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Dr. Ch. Moser.

Ueber eine mit der Umlaufszeit der Planeten

zusammenhängende Relation.
(Vorgetragen in der Sitzung vom 12. Nov. 1898.)

I. Einleitende Bemerkungen. Geschichtliches.

Das ganze wissenschaftliche Gebäude der mathematischen
Astronomie, wie es in den letzten zwei Jahrhunderlen mit so vielem
Geschicke und mit so grosser Eleganz und Vollkommenheit konstruirt
wurde, gründet sich in der Hauptsache auf das Gesetz der allgemeinen
Gravitation.

Es ist bewundernswürdig, mit welchem Scharfsinn und welcher

zwingenden Logik schon Newton eine grosse Zahl von wichtigen
Konsequenzen aus der Existenz des Gesetzes der allgemeinen Gravitation

abzuleiten verstund. Dies geschah namentlich in seiner im
Jahre 1686 erschienenen, epochemachenden, jedoch anfangs verhältnismässig

wenig beachteten Arbeit «Mathematische Prinzipien der Natur-
jehre», einem der schönsten Denkmäler mathematisch-naturwissenschaftlicher

Forschung.*)
Seither ist die rechnende Astronomie durch viele Erfolge

gekrönt worden, namentlich seitdem das Gravitationsgesetz durch die

sog. Lagrange'schen Fundamentalgleichungen einen glücklichen und

sinnreichen mathematischen Ausdruck gefunden hat.

Wir geben zwar zu, dass — im Gegensatze zu manchen übrigen
Zweigen der Forschung — die Fortschritte auf dem Gebiete der
mathematischen Astronomie nur gemessene sind, und dass auch hier,
trotz den glänzenden Arbeiten eines Laplace, Gauss. Bessel, Leverrier,
Tisserand und anderer Männer, der Zukunft sich noch ein grosses
Arbeitsfeld bietet. Ja, H. Poincaré, wohl einer der anerkanntesten
der jelzt lebenden Mathematiker, kommt in seiner berühmten, vom
schwedischen Könige preisgekrönten Arbeit über das Drei-Körper-
Problem zu der Ueberzeugung, dass die vollständige Lösung dieses

*) Sir Isaac Newtons mathematische Prinzipien der Naturlelire wurden
von J. Ph. Wolfers ins Deutsche übersetzt und sind im Verlag von Robert Oppenheim

in Berlin erschienen.

Bern. Mitteil. 1899 No. 1463.
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Problems — wenn man je eine solche werde linden können, noch

wesentlich andere und feinere mathematische HülfsmiUel, als wir sie

jetzt besitzen*), erfordere. Damit wollen wir sagen, dass auf dem

Gebiele der mathematischen Astronomie die zufälligen Entdeckungen
nahezu ausgeschlossen sind. Die grossen Fortschritte, wie z. B. die

Auffindung des Gesetzes der allgemeinen Gravitation, sind hier ebenso

sehr, wenn nicht noch mehr als anderswo, das Produkt reiflicher,
ja jahrelanger Ueberlegung und ernster, nicht nachlassender Arbeit.

Newton sagt uns denn auch selbst, dass er nur durch jahrelange

Arbeit und auf das Drängen Edmund Halley's, seines Freundes,

hin, dazu gekommen sei, der Herausgabe der erwähnten
mathematischen Prinzipien näher zu treten.

Mit der in manchen Lehrbüchern stehenden bekannten Anekdote

von dem vom Baume (allenden Apfel wird es daher nicht
weit her sein. Dennoch wollen Sie mir gestallen, dieses anschauliche

Bild zu benutzen, um speziell zu dem Gegenstand unserer heutigen
bescheidenen Untersuchung überzugehen.

Die reifen Aepfel des Baumes fallen, sofern aut dieselben keine
sie seitwärts verschiebende Kraft wirkt, in gerader Richtung nach der

Erde hin.
Was würde in unserem Sonnensysteme mit den

Planeten geschehen, wenn alle sie seitlich ver.
schiebenden Kräfte verschwinden, mit anderen
Worten, wenn die sog. Tangentialkraft plötzlich
erlosch en würde? Wie die Aepfel fallen, würden die Planeten nach dem

grossen und mächtigen, alles beherrschenden Cenlralkörper, nach der

Sonne, hinstürzen.

Man kann nun die Fallzeit berechnen, die die einzelnen Planelen
brauchen würden, um bei der Sonne anzulangen.

Wenn die Planeten sich in ihren mittleren Entfernungen von der
Sonne befinden, so erhält man z. B.

für Merkur 15,55 mittlere Sonnentage,
für Venus 39,73 mittlere Sonnenlage,
für die Erde 64,57 miniere Sonnentage

und so fort.

*) H. Poincaré. Sur le problème des trois corps et les équations de la

dynamique. Acta mathematica, herausgegeben von G. Mittag-Leffler. Band 13,

Seite 6.
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Die Fallzeiten schwanken von etwa einem halben Monat, für
Merkur, bis zu mehr als 29 Jahren, für Neptun.

Ein ruhender Körper, der sich in der Entfernung der Venus

von der Sonne befindet, wird also etwas mehr als einen Monat Zeit
gebrauchen, um bei der Sonne anzukommen. Die Erde selbst würde,
wenn die Tangentialkraft plötzlich erlöschen würde, etwas mehr als

zwei Monate erfordern. Sie würde sich in immer rascherem Laufe

der Sonne nähern und schliesslich mit der kolossalen Geschwindigkeit

von etwa 600000 m in der Sekunde mit der Sonne

zusammenprallen.

Bemerkenswerth an diesen Fallzeiten nach der Sonne ist nun,
dass sie mit den Umlaufszeiten der Planeten um die Sonne
in engem Zusammenhange stehen. Vor etwa 30 Jahren wurde
nämlich die Wahrnehmung gemacht, dass, wenn wir diese Fallzeiten
mit einer bestimmten Conslanlen multipliziren, wir just die Umlaufszeiten

der Planeten um die Sonne erhalten. Man vergleiche hierzu
die Millheilung und Beweisführung von H. Rapin im «Bulletin de la

Société Vaudoise des Sciences naturelles.» Vol. XVII.

C. Flammarion, der die genannte Wahrnehmung, unabhängig
von andern, ebenfalls gemacht hat, gibt in seiner viel verbreiteten
«Astronomie populaire» im wesentlichen nachstehende Zusammenstellung.

Dabei bedeutet die erste Zahl die Fallzeit nach der Sonne,
in mittleren Sonnentagen, cu die zweite Zahl ist eine Constante,
\Aì2, und das Produkt, die dritte Zahl, die Umlaufszeit des Planelen

um die Sonne, ebenfalls in mittleren Sonnentagen, T.

oder

Merkur 15,55. 5,656854 88,o,

Venus 39,7«. 5,656854 224,7,
Erde 64,57. 5,656854 365,3,
Mars 121,44. 5,656854 687,o,

Jupiter 765,87. 5,656854 4332,4,
Saturn 1902,03. 5,656854 10759,5,
Uranus 5424,57. 5,656844 30686,o,

Neptun 10 628,73. 5,656854 60125,2,

;rnach ist also :

Tl y 32 T

T

\/b
(1).
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Der Zusammenstellung fügt der Autor wörtlich hinzu:
«Ce qu'il y a de plus curieux dans ces durées, c'est qu'en les

multipliant toutes par un même chiffre, on reproduit l'année de

chaque planète.
La première fois que j'ai fait celte remarque (c'était au commencement

de l'année 1870), j'en suis resté perplexe pendant des mois

entiers, el j'avais beau m'ingénier, ou chercher dans les livres, aucun

principe de la mécanique céleste ne me mettait sur la voie pour en

découvrir la cause. Quel était ce fameux coefficient 5,656 854?
C'est la racine carrée de 32.

Mais qu'est-ce que cette racine carrée a à faire dans ce rapport
si curieux et si inattendu entre les révolutions des planètes et leurs
chutes dans le soleil?»

Dann wird eine Erklärung gegeben, in der die Fallzeit nach der
Sonne hin als die halbe Umlaufszeit eines in langgestreckter Ellipse
um die Sonne sich bewegenden Körpers angesehen wird. Die Anwendung

des dritten Kepler'schen Gesetzes gibt dann sofort für die

Constante den Werth ys2.
Die durch die Gleichung (1) ausgedrückte Beziehung ist übrigens,

wie am angegebenen Orte Rapin schreibt, schon vor Flammarion von

Adolphe de Saussure bemerkt worden.
Mit Recht hall sich Rapin über das Erstaunen Flammarions auf

und bemerkt, die Beziehung könne vielleicht nur desshalb etwas

Ausserordentliches haben, dass sie so lange der astronomischen Rechnung

entgangen sei.

R. Wolf, in seinem prächtigen Handbuch der Astronomie,*)
nennt die Beziehung eine «merkwürdige». Dies veranlasst mich,
derselben etwas näher zu treten, und sie nach zwei Richtungen hin zu

verallgemeinern.

II. Verallgemeinerung.
Die Gleichung (1) erfordert, dass die Planelen in ihren

mittle rn Entfernungen von der Sonne sich befinden. Dies

kommt aber im allgemeinen selten vor, während einer Umlaufszeil

nur zweimal.
Bald wird die Entfernung von der Sonne grösser, als die

mittlere, bald kleiner, infolge der elliptischen Bahnen der Planeten.

*) R. Wolf. Handbuch der Astronomie, ihrer Geschichte und Litteratur.
In zwei Bänden. Zürich. Druck und Verlag von F. Schulthess. Vierter Halbband.

No. 484, am Schluss.



Demnach muss sich auch der Werlh der Fallzeil nach der Sonne

ändern. Bezeichnen wir denselben mil
ti,

so ist Ix grösser als %u wenn der Planet weiter entfernt isl, als die

mittlere Distanz Planel-Sonne beträgt, dagegen kleiner als xu wenn
der Planet in seiner Bahn sich näher bei der Sonne befindet.
Während einer Umlaufszeil des Planeten ändert die Fallzeit t1(

beständig ihren Werlh, dagegen bleibt T constant.
Um die Relation zwischen der Fallzeit nach der Sonne und der

Umlaufszeit darstellen zu können, müssen wir daher schreiben:

I, F« xu
das heisst, wenn wir für %x seinen Werlh aus der Gleichung (1)
substituiren :

ti F„ -^ (2).
ys2

Der Faktor F„ wird sich für jede Entfernung des Planelen von
der Sonne numerisch darstellen lassen. Ob sich für denselben jedoch
ein einfaches mathematisches Gesetz ergibt, wird die Untersuchung,
die nachstehend ausgeführt ist, zu zeigen haben. Jedenfalls können
wir jetzt schon so viel sagen, dass für die mittlere Entfernung des

Planelen von der Sonne

und daher
li \
F 1

a
sein muss.

Die zweite Verallgemeinerung, die sich ebenfalls sofort
aufdrängt, besieht darin, dass wir die Fallzeit nach der Sonne nichl
gleich für den ganzen Weg Planet-Sonne, sondern nur für einen

Theil dieses Weges in Beziehung zur Umlaufszeil des Planelen setzen.
Diese Verallgemeinerung drängt sich uns namentlich auch dann auf,

wenn wir bedenken, dass weder die Sonne, noch die Planeten
mathemalische Punkte sind sondern mit ihren Massen ein gewisses
Volumen erfüllen, dass also die Distanz zwischen den nächstliegenden
Punkten beider Körper kleiner ist, als die Distanz r der in Rechnung
gebrachten zwei Massenpunkte, in deren einem wir uns die Masse

der Sonne, im andern die Masse des Planeten konzentrirl denken.
Bezeichnen wir daher einen Theil, etwa den n. Theil der

Distanz r, mit s so ist die Fallzeit für den Fallraum

r
s" T
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in Beziehung zu setzen zur Umlaufszeit T des Planeten. Sei diese

Fallzeit nach der Sonne für den Fallraum sn gleich
tn 5

so können wir wieder für alle Werthe n,
1 < n < oo,

die numerische Relation aufstellen:
tn F/} t, (3).

wo F, offenbar in den Grenzen 1 und 0 eingeschlossen ist. Ob sich
ß

auch für den Faklor F ein einfaches mathematisches Gesetz ergibt,

lehrl uns ebenfalls die nachstehende Untersuchung.
Wenn wir die Gleichungen (2) und (3) kombiniren, erhalten wir:

t F ¥a JL (4).
« IL ti i— 'ß

Indem man

selzt, folgt endlich:

^
F F F, (5;.aß v 7

(6).I =F .__!_
Jl / —

Wir wollen nun im Nachstehenden zeigen, dass F

ein einfaches mathematisches Gesetz befolgt und für
alle elliptischen Bahnen den positiven Werth voni/g
nicht übersteigen kann.

III. Bestimmung der Fallzeit tn.

Die Masse der Sonne sei gleich 1, diejenige des betrachteten
Planeten gleich rn. Wir denken uns die Massen je in den Punkten S

und P konzentrirt. Die Entfernung dieser beiden Punkte sei r.
Die Masse 1 möge in der Entfernung f die Anziehung 1 ausüben.

Unmittelbar vor dem Beginne der Fallzeit mögen beide Massen sich
relativ in Ruhe befinden. Sie mögen ferner keinen störenden
Wirkungen eines drillen Körpers ausgesetzt sein. Wir führen also die

Betrachtung für das Zwei-Körper-Problem durch. Nach der Zeit t haben

beide Körper die Entfernung
r — s.

Die Annäherung der beiden Körper beträgt also s. Selbstverständlich

fällt nicht nur der Körper m gegen die Sonne, sondern auch

die Sonne, und wenn ihre Masse noch so gross wäre, gegen den

Körper m. In der Entfernung r — s übt, wenn die Kraft im umge-
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kehrten Verhältnisse des Quadrats der Entfernung wirkt, die Masse

1 die Anziehung
f2

(r-s)2
aus und entsprechend die Masse m die Anziehung

f2
m T7-

(r—sf
Die Beschleunigung der Annäherung beträgt alsdann zusammen:

d2s f2

Die Integration der Gleichung (7) bietel bekanntlich keinerlei
Schwierigkeiten und lässt sich genau ausführen.

Da identisch
d /' ds \2_ ds d2s

dt \ dt / dl dl2

ist, so folgt, unter Berücksichtigung von (7), nachdem man beiderseitig

mil dt miiltiplicirt hat und dann integrirt :

^)2=2(l.fm)f2J(r^ + Const. (7')

Führt man die Integration aus und berücksichtigt, zur
Bestimmung der Conslanlen, dass für s o die Geschwindigkeit

— o ist, so folgt :

-)'-,(1+n),(_i__±) ,„
und hieraus:

v/i
dt= -;.-/. r:-7-\jT-r ds (°):

fV/l+m
wo wir die Quadratwurzeln als positiv verstehen.

Aus (9) wird:
r V

l -X=L= i V /— - ds -f Const. (10).
fy/l-fm J V s

Die Constante bestimmen wir so, class für s o, ebenfalls
t o wird.
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Um Ç /ÏZAT,=sJv—ds
auszumitteln, setze man :

s — r sin2 ç>.

Führt man die Substitution aus, so wird

"/J r I (1 -f- cos 2 tp) dtp.

Man erhält mithin das folgende Resultat, wobei wir die
auftretenden Quadratwurzeln ebenfalls als positiv verstehen wollen:

J=r (aresin yAf + y/-f(l—p)
folglich geht (10) über in :

r fT
1

fWnT
(arcsin \/ir + \/t l1-?)) +Const-

Setzt man die Grössen s und l gleich null, so sieht man, dass

auch die Constante gleich null sein muss, wenn wir die periodische

Funktion arc sin V/ — so verstehen, dass sie für s=o, mit null

zu beginnen habe. Wir erhalten also :

,.V
fy/l-f-m

mithin, wenn

arcsin vW-fM).
isl :

'^ Le sin J±+J-l-U-±)Vl+in V V n
' V n \ n>l- 7rJj=p(.Tcsinv/ „ -l-v/~-(i--j) (u)-

Gleichung (11) lässt sich auch folgendendermassen schreiben:

r / r

tn ^LJ= (io + sin co) (12),
f yl+m

io
wo sin — V?
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ist. Die periodische Funktion co hat, für n oo, entsprechend der

vorgenommenen Constantenbestimmung, mit null anzufangen. Mit
obiger Gleichung (12) ist der Werth der Fallzeit tn ermittelt.

IV. Beziehung der Fallzeit tn zur Umlaufszeit T.

Wenn wir die im vorigen Abschnitte gewählten Bezeichnungen,
lür die Massen der Sonne und des Planelen sowie für die Distanz f
(Gauss sehe Zahl), beibehalten und mit a die miniere Entfernung
des Planeten von der Sonne, oder die halbe grosse Axe der Bahn-

Ellipse, bezeichnen, so ist die Umlaufszeit T des Planeten um die

Sonne bekanntlich gegeben durch die Gleichung:

2 ve
a3''2

T fVRT (13)'

wobei vt die bekannte Trascendente bedeutet. Für die Ableitung
von (13), die in jedem Lehrbuche enthalten ist, vergleiche man z. B.

das erwähnte Handbuch von R. Wolf. Seile 328, oder auch F.

Tisserand, in seinem «Traité de Mécanique céleste», Bd. I, Seile 99.

Aus den Gleichungen (12) und (13) lassen sich die von den

Massen abhängigen Grössen eliminiren, und wir erhallen die unserer

Verallgemeinerung entsprechende charakteristische
Relation:

/ZY'2 *> + sin co T

\ « / « ^32

Man erhält also für den Faktor F den Werlh:

F (jlV'2 " +Jin " (15)

und sieht, dass er sich in der Thal durch einen einfachen analytischen
Ausdruck darstellen lässt. Derselbe liesse sich, was wir hier nicht
ausführen wollen, mit der Cykloide in Verbindung bringen.

Ist n — 1, so wird sin io 0, io — ve, also

U (7-Y- * (16).
\ a 1/32

Somit isl

F„ — (17).
a

Bern. Mitteil. 1899. No. 1464.
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Wird in (14) der Abstand r gleich dem mittlem Abstand
a gesetzt, so gehl ln in rn über, und wir haben :

- sin io

VC V/32
(18).

Der Faktor F ergibt sich zu:

^^+sin^
1 77-

wo nach der Voraussetzung

sinT ->£
ist und co, für n oo, den Werlh null hat.

Wir wollen noch zeigen, welche Grenzen F für die
elliptischen Bahnen annehmen kann.

Für die nämliche elliptische Bahn ist a constant und r liegt
innerhalb der Grenzen :

a(l—e)<r<a(l-f-e),
wo e die numerische Excentriziläl der Bahn-Ellipse darstellt.

Dividiren wir mit der positiven Grösse a, so erhalten wir :

(l_e)<-£-<(l+e).

Nehmen wir endlich den Grenzwerth von e, e 1, an, so wird
die elliptische Bahn zu einer parabolischen. Wir erhalten also :

0<f <2,

mithin 0<M—J<\/8" (20),

wo wir die Quadratwurzel immer positiv verstehen.

Wir haben schon früher gesehen, dass der Faktor F in den
p

Grenzen 0 und 1 eingeschlossen sein muss. Dies ist auch thatsächlich

/T~ io
der Fall, da wir V / ¦ - > also auch sin — positiv verstanden haben

y n 2

und die periodische Funktion to, für n — oo. nach der vorgenommenen
Constantenbestimmung mit null zu beginnen hat.
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Multipliziren wir also in der Relation (20) die unlere Grenze

0 mit dem kleinsten Werthe von F „ mit 0, und die obere Grenze.

_ ß' '

y/8, mit dem grösslen Werthe von F mil 1, so erhallen wir

0 < F < y/8- (21).

Der Faktor F kann also für alle Punkte des Raumes die Grenzen
0 und 2, 82843 nicht überschreiten.

Spezialisiren wir die Gleichung (14) noch für den Fall n 2

so folgt:

Für den fernem Spezialfall, n — 1, die Erde und den heuligen
Abend (12. November 1898) erhallen wir als Werth des Faktors F,

wenn wir nach dem Annuaire du Bureau des Longitudes
r 146,91

und

a 148,49

Milliarden m setzen:

F =0,9841.

Würde die Tangentialkraft jetzt plötzlich erlöschen, so würde
demnach die Erde in

1, 0,9811
365'26

032

63,54

mittlem Sonnentagen sich mit der Sonne vereinigt haben.

* **
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Stellen wir zum Schlüsse noch einige Resultale zusammen.

1. Zwischen der Umlaufszeil T eines Planeten um die Sonne

und der Fallzeit t die erforderlich ist, um den n. Theil des

Fallraumes Planet-Sonne zurückzulegen, besteht die Relation:

T
tn=F- —-

V32

2. Der Faktor F hat folgenden Werth :

(- ''2 oj -|- sin io

VC

wo r den ganzen Fallraum Planet-Sonne und a die grosse Halba.ve der

r V/2
Planetenbahn darstellt, I — I mit seinem positiven Werthe zur An-

™„„„9 3tlm9, 4 «» — ™ •» s/T. » *.
kleinsten dieser Definition entsprechenden positiven Bogenwerth und

7c die bekannte Transcendente bedeutet.

3. Der Faktor F ist unabhängig von der Masse des Planeten.

4. Der Werth von F liegt für jeden Punkt der elliptischen Bahn
innerhalb der Grenzen 0 und 2,82843.

5. Für n 1 und r a ergibt sich, wenn in diesem Spezialfälle

tn mit r bezeichnet wird, die von A. de Saussure aufgestellte
T

Belation, r ^32 '
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