(x)- (8)
(X, n) =1 By (x). )
Il. Gruppe:
1
20, x) = =0T An(x); An(¥) = (0—1)! y(@m,x).  (10)
III. Gruppen gegenseilig:
’ n}1 Bn+1
B (x) = (2n+1)! x(2n4-2, x) 4 (—1) onte - (11)
B (x) = 2n)! x(2nd-1,%). (12)
B (x) = Ay 0 () — Ay, 5 (0); B (x) = A, (x). (13)
¢(x,2n) = (2n)! (21, x)4-(—1)" By;
¢(x,2n41) = 2n+4-1)! x(2n-4-1, x). (14)

¢(x,2n)=2n4, (x)4+(—1)"B; ¢(x,2n+1)=2n414A, ,(x). (15)

Aus den obigen Beziehungen lassen sich die Werte fiir die
uibrigen Formeln durch einfache algebraische Umwandlung finden.
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Gestiitzt auf die Tabellen I—IV (Seite 92—95), wo die Werte
der fiir unsere Betlrachtungen wichligsten Definitionen fiir die einzelnen
Argumente zusammengestellt sind, konnen wir obige Beziehungen auf
ihre Richtigkeit priifen.

§ 30. Vergleichung der einzelnen Definitionen,

A. Betreffs ihrer Herleitung.

Die Herleilungen der einzelnen Definitionen der Bernoullischen
Funktion sind sehr verschieden. Uberblicken wir alle, so erkennen
wir bald, dass die einfachste und eleganleste Herleilung der Definitions-
‘gleichung von Schlifli stammt, der ohne alle Umwege zu derselben
gelangl. Zudem steht dieselbe mit der Fundamentalgleichung der
Bernoullischen Zahlen in innigem Zusammenhang; dies bietet uns
daher den Vorteil, dass wir aus einer Grundgleichung sowohl die
Bernoullischen Funktionen, als auch die Bernoullischen Zahlen ohne
grosse Schwierigkeit herleiten konnen; diese Gleichung nennen wir
die «Fundamentalgleichung der Bernoullischen Funktionen wund der
Bernoullischen Zahlen» ; dieselbe lautet

m=0co i
syt ye'’ y
T — (16)
m==() e'—1 e'—1
der erste Bruch rechts fiihrt auf die Bernoullischen Funktionen, der
zweile dagegen auf die Bernoullischen Zahlen.
Keine der iibrigen Definitionen zeigt diesen Zusammenhang; bei
all denselben braucht es grosserer Umwandlungen und lingerer Rech-

nungen, bis wir auf die gewiinschie Definitionsgleichung gelangen. )

B. Betreffs der Derivierten.

Stellen wir die einfachen Ableitungen der verschiedenen De-
finitionen zusammen, so ergibt sich, dass die Ableitungen der Funktionen
nach Raabe und nach Schlomilch eine unerwiinschte Komplikation
durch den Hinzutritt einer Bernoullischen Zahl fiir die ungerade Ber-
noullische Funktion zeigen. Die Definilion nach Glaisher weist zwar nur
eine Formel auf; dagegen tritt vor die Ableitung noch ein Faktor,
wihrend bei der Schliflischen Definition die Derivierte einer Bernoul-
lischen Funktion wieder eine reine Bernoullische Funktion ist; letztere
Definition ist somit die bequemste.

Was die mehrfachen Ableitungen anbelrifft, so lassen sich die-
jenigen der Raabeschen Definilion nicht darstellen, weil dort -der
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Exponent nur ungeniigend angedeutet wird im Funktionssymbol. Ein
Vergleich der tibrigen zeigt, dass bei der Schlomilchschen Definition
verschiedene Formeln notig sind zur Darstellung der geraden oder
ungeraden wiederholien Ableitungen der geraden oder ungeraden Ber-
noullischen Funktion. Bei Glaishers Definition fallen die unbequemen
Bernoullischen Zahlen weg; ebenso ist zur Darstellung all der Ab-
leitungen nur noch eine Formel notig; doch zeigt dieselbe zwei vor-
geselzle komplizierende Faktoren. Schliflis Definition ist auch hier
die einfachste, da die wiederholten Ableitungen derselben stets reine
Bernoullische Funktionen sind. ®4)
0. In Bezug auf die Integraldarstellungen.

Das von den Derivierten Gesagte gilt ebenfalls von den ein-
fachsten Integralen, da dieselben ja nur Umkehrungsfunktionen ersterer
sind. Auch die 4ibrigen Integraldarstellungen sprechen betreffs ihrer
Einfachheil zu gunsten der Definition von Schlifli, da selbst die ent-
sprechenden Formeln der Definition von Glaisher meist einen vorge-
selzlen Faktor mehr enthalten. %)

D. In Bezug auf die Funktion mit inversem Argument.

‘Die Formeln dafiir lauten bei allen Definitionen gleich; ihre
Herleitungen sind aber sehr verschieden. Raabe geht zur Ableitung
seiner obigen Formel ziemlich weit auf seine einleitenden Untersuch-
ungen zuriick; Glaisher stiitzt sich auf die Definitionssummenformeln
des Sinus und Cosinus und stellt die beiden gefundenen Formeln zu
einer allgemeinern zusammen. Sehr elegant und kurz sind die Her-
leitungen von Schlémilch und von Schlifli, wobei Schlifli mit Vorlteil
die Koeffizientenvergleichung verwendet. ¢¢)

E. Betreffs der Funktion mit negativem Argument.

Es geben aoch hierin alle Funklionen ziemlich dhnliche Werte,
mit Ausnahme der symbolischen Darstellungsweise von Glaisher. Der
Nenner im zweilen Term des Ausdruckes fir die yx(n, —x)-Funklion
ist keine wesentlliche Erschwerung, da die andern Definitionen, mit
Ausnahme derjenigen von Raabe, auch einen vorgesetzten FKaklor
aufweisen. )

F. Betreffs andrer Formeln.

Wir haben bei den Definitionen von Raabe und Schlomilch mehr
als bei den beiden andern nidher betrachleten Funktionen die gerade und

die ungerade Bernoullische Funktion trennen miissen; die Definitionen
Bern. Mitteil. 1900. No. 1488.
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von Glaisher und von Schlifli sind daher allgemeiner gehalten, und
es ist das dem Umstande zuzuschreiben, dass die beiden ersten
Definitionen kein von der  Variabelen freies Glied enthalten diirfen;
dies ist auch der Grund, dass bei den Differentialquotienten und Integral-
darstellungen dieser Funktionen die listigen Zusatzglieder mit den
Bernoullischen Zahlen auftreten. Die Formeln, welche eine Summe
“von aufeinanderfolgenden - Bernoullischen Funktionen darstellen, enl-
scheiden wieder zu Gunsten der Funktionen von Glaisher und von
Schlifli, da dieselben nur je eine Formel aufweisen, wihrend die iib-
rigen auch hierbei einen Unterschied zwischen geraden und ungeraden
Bernoullischen Funktionen machen miissen. Die entsprechenden
- Formeln dieser Summe bei Glaisher und bei Schlifli sind ganz von
gleicher Form; schon ihre Herleitung ist ziemlich dhnlich, da beide
durch Koeffizientenvergleichung aus Entwicklungen nach Bernoullischen
Funktionen zum Ziele gelangen. Glaisher zeigle im Laufe seiner Unter-
suchungen, also nicht etwa als Ausgangspunki derselben, dass die
An(x)-Funktionen sich geben lassen als

R S I
(n—1)! e’ —1

Er kommt zu dieser Thatsache, wie wir gesehen, auf ziemlich um-
stindliche Art und Weise, ausgehend von einer Formel, die selbst
eine sehr komplizierte Herleilung aufweist; zudem ist seine Bernoullische
Funktion kein reiner Koeffizient der Potenz von a, da stets im Nenner
eine Fakultit sein muss. Schlifli aber geht direkt von dieser Ent-

wicklung aus, indem er definiert
- . . e’
%(n, x) = n* Bernoullische Funktion =— [y"] in y—-—?—T—-
e —_—

Diese Entwicklung bildet also seinen Ausgangspunkt, auf welchen
sich alle Untersuchungen stiitzen; daher gestallet sich seine Theorie
der Bernoullischen Funktion viel einheitlicher und ist derjenigen von
Glaisher iiberlegen. %®) |

G. Betreffs Entwicklung in Reihen.

Alle Definitionen lassen sich leicht als trigonomelrische Reihen
darstellen und zwar die geraden Bernoullischen Funktionen als Cosinus-
reihen und die ungeraden als Sinusreihen.

Raabe und Glaisher gelangen durch fortgesetzte Differentiation

1 68
der bekannten Reihe fiir 71:{‘2_— x}, woraus successive die ein-
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zelnen Bernoullischen Funklionen entstehen, zu ihren diesbeziiglichen
Resultaten. o

Elegant leitet Schlomilch, wie gesehen, seine Reihen her, ge-

stiitzt auf die Fourierschen Reihen und Integrale. Genau auf die-

selbe Weise wiirden wir auch bei den iibrigen drei Definitionen zum
Ziele gelangen; das Ziel wiirde zudem noch eher erreicht, da die
anfgestellten Integralformeln das zu losende Integral, welches die Koeffi-
zienlen der Fourierschen Entwicklung darstellt, mit. geringer Miihe
auswerten. %)

Hiochst interessant und wichtig ist die Herleitung dieser Formeln
nach Schlifli, der gestiitzt auf die Theorie der Eulerschen Integrale
und der Gammafunktlion eine Reihenentwicklung so transformiert, bis
er schliesslich zu den entsprechenden Beziehungen gelangt. Seine
Resultate bieten den grossen Vorieil, dass sie nur Spezialwerte sind
einer von ihm selbst aufgeslellten Hauptformel

A=o00 | nﬂ)
el (2171'9——2'

e

i=1 :
= (27)" f (10, ¢)— 20, 0)} 5 [1-Hicotg(y -6)] dg. (17)

Durch Trennung der reellen von der imaginiren Komponente
erhill er die beiden ganz allgemeinen Formeln

li:locos (éin@——fg—{) z_@_yti

2]
7 5 %0, 8) und (18)
d==1
- , n
2°° sin (24w 6 — 22
i=1 A

:(2n)uf{x(n,go)-—x(n,@)}cotgn(sa-—@)dso- (19)

Aus Formel (18) reéultierén dann die wichtigen trigono-

metrischen Summenformeln

=00

' et 2 21 '
x@m, x) = (—1)"" —— 2 2 und (20)
| (27) e A o |
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=00

o qym—1 2 2 sin24 7z x .
x(2m—+1,x) = (—1) @t e PECES! @1

Bei dieser Definition haben wir, wie sonst bei keiner andern,
urspriinglich alle diese Reihenentwicklungen in derselben Formel ver-
einigt, was- sehr zu Gunsten dieser Definition spricht.

Wir haben auch schon erwihnt, dass mit Hiilfe dieser Funktion
als Reihenentwicklung Schlifli die Raabesche Restformel herleitet und
ebenso den Zusammenhang derselben mit der Riemannschen Reihe
nachweist; es sind dies Beziehungen, welche die Allgemeinheit der
Schléflischen Definition trefflich beleuchten. °)

H. Betreffs Entwicklungen nach Bernoullischen Funktionen.

Entwicklungen, in welchen die Bernoullischen Funktionen als
Koeffizienten auftreten, lassen sich aus jeder Definilion herleiten; aber
nur bei Schlifli sind die Bernoullischen Funktionen reine Koeffizienten
solcher Entwicklungen; auch hier liefert diese Definition die ein-
fachsten Formeln. )

§ 31. Diskussion der ,,Bernoullischen Funktion.*

Unsere friiher hergeleiteten Reihenentwicklungen der Bernoul-
lischen Funktlion haben gezeigl, dass dieselben nur giiltig sind fir
0 <x<<C17"); deshalb haben wir in unsern Untersuchungen haupt-
sichlich das Intervall x =0 bis x =1 bericksichtigt, wohl aber auch
Gleichungen aufgestellt, um den Verlauf der Funktion ausserhalb dieses
Intervalles kennen zu lernen.’) Gestiitzt auf diese Beziehungen hat
sich uns die Frage aufgedringt, wie weit sich das Konvergenzgebiel
fir die verschiedenen Definitionen tiberhaupt erstrecke. Um diese
Frage zu entscheiden, stellen wir die Funklionen graphisch dar. Wir
tragen die Werle fir das Argument x (z) als Abscissen auf und die
zugehorigen Funktionswerte y als Ordinaten; die einzelnen Werle sind
in den Tabellen [—IV zuasammengestellt; den Verlauf der verschiedenen
Funktionen zeigen die Tabellen V—VIII.

1. Die Bernoullischen Funktionen ersten Grades. Dieselben
stellen bei allen Definitionen eine Gerade dar; bei der Definilion von
Raabe, wie auch bei derjenigen von Schlomilch ist diese Gerade die
Winkelhalbierende durch den ersten und dritten Quadranten, geht also
durch den Ursprung; bei den Definitionen von Glaisher und Schlifli
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schneidet sie die Abscissenaxe im [;unkte % e %, aber ebenfalls unter
einem Winkel von 45°,

2. Die Bernoullischen Funktionen zweiten Grades. Dieselben
stellen eine gewohnliche Parabel dar, und zwar ist die Parallele zur

Ordinatenaxe durch den Punkt x-:-——;— die Hauptaxe der Parabel mit

1 . .
dem Parameter p=wl~~ Bei den Definitionen von Raabe und von

Schlomilch schneidet diese Parabel die Abscissenaxe in den beiden Punkten
Xx=0 und x =1, bei den andern Definitionen innerhalb dieses Inter-
valles. Dass dem so ist, beweist die Untersuchung einer einzelnen
Funktlion, da das Verfahren bei allen dasselbe ist; wir wihlen dazu
diejenige von Schlifli
2
e )=y=1 2 4o
12y = 6x*—6x-|-1.

. 1
Transformieren wir diese Gleichung durch x =x’ - 5 und y =y’ - 5

1 : .
so werden ¢y — Ti 2% und p = durch dhnliche Transformation der
iibrigen Definitionen gelangen wir slets auf dieselbe Gleichung.

3. Die Bernoullischen Funktionen hoheren Grades. Alle diese
Funktionen stellen Parabeln hiheren Grades dar, da zu einem einzigen
Werte von y stels mehrere Werle von x gehoren; der Grad sleigt
mit dem Exponenten des ersten Gliedes. Im Intervall von 0 bis 1
weisen dieselben enlweder ein Maximum oder ein Minimum oder beide
zugleich auf, und es verlaufen die n* und die (n}4)* Funktion ent-
sprechend.

Es besilzen die Funktionen mit geradem Exponenten n =2, 6,
10, om5s 5 , (4 A—2) ein Minimum bel x.-_:—% und gehen auf beiden
Seiten der Ordinatenaxe mit positiven Funktionswerten ins Unendliche,
wihrend die Funktionen fir n=4, 8, 12,..... , 41 ein Maximum

1 : e .
bei X= aufweisen, beidseitig schwach negativ werden, um aber

wieder mit beiden Asten der Kurve mit positiven Funklionswerten
ins Unendliche zu gehen.
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Etwas abweichend davon verhalten sich die Kurven der Bernoul-
lischen Funktionen mit ungeraden Exponenten; dieselben gehen sowohl
mit positiven Funktionswerlen auf positiver Seite der Ordinatenaxe
ins Unendliche, als auch mit negativen auf negativer Seite. Alle diese
Kurven ungeraden Grades schneiden die Abscissenaxe in den Punkten

O,% und 1, und es sind die Kurven fir n=3, 7, 11, ....,(44—1)

im Intervall von x =20 bisx=%— positiv und von x=%bisx=1

negativ; von den Punklen x =0 und x =1 aus gehen sie absolut
gleichwertig ins Unendliche. Fir n==>5, 9, 18,.....,(44-}1) nehmen

’ : . 1 ; ;
die Funktionen zwischen x =0 und X=— negative Werte an, zwi-

1 . . '
schen x =5 und x = 1 dagegen positive; in kurzer Entfernung

ausserhalb dieses Intervalles finden sich nochmals zwei Schnittpunkle
mit der Abscissenaxe, worauf auch diese Kurven absolut gleichwerlig
ins Unendliche laufen.

Es inleressiert uns nun zu wissen, wie sich die Kurven im Un-
endlichen verhalten; denn dass dort die zwei Asle der einzelnen
Funktionskurven zusammenhangen, ist bekannt, da ja die Parabeln
unikursale oder rationale Kurven sind und sich alle Punkte derselben
darstellen lassen durch algebraische Funktionen eines variabelen
Parameters. |

Wir greifen, da alle Funktionen hohern Grades der verschiedenen

Definitionen analoge Form haben, diejenigen von Schlifli heraus und
untersuchen vorerst

A. Die ungerade Bernoullische Funktion. Wir wihlen dazu
X8 %4 X
15\ =y=-155 — 35 t 7~ 7m0 oder
6x> —15x* -} 10x® —x — 720y = 0.
Die Schnitte dieser Kurve mit der unendlich fernen Geraden erhalten
wir, wenn wir die Gleichung mit z homogen machen durch die

! I

. . x 2 .
Formeln x = re und y=—y-Z*— und dann z = 0 setzen; diese Formeln

vorerst eingeselzt, gibt, wenn zugleich mit z® multipliziert wird,
6x'® — 15x"*z 4 10x"322 — x"2* —720y"z* = 0;
diese Gleichung wird fir z=0 zu 2'5=0, d. h,,
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die Kurve schneidet die unendlich ferne Gerade in der Richtung
der positiven Ordinatenaxe in fiinf zusammenfallenden Punkten.

Zur ndhern Untersuchung dieser zusammenfallenden Punkte im
Unendlichen transformieren wir die unendlich ferne Gerade, welche
wir parallel der Abscissenaxe annehmen konnen, ins Endliche, indem

wir sie auf die Abscissenaxe projizieren; dazu dienen die Formeln
E !

y=-% und x=—;§,—; also y :——31(— und x m—;-—
Fiir y = oo wird y' =0, d. h,,

die unendlich ferne Gerade wird auf die Abscissenaxe projiziert
und letztere ins Unendliche.

Durch die angedeutete Substitution entsteht, wenn mit y’® multipli-
ziert wird,
6x’° — 15x"y }-10x"3y'? — x"y'* — 720yt = 0. (e)
Dies ist die Gleichung der transformierten Kurve; in dieser entspricht
der Nullpunkt dem unendlich fernen Punkt der Ordinatenaxe der ur-
.sprijnglichen Kurve.
~ Die Gleichung beginnt erst mil Gliedern vierten Grades; also ist
der neue Nullpunkt O’ ein vierfacher Punkt; die Tangenten in dem-
selben erhalten wir durch Nullsetzen der Glieder niedrigsten Grades,
also durch y'* =0, was uns sagl, dass alle vier Tangenten des vier-
fachen Punktes mit der Abscissenaxe zusammenfallen. Fiir y' = 0 wird
x'®=0, d. h., die Abscissenaxe schneidel die Kurve im vierfachen
Punkte Q" in fiinf zusammenfallenden Punkten.
Zur nihern Untersuchung der Kurve in der Nihe dieses vier-
fachen Punktes geben wir dem x’ kleine Werte.
a) a' = positiv = 0.01. Die Gleichung (@) geht dann iiber in
6.0,01°—15.0,01*y" - 10.0,013y'2—0,01y'*— 720 y'* = 0;
da y’ selbsl Kklein ist, so kinnen wir infolge der vierten und fiinften
Potenz, in denen das kleine x’ vorkommt, die beiden ersten Glieder
vernachlissigen; dann folgt, wenn durch y’2 dividiert wird,
iz 0,00001
0,00001 = 720,01 y'%; y’ —I—\/72001
d. h., zu einem positiven kleinen x” gehéren zwei reelle absolut gleich-
wertige, ein positives und ein negalives y'. Geben wir dem x" grossere
positive Werte, so steigt der absolule Wert der y’ ziemlich rasch.
b) 2’ = negativ = — 0,01. Fir diesen Wert wird aus () unter
Vernachlissigung der beiden ersten Glieder und durch Division durch y’2
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i . 0,00001
719,99y'2 = — 0,00001; y' = i\/w*719’99
Dies ergibt sich auch aus andern negativen Werlen fiir x’, somil folgt,
dass auf der negaliven Seite der Ordinatenaxe keine Kurvenpunkte
liegen. Der neue Nullpunkt erscheint daher als ein vierfacher Punkt
von der Art, dass die Kurve in ihm
eine Spitze bildet, und die Abscissenaxe
ist Rickkehrtangente in demselben mit
. oy fiinffachem Beriihrungspunkt. Dasselbe
o Ly Rackkebtsis gilt fiir den unendlich fernen Punkl der
Ordinatenaxe der urspriinglichen Kurve;
derselbe ist ein vierfacher Punkt der
_ Parabel, in welchem alle vier Tangenten

mit der unendlich fernen Geraden zusammenfallen; wir konnen den
Punkt als Riickkehrpunkt zweiter Ordnung bezeichnen.

Da wir diese Ausfihrungen auch auf die Bernoullischen Funktionen
héhern Grades ausdehnen konnen, bei welchen die vielfachen Punkte
nur in hoherem Grade der Vielfachheit auftreten, so ergibt sich der Satz :

Die ungeraden Bernoullischen Funktionen hohern, (2m-|-1)tn
Grades, analytisch interpretiert, stellen Parabeln hihern Grades dar;
bei denselben ist der unendlich ferne Punkt in der Richtung der posi-
tiven Ordinatenaxe ein 2m-facher Punkt, in welchem alle 2m Tan-
genten mit der unendlich fernen Geraden zusammenfallen., Die Kurve
bildet in ihm eine Spitze und die unendlich ferne Gerade ist Riickkehr-
tangente mit (2m-}-1)- fachem Beriihrungspunkt; der Punkt ist ein
Riickkehrspunkt von der Ordnung m.

= imaginir.

B. Die gerade Bernoullische Funktion. Elwas anders geslallet
sich der Verlauf dieser Funktion im Unendlichen. Zur Untersuchung
wéhlen wir

4 3 2
W=y — g — 7;0 otle
30x*—60x*}30x*—T20y —1=0,

Die Schnitlpunkte mit der unendlich fernen Geraden werden
gestiitzt auf die homogene Gleichung

30x"*—60x"%z 4 30x"322 — 720y’ z® —z* =0,
fir z=0 't=), 4.}, '

die unendlich ferne Gerade wird von der Kurve in vier zusammen-
fallenden Punkten geschnitten in der Richtung der positiven Ordinatenaxe.

Projizieren wir die unendlich ferne Gerade wieder durch die
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friihere Substitution auf die Abscissenaxe ins Endliche, so folgt, wenn
mit y’* mullipliziert wird,
30x"* — 60x'3y’ -}-30x"2y'2 —y’'t — 720y'3 =0. B)

Dies ist die Gleichung der transformierlen Kurve; da sie erst mit
Gliedern dritlen Grades beginnt, so ist der neue Nullpunkt O’ ein
dreifacher Punkt; die Tangenten in demselben erhalien wir aus
y'3=0, d. h., alle drei Tangenlen fallen in der Abscissenaxe zusammen,
und diese beriihrt die Kurve in vier zusammenfallenden Punkten; also
ist auch der unendlich ferne Punkt der Ordinatenaxe ein dreifacher
Punkt der Kurve, dessen drei Tangenten mit der unendlich fernen
Geraden zusammenfallen.

Zur noch genauern Untersuchung dieser Kurve in der Nihe des
dreifachen Punktes transformieren wir die Gleichung (3) wie folgt:

30x2(x'—y')? = y'2(y'-}-720).

\/ y' 3y 4 720)

Ay +\/ G +720) .

:_{y £\ 4\/ EEED) }

Die Quadratwurzel wird nur fir y’' =0 selbst zu Null.
Geben wir jetzt dem y’ kleine Werte, so wird fiir
a) y' = positiv=0,1.

{0 lJr\/()()1+4\/0()(>1 720, 1 , 2ot +o04)

= 0,447 ; r, =—0.347.
Ebenso wiirde ein grobseres y' zwei versclnedene reelle Werle liefern.
Somit gehdren zu einem posiliven y’ zwei verschiedene reelle Werte
von x’, wovon stels der eine positiv, der andere negativ ist.

b) y' = negativ und klein. In diesem Falle wird die Quadrat-
wurzel stels imaginir und somit auch der Wert fir x’; daraus
folgt, dass die Kurve ganz oberhalb
der Abscissenaxe liegl und von der
Ordinatenaxe nicht symmetrisch geteilt
wird. Der dreifache Punkt unter-
scheidet sich also nicht wesentlich von
einem gewohnlichen Kurvenpunki, nur

ist die Krimmung der Kurve in der Nihe desselben eine schwichere,
Bern. Mitteil. 1900. No. 1489.
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Da diese Untersuchungen auch ausgedehnt werden konnen auf
die geraden Bernoullischen Funktionen mil hiohern Exponentlen, so
ergibt sich der Satz:

" Die geraden Bernoullischen Funktionen hohern, 2m*" Grades
stellen ebenfalls Parabeln hiohern, 2m** Grades dar; bei denselben ist
der wunendlich ferne Punkt in der Richtung der Ordinatenaxe ein
(2m—1)-facher Punkt, in welchem alle (2m—1) Tangenten mit der
unendlich fernen Geraden zusammenfallen, welche die Kurve in 2m
zusammenfallenden Punkten berithrt. Die Kurve liegt ganz auf der
einen Seite der unendlich fernen Geraden, wnd der (2m—1)-fache
Punkt wunterscheidet sich nicht wesentlich von einem gewdhnlichen
Kurvenpunkt, nur ist die Kriimmung in der Ndhe desselben eine
schwichere.

Da diese Unlersuchungen fiir alle Definitionen analog durchgefiihrt
werden konnen und auch entsprechende Resultate liefern, so sind wir
tiber den Verlauf aller Bernoullischen Funktionen im Endlichen wie im
Unendlichen geniigend aufgeklart. '

Die Tabellen Y—VIII zeigen nun deullich, dass das Giltigkeils-
gebiel der einzelnen Definitionen ein ziemlich verschieden grosses ist;
am kleinsten ist das Konvergenzgebiel der Schiémilchschen Definition;
das besle Gebiet liegl hier zwischen —1 und -~2; ausserhalb des-
selben nimmt die Funktion sehr rasch grosse Werle an. Elwas, aber
nur wenig grosser ist das Konvergenzgebiet der Definitionen von Raabe
und von Glaisher, was aus den Tabellen ¥ und VII ersichtlich ist.
Die Parabeln der Definition von Schlifli sind diejenigen, welche sich
der Abscissenaxe am weilesten, sowohl nach der posiliven wie nach
der negativen Seite hin anschmiegen und zwar um so mehr, je grosser
der Grad der Funktion ist; so erstreckt sich das beste Gebiet fir
n =06 schon zwischen —3 und -}-4; bei den noch hohern Bernoul-
lischen Funktionen wird dieses Gebiet bedeutend vergrossert.

Es ist dies ein weiterer Vorzug der Definition von Schlafli,
wieder bewirkt durch die Fakultit im Nenner.

§ 32. Entscheidung,.

Gestiitzt auf all unsere friilhern Betrachiungen, gelangen wir zu
folgendem Resultat: |
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Die Definition der Bernoullischen Funktion nach L. Schlifli ist die
fiir die Theorie zutreffendste, weil : ;

1. ihr Konvergenzgebiet sich am weitesten ausdehnt,
2. alle Formeln einfachere Gestalt annehmen,
3. dieselbe die allgemeinste ist und

4. die ganze Theorie sich einheitlicher aufbaut, infolge der treff-
lich gewdihlten Grundbeziehung zwischen den Bernoullischen
Zahlen und Funktionen und der Anwendung des Prinzipes
der Koeffizientenvergleichung.
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