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IV. Die Definitionen nach J. W. L. Glaisher.

Nachdem Dr. Glaisher schon in einer friihern Bekanntmachung
«On series and products involving prime numbers only»**) auf die
Bernoullische Funktion gekommen ist, widmet er derselben eine
eingehende Besprechung in der gleichen englischen Zeitschrift, be-
litelt «On the Bernoullian Function».**) In dieser 168 Seiten um-
fassenden Abhandlung gibt dieser beriihmle englische Mathematiker
eine grosse Menge von Formeln; ja er begniigl sich auch nicht mit
einer einzigen Definition, sondern fiihrt deren mehrere an. Wir treten
hier nur auf diejenige Definition niher ein, die uns fiir die all-
gemeinsie und bequemste erscheint, ohne dabei die ibrigen zu ver-
nachlissigen, da wir alle aus der zu besprechenden Definition leicht
herstellen konnen, weil sie durch einfache algebraische Beziehungen
verbunden sind. Eine weilere Arbeit «On the definite integrals
connected with the Bernouwllian Function»**) von demselben Verfasser
gibt uns eine belrichlliche Anzahl von bestimmten Integralen mit
Bernoullischen Funktionen.

Die Formel, die Glaisher einer eingehenden Belrachtung unter-
zieht, laulel anfinglich
B 5 == ); - é—x““l -+ E‘zi—l— le"_'2

_n 1)(n4!2) (n d)Bzanf;_i___ ...... (1)

§ 21. Herleitung der Definitionsgleichung.

Wie schon Raabe, so gehi auch Glaisher aus von der bekannten
Beziehung fir 0 <'x <(1%)
si ) sin 6 ’
sin 2 7z x - ‘““2’” o+ 5“‘3’”‘ NI :,K(%_x).

Durch Multiplikation mit dx und Integration zwischen 0 und x wird

1—cos2x | 1—cosdzex | 1—cosb7 X X KX
27 + 8 + 18 ¢ s e = (_2_ o ?) ’

multiplizieren wir mit (— 2s) und zerreissen danun, so folgt, weil
2 .

1 1 . 7T
1_I_§_l_3_2+ ...... :62:—5—,
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cos4m cos B x x?2

cos2 7 x -+ + e =2ﬂ2{?_i+_1_},

Durch w1ederholte Integration und Multiplikation mit (—2 ) entqtehen
nacheinander '

sin 4 s¢ X sin 6 7z x 2278 | x3 %2 X
SIS R il BNcaeaieie i P B SR O I
L L 21{3 2F3}
cosdrx cos 67z X
cos 2 7 X -}- 5 +- - 34 |
286 [ xt x® | x2  Be
= '{'Z—?+?_T}
s 4 - 6 .
00527cx+0% 2171; X T CoS 2152\
2 3
(-_1)11—-12211—-176211 - an
= BRI — En—1] B, (x)+4(—1) (2)
stn@arx - sin4 .z x sin 67z x

‘)n -1 + 32114—1_—
(_1)n+1 2211 ﬁ2n+1
+ ...... —_— (2 n)' 13211+1(X). (3)

Darin bedeuten B,(x) die Klammerausdriicke der obern Formeln; es
sind dies die «Bernoullischen Funktionen». Die beiden Formeln (2)
und (38), wie auch die friihern, sind rationale und integrierbare Funk-
lionen von x. Der erste Term von (2) ist von der (2n)*® Ordnung;
der letzte Term der Bernoullischen Funktion in (2) ist vom 2t Grade
in x; der erste Term der Bernoullischen Funklion in (3) ist vom
(2n-}-1)ter Grade, wihrend der letzte in Bezug auf x linear isl.
Also ist nach dieser Definition B,(x) eine Funklion von x, die
keinen von x freien Ausdruck enthalten dar{. Der Ausdruck, der
von x unabhingig ist in den obigen Entwicklungen, stelll slets den

Wert der Reihe 1 —}———l— n—{— + ----- , ausgedriickt in Bernoul-

lischen Zahlen, dar.

Diese Definition der Bernoullischen Funktion stimml nun ganz
mit derjenigen von Raabe iiberein, wie auch Glaisher bei seinen ersten
Untersuchungen tber diese Funklion die Raabesche Definition benutzt
hat, und es ist

By ()= B"(x)  und By ()= B’ (x).
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Glaisher filhrt dann die Unlersuchung tber diese B,(x)-Funktion
in ausfiihrlicher Weise durch, wobei er Raabe in vielem wesentlich
erginzt. Er beriihrt anfangs ganz kurz die Funklion mit inversem
Argument, dann die einfachen Ableitungen und gibt die Spezialwerle
fir x=0 und x=1. Sodann leitet er Reihenentwicklungen ab, in
welchen die Bernoullischen Funktionen als Koeffizienten auftreten.

Alles dies sind Eigenschaften, die mit der Raabeschen Auffassung
iibereinstimmen und bei denjenigen von Schlomilch und Schlifli zu
entsprechenden Resultaten fiihren.

Glaisher erwihnt auch, dass die Bernoullischen Funklionen

ax

: e —1 . :
die Koeffizienten der Entwicklung — N darslellen und leitet mit
e ——

Hiilfe dieser Auffassung einige Eigenschaften her. Hernach gibl er dhn-
liche Beziehungen von aufeinanderfolgenden Bernoullischen Funktionen
dieser Definition, entsprechend den Darstellungen bei den friiher be-
trachteten Definitionen, und erwihnt auch die Funktion mit negativem
Argument. %)

Uns inleressiert diese B,(x)-Funktion weniger, weil sie mit der-
jenigen von Raabe iibereinstimmt und weil dieselbe zu wenig allgemein
ist, da auf der rechten Seile die Reihe mit dem Gliede in x? oder x
abschliesst. Auch Glaisher sah sich gezwungen, zur Vereinfachung der
Koeffizienten der Entwicklung nach B,(x)-Funklionen

ea (2x—1) _l_ e——a 2x—1)

Bl
2 : -—=1+(2a>2=B2(x)+~2—}

" —e~

2 a)* B,
4- 5 134(,()_?}_,_ ........

fiir die Klammerausdriicke einfachere Funktionen einzufiihren, und
er Lthut dies, indem er setzt

n— Bn
Ay, (x) =B, (x) + (—1) ' on Apnp1(®) =By, (x).  (n>0).

Er selbst sagt, dass diese neue Funktion A,(x) als analytische Funktion
praktischer sei, da sie weniger komplizierte und systematischere Resul-
tate liefere. Da jelzt bei der geraden Bernoullischen Funktion durch
diese Setzung auch ein von x freier Term vorkommen darf, so steht -
diese Funktion in enger Beziehung zu derjenigen von Schlifli.*%)
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Nach obigen Erliulerungen werden somit

.__ 1 on 1 2n—1 2“) ng
A, (xX)= on {x — 3 2nx —}—(2 B, x

o o1 s ol (_; 1" (zjn—z) B x4 (—1)""' B, }

1 feapn 1 on 4 (20N any
A ()= a1 {x 5 (2n+1)x +( 9 B x

ond1\ L. . _/2n+1
_( | )B2x2 S (=1 ( n )th}.

Die Reihen brechen von selbst ab; beide lassen sich in die all-
gemeinere Formel fiir ein beliebiges n zusammenziehen

1) a n oy I n—2 I n—i ~
An(")—T<" 2 " +<2)Bl" —\g)Br T @

Die Reihe geht so weit, dass rechts keine negativen Koeffizienten

auftreten diirfen; der letzte Term enthilt (ni 1) oder (2), je nach-

dem n ungerade oder gerade ist.
Diese Definition wollen wir nun eingehender betrachten.

§ 22, Die Derivierten dieser Definition.
A. Die einfachen Differentialquotienten.
Wir gehen von der Definitionsformel (4) aus und differenzieren

dieselbe nach x; dann wird

0 o n—1 1 n—2 n—1 n—3
Fm = ) (1B

n—1 _ :
__( i )Bzxn 5+..._ .......
0

T ox A, (x)=m—1A_,®). : (5)

Diese Formel geht fir n=2m und n=(2m-}1) in die ent-
sprechenden Spezialformeln fiir die geraden und ungeraden Bernoul-
lischen Funktionen der Definitionen von Raabe und Schlomilch iiber.
Hier sind die zwei Spezialfille in eine Formel zusammengefasst; nur
steht noch ein Faktor vor der Bernoullischen Funktion, der bei der
Schldflischen Definition fehlt. Schon dies ist ein Grund, dass die
Definition von Schlifli den Vorzug verdient, da die einfachen Ableitungen

der y-Funktionen wieder reine x-Funktionen liefern.
Bern, Mitteil. 1900. No. 1486.
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B. Die wiederholten Ableitungen.

Solche finden sich bei Glaisher nirgends; dieselben sind jedoch
leicht zu erhalten; doch tritt stels ein komplizierender Faktor hinzu;

; ) a4
wie leicht herzuleiten, wird, wenn symbolisch s PR
X
A n
D"A (x)=A! ) An—l(x)' (6)

Schliflis Definilion ist also auch in dieser Hinsicht einfacher, da
dieselbe auch hier keinen vorgesetzien Faktor zeigt.

C. Einfache Integralformeln.
Multiplizieren wir (5) mit dx und integrieren zwischen 0 und x,

. P ] _Ax) |
8o wird J An_l(x)dx_{——n—_j— }O,

durch Trennung der geraden von der ungeraden Bernoullischen

. . 1
Funktion folgen f A, (x)dx= e Agpy1(® und (7)

0
x 1 n Bn
fAzn—l(x)dx_W_—_l_{A2n(x)+(_1) 2—11' ’ (8)
(] ;
wenn die spiter zu beweisenden Spezialwerte fir Asnyy;(0)=0 und
Aen( )= (—1)" 3"

2n
Aus obigen 2 Formeln ergeben sich fiir die obere Grenze x =1

1 1
ngn(x)dx: : rAzn—l(X)dX—_—O- (9)
6.;

0

eingeselzt werden.*")

Fiir die obere Grenze x = — werden unier Beriicksichtigung von*7)

2
1 aB. 27°—1 1
Azn (?) = (*-'1) -;1— . —éﬁ—— und A2 n41 (ﬁéﬁ) =——R ]
1 1
i 2
Agn(x) dx =0 Agn_1(x)dx
: .

1 B, 2°%—1

:.(—2m (—1)“?.?-—. (10)

Auch diese Formeln (7), (8) und (10) zeigen einen vorgeselzien
Faktor, der bei den entsprechenden Formeln von Schlifli wegfillt.
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§ 23. Die A,(x)-Funktion mit inversem Argument.

Glaisher ftritt auf diese Funktion nicht niher ein; er gibt nur
die Hauptformel, ohne auf ihre Herleitung einzugehen.*®) Wir ge-
langen jedoch auf einfache Weise zu diesen Beziehungen, wenn wir
ausgehen von den spiler herzuleilenden Reihenentwicklungen (23)
und (24).%%) Erselzen wir in (24) x durch (1—x), so wird unter An-

wendung von sin2 47z (1—x)=—sin24xx
) sin4d zzx |, 8in6 s x
»——{sm2nx—[— g2t -+ g2+l +}
_ 2211ﬂ_2n-|—1
— (_1)n—|-1 @ n)[— A2n+1 (1 —-X)

und durch Vergleichung dieser Formel mil (24)
Aont1(x) = — Agp 1 (1—X). ()

Setzen wir in (23) fir x den Wert (1—x), so erhallen wir
unter Beriicksichtigung von cos 2 A 7z (1—x) = cos 2 4 7r X genau wieder
dieselbe Formel (23), also |

Azn(X) = Agn(1—X). )

Diese zwei lelzlen Formeln (a) und (B) lassen sich zusammenziehen
zu der allgemeinern Formel

An (1—x) == (—1)"Aa (x). (11)

Aus dieser Formel ergeben sich unter Beriicksichtigung der
Definitionsgleichung (4) mit Leichtigkeit

Aoy (0) == As, (1) = (__1)11—1 B.

2n

md  (12)

A2n+1(0) == A2n+1 (—;—-) = Agn_l_]_(l) = 0. (13)

Vervielfachung des Argumentes.

Die Herleitung der Formeln dafiir ist hier bedeutend umstind-
licher als bei Schlomilch und Schlifli, da Glaisher zuerst eine Reihen-
entwicklung suchen muss, in welcher die Bernoullischen Funktionen als
Koeffizienten auftreten; von diesem Momente an ist das Verfahren
analog dem bei Schlifli. |

Er geht aus von der bekannten, fir 0 <x<C1 geltenden Be-
ziehung ™)



R - -

1-2 —am(1-2
egn’( x)_e an( x)

1 __sin2mx 2sin4 /s x
27 AT = Tife T ofa
3 sin 6 sz x
2 ,32+32 N I

Entwickeln wir die einzelnen Glieder der rechlen Seile nach
Potenzen von a? und nehmen die gleichartigen zusammen, so sind
nach (24) die Koeffizienten der Potenzen von a Bernoullische Funk-
tionen, und es wird, wenn zugleich mit a multipliziert und dann a

durch a ersetzt wird,

a(l—2x) —a(l—2x) . 3
e —8 2a
a b0 -___———-—2aA(x)—( )
e —¢

Az (x)

(2&1)5
A (X) — —<oenn ()
Es ist dies eine nach ungeraden Bernoulhschen Funktionen fort-
schreitende Entwicklung.
Analog wird aus der bekannten Gleichung®) -

1. ot TUTEN Y gm0 I a?cos 2 7z x
92 ean_e—-—an m 9 12+a2
a? cos 4 X
I 2_2+_32 N

durch Entwicklung nach Polenzen von a, Multiplikation mit 2 und
Ersetzen von asz durch a
pa(1—2%) + o= 2(1—2x) )4

2 (2
a o -——He—a - ] + (2 a) Az(X) + 3] 4 )
A @)

also eine nach geraden Bernoullischen Funktmnen fortschreitende Ent-
wicklung. Addieren wir diese beiden Entwicklungen (7) und (d),
nachdem wir in denselben a durch (—a) ersetzt haben, so resultiert
eine neue, nach aufeinanderfolgenden A,(x)-Funktionen fortschreitende

Reihe, nimlich

=AW+ AW+

Setzen wir darin fir 2a den Wert a und multiplizieren dann

e (2 a)3

2 a

a
Zihler und Nenner mit e2, so wird



= B w

eax

a
a—

i 14aA (x) 4 a?A,(x) + "‘;f Ay(x) —]—-%4_[ A(x) -+ (1)

Es isl dies eine elegante Entwicklung, woraus ersichtlich ist, dass

n ax

a : . )
An(x)= [(n—l)l] in der Entwicklung a e

Yon dieser Entwicklung geht, wie wir gesehen haben, Schlifli.
aus, indem er die Fakultiten der obigen Entwicklung auch noch zur
Bernoullischen Funktion mitnimmt; ausgehend von dieser Eigenschaft
leitet er dann die wesentlichen Eigenschaften der Bernoullischen
Funktion her. Bei Glaisher tritt diese Beziehung nicht so in den
Yordergrund, wie sie es verdiente; er leilet zwar einige Formeln
durch Koeffizientenvergleichung gleichwertiger Entwicklungen her ®!)
und gibt spiter die Bernoullische Funktlion noch als Koeffizient einer
andern Entwicklung. Ein reiner Koeffizient einer solchen Entwicklung
ist die Definition von Glaisher nicht, -

Gestiitzt auf Koeffizientenvergleichung kommt nun auch Glaisher
auf die Vervielfachung des Argumentes. Ist k eine posilive, ganze
Zahl, setzen wir in der letzten Enlwicklung fiir x der Reihe nach

1 k—
die Werte x, x-}- o » X 4 kl und addieren dann alle
diese Entwicklungen, so wird die Summe
. 4 k—
S= A9+ (x ) e (x5 )
. a 2a (k—1)a
:[an] in aa eu{l—]—ek—{—e Edewommefom = }
e—1
Tl
=[an] in (—i—) ; = Ax(kx); daher
k
e —1 :

1 ' k—1 1
Setzen wir x =0, so miissen wir die zwei Fille n— gerade
und n — ungerade unterscheiden; es werden (ir
n == ungeradz

A (%)4-,&(%) e A (5-:;-3\ —0 und fir (15%)



n = gerade
1 2 k—1
s () P ()t ()
— 1y 2 _ e b
= 0" - s
Aus diesen Formeln lassen sich mit Leichtigkeit verschiedene
1

1
= g e et ; fiir
5" 8 1 und 6 berechnen
einzelne Argumente konnen wir auch direkt von der Definitions-
summenformel ausgehen.

A. Berechnung von An(é)- Aus den Formeln (152 uzd b) folgt

Spezialwerte fiir die Argumente

sofort fir k =2

1 i o 2211—-—1_1 Bn )
A2n+1 (—2—> =0 und Aon (-—2—> = (—1) 2211 e~ (16)

B. Berechnung von Ag, (—i—) Die ungeraden Bernoullischen

Funklionen konnen wir mit Formel (15*) nicht berechnen, da wir
stets auf die identische Gleichung 0 =0 gefiihri werden. Gehen wir
von der Summenformel fiir Az, (x) aus, so gelangen wir auf «Eulersche
Zahlen»; da wir jedoch dieselben zu unsern Untersuchungen nie herbei- -
gezogen haben, so wollen wir auch hier nicht auf diese Sache einlreten,
besonders da diese Untersuchungen fiir alle betrachteten Definitionen
in analoger Weise durchgefiihrt werden konnen.

Dagegen wird aus (15%) untler Beriicksichtigung des Wertes fiir

Asgn (é—) in Formel (16)

1 an 2211—1___1
AZn(T)—(—l) - T 17

3
Summenformel aus, um diesen Wert zu erhalten; ganz einfach er-
halien wir dieselbe aus (15°) fiir k =3 unter Anwendung von

1 2 .
Agy (‘3“) =" (?) ; es wird dann

1 n 3‘211—-1__1 Bn
Agn (?)_(‘_1) { 3an_1 }4n‘ (18)

C. Berechnung von Ag, (i) Glaisher geht von der (rig.
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6

. 1 2 1 5
erinnern uns, dass Azp (?) == Agn(?) und Az, (—6—) == Agn(F),

so wird

1 T W | }Bn (1) 1
2A2n (F)—m—(——l) { 62n_1 2[1 —'2A2n ‘3— “—Azn —é— ;

die Werte fir As, (%) und Azp (%) eingesetzt, gibt
1 1

1 n B 1
Aen (F) - (=1 4; { gZi—1 2 gfn—i  gan—1 el } (19)
Auf gleiche Weise kionnten wir die Werte der geraden Bernoul-
1 1
8’ 12" 16
wirden aber zu komplizierten Formeln gelangen.

Glaisher gibl dann eine grosse Zahl von Reihenentwicklungen, in
denen diese Spezialfunktionen, sowohl die B,(x)- als auch die A,(x)-
Funktion, ja sogar noch weitere etwas von diesen abweichende De-
finitionen fiir die Argumente —-;—, -531,-, 7}, %—, % und i}é als Koeffi-
zienten auftreten®®); auf die weitern von Glaisher eingefiihrten De-
finitionen werden wir spiter noch zu sprechen kommen. %)

Im Verlaufe seiner Arbeit fiihrt dann Glaisher noch eine Menge,
den Eulerschen Zahlen ahnliche Zahlen J, I, H, P, Q; R und T ein,
die in Beziehungen stehen mit algebraischen Reihenentwicklungen.’*)
Er widmet den Untersuchungen dieser Zahlen und Entwicklungen
grosse Aufmerksamkeit; ihm gebiihr( das Verdienst, diese zuerst ein-
gefiihrt zu haben; doch konnen alle diese Operationen auch an der
Schliflischen Definition ausgefiihrt werden; die entstehenden Formeln
werden ebenso einfach, ja in vielen Fillen sogar bedeutend einfacher.

D. Berechnung von As, (i) Setzen wir in (15*) k =6 und

lischen Funktionen fiir die Argumente u. s. w. berechnen,

§ 24. Die Funktion mit negativem Argument.

Glaisher gibt diese Funktion weder so elegant, noch so einfach
wie Schléfli; die A,(x)-Funktion findel sich {berhaupt nichl mit nega-
tivem Argument; dagegen ist die B,(x)-Funktion fiir x = (— x) kurz
erwahnt.

Er geht aus von den Entwicklungen mach Bernoullischen Funk-
tionen, d. h,, den Formeln (y) und (J) des vorigen §, die mit ent-
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sprechender Abénderung auch fiir die B,(x)-Funktion gellen; addieren
wir beide, so folgt nach zweckmissiger Umgeslaltung der linken Seile

S =B gy B0 B e (20)

e'—1
Es ist dies eine neue Entwicklung nach Bernoullischen Funktionen;
aber auch hierin sind die Bernoullischen Funktionen nicht reine Koeffi-
zienlen der zugehorigen Entwicklung; diese Formel zeigt deutlich den
Zusammenhang dieser Funkiion mit der Definition von Schlomilch,
der gerade den n-fachen Wert der (n—1)%» Ableilung einer solchen
Entwicklung als n* Bernoullische Funktion ¢(z, n) definiert.

Gestiitzt auf obige Beziehung (20) kommt jetzl Glaisher auf die
Funktion mit negativem Argument; er multipliziert dieselbe mit e **
und erhailt :

e—ax_l — a;r a2 as
——— = {x+aB,(x) + 57 By() + gy By +--oo- |
Durch Entwicklung von e
gleichung wird

** und nachherige Koeffizientenver-

n—1

— By (—x)=Ba(x) —(nh—1)x Bn_l(sz -+ ( o ) x? B, 9 ()
— e (DT B () - (=1 T

Dies selzt er symbolisch gleich®®)
—B (—x)=(E—x)"" "B, (), (21)
wobei E ein Operalionsfaktor ist, definiert durch
EB (x) =Br1(x);
es resultiert dann
(—1)" 7" Ba (14-%) = (E—x)""" B, (x). (22)
Weitere Bernoullische Funktionen mit negativem Argument finden
sich keine mehr; diese symbolische Darstellung ist keineswegs bequem
zum Operieren; hier ist entschieden jede andere und besonders die
Schliflische Definition vorzuziehen.

§ 25. Diskussion dieser Funktion.

Der einzige Unterschied dieser An(x)-Funktion, der dieselbe
dusserlich nur unwesentlich von der Definition von Schliafli unler-

. . e 1
scheidet, ist der, dass Schlifli den Faklor o1 Yor der Klammer der

rechten Seile der Gleichung der n'* Bernoullischen Funktion hat,
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wihrend Glaisher nur _rll— Bei der graphischen Darstellung ist dann

. _ 1 . :
augenscheinlich, dass der Faktor o~ das Konvergenzgebiet der Funktion

um so mehr erweitert, je hoher der Grad der Bernoullischen Funktion
steigl, und dass schon deshalb die Definition von Schlifli vorzuziehen ist.

Die acht ersien Bernoullischen Funklionen dieser Definition
nehmen folgende Werle an:

Al(x)—-—-xw%.

M) =43 — x| o

As(x)=—.13—x3—%~x2—{- %x

M) =3t — X X — e

M) =3 — g — o g
R
PN W B U AV

Wir erkennen daraus, dass die zwei ersten Bernoullischen
Funktionen dieser Definition genau mit denjenigen gleich hoher Ord-
nung bei Schlifli dbereinstimmen; die Funktion As(x) besitzt also

ebenfalls ein Minimum bei x=~}2— vom Werle _QIZ' Die Gleichung

fir As(x) weist analog (3, x) zwischen 0 und 1 sowohl ein Minimum
als ein Maximum auf. Beide liegen bei gleichem Werte von x wie
fiir die % (3, x)-Funktion; doch wird hier der Wert der Funktion
gerade 2!-mal so gross wie bei %(8, x).

Entsprechend konnten wir weiterfahren; wir finden, dass die
Stellen der Maximal- und Minimalwerte nicht dndern, dass aber die
zugehorigen Funktionswerte fir diese Definition bedeutend griasser
werden, je hoher der Grad der Funktion ist; die Funktion nimmt
rasch sehr grosse Werte an.®®)

Die Figuren zu § 18 gelten auch fiir diese Definition.
Bern. Mitteil. 1900. No. 1487,
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§ 26. Yerwandlung dieser Definition in trigonometr. Reihen,

Schon bei der Herleitung der Deﬁnitionsgleichuhg ist Glaisher
zu trigonometrischen Reihen als Werlte fiir Bernoullische Funktionen
gelangl; wir brauchen nur fiir die B,(x)-Funktion in den Formeln (2)
und (3) die allgemeinere A,(x)-Definition einzusetzen; dann resultieren

—1 (2n—1)! cos4 L x
Agn(X)=(—1)n 1—2(211—_171;)2—11{0052717)( +—-—2—2n——
c0s 6 7z X
_|__,__§2_1.1.__+} (23)
fi 2n)! ) sin4d zx
A2n+1(X):(—1) +1—22—£7v2)n?{ sin 2 7z x —l— _22—n—i-T—

sin 6 7z X
+_-;2511__+ ...... } (24)
Wir wiren auch zu denselben Resultaten gelangt, wenn wir uns
auf die Theorie der Fourierschen Reihen und Integrale gestitzt und
fiir die Funktion f(x) die Bernoullische Funktion A.(x) eingefiihrt
hiitlen; wie schon bei Schlifli, so gelangen wir auch hier rascher ans
Ziel als Schlomilch, weil das enlstehende Integral leichter zu losen ist.

§ 27. Integrale mit A,(x)-Funktionen.

Wihrend Glaisher in seinen zwel ersten, diesen (Gegenstand be-
handelnden Schriften gar keine Integrale mit Bernoullischen Funklionen
gibt, behandelt er die Integraldarstellungen dieser Funktion sehr ein-
gehend in seiner dritlen, bereits erwihnlen Schrift «On the definile
integrals connecled with the Bernoullian function.»

Er geht darin von den Summenformeln des Sinus und Cosinus
aus®?) und leitet auf analoge Weise, wie die Untersuchungen von § 20
des vorhergehenden Abschnittes zeigen, seine Integrale her. Trotz
des Unterschiedes bheider Definitionen bleibt ja die Art des Herleitens
dieselbe; wir wollen deshalb hier nicht noch einmal dieselben Ab-
leitungen vornehmen, sondern begniigen uns mit der Angabe der er-
haltenen Resultate; ein Vergleich der entsprechenden Formeln, die
stets sehr dhnlich aussehen, zeigt jedoch, dass diejenigen der Definition
von Schléfli noch etwas einfacher aussehen, vorausgeseizi, dass sie in
der Form nicht ganz iibereinstimmen,
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A. Einfache Integrale.
1. Mit der ungeraden Bernoullischen Funktion. Gestiitzt auf (8)

werden fiir die Spezialwerte der obern Grenze x — ; ; 1 und %
7 —1 B,
C@n—1) | Aeny(x)dx = (—1)* 2 T oy ' (25)
0
l 2
8 n 8 11__‘1 Bn
o 4211_'_2211 Bn .
(2n—1) Azn_l(X)dX‘—‘(———l) - Ty (a7)

; . 671 9.3 392" 6 B,
(@ n-——l)f Agn—1(x) dx = (—1) as 2-1_ '
6 4n
0

Hier kompliziert also der vor dem Integral stehende Faktor (2n—1).
2. Mit der geraden Bernoullischen Funktion. Gesliilzt auf
Formel (7) werden, wenn wir zur Abkirzung die von Glaisher ein-

gefiihrien Zahlen wiihlen, ®®)
1

(28)

)
2an2n(x)dx=O. (29)
0
L1
4 n41 In
2an2n(X)dX=(—1) oy (30)
5
L]
3 ' nt1 En
n {'Azn(x)d":(“ﬁl) i JREEEN (31)
&
L3
2 nt1  In

)
B. Integrale mit trig. Funktionen.

Durch analoges Verfahren wie in § 20® werden

1
. a1 2n)!
JAgnH(x) sin2rzxdx =(—1) + Efﬂr)l% (33)
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. ,
fA2n+1(x) cos2rzxdx=0. (34)
s ,

1

Ahd&ﬂms2rnxdx::0—lf+l(zn_JJI‘ (35)

(2r7t)2n

0

1 -
[Agn(X) sin2rzxdx =0. (36)

[ 8

0
Auch hier bedeulet r eine posilive ganze Zahl; die Formeln (33) und
(35) weisen wiader einen Faktor mehr auf, als die entsprechenden
der Schliflischen Definition.

C. Integrale von Produkten.

Gestiitzt auf die Multiplikation der Summenformeln (23) und
(24) werden durch nachherige Integration

1
{AZ nt1(%) Az (x) dx = (—1)* "

[
0

2m)! (2n)!
2mF-2n1-2)!

Bm—i—n—{-l- (37)

f Aam(3) Ann(0) dx = (1) BB CR g (o)

1 L ‘
fA2m+1(x)A2n(x)dx=fA2m(x)A§n+1(x)dx=0. (39)
S

y

&

Fiir n = m werden die zwei ersiern Formeln

1 2
{‘ {A2n+1(x)}2dx e (i(r?_r'l_)g—l Ban 1 und  (40)
5
1 . T
f {AZH(X)} dx = {(2—(1:“‘;)"1!")-1—}- Bone (41)

0

Wir konnten auch hier wieder als obere Grenze % und -i— wihlen,

worauf diese Integrale den 2t%n (4t) Teil der obigen Inltegrale (37)
und (38) oder (40) und (41) ausmachen wiirden.

Ein Vergleich mit den Formeln bei Schliflis Definition zeigt,
dass die Formeln der y(n,x)-Funktion wieder einfachere Gestalt
aufweisen.

Auch diese Integralbetrachtungen kinnten natiirlich beliebig weit
ausgedehnt werden. ®®)



§ 28. Andere Deflnitionen von Glaisher,

Da Glaisher im Laufe seiner Untersuchungen zu Entwicklungen
: . n 1
kommt, welche nach fortschreitenden Funktionen {An (x)—2" Ay ( o x)}
N

laufen, so fiihrt er auch diese Funklion als eigene Definition ein,
indem er setzt A'n(x) = An(x)—2" Ay (é x)-
Er fiihrt dann die Betrachtung dieser A’,(x)-Funktion entsprechend
derjenigen der A,(x)-Fanktion durch und gelangt auch zu ganz ent-
- sprechenden Resultaten, ohne aber neue Gesichtspunkte aufzudecken.
Vorteile bielet diese Funktion keine, da keine der Formeln eine
wesentliche Anderung erfahren. ®0)

In derselben Arbeit fiihrt Glaisher noch zwei weilere Definitionen
der Bernoullischen Funktlion ein, die in sehr engem Zusammenhang
mit den friher erwihnten Definitionen stehen, da er selzt

Vo(x)=nA,(x) und © Uu(x)=nA',(x).
Diese beiden schmiegen sich jeweilen eng an die A,(x)- resp. A'y(x)-
Funktion an.

. - . 1
Trolzdem jelzt die Definitionsformeln den allgemeinen Nenner?

der rechten Seite nicht mehr besitzen, werden die daraus abge-
leiteten Formeln nicht einfacher; nach Glaisher sollen sie sich besser
zur symbolischen Darstellung eignen als seine frither erwihnlen De-
finitionen, Wihrend Glaishers B,(x)-Funktion mit der Raabeschen
Definition ibereinstimmt, stimmt seine V,(x)-Funktion mit der Schli-
milchschen ¢ (x, n)-Funktion iiberein. Die Untersuchung dieser beiden
Funktionen geht dhnlich vor sich, wie die Betrachtung seiner erstern
Definitionen; doch wird dabei die symbolische Darstellungsweise an-
gewandt, wo sie tberhaupl anzawenden isl.®")

Endlich fiihrt derselbe Mathematiker noch zwei weitere Definitionen
der Bernoullischen Funktion ein, die mit der A,(x)- resp. A'n(x)-
Funktion verbunden sind durch die Beziehungen

an (X) = An (x—l—%) Cund e/ (X) =AY (x—]—%).

Auch hier erfolgen die allerdings nur kurzen Betrachlungen dariiber
in entsprechender Weise wie bei den erstern Definitionen. %)
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