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V. Folgerungen.

§ 29. Znsammenhang der verschiedenen Definitionen.

Wir geben vorerst eine Übersicht der Definitionen, die wir ein-
lässlich betrachtet haben; alle übrigen können ja aus denselben

hergeleitet werden; deshalb führen wir dieselben auch bei den

Vergleichungen der einzelnen Funktionen nicht an.

Es waren

B-rxl-
x2n+1 1

x2»4-
1 (**)* x2-1 1 (**]* x2-3B (x)-2n+T~Yx + ¥\l/V "TU/ a

(—lf~l 2n \

^iy^/2n+l\+" +~~2n~ Un-i;Bn x2. (2)

Die Reihen brechen ab mit dem Glied in x2 oder x, je nachdem n

eine ungerade oder eine gerade Zahl ist.

'n\ _ « /nN
^(x,n) xn—fnx- + (jB1x--(4]B2xn-4

n\1 n—6+WV + (3)

Hier bricht die Reihe ab mit dem Gliede in x2 oder x, je nachdem

n gerade oder ungerade ist.

*<»• *> - i {'"- t """, +2 <-1>'"1 (»"»)B' *-") <4>

A=l x '
Die Reihe bricht von selbst ab infolge von „, )•

„ / > X 1 n—1 i n 1 n_2
Bn(x) ~-^X +-ÖT-BlXn 2 '2!

\ fn 9\ Cn 3"\
BU—4 i /r\2x + — (5)(n-l)(n-2)(n-3) n_4

JI V
Die Reihe schliesst mit dem Gliede in x2 oder x für ein gerades oder

ungerades n.
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AnW-l|xn-|nxn"1 + (2)B1Xn"2-(4n)B2Xn"+ --| <6>

Der Exponent von x darf nie negativ werden.

Die einzelnen Definitionen können wir in zwei Gruppen teilen;
die eine Gruppe enthält die Definition von Raabe, diejenige von Schlömilch

und die erste von Glaisher, also die Funktionen B(x), tp(x, n)
und Bn(x). Es sind dies alles Funktionen, bei welchen kein von x

freier Term vorkommen darf. Die zweite Gruppe enthält die
Funktionen, welche einen selbständigen, von x freien Ausdruck aufweisen ;

es sind dies alle übrigen, also die Funktionen von Glaisher und von

Schläfli, nämlich An(x), A'n(x), Vn(x), Un(x) und %(n,x).

Sämtliche Funktionen stehen mit denjenigen der gleichen Gruppe
in engem Zusammenhang; etwas komplizierter sind die Beziehungen
der Definitionen der einen Gruppe zu denjenigen der andern Gruppe;
wir erhalten folgende Beziehungen, welche den Zusammenhang der
einzelnen Definitionen veranschaulichen:

/. Gruppe:

R>rM_y(x.2m+1) WM- p(x>2m+2> mB (X) - -2m+T~; ()~~ 2m+2 -
B" 00 B2m+iM; B' (*) B2m+2 00- (8)

ç»(x,n) nBn(x). (9)

X(n,x)= J; An(x); An(x) (n—1)! %(n, x). (10)

II. Gruppe

%(«, x)

///. Gruppen gegenseitig:

B'(x) (2n+1)! z(2n+2,x) + (-l)n+1 -^- (11)

B"(x) (2n)! %(2n+l,x). (12)

B'(x) A2n+2(x)-A2n+2(0); B"(x) A2n+1(x). (i3)

^(x,2n) (2n)!x(2n,x)+(-l)nBn;

tp(x,2n+l) (2n+l)! z(2n+l, x). (14)

?(x,2n)=2nA2n(x)+(-l)I1Bli; ^(x,2n+l) (2n+l)A2n+1(x). (15)

Aus den obigen Beziehungen lassen sich die Werte für die

übrigen Formeln durch einfache algebraische Umwandlung finden.
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Gestützt auf die Tabellen I—IV (Seile 92—95), wo die Werte
der für unsere Betrachtungen wichtigsten Definitionen für die einzelnen

Argumente zusammengestellt sind, können wir obige Beziehungen auf
ihre Richtigkeit prüfen.

§ 30. Vergleichung der einzelnen Definitionen.

A. Betreffs ihrer Herleitung.

Die Herleitungen der einzelnen Definitionen der Bernoullischen
Funklion sind sehr verschieden. Überblicken wir alle, so erkennen
wir bald, dass die einfachste und eleganteste Herleilung der Definitionsgleichung

von Schläfli stammt, der ohne alle Umwege zu derselben

gelangt. Zudem steht dieselbe mit der Fundamentalgleichung der
Bernoullischen Zahlen in innigem Zusammenhang; dies bietet uns
daher den Vorteil, dass wir aus einer Grundgleichung' sowohl die

Bernoullischen Funktionen, als auch die Bernoullischen Zahlen ohne

grosse Schwierigkeit herleiten können; diese Gleichung nennen wir
die «Fundamentalgleichung der Bernoullischen Funktionen und der

Bernoullischen Zahlen»; dieselbe lautet

bmy y e

a mi e-i e-! (16)

der erste Bruch rechts führt auf die Bernoullischen Funktionen, der
zweite dagegen auf die Bernoullischen Zahlen.

Keine der übrigen Definitionen zeigt diesen Zusammenhang; bei
all denselben braucht es grösserer Umwandlungen und längerer
Rechnungen, bis wir auf die gewünschte Definitionsgleichung gelangen.63)

B. Betreffs der Derivierten.
Stellen wir die einfachen Ableitungen der verschiedenen

Definitionen zusammen, so ergibt sich, dass die Ableitungen der Funktionen
nach Raabe und nach Schlömilch eine unerwünschte Komplikation
durch den Hinzutritt einer Bernoullischen Zahl für die ungerade
Bernoullische Funktion zeigen. Die Definition nach Glaisher weist zwar nur
eine Formel auf; dagegen tritt vor die Ableitung noch ein Faktor,
während bei der Schläflischen Definition die Derivierte einer Bernoullischen

Funklion wieder eine reine Bernoullische Funktion ist; letztere
Definition ist somit die bequemste.

Was die mehrfachen Ableitungen anbetrifft, so lassen sich

diejenigen der Raabeschen Definition nicht darstellen, weil dort der
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Exponent nur ungenügend angedeutet wird im Funktionssymbol. Ein

Vergleich der übrigen zeigt, dass bei der Schlömilchschen Definition
verschiedene Formeln nötig sind zur Darstellung der geraden oder

ungeraden wiederholten Ableitungen der geraden oder ungeraden
Bernoullischen Funktion. Bei Glaishers Definition fallen die unbequemen
Bernoullischen Zahlen weg; ebenso ist zur Darstellung all der
Ableitungen nur noch eine Formel nötig; doch zeigt dieselbe zwei
vorgesetzte komplizierende Faktoren. Schläfiis Definition ist auch hier
die einfachste, da die wiederholten Ableitungen derselben stets reine
Bernoullische Funktionen sind.64)

C. In Bezug auf die Integraldarstellungen.
Das von den Derivierten Gesagte gilt ebenfalls von den

einfachsten Integralen, da dieselben ja nur Umkehrungsfunktionen ersterer
sind. Auch die übrigen Integraldarstellungen sprechen betreffs ihrer
Einfachheil zu gunsten der Definition von Schläfli, da selbst die
entsprechenden Formeln der Definition von Glaisher meist einen
vorgesetzten Faktor mehr enthalten.65)

D. In Bezug auf die Funktion mit inversem Argument.

Die Formeln dafür lauten bei allen Definitionen gleich; ihre
Herleitungen sind aber sehr verschieden. Raabe geht zur Ableitung
seiner obigen Formel ziemlich weit auf seine einleitenden Untersuchungen

zurück; Glaisher stützt sich auf die Definilionssuinmenformeln
des Sinus und Cosinus und stellt die beiden gefundenen Formeln zu

einer allgemeinern zusammen. Sehr elegant und kurz sind die Her-

leilungen von Schlömilch und von Schläfli, wobei Schläfli mit Vorteil
die Koeffizientenvergleichung verwendet.66)

E. Betreffs der Funktion mit negativem Argument.

Es geben auch hierin alle Funktionen ziemlich ähnliche Werte,
mit Ausnahme der symbolischen Darslellungsweise von Glaisher. Der

Nenner im zweiten Term des Ausdruckes für die 7 (n,—x)-Funktion
ist keine wesentliche Erschwerung, da die andern Definitionen, mit
Ausnahme derjenigen von Raabe, auch einen vorgesetzten Faktor

aufweisen.67)

F. Betreffs andrer Formeln.

Wir haben bei den Definitionen von Raabe und Schlömilch mehr
als bei den beiden andern näher betrachteten Funktionen die gerade und

die ungerade Bernoullische Funktion trennen müssen ; die Definitionen
Bern. Mitteil. 1900. No. 1488.



— 82 —

von Glaisher und von Schläfli sind daher allgemeiner gehallen, und

es ist das dem Umstände zuzuschreiben, dass die beiden ersten
Definitionen kein von der Variabelen freies Glied enthalten dürfen;
dies ist auch der Grund, dass bei den Differenlialquotienten und

Integraldarstellungen dieser Funktionen die lästigen Zusatzglieder mit den

Bernoullischen Zahlen auftreten. Die Formeln, welche eine Summe

von aufeinanderfolgenden Bernoullischen Funktionen darstellen,
entscheiden wieder zu Gunsten der Funktionen von Glaisher und von

Schläfli, da dieselben nur je eine Formel aufweisen, während die

übrigen auch hierbei einen Unterschied zwischen geraden und ungeraden
Bernoullischen Funktionen machen müssen. Die entsprechenden
Formeln dieser Summe bei Glaisher und bei Schläfli sind ganz von

gleicher Form; schon ihre Herleitung ist ziemlich ähnlich, da beide

durch Koeffizienlenvergleichung aus Entwicklungen nach Bernoullischen
Funktionen zum Ziele gelangen. Glaisher zeigte im Laufe seiner
Untersuchungen, also nichl etwa als Ausgangspunkt derselben, dass die

An(x)-Funktionen sich geben lassen als

L (n-1)! J in a
eax

e— 1

Er kommt zu dieser Thatsache, wie wir gesehen, auf ziemlich
umständliche Art und Weise, ausgehend von einer Formel, die selbst

eine sehr komplizierte Herleitung aufweist; zudem isl seine Bernoullische
Funktion kein reiner Koeffizient der Potenz von a, da stets im Nenner
eine Fakultät sein muss. Schläfli aber geht direkt von dieser
Entwicklung aus, indem er definiert

x(n,x) =nte Bernoullische Funktion [yn] in y
exy

—1
Diese Entwicklung bildet also seinen Ausgangspunkt, auf welchen

sich alle Untersuchungen stützen; daher gestaltet sich seine Theorie
der Bernoullischen Funktion viel einheitlicher und ist derjenigen von
Glaisher überlegen.66)

G. Betreffs Entwicklung in Reihen.

Alle Definitionen lassen sich leicht als trigonometrische Reihen

darstellen und zwar die geraden Bernoullischen Funktionen als Cosinusreihen

und die ungeraden als Sinusreihen.
Raabe und Glaisher gelangen durch fortgesetzte Differentiation

f 1 1 68)
der bekannten Reihe für n j~j^~ — x}, woraus successive die ein-
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zelnen Bernoullischen Funktionen entstehen, zu ihren diesbezüglichen
Resultaten.

Elegant leitet Schlömilch, wie gesehen, seine Reihen her,
gestützt auf die Fourierschen Reihen und Integrale. Genau auf
dieselbe Weise würden wir auch bei den übrigen drei Definitionen zum
Ziele gelangen; das Ziel würde zudem noch eher erreicht, da die

aufgestellten Integralformeln das zu lösende Integral, welches die
Koeffizienten der Fourierschen Entwicklung darstellt, mit geringer Mühe

auswerten.65)

Höchst interessant und wichtig ist die Herleitung dieser Formeln
nach Schläfli, der gestützt auf die Theorie der Eulerschen Integrale
und der Gammafunktion eine Reihenentwicklung so transformiert, bis

er schliesslich zu den entsprechenden Beziehungen gelangt. Seine

Resultate bieten den grossen Vorteil, dass sie nur Spezialwerte sind
einer von ihm selbst aufgestellten Hauplformel

X=oo

z - j*
A=l

(2nfj {x(n,?)-x(n,e))y [l+icolgfo -&)n] o>. (17)
o

Durch Trennung der reellen von der imaginären Komponente
erhält er die beiden ganz allgemeinen Formeln

cos(2Ä7r© 5-J (2n)—± 2-Z__^|Lx(n)0) und (18)

1=1 l 2

jl=oo

(n n\2^0__)

sin (2 X n e —^)
«"¦¦i Xn

(2nf | {x(n,tp)—x(n,&)\mlg-7t(tp-9)dip. (19)
o7

Aus Formel (18) resultieren dann die wichtigen
trigonometrischen Summenformeln

A=oo
„Mn-1 2 ^i^ C0S2À7TX '. ,_,„.

X (2 m, x) - (-l)m -r—ssr Zi ^~ Und (20)
(2«) £1 l
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to i 1 \ / i\m-i 2 ^ sin2^?rx
X(2m+l,x) (-l) 2m+1 2j ,2m+i

• (21)
^ 7C' /1=1

Bei dieser Definition haben wir, wie sonst bei keiner andern,

ursprünglich alle diese Reihenentwicklungen in derselben Formel
vereinigt, was sehr zu Gunsten dieser Definition spricht.

Wir haben auch schon erwähnt, dass mit Hülfe dieser Funktion
als Reihenentwicklung Schläfli die Raabesche Restformel herleitet und

ebenso den Zusammenhang derselben mit der Riemannschen Reihe

nachweist; es sind dies Beziehungen, welche die Allgemeinheit der
Schläflischen Definition trefflich beleuchten.69)

H. Betreffs Entwicklungen nach Bernoullischen Funktionen.

Entwicklungen, in welchen die Bernoullischen Funktionen als

Koeffizienten auftreten, lassen sich aus jeder Definition herleiten; aber

nur bei Schläfli sind die Bernoullischen Funktionen reine Koeffizienten
solcher Entwicklungen; auch hier liefert diese Definilion die
einfachsten Formeln.70)

§ 31. Diskussion der „Bernoullischen Funktion."
Unsere früher hergeleiteten Reihenentwicklungen der Bernoullischen

Funklion haben gezeigt, dass dieselben nur gültig sind für

0<x<l71); deshalb haben wir in unsern Untersuchungen
hauptsächlich das Intervall x 0 bis x 1 berücksichtigt, wohl aber auch

Gleichungen aufgestellt, um den Verlauf der Funktion ausserhalb dieses

Intervalles kennen zu lernen.72) Gestützt auf diese Beziehungen hat
sich uns die Frage aufgedrängt, wie weit sich das Konvergenzgebiet
für die verschiedenen Definitionen überhaupt erstrecke. Um diese

Frage zu entscheiden, stellen wir die Funktionen graphisch dar. Wir
tragen die Werte für das Argument x (z) als Abscissen auf und die

zugehörigen Funklionswerte y als Ordinalen; die einzelnen Werte sind

in den Tabellen I—IV zusammengestellt; den Verlauf der verschiedenen
Funktionen zeigen die Tabellen V—VIII.

1. Die Bernoullischen Funktionen ersten Grades. Dieselben

stellen bei allen Definitionen eine Gerade dar; bei der Definition von
Raabe, wie auch bei derjenigen von Schlömilch ist diese Gerade die
Winkelhalbierende durch den ersten und drillen Quadranten, geht also

durch den Ursprung; bei den Definitionen von Glaisher und Schläfli
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schneidet sie die Abscissenaxe im Punkte x —, aber ebenfalls unter
di

einem Winkel von 45°.

2. Die Bernoullischen Funktionen zweiten Grades. Dieselben
stellen eine gewöhnliche Parabel dar, und zwar ist die Parallele zur

Ordinalenaxe durch den Punkt x —- die Hauptaxe der Parabel mit
d

dem Parameter p — • Bei den Definitionen von Raabe und von

Schlömilch schneidet diese Parabel die Abscissenaxe in den beiden Punkten

x 0 und x 1, bei den andern Definitionen innerhalb dieses
Intervalles. Dass dem so ist, beweist die Untersuchung einer einzelnen

Funklion, da das Verfahren bei allen dasselbe ist; wir wählen dazu

diejenige von Schläfli

X(2,x)-y=.y-y +i12 y =6x2—6x+l.
Transformieren wir diese Gleichung durch x x' + — und } y' ~ ^pd ai

1 1
so werden «' — .r'2 und p —; durch ähnliche Transformation der

2 4

übrigen Definitionen gelangen wir stets auf dieselbe Gleichung.

3. Die Bernoullischen Funktionen höheren Grades. Alle diese

Funktionen stellen Parabeln höheren Grades dar, da zu einem einzigen
Werte von y stets mehrere Werte von x gehören; der Grad steigt
mit dem Exponenten des ersten Gliedes. Im Intervall von 0 bis 1

weisen dieselben entweder ein Maximum oder ein Minimum oder beide

zugleich auf, und es verlaufen die nte und die (n+4)te Funktion
entsprechend.

Es besitzen die Funktionen mit geradem Exponenten n 2, 6,

10, (4 X—2) ein Minimum bei x — und gehen auf beiden
et

Seiten der Ordinalenaxe mit positiven Funklionswerten ins Unendliche,

während die Funktionen für n 4, 8, 12, IX ein Maximum

bei x — aufweisen, beidseitig schwach negativ werden, um aber
d

wieder mit beiden Ästen der Kurve mit positiven Funktionswerten

ins Unendliche zu gehen.
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Etwas abweichend davon verhalten sich die Kurven der Bernoullischen

Funktionen mit ungeraden Exponenten; dieselben gehen sowohl

mit positiven Funklionswerlen auf positiver Seite der Ordinalenaxe
ins Unendliche, als auch mit negativen auf negativer Seite. Alle diese

Kurven ungeraden Grades schneiden die Abscissenaxe in den Punkten

0, — und 1, und es sind die Kurven für n 3, 7, 11, (iX—1)
d

im Intervall von x 0 bis x — positiv und von x= —bisx l2 it
negativ; von den Punkten x 0 und x l aus gehen sie absolut

gleichwertig ins Unendliche. Für n 5, 9, 13, (4 A+l) nehmen

die Funktionen zwischen x 0 und x —- negative Werte an, zwi-
d

sehen x — und x 1 dagegen positive; in kurzer Entfernung
d

ausserhalb dieses Intervalles finden sich nochmals zwei Schnittpunkte
mit der Abscissenaxe, worauf auch diese Kurven absolut gleichwertig
ins Unendliche laufen.

Es interessiert uns nun zu wissen, wie sich die Kurven im
Unendlichen verhallen; denn dass dort die zwei Äste der einzelnen
Funktionskurven zusammenhangen, ist bekannt, da ja die Parabeln

unikursale oder rationale Kurven sind und sich alle Punkte derselben
darstellen lassen durch algebraische Funktionen eines variabelen
Parameters.

Wir greifen, da alle Funktionen höhern Grades der verschiedenen
Definitionen analoge Form haben, diejenigen von Schläfli heraus und

untersuchen vorerst

A. Die ungerade Bernoullische Funktion. Wir wählen dazu

y ö Y "V "Y

X(5,x) y w 48- + -T2 1ST' 0der

6x5 — 15x4 + 10xs — x — 720y 0.

Die Schnitte dieser Kurve mit der unendlich fernen Geraden erhalten

wir, wenn wir die Gleichung mit z homogen machen durch die
x' y'

Formeln x — und y jL- und dann z 0 setzen; diese Formeln
z z

vorerst eingesetzt, gibt, wenn zugleich mit z5 multipliziert wird,
6x'5—15x'4z + 10x'3z2 —x'z4 —720y'z4 0;

diese Gleichung wird für z 0 zu x'& 0, d.h.,
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die Kurve schneidet die unendlich ferne Gerade in der Richtung
der positiven Ordinatenaxe in fünf zusammenfallenden Punkten.

Zur nähern Untersuchung dieser zusammenfallenden Punkte im
Unendlichen transformieren wir die unendlich ferne Gerade, welche
wir parallel der Abscissenaxe annehmen können, ins Endliche, indem
wir sie auf die Abscissenaxe projizieren; dazu dienen die Formelnlx' lxy —7 und x —r ; also y' — und x' —.

y y y y
Für y oo wird y' 0, d. h.,

die unendlich ferne Gerade wird auf die Abscissenaxe projiziert
und letztere ins Unendliche.

Durch die angedeutete Substitution entsteht, wenn mit y'5 multipliziert

wird,
6x'5 — 15x'y + lOx'Y2 — x'y'4 — 720 y'4 0. (a)

Dies ist die Gleichung der transformierten Kurve; in dieoer entspricht
der Nullpunkt dem unendlich fernen Punkt der Ordinatenaxe der

ursprünglichen Kurve.
Die Gleichung beginnt erst mit Gliedern vierten Grades; also ist

der neue Nullpunkt 0' ein vierfacher Punkt; die Tangenten in
demselben erhalten wir durch Nullsetzen der Glieder niedrigsten Grades,
also durch y'4 0, was uns sagt, dass alle vier Tangenten des

vierfachen Punktes mit der Abscissenaxe zusammenfallen. Für y' 0 wird
x'5 0, d.h., die Abscissenaxe schneidet die Kurve im vierfachen
Punkte 0' in fünf zusammenfallenden Punkten.

Zur nähern Untersuchung der Kurve in der Nähe dieses
vierfachen Punktes geben wir dem x' kleine Werte.

a) x' positiv 0,01. Die Gleichung (à) geht dann über in
6 .0,015— 15 • 0,0iy + 10 • 0,013y'3 —0,01 y'4 — 720y'4= 0;

da y' selbst klein isl, so können wir infolge der vierten und fünften
Potenz, in denen das kleine x' vorkommt, die beiden ersten Glieder

vernachlässigen; dann folgt, wenn durch y'2 dividiert wird,

0,00001 720,01 y'2; y' + y/^J^
d. h., zu einem positiven kleinen x' gehören zwei reelle absolut
gleichwertige, ein positives und ein negatives y\ Geben wir dem x' grössere
positive Werte, so steigt der absolute Wert der y' ziemlich rasch.

b) x' negativ — 0,01. Für diesen Wert wird aus («) unter
Vernachlässigung der beiden ersten Glieder und durch Division durch y'2
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719,99 y'2 — 0,00001 ; y' + sj- 0,00001
imaginär.

ftiXekkthrtùno

719,99
Dies ergibt sich auch aus andern negativen Werten für x', somit folgt,
dass auf der negativen Seite der Ordinatenaxe keine Kurvenpunkte
liegen. Der neue Nullpunkt erscheint daher als ein vierfacher Punkt

von der Art, dass die Kurve in ihm
eine Spitze bildet, und die Abscissenaxe

ist Rückkehrtangente in demselben mit
fünffachem Berührungspunkt. Dasselbe

gilt für den unendlich fernen Punkt der
Ordinatenaxe der ursprünglichen Kurve;
derselbe ist ein vierfacher Punkt der
Parabel, in welchem alle vier Tangenten

mit der unendlich fernen Geraden zusammenfallen; wir können den

Punkt als Rückkehrpunkt zweiter Ordnung bezeichnen.
Da wir diese Ausführungen auch auf die Bernoullischen Funktionen

höhern Grades ausdehnen können, bei welchen die vielfachen Punkte

nur in höherem Grade der Vielfachheit auftreten, so ergibt sich der Satz :

Die ungeraden Bernoullischen Funktionen höhern, (2m-\-l)ien
Grades, analytisch interpretiert, stellen Parabeln hohem Grades dar;
bei denselben ist der unendlich ferne Punkt in der Richtung der positiven

Ordinatenaxe ein 2m-fâcher Punkt, in welchem alle 2m
Tangenten mit der unendlich fernen Geraden zusammenfallen. Die Kurve
bildet in ihm eine Spitze und die unendlich ferne Gerade ist Rückkehrtangente

mit (2m + 1)-fächern Berührungspunkt; der Punkt ist ein

Rückkehrspunkt von der Ordnung m.

B. Die gerade Bernoullische Funktion. Etwas anders gestaltet
sich der Verlauf dieser Funktion im Unendlichen. Zur Untersuchung
wählen wir

ca ì
x4 x3 x2 1

X(4,x) y -^ Î2- + ^4 W °der

30 x4 — 60 x3 + 30 x2 — 720 y — 1 0.

Die Schnittpunkte mit der unendlich fernen Geraden werden

gestützt auf die homogene Gleichung
30x'4 — 60x'3z + 30x'2z2 — 720y'z8 — z4 0,

für z 0 xri 0, d. h.,
die unendlich ferne Gerade wird von der Kurve in vier zusammenfallenden

Punkten geschnitten in der Richtung der positiren Ordinatenaxe.

Projizieren wir die unendlich ferne Gerade wieder durch die
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frühere Substitution auf die Abscissenaxe ins Endliche, so folgt, wenn
mit y'4 multipliziert wird,

30x'4 — 60x'V+ 30x'2y'2 — y'4 — 720y'3 0. (ß)
Dies ist die Gleichung der transformierten Kurve; da sie erst mit
Gliedern dritten Grades beginnt, so ist der neue Nullpunkt 0' ein

dreifacher Punkt; die Tangenten in demselben erhalten wir aus

y'3 0, d. h., alle drei Tangenten fallen in der Abscissenaxe zusammen,
und diese berührt die Kurve in vier zusammenfallenden Punkten; also

ist auch der unendlich ferne Punkt der Ordinatenaxe ein dreifacher
Punkt der Kurve, dessen drei Tangenten mit der unendlich fernen
Geraden zusammenfallen.

Zur noch genauem Untersuchung dieser Kurve in der Nähe des

dreifachen Punktes transformieren wir die Gleichung (ß) wie folgt:
30x'2(x'—y')2 y'8(y'+720).

'>--,'H±yggp"
t-.-xy+V/'"(y'+,20>-l).30

x' |b'±±v/y^4V/a+z20):}
Die Quadratwurzel wird nur für y' 0 selbst zu Null.

Geben wir jetzt dem y' kleine Werte, so wird für
a) y' positiv 0,1.

S<4{o,,±V/^/^T}4{„,1±o,,M).
3-/ 0,447; x'= —0,347.

Ebenso würde ein grösseres y' zwei verschiedene reelle Werte liefern.
Somit gehören zu einem positiven y' zwei verschiedene reelle Werte
von x', wovon stets der eine positiv, der andere negativ ist.

b) i/ negativ und klein. In diesem Falle wird die Quadratwurzel

stets imaginär und somit auch der Wert für x'; daraus

folgt, dass die Kurve ganz oberhalb
der Abscissenaxe liegl und von der
Ordinatenaxe nicht symmetrisch geteilt
wird. Der dreifache Punkt
unterscheidet sich also nicht wesentlich von
einem gewöhnlichen Kurvenpunkt, nur

ist die Krümmung der Kurve in der Nähe desselben eine schwächere,
Bern. Mitteil. 1900. No. 1489.
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Da diese Untersuchungen auch ausgedehnt werden können auf

die geraden Bernoullischen Funktionen mit höhern Exponenten, so

ergibt sich der Satz:

Die geraden Bernoullischen Funktionen höhern, 2mtm Grades

stellen ebenfalls Parabeln höhern, 2mtm Grades dar; bei denselben ist
der unendlich ferne Punkt in der Richtung der Ordinatenaxe ein

(2m—l)-facher Punkt, in welchem alle (2m—1) Tangenten mit der

unendlich fernen Geraden zusammenfallen, welche die Kurve in 2m
zusammenfallenden Punkten berührt. Die Kurve liegt ganz auf der

einen Seite der unendlich fernen Geraden, und der (2m—1)-fache
Punkt unterscheidet sich nicht wesentlich von einem gewöhnlichen

Kurvenpunkt, nur ist die Krümmung in der Nähe desselben eine

schwächere.

Da diese Untersuchungen für alle Definitionen analog durchgeführt
werden können und auch entsprechende Resultate liefern, so sind wir
über den Verlauf aller Bernoullischen Funktionen im Endlichen wie im
Unendlichen genügend aufgeklärt.

Die Tabellen V—VIII zeigen nun deutlich, dass das Gülligkeils-
gebiel der einzelnen Definitionen ein ziemlich verschieden grosses isl;
am kleinsten isl das Konvergenzgebiel der Schlömilchschen Definition;
das beste Gebiet liegt hier zwischen —1 und +2; ausserhalb
desselben nimmt die Funktion sehr rasch grosse Werle an. Etwas, aber

nur wenig grösser ist das Konvergenzgobiet der Definitionen von Raabe

und von Glaisher, was aus den Tabellen V und VIII ersichtlich ist.
Die Parabeln der Definition von Schläfli sind diejenigen, welche sich

der Abscissenaxe am weitesten, sowohl nach der positiven wie nach

der negativen Seite hin anschmiegen und zwar um so mehr, je grösser
der Grad der Funktion ist; so erstreckt sich das beste Gebiet für
n 6 schon zwischen —3 und +4; bei den noch höhern Bernoullischen

Funktionen wird dieses Gebiet bedeutend vergrössert.

Es ist dies ein weiterer Vorzug der Definition von Schläfli,
wieder bewirkt durch die Fakultät im Nenner.

§ 32. Entscheidung.

Gestützt auf all unsere frühem Betrachlungen, gelangen wir zu

folgendem Resultat:
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Die Definition der Bernoullischen Funktion nach L. Schläfli ist die
für die Theorie zutreffendste, weil

1. ihr Konvergenzgebiet sich am weitesten ausdehnt,

2. alle Formeln einfachere Gestalt annehmen,

3. dieselbe die allgemeinste ist und

4. die ganze Theorie sich einheitlicher aufbaut, infolge der treff¬
lich gewählten Grundbeziehung zwischen den Bernoullischen
Zahlen und Funktionen und der Anwendung des Prinzipes
der Koeffizientenvergleichung.
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