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IV. Die Definitionen nach J. W. L. Glaisher.

Nachdem Dr. Glaisher schon in einer frühem Bekanntmachung
«On series and products involving prime numbers only»42) auf die
Bernoullische Funktion gekommen ist, widmet er derselben eine

eingehende Besprechung in der gleichen englischen Zeitschrift,
betitelt «On the Bernoullian Function» .M) In dieser 168 Seiten
umfassenden Abhandlung gibt dieser berühmte englische Mathematiker
eine grosse Menge von Formeln; ja er begnügt sich auch nicht mit
einer einzigen Definition, sondern führt deren mehrere an. Wir treten
hier nur auf diejenige Definition näher ein, die uns für die

allgemeinste und bequemste erscheint, ohne dabei die übrigen zu

vernachlässigen, da wir alle aus der zu besprechenden Definition leicht
herstellen können, weil sie durch einfache algebraische Beziehungen
verbunden sind. Eine weitere Arbeit «On the definite integrals
connected with the Bernoullian Function >>44) von demselben Verfasser

gibt uns eine beträchtliche Anzahl von bestimmten Integralen mit
Bernoullischen Funktionen.

Die Formel, die Glaisher einer eingehenden Betrachtung unterzieht,

lautet anfänglich

„ xn 1 n_i n—1 „_.2B„00= - — ^x +-__B1x2 ' 2!

(n-l)(n-2)(n-3) n-4
4! v +- (i)

§ 21. Herleitung der Definitionsgleichung.

Wie schon Raabe, so gehl auch Glaisher aus von der bekannten

Beziehung für 0 < x <[ 16S)

n sin 4 n x sin 6 7t x /1
sin 2 vt x -j 4 f- 7t \

Durch Multiplikation mit dx und Integration zwischen 0 und x wird

1—cos2zrx 1—cos 4 7t x 1—cos6ttx (x x2

2n ' %7t
' \J7t f" 7C\2 2

multiplizieren wir mit (— 2n) und zerreissen dann, so folgt, weil

1 + 22 + 32+ ^S2 T'
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cos4ttx C0S67TX „ x! x 1

C0S2^+-y- +^^-+ -2.2jy-y+y
Durch wiederholle Integration und Multiplikation mil (—2n) entstehen
nacheinander

„ sin 4 ye x sin 6 ti x 22yc3 x8 x2 xsm2nxA- p— -J -3 (- +

cos 2 7t x +

2» ' 33 ' 2 (3 2 ' 3

cos4/rx cos&7tx
34

_ — 23/c4 }x4 x3 x2 B2^
' — 3! I 4 2 + 2 4 I'

cos 4 ti x cûs6 7cx
C0S27TX + —^

1

1̂xii-lq2n-l 2n t —

+ I2Z1»" K-w+Mr^ll- W

sin4yTX sin 6 TT x
sin 2yfx +i g211!-1 o2n+i

(_l)n^2n+l02n 2 n+1n+ - ;(2n)! W*>- (3)

Darin bedeuten Bn(x) die Klainmerausdrücke der obern Formeln; es

sind dies die «Bernoullischen Funktionen». Die beiden Formeln (2)
und (3), wie auch die frühem, sind rationale und inlegrierbare
Funktionen von x. Der erste Term von (2) isl von der (2n)tcn Ordnung;
der letzte Term der Bernoullischen Funktion in (2) ist vom 2tcn Grade

in x; der erste Term der Bernoullischen Funktion in (3) ist vom

(2n+l)ten Grade, während der letzte in Bezug auf x linear ist.
Also ist nach dieser Definition Bn(x) eine Funktion von x, die

keinen von x freien Ausdruck enthalten darf. Der Ausdruck, der

von x unabhängig ist in den obigen Entwicklungen, stellt stels den

Wert der Reihe 1 -4 1 1 f- ausgedrückt in Bernoul-
2 3 4n

tischen Zahlen, dar.

Diese Definition der Bernoullischen Funktion stimmt nun ganz

mit derjenigen von Raabe überein, wie auch Glaisher bei seinen ersten

Untersuchungen über diese Funktion die Raabesche Definition benutzt

hat, und es ist

B2n+l(X) B"(x) ™d B2n+2(X)=B'(X).
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Glaisher führt dann die Untersuchung über diese Bn(x)-Funktion
in ausführlicher Weise durch, wobei er Raabe in vielem wesentlich

ergänzt. Er berührt anfangs ganz kurz die Funktion mit inversem

Argument, dann die einfachen Ableitungen und gibt die Spezialwerte
für x 0 und x l. Sodann leitet er Reihenentwicklungen ab, in
welchen die Bernoullischen Funktionen als Koeffizienten auftreten.

Alles dies sind Eigenschaften, die mit der Raabeschen Auffassung
übereinstimmen und bei denjenigen von Schlömilch und Schläfli zu

entsprechenden Resultaten führen.

Glaisher erwähnt auch, dass die Bernoullischen Funktionen

eax—1
die Koeffizienten der Entwicklung — darstellen und leitet mit

Hülfe dieser Auffassung einige Eigenschaften her. Hernach gibt er
ähnliche Beziehungen von aufeinanderfolgenden Bernoullischen Funktionen
dieser Definition, entsprechend den Darstellungen bei den früher
betrachteten Definitionen, und erwähnt auch die Funktion mit negativem
Argument.45)

Uns interessiert diese Bn(x)-Funktion weniger, weil sie mit
derjenigen von Raabe übereinstimmt und weil dieselbe zu wenig allgemein
ist, da auf der rechten Seite die Reihe mit dem Gliede in x2 oder x

abschliesst. Auch Glaisher sah sich gezwungen, zur Vereinfachung der
Koeffizienten der Entwicklung nach Bn(x)-Funktionen

ea(2x-l) e-a(2x-l) f ß
a — 1 + (2a)2JB2(x) + -J-}

(2 a)+
B2l

ß4M-f| +

für die Klammerausdrücke einfachere Funktionen einzuführen, und

er lliut dies, indem er setzt

A2nW B2n(X) + (-l^ln-; A2n+l(X) B2n+l(*)' ("><>)¦

Er selbst sagt, dass diese neue Funktion An(x) als analytische Funktion
praktischer sei, da sie weniger komplizierte und systematischere Resultate

liefere. Da jetzt bei der geraden Bernoullischen Funktion durch
diese Setzung auch ein von x freier Term vorkommen darf, so steht
diese Funktion in enger Beziehung zu derjenigen von Schläfli.46)
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Nach obigen Erläuterungen werden somit

Jr(x2"-l2nx^+(2;A2n(x) ^-ix--|2nx2-+(29n)B1x--2

+ + (-l)n(2n2n_2)Bn-1x8 + (-l),1+lBni-

1 f-an+l_ 1 /«„ 1W2n ./^n+A 2n_,
A.M-iW -än+rlS^ -y(2«+ l)x"+[ 2 JV

2n+l\ 2n a „/2n+l\
Die Reihen brechen von selbst ab; beide lassen sich in die
allgemeinere Formel für ein beliebiges n zusammenziehen

Die Reihe geht so weit, dass rechts keine negativen Koeffizienten

auftreten dürfen; der letzte Term enthält I oder I je nachdem

n ungerade oder gerade ist.
Diese Definition wollen wir nun eingehender betrachten.

§ 22. Die Derivierten dieser Deflnition.

A. Die einfachen Differentialquotienten.

Wir gehen von der Deflnilionsformel (4) aus und differenzieren
dieselbe nach x ; dann wird
S n-1 1 / -,<. n-2 /n "Mt, n-3

^An(x) x —y(n-l)x +^2 JBix

n—M „ s

4 JVn~5 +-
-A-An(x) (n-l)An_1(x). (5)

Diese Formel geht für n 2m und n (2m+l) in die

entsprechenden Spezialformeln für die geraden und ungeraden Bernoullischen

Funktionen der Definitionen von Raabe und Schlömilch über.

Hier sind die zwei Spezialfälle in eine Formel zusammengefasst; nur
steht noch ein Faktor vor der Bernoullischen Funktion, der bei der
Schiäflischen Definition fehlt. Schon dies ist ein Grund, dass die

Definition von Schläfli den Vorzug verdient, da die einfachen Ableitungen
der x-Funklionen wieder reine %-Funktionen liefern.

Bern. Mitteil. 1900. No. 1486.
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B. Die wiederholten Ableitungen.

Solche finden sich bei Glaisher nirgends; dieselben sind jedoch
leicht zu erhalten; doch tritt stets ein komplizierender Faktor hinzu;

,1 Sx
wie leicht herzuleiten, wird, wenn symbolisch D

dxx

ü\(x) ll(^An_l(x). (6)

Schläflis Definition ist also auch in dieser Hinsicht einfacher, da

dieselbe auch hier keinen vorgesetzten Faktor zeigt.

C. Einfache Integralformeln.

Multiplizieren wir (5) mit dx und integrieren zwischen 0 und x,

so wird j An_1 (x) d x J -~p '

durch Trennung der geraden von der ungeraden Bernoullischen

f* 1
Funktion folgen JA2n(x)dx ——A2n+1(x) und (7)

o

A2n_l(x)dx=-ylTJA2n(x) + (-l)»|^[, (8)
0

wenn die später zu beweisenden Spezialwerte für A2n+i(0) 0 und

A2„(0) (—l)11^- eingesetzt werden.47)
u n

Aus obigen 2 Formeln ergeben sich für die obere Grenze x= 1

I A2n(x)dx=0; j A2„_i(x)dx 0. (9)

0 0

Für die obere Grenze x — werden unter Berücksichtigung von47)
dt

/l\ n»Bn 22n—1 /1
A2n [Y) =(_1) IT ' -^r- und A2-+i (^

j A2n(x)dx 0; I A2n-i(x)dx

0.

1 (-i)"^-^1' (io)(2n—1) K J
n 22n

Auch diese Formeln (7), (8) und (10) zeigen einen vorgesetzten
Faktor, der bei den entsprechenden Formeln von Schläfli wegfällt.



— 67 —

§ 23. Die A„(x)-Funktion mit inversent Argument.

Glaisher tritt auf diese Funktion nicht näher ein; er gibt nur
die Hauptformel, ohne auf ihre Herleilung einzugehen.48) Wir
gelangen jedoch auf einfache Weise zu diesen Beziehungen, wenn wir
ausgehen von den später herzuleitenden Reihenentwicklungen (23)
und (24).49) Ersetzen wir in (24) x durch (1 —x), so wird unter
Anwendung von sin 2-1 TT (1—x) — sin2/^x

f _ sin 4 n x sin 6 n x
-|sin27rx + -^Tl-+ 32n+1 + j

p2n 2n+l

(-1)h+1—rin)f~ A2n+l(1 ~x)
und durch Vergleichung dieser Formel mit (24)

A2n+i(x) — A2n+i(l—x). («)

Setzen wir in (23) für x den Wert (1—x), so erhallen wir
unter Berücksichtigung von cos 2 X n (1—x) cos 2 X n x genau wieder
dieselbe Formel (23), also

A2„(x) A2n(l—x). (ß)

Diese zwei letzten Formeln (a) und (ß) lassen sich zusammenziehen

zu der allgemeinern Formel

A„(l—x) (— l)nAn(x). (11)

Aus dieser Formel ergeben sich unter Berücksichtigung der

Definitionsgleichung (4) mit Leichtigkeit

A2n(0) A2n(l) (-l)n-1^^ und (12)
d n

A2„+i(0) A2n+i (yj A2n+i(l) 0. (13)

Vervielfachung des Argumentes.

Die Herleitung der Formeln dafür isl hier bedeutend umständlicher

als bei Schlömilch und Schläfli, da Glaisher zuerst eine

Reihenentwicklung suchen muss, in welcher die Bernoullischen Funktionen als

Koeffizienten auftreten; von diesem Momente an ist das Verfahren

analog dem bei Schläfli.
Er geht aus von der bekannten, für 0 < x < 1 gellenden

Beziehung 50)



«71(1—2r) —a7T(l—2x) _ -1 e —e sin 2 n x 2 sin 4 vt x
-n-2 a* -an l^-J-a3 ' 22+a2

3 sin 6/r x
' 32+a2

Entwickeln wir die einzelnen Glieder der rechten Seile nach

Potenzen von a2 und nehmen die gleichartigen zusammen, so sind
nach (24) die Koeffizienten der Potenzen von a Bernoullische
Funktionen, und es wird, wenn zugleich mit a multipliziert und dann a n
durch a ersetzt wird,

ea(l-2x)_e-a(l-2s) {^fa l =iT —2aA1(x)--^-A8(x)
e —e ^1

-ÄA5(X) (y)

Es ist dies eine nach ungeraden Bernoullischen Funktionen
fortschreitende Entwicklung.

Analog wird aus der bekannten Gleichung50) '

a 71(1—2 x) — a7T(l—2x) „1 e +e 1 a2 cos 2 n x
an- — '

2 a 7r -An 2 ' l2-4-a2" e —e i

a2 cos 4 ye x
i 22+a2 '

durch Entwicklung nach Potenzen von a, Multiplikation mit 2 und
Ersetzen von an durch a

a(l-2x) ¦ -a(l-2x) (<? w+ — l+(2a)2A2(x) + A^-A4(x)
e —e

+ -^A6(x) + (ô)

also eine nach geraden Bernoullischen Funktionen fortschreitende
Entwicklung. Addieren wir diese beiden Entwicklungen (y) und (d),
nachdem wir in denselben a durch (—a) ersetzt haben, so resultiert
eine neue, nach aufeinanderfolgenden An(x)-Funktionen fortschreitende
Reihe, nämlich

a(2x—1) /2aia |Oa\3

2a-^--l+2aA1(x) + -i^-A2(x)+A^LA3(x) +
Setzen wir darin für 2 a den Wert a und multiplizieren dann

a

Zähler und Nenner mit e"2~, so wird



— 69 —

ax
e o s a

.^f-l+A1(x)4.aai\2(x)4.-A3(x)-f-A4(x)4-... (14)

Es ist dies eine elegante Entwicklung, woraus ersichtlich ist, dass

[a"
1 eax

-—. in der Entwicklung a ¦—(n-l)lj ea—1

Von dieser Entwicklung geht, wie wir gesehen haben, Schläfli.

aus, indem er die Fakultäten der obigen Entwicklung auch noch zur
Bernoullischen Funktion mitnimmt; ausgehend von dieser Eigenschaft
leitet er dann die wesentlichen Eigenschaften der Bernoullischen
Funktion her. Bei Glaisher tritt diese Beziehung nicht so in den

Vordergrund, wie sie es verdiente; er leitet zwar einige Formeln
durch Koeffizienlenvergleichung gleichwertiger Entwicklungen her51)
und gibt später die Bernoullische Funktion noch als Koeffizient einer
andern Entwicklung. Ein reiner Koeffizient einer solchen Entwicklung
ist die Definition von Glaisher nicht.

Gestützt auf Koeffizientenvergleichung kommt nun auch Glaisher
auf die Vervielfachung des Argumentes. Ist k eine positive, ganze

Zahl, setzen wir in der letzten Entwicklung für x der Reihe nach

l k idie Werte x, x +— > x -\ -— und addieren dann alle
K K

diese Entwicklungen, so wird die Summe

S An(x) + An(x + y) + + a/ ' k_1

-M'
a 2 a (k—l)a

in -f-e-ll+e^eM- + e"^~

¦H > -)—t -7^=rA«(kx); daher

ek-l
A»« + An(x + |) +.••• + An (x + lyL^—1— An (kx) (15)

Setzen wir x 0, so müssen wir die zwei Fälle n gerade
und n ungerade unterscheiden; es werden für

n ungerade

An(y) + An(-|) + + An(^-J 0 und für (15")
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n gerade

n+A.m+ +A.(i=i)
Tn( 1 |Bin

Aus diesen Formeln lassen sich mit Leichtigkeit verschiedene

Spezialwerte für die Argumente —-, —-, — und —- berechnen; für
2 o 4 b

einzelne Argumente können wir auch direkt von der
Definitionssummenformel ausgehen.

A. Berechnung von A„(—]• Aus den Formeln (15aund b) folgt

sofort für k — 2

A2n+1 (±)-0 und i..(A) (-!)¦^-ì (!•>

B. Berechnung von Ag„ -j- )• Die ungeraden Bernoullischen

Funktionen können wir mit Formel (15a) nicht berechnen, da wir
stets auf die identische Gleichung 0 3= 0 geführt werden. Gehen wir
von der Summenformel für A2n+i(x) aus, so gelangen wir auf «Eulersche

Zahlen»; da wir jedoch dieselben zu unsern Untersuchungen nie

herbeigezogen haben, so wollen wir auch hier nicht auf diese Sache eintreten,
besonders da diese Untersuchungen für alle betrachteten Definitionen
in analoger Weise durchgeführt werden können.

Dagegen wird aus (15b) unter Berücksichtigung des Wertes für
1

A2n(y in Formel (16)

C. Berechnung von As„ -=- )• Glaisher geht von der trig.

Summenformel aus, um diesen Wert zu erhalten; ganz einfach
erhalten wir dieselbe aus (15b) für k 3 unter Anwendung von

A2n(y A2n(yj ; es wird dann

m)=(-D"{^}£. m
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D. Berechnung von A2n \-w-)- Setzen wir in (15b) k 6 und

erinnern uns, dass A2n( y j A2n(y und A2n y A2n( y
so wird

•^t)-<-4^}£-»^(t)-*-(t
die Werte für A2n -q- und A2n -~- eingesetzt, gibt

l\ ^ Bn I 1 1

4n U2"-1 32n-f 6:

Auf gleiche Weise könnten wir die Werte der geraden Bernoullischen

Funktionen für die Argumente —-, —, —^ u. s. w. berechnen,
8 let lO

würden aber zu komplizierten Formeln gelangen.
Glaisher gibt dann eine grosse Zahl von Reihenentwicklungen, in

denen diese Spezialfunktionen, sowohl die Bn(x)- als auch die An(x)-
Funktion, ja sogar noch weitere etwas von diesen abweichende

Definitionen für die Argumente —-, —-, —, —-, — und ¦+- als Koeffi-
2 3 4 0 8 12

zienten auftreten52); auf die weitern von Glaisher eingeführten
Definitionen werden wir später noch zu sprechen kommen.53)

Im Verlaufe seiner Arbeit führt dann Glaisher noch eine Menge,
den Eulerschen Zahlen ähnliche Zahlen J, I, H, P, Q, R und T ein,
die in Beziehungen stehen mit algebraischen Reihenentwicklungen.54)
Er widmet den Untersuchungen dieser Zahlen und Entwicklungen
grosse Aufmerksamkeit; ihm gebührl das Verdienst, diese zuerst
eingeführt zu haben; doch können alle diese Operationen auch an der
Schläflischen Definition ausgeführt werden; die entstehenden Formeln
werden ebenso einfach, ja in vielen Fällen sogar bedeutend einfacher.

§ 24. Die Funktion mit negativem Argument.
Glaisher gibt diese Funktion weder so elegant, noch so einfach

wie Schläfli; die A„(x)-Funktion findet sich überhaupt nichl mit
negativem Argument; dagegen ist die Bn(x)-Funktion für x (—x) kurz
erwähnt.

Er geht aus von den Entwicklungen nach Bernoullischen
Funktionen, d. h., den Formeln (y) und (ô) des vorigen §, die mit ent-
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sprechender Abänderung auch für die B„(x)-Funktion gelten; addieren

wir beide, so folgt nach zweckmässiger Umgestaltung der linken Seite

-^=^ x + aB2(x) + -^-B3(x) + ^B4(x) + (20)

Es ist dies eine neue Entwicklung nach Bernoullischen Funktionen;
aber auch hierin sind die Bernoullischen Funktionen nicht reine
Koeffizienten der zugehörigen Entwicklung; diese Formel zeigt deutlich den

Zusammenhang dieser Funklion mit der Definition von Schlömilch,
der gerade den n-fachen Wert der (n—l)ten Ableitung einer solchen

Entwicklung als nto Bernoullische Funklion tp(z, n) definiert.

Gestützt auf obige Beziehung (20) kommt jetz.1 Glaisher auf die

Funktion mit negativem Argument; er multipliziert dieselbe mit e_ax
und erhält

-^T=r=e-ax(x + aB2(x)+ —B3(x)+|rB4(x) + }.

Durch Entwicklung von e~ax und nachherige Koeffizienlenver-

gleichung wird
'n—1N

-Bn(—x) Bn(x)-(n—l)xBn_1(x) + l
g

)x2Bn_2(x)

-+ +(-i)n-v-2B2(x)+(-irixn.
Dies setzt er symbolisch gleich55)

-B (-x) (E-xr1B1(x), (21)
wobei E ein Operalionsfaklor ist, definiert durch

EB (x) Br+i(x);
es resultiert dann

(-I)""1 Bn (1+x) (E-xr'B^x). (22)

Weitere Bernoullische Funktionen mit negativem Argument finden
sich keine mehr; diese symbolische Darstellung ist keineswegs bequem
zum Operieren; hier ist entschieden jede andere und besonders die
Schläflische Definition vorzuziehen.

§ 25. Diskussion dieser Funktion.

Der einzige Unterschied dieser An(x)-Funktion, der dieselbe
äusserlich nur unwesentlich von der Definition von Schläfli

unterscheidet, ist der, dass Schläfli den Faktor —- vor der Klammer der
n!

rechten Seile der Gleichung der nteu Bernoullischen Funktion hat,



- 73 —

während Glaisher nur— Bei der graphischen Darstellung ist dann

augenscheinlich, dass der Faktor — das Konvergenzgebiet der Funktion

um so mehr erweitert, je höher der Grad der Bernoullischen Funktion

steigt, und dass schon deshalb die Definition von Schläfli vorzuziehen ist.

Die acht ersten Bernoullischen Funktionen dieser Definition
nehmen folgende Werte an:

A!(x)=X-y
A2(x) yX2-

1
J

1

J% +12

A3(x)=yX3-
1

2 1

1-s! + —-x.
2 "6

A4(x) yX4-
1

3 1

1
2

Tx +TX
l

Ï20"

A5(x)=yX5 —
1

4
1

Tx4+Tx-
1

30
X. „

A6(x) |x«-|x5 + Ax,_A.x2 + _L.

A7(x)=ix'-lx6 + |x5-4-^8+-à-^
A8(x) 4xs--lx' + ^x°-^x4 + -ìx2-^.
Wir erkennen daraus, dass die zwei ersten Bernoullischen

Funktionen dieser Definition genau mit denjenigen gleich hoher
Ordnung bei Schläfli übereinstimmen; die Funklion A2(x) besitzt also

ebenfalls ein Minimum bei x —- vom Werte — —• Die Gleichung
là d'i

für A3(x) weist analog x(3, x) zwischen 0 und 1 sowohl ein Minimum
als ein Maximum auf. Beide liegen bei gleichem Werte von x wie
für die x (3, x)-Funktion; doch wird hier der Wert der Funktion
gerade 2!-mal so gross wie bei #(3, x).

Entsprechend könnten wir weiterfahren; wir finden, dass die
Stellen der Maximal- und Minimalwerte nicht ändern, dass aber die

zugehörigen Funktionswerte für diese Definition bedeutend grösser
werden, je höher der Grad der Funktion ist; die Funktion nimmt
rasch sehr grosse Werte an.ie)

Die Figuren zu § 18 gelten auch für diese Definition.
Bern. Mitteil. 1900. No. 1487.
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§ 26. Verwandlung dieser Definition in trigonometr. Reihen.

Schon bei der Herleitung der Definitionsgleichung ist Glaisher

zu trigonometrischen Reihen als Werte für Bernoullische Funktionen

gelangt; wir brauchen nur für die Bn(x)-Funktion in den Formeln (2)
und (3) die allgemeinere An(x)-Definition einzusetzen; dann resultieren

(2n—1)! | cos4 nxA2n(X) (-I)»"1 t-l 1}2n J C0S 2 « X
2 n \ 22n

COS 6 TT X

32n

a x / -.xn+i (2n)! / • « sininx
A2n+i(x) (—1) + „nv .;„,, sin2 nx +02n 2n+l " " " * I 02n+l2 TT l 2

sin 6 TT x

32u+1

(23)

(24)

Wir wären auch zu denselben Resultaten gelangt, wenn wir uns

auf die Theorie der Fourierschen Reihen und Integrale gestützt und

für die Funktion f(x) die Bernoullische Funktion An(x) eingeführt
hallen ; wie schon bei Schläfli, so gelangen wir auch hier rascher ans

Ziel als Schlömilch, weil das entstehende Integral leichter zu lösen ist.

§ 27. Integrale mit An(x)-Funktionen.

Während Glaisher in seinen zwei ersten, diesen Gegenstand
behandelnden Schriften gar keine Integrale mit Bernoullischen Funktionen

gibt, behandelt er die Integraldarstellungen dieser Funktion sehr
eingehend in seiner dritten, bereits erwähnten Schrift «On the definite

integrals connected with the Bernoullian function.»

Er geht darin von den Summenformeln des Sinus und Cosinus

aus57) und leitet auf analoge Weise, wie die Untersuchungen von § 20

des vorhergehenden Abschnittes zeigen, seine Integrale her. Trotz
des Unterschiedes beider Definitionen bleibt ja die Art des Herleilens
dieselbe; wir wollen deshalb hier nicht noch einmal dieselben

Ableitungen vornehmen, sondern begnügen uns mit der Angabe der
erhaltenen Resultate; ein Vergleich der entsprechenden Formeln, die

stets sehr ähnlich aussehen, zeigt jedoch, dass diejenigen der Definition
von Schläfli noch etwas einfacher aussehen, vorausgesetzt, dass sie in
der Form nicht ganz übereinstimmen.
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A. Einfache Integrale.

1. Mit der ungeraden Bernoullischen Funktion. Gestützt auf (8)

werden für die Spezialwerte der obern Grenze x —, —, — und —
d O 4: O

(25)(2n-l)f A2n-i(x) dx (-l)n Ç=i. *¦
o

(2n-l) fAan^W dx (-l)n Ç=i.^. (26)

/4 .2n,g2n_2 „
A2n-i(x) dx (-1)" +1 • IJ. (27)

0

to i\ T6a ^ /• 1V, 62n+2.32n+3-22n-6 Bn

(2n-l)J A2n-i(x)dx (-l) X _T __.
o

Hier kompliziert also der vor dem Integral stehende Faktor (2n—1).
2. Mit der geraden Bernoullischen Funktion. Gestützt

aufFormel (7) werden, wenn wir zur Abkürzung die von Glaisher

eingeführten Zahlen wählen,58)
i

(28)

(29)

2n | A2„Wdx (-l)n+1-2^r. (30)

2n | A2n(x)dx 0.

o

n I A2n(

o
x_

2n I A2„(x)dx (—1)H
o

i
n I A2n(x)dx

En

42n+l' (31)

2.1 | A2n(x)dx (-l)n+1-2^r. (32)

B. Integrale mit trig. Funktionen.

Durch analoges Verfahren wie in § 20B werden

A2n+i(x) sin 2 r rt x d x (—l)n+1 —(2"2'n,1 • (33)J (2r7F)2n+1
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i A2n+i(x)cos2 rnx dx 0. (34)
o

A2n(x)cos2rygxdx (—l)n+1 (2n—1)1
(3&)fo

I A2„(

(2r7r)2n

1(x)sin2r^xdx 0. (36)
ö

Auch hier bedeutet r eine positive ganze Zahl; die Formeln (33) und

(35) weisen wieder einen Faktor mehr auf, als die entsprechenden
der Schläflischen Definition.

C. Integrale von Produkten.

Gestützt auf die Multiplikation der Summenformeln (23) und

(24) werden durch nachherige Integration

jA2m+i(x)A2n+i(x)dx (-Dm+n (2(m+'2n+2)l Bm+n+1- (3?)

C\ MX MAx—( lVn+n (2m-l)! (2n-l)lI A2m(x)A2n(x)dx — (—1) (2m+2n) ""M-n-
5

I A2m+l(x)A2n(x)dx= I A2m(x)A2n+l(x)dx 0.

5" o

Für n m werden die zwei erstem Formeln

(38)

(39)

PjA2n+i(x)}2dx -l^-|lB2n+1 und (40)

(A2n(x)fdx lMl!B2, (41)/
Wir könnten auch hier wieder als obere Grenze —- und — wählen,

Li tE

worauf diese Integrale den 2ten (4ten) Teil der obigen Integrale (37)
und (38) oder (40) und (41) ausmachen würden.

Ein Vergleich mit den Formeln bei Schläfiis Definition zeigt,
dass die Formeln der %(n, x)-Funktion wieder einfachere Gestalt

aufweisen.

Auch diese Integralbetrachtungen könnten natürlich beliebig weit

ausgedehnt werden.59)
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§ 28. Andere Definitionen von Glaisher.

Da Glaisher im Laufe seiner Untersuchungen zu Entwicklungen

kommt, welche nach fortschreitenden Funktionen j An(x)—2nAn y x H

laufen, so führt er auch diese Funktion als eigene Definition ein,

indem er setzt A'n(x) An(x) — 2nAn (y x )¦

Er führt dann die Betrachtung dieser A'„(x)-Funktion entsprechend
derjenigen der An(x)-Funktion durch und gelangt auch zu ganz
entsprechenden Resultaten, ohne aber neue Gesichtspunkte aufzudecken.

Vorteile bietet diese Funktion keine, da keine der Formeln eine

wesentliche Änderung erfahren.60)
In derselben Arbeit führt Glaisher noch zwei weitere Definitionen

der Bernoullischen Funktion ein, die in sehr engem Zusammenhang
mit den früher erwähnten Definitionen stehen, da er setzt

V„(x) nAn(x) und U„(x) n A'„ (x).
Diese beiden schmiegen sich jeweilen eng an die An(x)- resp. A'n(x)-
Funktion an.

Trotzdem jetzt die Definilionsformeln den allgemeinen Nenner—¦

der rechten Seite nicht mehr besitzen, werden die daraus

abgeleiteten Formeln nicht einfacher; nach Glaisher sollen sie sich besser

zur symbolischen Darstellung eignen als seine früher erwähnten
Definitionen. Während Glaishers B„(x)-Funklion mit der Raabeschen

Definition übereinstimmt, stimmt seine V„(x)-Funklion mil der Schlö-
milchschen tp (x,n)-Funktion überein. Die Untersuchung dieser beiden
Funktionen geht ähnlich vor sich, wie die Betrachtung seiner erstem
Definitionen; doch wird dabei die symbolische Darstellungsweise
angewandt, wo sie überhaupt anzuwenden isl.61)

Endlich führt derselbe Mathematiker noch zwei weitere Definitionen
der Bernoullischen Funktion ein, die mit der An(x)- resp. A'n(x)-
Funktion verbunden sind durch die Beziehungen

an(x)=An(x +yj und a„'(x) A„'( x +y )•

Auch hier erfolgen die allerdings nur kurzen Betrachtungen darüber
in entsprechender Weise wie bei den erstem Definitionen.62)
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