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C. Wagner.

Beiträge
zur

Entwicklung der Bessel'schen Funktion I. Art.

Vorbemerkung.

Die vorliegende Arbeit wurde auf Anregung meines verehrten
früheren Lehrers, Herrn Prof. Dr. J. H. Graf in Bern, unternommen.
Sie ist im allgemeinen eine Abhandlung historisch-analytischen Inhaltes
und will im Zusammenhange kurz die Entwicklung der für Mathematiker,

wie Physiker und Astronomen gleich wichtigen Bessel'schen

Funktion erster Art von ihrer Einführung in die Wissenschaft an bis

zum Jahre 1858 darstellen, die Eigenschalten derselben klarlegen und

ihre hauptsächlichsten Anwendungen kurz vorführen.

Abschnitt I enthält die Resultate der diesbezüglichen Forschungen
von Fourier (Darstellung der Bessel'schen Funktion als bestimmtes

Integral, Fourier'scher Satz) und Poisson (Reihenentwicklung,
Konstantenbestimmung u. s. w.). Im Abschnitt II wird sodann auf die
grundlegende, diese Materie betreffende Arbeit von Bessel näher eingegangen,
ferner werden die Beziehungen, welche er gefunden hat, abgeleitet und

die Anwendung dieser Transcendenten auf die Mittelpunktsgleichung
gezeigt. Abschnitt III ist der Schilderung jener interessanten und

eleganten Methode gewidmet, welche Jacobi anwandte, um aus ganz

allgemeinen Betrachtungen die Bessel'sche Funktion herzuleiten.
Abschnitt IV beleuchtet im näheren die Verdienste von Hansen und

Anger, gibt neue Darslellungsarten und Beziehungen der Funktion
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(gebrochener und imaginärer Index) und leitet nochmals in einfachster
Weise vollständig die Mittelpunktsgleichung ab. Abschnitt V endlich
weist auf die Resultate hin, welche Schlömilch erhalten hat, und ist

vorzugsweise der Betrachtung jenes unter dem Namen « Schlömilch'scher
Lehrsatz» bekannten Theorems gewidmet.

Bei der Bearbeitung dieses Stoffes wurde auf möglichste Kürze

und Exaktheit der grösste Wert gelegt; deshalb blieben jegliche
historische Notizen, welche anderswoher leicht zu entnehmen sind, von
der Aufnahme in vorliegende Arbeit ausgeschlossen. Dafür wurde aber

auf genaue, wenn auch oft nur angedeutete Durchführung der
Nebenrechnungen Rücksicht genommen, weil ich öfters, namentlich beim Studium
der Bessel'schen Arbeiten, fand, wie mühsam und zeitraubend es unter
Umständen sein kann, derartige fehlende Zwischenrechnungen zu

ergänzen.

Von der Herleitung vieler Gleichungen, von denen ich auszugehen

gezwungen war, musste indessen, um die Einheit vorliegender
Arbeit nicht zu stören, abgesehen werden; ihre Ableitung kann in den

am Schlüsse angegebenen Schriften eingesehen werden.

Um sich leichter auf bereits gefundene Gleichungen beziehen zu

können, wurden einige derselben numeriert; eine sonstige engere
Zusammengehörigkeit soll damit nicht ausgedrückt sein.

Die Bessel'sche Funktion erster Art für das Argument x und den

Index n sei ausgedrückt durch:

y J0O;
sie ist als partikuläre Lösung der Gleichung:

d2y 1 dy ' "2~

dx1 +f£+i>-a»—
anzusehen, welche die Differentialgleichung oder Definitionsgleichung
der Bessel'schen Funktion erster Art genannt wird.

Für den Specialfall : n 0 wird :

yt J «
und die entsprechende Differentialgleichung lautet:

dx2 ^ x dx ^ yi
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I.

Fourier war zweifellos der erste, welcher derartige mit den

Bessel'schen Transcendenten übereinstimmende Funktionen herleitete;
und zwar in seiner: «Théorie analytique de la chaleur», welche 1822
erschien. Im Kapitel VI, das er mit «Du mouvement de la chaleur
dans un cylindre solide» überschrieb, findet er derartige Beziehungen,
und zwar ausgehend von den Gleichungen :

dvdv K /d2v 1 dv\ h
1)dT=CDW + Td7jimd2)Kv + dx

°<

welche die Wärmebewegung in einem festen Cylinder von unendlicher

Länge darstellen.
In diesen Gleichungen bezeichnet x den Radius eines cylindrischen

Ringes, dessen Punkte sämtlich den gleichen Abstand von der
Axe besitzen; v die Temperatur, welche alle Punkte im Abstände x
von der Axe nach einer Zeit t, vom Beginn der Abkühlung an

gerechnet, besitzen sollen; C, D und K sind Konstanten, und zwar
bezeichnet C die specifische Wärme, D die Dichtigkeit und K die Einheit
der Wärmemenge. Es ist demnach v sowohl eine Funktion von t
als auch von x.

Um vorstehende Gleichungen zu integrieren, gibt Fourier für v

folgenden sehr einfachen Wert. Er setzt analog der gewöhnlichen
Auflösungsmethode

-mtv e u,

wobei m irgend eine Zahl und u eine Funktion von x ist.
Aus Gleichung 1) entsteht alsdann:

m d2u 1 du
3)ku+d^ + T-dx- 0'

wobei: -prjr k gesetzt ist.

Als Wert für u, welcher dieser Gleichung 3) Genüge leistet, findet

Fourier folgenden:

4) u l-igxH^iga^-^g8xH •••¦

wobei g -r- ist.

Gleichung 3) stimmt mit der früher angegebenen Definitionsgleichung

für die Bessel'sche Funktion erster Art in der Struktur
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vollkommen überein. Wie leicht zu ersehen ist, ist sie die Differen-
0 ._

tialgleichung für J (xyg). Mithin wird:

4») °J(xV/g)=l --^gx2 + 2^g2x*-25-^g«x«+ -..

Die Summe dieser Reihe findet Fourier mit Hülfe der nach ihm
benannten Reihen und erhält schliesslich folgendes Resultat:

o ._ 1 fin ._
4b) J(xyg) =— j cos(xyg sin r) dr u,

nJ
welcher Wert bekanntlich mit der Normalform Bessels

n i fin
J(x) — I cos (x sin r — n r) dr

übereinstimmt, wenn man n 0 und x \J g für x substituiert.
Dieser Wert genügt also der Differentialgleichung 3) und behält

auch einen endlichen Werl für x gleich Null.
Die Gleichung 2) geht durch Einsetzen des für v angegebenen

Wertes über in:

« n
h .du

2a) — u + — 0.' K dx

Diese Gleichung muss auch erfüllt sein, wenn x=X, gleich dem

Radius des Cylinders wird. In diesem Falle erhält man:

5) u^l-lgXH^g^X^-
Setzt man nun in Gleichung 2a) für den Quotienten -=- die Grösse

K.

h, so wird mit Berücksichtigung von Gleichung 5):

— a*XfJl..\——ßX -22 #
43 8 A -r 22 ë 22 4

Setzt man ferner in Gleichung 5)

JL
2

und bezeichnet mit i'd) y diese Funktion von d-, so wird

2b) h(l-~gX^f^:i2g-X' + ...)^^gX-^T2g2X»t'

*=^gx»

6) y f(*)=l_*-f -l^-^^-j-...
Multipliziert man weiter beide Seiten der Gleichung 2b) mit — X,

so erhält man nach einigen Umformungen:
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2 A. 3 „a_*2 _1_ Q.8 '

1 " "
22 ^ 22.32

h X
2 i-* + ^r*i-SrSi«'±-

oder schliesslich:

7) -i- h X + & 11^ 0, wobei f' (#) -^Üp bedeutet.

Diese Gleichung gibt nun die verschiedenen Werte von &, und

jeder Wert von d- einen für g, wegen der bestehenden Relation

* ^gx2.
Die einzelnen Werte mögen sein gi, g2, gs Da nun

schliesslich war:
m

so sind auch die Werte von m leicht zu bestimmen.

Fourier führt diese hier nur kurz angegebene Rechnung
vollständig durch und findet als Werte für die einzelnen m schliesslich

folgende :

22. k â-i 22. k #2 22. k #s
mi —^j— ; m« —^— ; m3 —^— u. s. w.

Der Wert für u in Gleichung 4b) wird alsdann:

4°) u — I cos (2 -^-\fd^smr Jdr
0

mithin
1 2'ktfr rn t x ,_ \

8) v e"mtu =—e W~ j cos 2 — y&i sin r dr.

Setzt man nun jede der Wurzeln d-i, 3* so erhält man
einen allgemeineren Wert für v, nämlich:

gktg. f71 x ,— \
9) n v ai e" x* J cos (2 -^-i/^i sin r dr

2'kta* Cn X i \+ aa e x» I cos I 2 -^-v/*8 s*n r dr
0

»>¦*¦ rn t x \
-j- as e x» I cos I 2 ^"V^s sin r I dr -f-
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Es bedeuten ai, aä, as u. s. w. willkürliche Koeffizienten, welche noch

zu bestimmen sind.
Die Gleichung 9) kann man mit Anwendung der Bessel'schen

Bezeichnungsweise auch schreiben:

2'kt#i o / v / \ 2'kt». 0 / x \
9a) v ai e xT-j(2-£ V#i j+a2e x^J I 2 —\/&t\-\

Bei der Bestimmung von ai, as stellte Fourier den nach

ihm benannten Lehrsatz auf, welcher für die Theorie der Bessel'schen
Funktionen von grundlegender Bedeutung geworden ist. Derselbe

lautet in allgemeiner Fassung : «Bezeichnet man die posi,
tiven Wurzelwerte der Gleichung:

z"?J(z) 0

ihrer Grösse nach geordnet m i t ffo, &i, &2 frv
so kann jede innerhalb der Grenzen 0 bis 1 ge¬

rn

gebene Funktion f(x) in eine nach (#Px)"m J(#Px) fo rt-
schreitende Reihe entwickelt werden».

Auf den Beweis dieses Satzes will ich hier nicht eingehen,
obgleich ihn Fourier nur in etwas weitläufiger Form und zwar nur für den

speciellen Fall m 0 gegeben hat. Den allgemeinen Nachweis für
seine Richtigkeit findet man bei Lommel in seiner Schrift: «Studien

über die Bessel'schen Funktionen» (Seite 69).
Auf Grund dieses Satzes sind ai, az ap. leicht zu

bestimmen, und zwar findet Fourier (wenn auch mit anderer Bezeichnungsweise)

folgenden Wert für das allgemeine Glied a :

2 r1 °
f(x) J(#p x) dx,

[j (*p)] ¦fi
WObei :

f (x) I ap J (#p x) ist.

Diese Werte werden alsdann in Gleichung 9a) eingesetzt, und

damit ist v als Funktion der gegebenen Grössen vollständig bestimmt,
o 1

und zwar durch die J- und J-Funktion von Bessel.

Auch Poisson kommt in seiner Abhandlung: «Sur la distribution
de la chaleur dans les corps solides», welche er am 31. Dezember

1821 der Akademie der Wissenschaften zu Paris vortrug und welche

im XIX. Heft des Journal de l'école polytechnique publiziert ist, auf

derartige Funktionen.
Bern. Mitteil. 1894. Nr 1361.
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Im dritten Abschnitte des citierten Werkes behandelt er die

Wärmeverteilung in einem homogenen Cylinder, der in irgend einer
Weise vorher erwärmt wurde und sich nun langsam ¦ abkühlt. Mit
grossem Scharfsinne entwickelt er dabei diesbezügliche, oft recht
komplizierte Formeln, und zwar zuerst für den allgemeinen und dann für
die beiden speciellen Fälle, wo der Radius des Grundkreises ein Mal

sehr klein und das andere Mal unendlich gross ist. Dabei findet er
eine Integralformel, welche noch die veränderlichen Werte einer Grösse

k enthält, die der Gleichung
k2

_
k3 k*

(1 2)2 (1 2 3)2 + (1 2 3 4)2

genügen muss.
Aus dieser Gleichung kann man zwar, bei dem kleinsten beginnend,

nach und nach die ersten Werte für k bestimmen; bei den

grösseren aber ist dies Verfahren schon schwieriger und unpraktischer,
und Poisson gibt aus diesem Grunde eine andere Bestimmungsart an.

Er betrachtet k als eine stetige Variabele und setzt:

r10) y- cos (k cos co) dio.

u

Differenziert man diese Gleichung nach k, so wird:

dy Cn
il) :rt" — I sm (k cos co)cos w ^w'

0

und durch nochmalige Differentiation folgt:

ï-fid2y
12) -—-= - | cos (k cos w) cos2 io dio.

folglich

dk
d2y Cn

y -|—jfY= I [cos (k cos w) — cos (k cos w) cos2 cd] dcd

0

¦/
71

cos (k cos io) sin2 io dio.

o

Durch teilweise Integralion nach der bekannten Formel:

I u dv uv — I v du,

wobei : u sin io, und dv k cos (k cos ta) sin cd dcd zu setzen ist,
findet man:
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•jC<cos (k cos ta) sin2 « dco I sin (k cos to) cos to dta.

Mithin wird:

y + d2y

dk2

und darum schliesslich

13)

i r.sin (k cos co) cos ta dta ==¦ J_^y
k dk'

,2 I ir Air I * 0.
dk2 ' k dk

Diese Gleichung kann (wie leicht einzusehen) auch so geschrieben

werden:

d2(y\/k~) / 1

dk2 rUk213a) + 1 y \/k 0.

Das vollständige Integral dieser Differentialgleichung lautet:

14) y\/k

+

A' A" A'"
A "r" T + T2" + T8"

B' B" B'"
B +"Y" +Tir +-p-

cos k

sin k.

A und B sind zwei willkürliche Konstanten, A', A", A'",
B', B", B"', bezeichnen unabhängige Koeffizienten von k, welche
sich vermittelst A und B bestimmen lassen.

Substituiert man nämlich den in Gleichung 14) gefundenen Wert
für y \/k in Gleichung 13a) und vergleicht die entsprechenden Terme
mit einander, so erhält man für A' B' leicht die folgenden

Bestimmungsgleichungen :

2 A' + 4- B 0
4

2.2 A"+ (l 2 +4-) B' 0

2 3 A'" + (2.3 + -j-) B" 0

und :

2.4A(4>-f-( 3 4 -\- — )B'"= 0 u. s w.

— 2B«+jA 0

— 2 2 B" -f-1 1 2 -f — A' 0
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in

— 2.3 B'" -f (2 3 -f ~) A" 0

— 2 4 B« -M 3 4 -f- ~ j A'" 0 u. s. w.

Die Konstanten A und B bekommt man, wenn man in y \/k und
d (y 0T)

dk
setzt: k oo.

ferner

Man hat alsdann (nach Gleichung 14):

15) y \/k — A cos k -j- B sin k ;

16)
d (yyk) yfj jf - A sin k + B cos k,J dk v Hb

woraus folgt:
dk

y cos k — dk
dy

sin k)\/k;

B y sin k -}- —- cos k \/k.

dy
Setzt man in diesen Resultaten an Stelle von y und —r- die in

dk
Gleichung 10) und 11) angegebenen Werte, so entstellt:

17)

B

=0rf
0TJ[c

[cos (k cos cd) cos k -J- sin (k cos ta) cos ta sin k] dw,

[cos (k cos co) sin k — sin (k cos ta) cos ta cos k] dco.

da nun:
„ Cd „ Cd „Cd 9 10

CÜS "5~ ~r sm ~iT ¦*• unc* cos "ö sm "ir- cos co,
a Ci a a

so wird:

17a) •

fi71
A \J k I c«cos 2 k sin2 —- cos2 —- dcd

+\fifcos 2 k cos2 — sin2 — dcd,

/71sisin 2 k sin2 — j cos2 — dco

+vt/sin 2 k cos2 — sin2 — dco.
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Durch zweckmässige Umformung dieser Integrale findet Poisson

für den Fall: k oo folgende Werte:

y7 k I cos I 2 k sin2 -^- j cos2 ~ du —\]'n,
o

\J k I sin 2 k sin2 — cos2 — dcd — v/tit,
ò

\j k I cos 2 k cos2 — j sin2 -— dcd — \Jn,

2 k cos2 — sin2 — dcd —- \Jn.
u J Ct Ht

für A und B schlies

17b) A^B^V^

y y'k (cos k -j- sin k) sjn; ——— (cos k — sin k) sj7t.

Aus dieser eben betracheten Untersuchung von Poisson geht nun
für die Theorie der Bessel'schen Funktionen folgendes hervor:

1) Da sowohl, wie Fourier gefunden (Gleichung 4b), das Integral:

y'k I sin

o

Mithin erhält man für A und B schliesslich die Werte

demnach

ficos (k sin cd) dcd

(abgesehen vom Faktor—j, als auch, wie Poisson zeigte (Gleichung

10). das Integral:

COS (k COS Cd) dcd

II

derselben Differentialgleichung:

dk2 ^ k dk ^ >

genügt, so folgt hieraus, dass einerseits ist:
o i f"J (k) — | cos (k sin cd) dcd,

und andrerseits: o

o i Cn ¦

J (k) — I cos (k co; cd) dcd,
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o

dass man also die J-funktion durch zwei von einander verschiedene
bestimmte Integrale darstellen kann; auch allgemein gilt dieser Salz

n
für die J-funktion; Bessel hat dies, wie ich im Abschnitt II zeigen
werde, sehr einfach bewiesen.

2) Für äusserst grosse Werte von k ist der Wert der Funktion
J(k) dargestellt durch die Formel:

0
„ A cos k -f- B sin k

J (k) j=
y'k

1 o

wobei A B —=- ; d. h. die Funktion J (k) verschwindet, so-
\7t

bald man ihr ein reelles Argument zuerteilt und dieses ins Unendliche
wachsen lässt.

Auf einen Punkt, der vielleicht zu Bedenken Anlass geben könnte*),

will ich hier jedoch noch aufmerksam machen. Poisson fand

für die Konstanten A und B den Wert \Jn, während oben als Wert

—= angegeben wird. Dass beide Wertbestimmungen ganz auf dasselbe
yn
hinauskommen, sieht man sofort ein, wenn man berücksichtigt, dass

Poisson von der Formel (Gleichung 10):
o rn

y 5T J (k) I cos (k COS Cd) dcd

0

ausging, und man mithin, um die Konstanten für J (k) zu finden, noch

durch 7t dividieren muss, wodurch man den Wert —?=¦ erhält, den,
\7t

wie ich zeigen werde, später auch Hansen und andere fanden.

II.
Sehr eingehend beschäftigte sich Bessel mit den fraglichen

Funktionen, welche daher auch nach ihm ihren Namen erhalten haben,
und zwar in einer Arbeit, welche den Titel trägt: «Untersuchung
des Teils der planetarischen Störungen, welcher aus der Bewegung
der Sonne entsteht».**) Dieselbe legte er am 29. Januar 1824 der kgl.
Akademie der Wissenschaften zu Berlin vor.

*) Siehe Neumann: «Theorie der Bessel'schen Funktionen» Seite 50,

Anmerkung.

**) Abhandlungen der Berliner Akademie der Wissenschaften 1824. Mathemat

Kl. p. 1 und Abhandlungen von F. W. Bessel I. Bd. S. 84 u. ff.
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Er untersucht darin den Teil der Störungen des Radius-Vektors,
der Länge in der Bahn und der Breite über der mittleren Ebene

derselben. Bei der Berechnung dieser Störungen treten noch
verschiedene Integrationskonstanten auf, welche, um die Aufgabe vollständig
zu lösen, genauer zu bestimmen sind. Eine sehr zweckmässige
Bestimmungsmethode hat er in seiner «Analytischen Lösung der Kepler'schen

Aufgabe», welche am 2. Juli 1818 der Akademie vorgelegt wurde,
angegeben.

In den so entstandenen Resultaten spielen nun die zwei folgenden

Integrale

cos i fi cos e de

sin i ,ct sin e de.

eine Hauptrolle, wobei fi die mittlere, e die excentrische Anomalie und
i die Neigung der Bahn bezeichnet.

Diese beiden Integrale kann man leicht auf die Form

fcos (he — k sin e) de

reduzieren, wobei h eine ganze Zahl bedeutet. Bessel war nun der

erste, welcher dieses Integral zweckmässig bezeichnete, und zwar
setzte er:

r^ h
18) I cos (he — k sin e) de - 2 n J (k).

o

Man hat nämlich, wenn man mit e die Excentricität bezeichnet:
->2n r>2n

de

e
/2?r

r>2n

cos i /x cos e de I cos i /.i (1 - [1 — e cos e])

0i r h i r ¦ h— I cos i ft de I cos i ix djtt,

weil bekanntlich die Gleichung gilt:
fi e — e sin e,

und folglich auch

dft (1 — e cos e) de.

Berücksichtigt man die Integrationsgrenzen 0 und 2 n, so
verschwindet das letzte Integral und man erhält:
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»271
1

r»2n

19) I cos i fc cos e de — I cos i p de/2ticos i fc

i r2"
— I cos (i e — i e sin e) de

V
1 i

2 n — J (i e)
e

oder

Ferner hat man:

f2?r
/»2tt /»2tt

sin i f« sin e de I cos i fc cos e de — I cos (e -f- i //) de

n o
*

/»2tt

/2/r
/»2tt

cos (e -f- i fi) de — I cos ([i -f- 1] e —¦ i e sin e) de/1 i i+i
sin i n sin e de 2 m J (i e) — 2 tt J (i e)

>2/r /»2tt
weil:

oy

i+l
2 7t J (i e).

b
Die Reihenentwicklung für J (k) erhält er mittelst der in seiner

Abhandlung über die Kepler'sche Aufgabe angewandten Methode und

findet :

k^h

21) "'(k) leöi1 ~ hTï (2/ +1.2.(h-fi)(h+2) (I)t'T
wo JT(h) die von Gauss eingeführte H-Funktion vorstellt, also

71(0) 0, JI(1) 1, JI(2) 1.2,
Aus dieser Reihe lassen sich verhältnismässig schnell und leicht

h
die Zahlenwerte für J(k) berechnen.

Weil die eben behandelten Integrale in der physischen Astronomie
eine grosse Rolle spielen, und sich die meisten Probleme auf

derartige Entwicklungen zurückführen lassen, so untersucht Bessel
am Schlüsse seiner citierten Arbeit dieselben noch
etwas eingehender auf ihre sonstigen Eigenschaften
und findet dabei einige sehr interessante Beziehungen,

welche im folgenden kurz angegeben sein mögen.
Aus

cos [(i+l) e —ksine] +cos[(i—1) e — ksin e] 2cos(ie—ksine)cose
erhält Bessel, wenn er das Glied auf der rechten Seite schreibt:
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2i 2
-r- cos (i e — k sin e) j— [cos (i e — k sin e)] (i — k cos e),

dasselbe multipliziert mit de und integriert zwischen den Grenzen 0

und 2?r,

f27T
r>2ii

cos [(i + 1) e—k sin e] de + I cos [(i — 1) e — k sin e] de

o o

2i c2n 2 r2n
-j—

I cos (i e — k sin e) de r- J cos (i e — k sin e) (i — k cos e) de.

ò ô

Das letzte Integral auf der rechten Seite verschwindet für die Grenzen 0

und 2 7t und man erhält:
•+1 i—1 2 i 2 TT '

22a) 2tv J(k) + 27t J(k) ^ J(k)

oder
i+i i-i 2i *

22bi J(k)+J(k) — J(k) 0.

Aus dieser Gleichung geht hervor, dass man durch
zwei bekan nte J-F u nktionen alle übrigen ausdrücken
kann; ferner folgt hieraus :

23) J(k) =(- l)fJ(k).
Man braucht also nur J-Funktionen mit positiven

ganzen Inkrementen zu betrachten.
i 0

Im Weilern gibt Bessel den Wert für J(k) ausgedrückt durch J(k)
i

und J (k) nach der bekannten Eigenschaft der Kettenbrüche.*) (Seite
31 der angeführten Abhandlung.)

Die Differentialgleichung für die J-Funktion,
welche er bereits ebenfalls abgeleitet hat, findet man folgendermassen :

Differenziert man die Gleichung:
»271

2 7t .1 (k) | cos (i e — k sin e) de

nach k, so erhält man:

/2?rcos (i e — k s:

*) Wie ich von Prof. Dr. J. H. Graf weiss, hat derselbe bereits den Annali
di Matematica einen längern Artikel eingesandt über den Zusammenhang der
Kettenausdrücke und der Bessel'schen Funktion I. Art. Derselbe wird demnächst
erscheinen.

Bern. Mitteil. 1894. Nr. 1362.
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f;2ti
i » '+1

sin (i e — k sin s) sin e de 2 tt {— J (k) — J (k)

oder: 24)
i+l

J 00 kJ w dk

Dividiert man vorstehende Gleichung durch — so entsteht:
i+l

i+l
J(k) TiW

d J (k)
dk

i+l

2) \2
Ferner ist aber:

k \i+l k1+2
^i(k) _^dJ(k)

À+1 dk

j(k) 1 r/kvi± d j1 (k) i =r/k\a]|-i j,kv

(4)ä (f)
2i+1 d J (k) i.2i+1 j

,i+2 JW
folglich:

25)

oder allgemein :

26)

ki+1 dk

jjk)
k\i+1

J(k)

(1)

i+h
J(k)
k\i+b(t)

(-1

w
(4)'

J(k)

-h

d
2\h

Aus Gleichung 24) folgt nun durch nochmalige Differentiation

d2J,(k) i dJ(k) i j d J+(k)

dk2 k dk k2 l J
dk
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Wendet man auf die ersten Differentialquotienlen von J (k) und
i+l
J(k) Gleichung 24) an, so entsteht:

d2j\k)
27)

i .+},
dk2 T7J00 - IT J(k)- k2 J(k)

i_l_l i+l i+2
-^-J(k) + J(k).

Dividiert man ferner Gleichung 24) durch k, so erhält man:

»SL^j« _4.fi,
Addiert man diese Gleichung zu Gleichung 27), so folgt:

d J (k) id2J (k) 1

dk2 "r" k dk k
Als Reduktionsformel gilt nun:

2 n 4-1) '+1 *+2

5 J(k) L__li_j(k) _|_ J(k).

2 (i 4- n i+l i i+2

l J (k) J (k) + J (k).

Mit Benutzung derselben erhält man schliesslich :

28)
d2 J (k)

dk2 +
1 d J (k)

dk + U k2/JJ(k) 0,

womit die Differentialgleichung für J (k) hergeleitet ist. Bessel

hat sich auch schon mit der Addition der Argumente bei
der J-Funktion beschäftigt.

Für das Argument (k + z) gibt er nämlich die J-Funktion in

folgender Darstellung:
Nach Gleichung 26) ist:

J(k)

i+l
J(k)

2

J(k)

nm - +

i+t

i+2
J(k)

^\i+2-
2
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J_k)
k_

~2
i+8
J(k)

vm ar
u. s. w.

also nach dem Taylor'sehen Satze:

d

J (k + z) J (k)

J(k)

k + zV
2

+

+

d2

1 d

J(k)

kz +

kz

1.2

oder

29) J(k |-z)^(l +- |J[ij(k)
i+i
j(k)

+

i +

+

2k
i+2
J(k)
1 2

1 + 2kj *
Bessel macht die Bemerkung, dass jene Reihe zur Berechnung

und Interpolation einer Tafel dieser Funktionen verwendet werden
könne, und in der That hat er mit ihrer Hülfe eine seiner
Abhandlung beigegebene, von k 0 bis k 3,2 mit der Differenz 0,1

o 1

gehende, J (k) und J (k) enthaltende berechnet.

Auf die Funktion J lassen sich, wie Bessel ebenfalls

schon zeigte, noch andere Integrale zurückführen;

als Beispiel möge folgendes genügen:
»2tt

(k sm el cos e de ^ - J (k).
k1

ôr
Beweis: Durch teilweise Integration erhält man für das angegebene

Integral folgenden Wert:
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i2tt2i-l k 2i+l V'
sin e cos e cos (k sin e) —.—j—- cos e sin (k sin e) I

« x + Jo

/^ 2i-2

+ (2 i — 1) I cos (k sin e) cos e de

rìn 21 k2 T271 2i+2
cos e cos (k sin e) de + I cos e cos (k sin e) de.

0 0

Berücksichtigt man die angegebenen Grenzen, so verschwinden
die beiden ersten Glieder, und man hat:

/2n
2i_2 ç2n 2i

cos e cos (k sin e) de — 2 i I cos e cos (k sin e) de

>2?r
21+2

cos e cos (k sin e) de.
k2 r

Führt man nun folgende Grösse ein:

Cn 2i
/, • ^A 1 3 5 (2 i — 1)

| cos e cos (k sm e) de — tp (i),
o

so entsteht aus Gleichung 30)

31) k ip (i — 1) — 2 i ip (i) + k tp (i + 1) 0.

Diese Gleichung ist identisch mit Gleichung 22b); demnach:

tp (0)
J°

(k), tp (1) J (k),

tp (i) J (k).
Auch das Integral:

i Cn,sin e cos (k cos e) de

ô

ist eine Darstellung der Bessel'schen Funktion erster
Art; dasselbe ist deshalb bemerkenswert, weil es, wie ich
später zeigen werde, auch Jacobi aus allgemeinen Betrachtungen

und zwar auf eine höchst interessante Weise abgeleitet hat.

Von den weiteren Beziehungen, welche Bessel noch
o o

angibt, seien hier die wichtigen R e i h e n für cos k J(k) und sin k J(k)
angeführt. Es ist:
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o» i r**
J(k) -^ I cos (k cos e) de,

o

i r2n
und 0 =-%— I sin (k cos £) d£'

o

Durch Multiplikation beider Gleichungen mit cos k resp. sin k
und sin k resp. — cos k und geeignete Addition findet man:

i r2n 1 C2n [ \
cosk. J (k) -„— I cos (k — k cos e) de —— I cosf 2k sin2 -| \ de

sink.J(k)= —— I sin (k — k cos e) de — -^—
I sin( 2ksin2|-jde,

o l C2n\
cos k. J (k) =- — I de 1

»2tt( (2k)2 sin4 i (2k)* sin8 ~
1 Ï77^ +/Tl.2)

' JI(4)

(2k)6 sin121
2 + -

JT(6)

o 1 PH e
in k J (k) -g— de 2k sin2- — (2k)

2rr| Sin6 -
3 »

JI(8)

(2k)5 sin1
2

1 ü(5) +
Mit Berücksichtigung der Grenzen ergibt sich schliesslich:

32) cosk.J(k)^l-11T|rk2 + Af|^k4
3 5 7 9 11

- k6 +(Fl (6))2

33) sin k J°(k) - k --^ kB -f LA^l k»

3 5 7 9 11 13

(JZ(7))2 ±
Ähnliche Reihen leitete später auch Anger her.
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o
Im weitern fand Bessel, dass die Funktion J (k) mit den Sinus

und Cosinus die merkwürdige Eigenschaft gemein hat, immer,
wenn ihr Argument von 2n?r bis zu (2n + 2)jt wächst, zweimal

zu verschwinden und dann das Vorzeichen zu wechseln. Zum Beweise

o / 1
zeigt er, dass J (k) von k m 7t bis m + -y n immer positiv

ist, wenn m eine gerade Zahl, und immer negativ, wenn m eine

ungerade Zahl ist.
o

Diese Eigenschaft kommt der J-funktion nicht allein zu, sondern
alle J-funktionen besitzen eine ähnliche. Man hat nämlich, wenn man

/ k V / k V
in Gleichung 26) der Kürze wegen J (k) durch I -^ R und! ~^

(i+D d R '

durch x bezeichnet:

dz

woraus folgt, dass R(l+1) verschwindet, wenn R(l) ein Maximum oder
Minimum ist; allein zwischen zwei Werten von k oder 3t, für welche

R(i) verschwindet, liegt notwendig ein Maximum oder Minimum, also

auch ein verschwindendes R(1+1). Es ist daher klar, dass J (k) ebenso
o

oft Null wird, so oft J (k) ein Maximum oder Minimum ist. Zwischen
i

diesen beiden Werten von k, für welche J (k) verschwindet, liegt in

ganz gleicher Weise immer ein Maximum oder Minimum von Rcl),
2

daher ein verschwindendes J(k) u. s. w.
Als Anwendung, welche Bessel von der J-funktion machte,

ist diejenige auf die Mittelpunklsgleichung zu erwähnen.
Er war bekanntlich der erste, welcher die Entwicklung der
Mittelpunktsgleichung und des Radius-Vektors in
Reihen, die nach den Sinus und Cosinus der mittleren Anomalie

fortschreiten, durch eine Integration angegeben hat, wobei er einen schon

von E ul er im XI. Bande der «Nova Acta» der Petersburger Akademie

veröffentlichten Satz benutzte. In der Zeitschrift für Astronomie und

in den Abhandlungen der Berliner Akademie von 1816 und 1817 ist
seine Methode zuerst publiziert worden. Später hat er dieselbe

Aufgabe in der cilierten Abhandlung von 1824 nochmals mit Anwendung
der J-funktion zu lösen versucht und erhielt dabei ein ganz einfaches
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Resultai, welches später von Hansen und namentlich von Anger
noch verallgemeinert und vereinfacht wurde.

Bezeichnet man mit fi die mittlere, e die excentrische und v

die wahre Anomalie, mit e die Excentricität, und setzt man:

v — (ä Ai sin ft + A2 sin 2ft + As sin 3/u + ¦ • • »

so ist:
1 C n \/l — e2 C n

cos (i s — i e sin e)
A(j)=—— cosiftdv^^*-^ | 5—— de,w 2 7t J 17t J 1 — e cos e

weil bekanntlich ist:

ft e — e sin e und dv
1 — e cos e

Ferner ist:

34) j=À (l+2Àcose + 2rcos2e
1 — e cos e yi — e2 l

+ 2Z3cos3e +wobei :

1

l+\/l-e2
Multipliziert man Gleichung 34) auf die beiden Seiten mit

cos (i e — i e sin e) de und integriert von 0 bis 2 7t, so erhält man
die Gleichung:

35) --L A(i) J (i e) + X (J (i e) + J(i e)) + A2 (J(i e) + J(ie))

+ As(J(Ì3e) + ÌTi3e))+.---,

worin die Entwicklung der Miltelpunktsgleichung, wie Bessel sie gibt,
enthalten ist.

Auf die Entwicklung des Radius-Vektors will ich hier nicht
eingehen; im Verlaufe der Arbeit bietet sich Gelegenheit, einige
Bemerkungen darüber zu machen.

m.
Dieser Abschnitt sei der Darstellung jener eigentümlichen

Methode gewidmet, welche Jacobi anwandte, um die schon früher
von Bessel gegebene Form

i k{ rn
7t J (k) -—-—; — — j cos (k cos e) sìh21 e de

1 3 0 (2i — 1) J
0
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aus ganz allgemeinen Betrachtungen, auf einem ganz anderen Wege
von neuem herzuleiten. Diese Bestimmungsweise findet sich in seiner

Abhandlung «Formula transformationis integralium definitorum», vom
Jahre 1835, welche zuerst im XV. Bande des Crelle'schen Journal

abgedruckt wurde. Sie findet sich auch im VI. Bande der gesammelten

Werke Jacobis, welche Weierstrass herausgegeben hat.

Es ist:

36) ffn*W"xdx (2m-1} {Tfiu9 'iT'T^T'' (2m +2n)(2m + 2n —2) 2 2
o

*~2" _ / * 2

n

A37) | cos2mxcos(2nx)dx (—1)" I sin2mx cos(2n x) dx

1 2m(2m — l)...(m + n + l) n
22m 1.2...(m —n)

~~

2

n n
2

-2m+1--ln==(—l)n |T«tol+1

0

38) I cos(2n + l)xcos<!m","1xdx (—l)n sin2m"t"1 xsin (2n + l)x.dx

1 (2 m + 1) 2 m (m + n + 2). TT

— 2m+i 1.2... (m — n).2 '

oder allgemein, wenn p — i eine gerade positive Zahl bedeutet:

fi 1 PCP-D'-C^ + l) „39) I cosp x cos i x dx — -. r- • ——
oJ 2P

1.2.. ^P-^ 2

2

p(p—l)...(p-i+l) (p-i—l)(p-i-8)..l..(2i-l)(2i-3)..l«
1. 3 (2 i — 1) 2 4 6 (p + i) 2

Durch Vergleichung mit Gleichung 36) folgt:
n n

39") f 2

cospxcosixdx P(P1~31)'"(2Pi"li1t'1) pn^xcos^xdx.

Damit diese Formel auch gilt, wenn p — i eine ungerade Zahl

bedeutet, wählt man als Integrationsgrenzen 0 und 7t; in diesem

Falle verschwinden nämlich, für p — i gleich einer ungeraden Zahl,
beide Integrale. Bezeichnen daher i und p irgendwelche ganze Zahlen,

so wird:
Bern. Mitteil. 1894. Nr. 1363.



— 226 —

40) fcospx cos i x dx P(P-1)-(P-i + 1) Tsin21
x cos^x dx.

J 1.3.5...(2i — 1) J
Nimmt man nun an, die Funktion f(z) könne nach ganzen,

positiven Potenzen von z entwickelt werden, und diese Entwicklung laute:

f(z).=2APzP
und setzt man:

d'fM =f«(z),
(dz)1

wo:
f® (z) =2 p (p -1) (p- 2)... (p -i+1) ap zp-\

so entsteht aus Gleichung 40) folgende Relation:

41) I f (cos x) cos i x dx =^S Ap I cosp x cos i x dx

1.3.5..1(2i-l)/SÌn8Ì X 12 P (P _1) ' ' •(P ~Ì+1} Ap CosP"ixldx

o

oder endlich :

42) I f (cos x) cos i x dx ——. — I f(1) (cos x) sin2lx dx.
J l.o. 5 (2 i— 1)^
Diese Formel benutzte nun Jacobi zur Herleitung des angege-

i
benen Wertes von J (k).

Bezeichnen nämlich e, fi, e bezügl. die excentrische, mittlere
Anomalie und die Excentricität, so dass

fi — e —e sin e,

so mögen folgende Reihenentwicklungen gelten:

(cosn e pn + 2 p„ cos'ft + 2 p„ cos 2 ft+ 2 pò" cos 3 ft+ ¦• •

43)
[sin n e qn sin fi + qn sin 2 ft + qn sin 3 ft +

wobei :

Pn} — I cos i ft cos n e du -.— I sin i u sin n e d e
7t J \7tJ

o o

ö^— I [cos{(i — n) e—iesine} — cos!(i + n)e — iesinejlde
o

und:
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2 /*I 2n f"0^ — I sin i a sin n e d u — -— I cos i u cos n e d e
TtJ lTtJ

0 0

-— I [cosj(i — n)e—iesinej + cosj(i + n)e — iesinejlde.
o

Vorstehende Werte erhält man leicht durch teilweise Integration,
wobei die Glieder, für welche die Integration ausgeführt ist, zwischen
den angegebenen Grenzen verschwinden.

Setzt man nun mit Bessel:

1 Cn i
— | cos (i e — k sin e) d e J (k)

so wird:
«\ n ('¦" i+n I

P" =-2r{J(ie)-J(ie)|

und q^ —i

i-n i+n ]

J(ie) +J(ie)
Je nachdem i eine gerade oder ungerade Zahl bezeichnet,

erhält man:

2i j f*J (k) — | cos (k sin e) cos (2 i e) de

44)

7t
0

- J cos (k cos e) cos (2 i e) d e.
7t

0

21+1 rn
J (k) — I sin (k sin e) sin (2 i + 1) e d e

™ J
o

-^ I sin (k cos e) cos (2 i + 1) e de.

In gleicher Weise gelten folgende Reihenentwicklungen:

cos ift k(i) + 2 k® cose + 2k®cos2e-|
45)

sin i ft 1,(1) sin e + 1,(,) sin 2 e + lw sin 3 e +
wobei :
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i C71
knl)= — I cos i ft cos n e d e

p—
I [cosj(i—n)e — iesinej +cos j(i + n) e — ie sin ej] de;

o

2 C"lw= — f sin i u sin n e d e
n J

o

— I [cosj(i — n)e —iesinej —cos j(i + n) e — ie sinej] de.

o

oder:
<iì 1 f i"n i+n 1 i mkn) T(j(ie) + Ji)e)) ^qn);

l«=j(ie)-J(ie) ^pw.
i

Die Umformung des Integrales für J (k) gestaltet sich demnach
folgendermassen. Setzt man

f (z) cos (k z) oder f (z) sin (k z),

so wird mit Berücksichtigung von Gleichung 42)

2i fn
n J (k) (— l)1 I cos (k cos e) cos (2 i e) d e

/ cos (k cos e) sin41e de;
k21 ' ._«

1 3 5 (4 i — 1)

und:

2i+i r*
n J (k) (—l)1 I sin (k cos e) cos (2 i + 1) e d e

o

k2i+l fin
— -z—s—= I cos(kcose)sin4l+2 e de;

1 3 5 (4 i + 1) /

oder allgemein für jedes positive i :

1 k1 Cn
46) 7t J (k) —-— TT— I cos (k cos e) sin ' e d e,

1 3 (2 i — 1) J v '

womit die von Bessel angegebene Form wieder hergeleitet ist.



— 229 —

IV.
P. A. Hansen', Direktor der Sternwarte Seeberg, hat ebenfalls

die Bessel'schen Funktionen in das Bereich seiner Untersuchungen

gezogen und zwar im ersten Teile seiner Abhandlung: «Ermittelung

der absoluten Störungen in Ellipsen von beliebiger Excenlricität
und Neigung», 1843, der als Beispiel «die Berechnung der absoluten

vom Saturn erzeugten Störungen des Encke'schen Kometen» enthält.

In dem Abschnitte, welcher von der Integration der von ihm
gefundenen Differentiale handelt, stösst er auf derartige Grössen, und

o 1 i
bezeichnet sie mit J (l), J (l) J (i) Hier muss nun
bemerkt werden, dass Hansen für diese Funktion eine
¦von der hier angenommenen ab weichende Schreibweise

gebraucht. Zwischen der unsrigen und ihr besteht nämlich

folgende einfache Relation:

J (k) J (2 X),
oder umgekehrt :

i(X) -'(t'>
sie ist also identisch mit der Bessel'schen Transcendenten J(k), wenn
man 21 statt k schreibt.

o

Wie schon bemerkt, hat Bessel eine Tafel der Funktionen J(k) und
• i
J (k) konstruiert, welche für alle um 0,1 verschiedenen Werte des

Argumentes die zugehörigen Funktionswerte zehnstellig angibt und zwar
von k 0 bis k 3,20. Hansen hat Tafeln von grösserem Umfange
berechnet ; dieselben gehen von l 0 bis X 20, d. h. von k 0 bis

k 10, mit einem Inkremente von 0,05 resp. 0,1, und geben die
Funktionswerte bis auf sechs Decimalstellen richtig an.

Durch Integration der im Verlaufe jener citierten Abhandlung
gefundenen Gleichung:

dy / ta X\ 1

erhält Hansen folgenden Wert für y:

47) y x" cA(x_* f x""1 c'A(x"9 dx + Konst.

Die beiden Reihen:
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c*=l+,ìx + i-Z2x2 + -^¥Px» +
.£_ _^ ^^ i_ j^Cx— x + 2 x2 2.3 x8 —

geben leicht:

48)

' XU--^ 0 1 2 11
c \ *J J(X) + x J (X) + xa J(X) ^ i(X)

l 2 13
+ I2-JW-^JW±'

.l(T.L\ 0 1 2 11
c V *t J(k) — xJ (X) + x2 J(X) + [- — J(il)

+ ^JW +
wobei:

J(A) 1 - X* +i A1 - -^r A« ± • - •

1 1 1 1
J(*) k —-g-P + 22 g

A5 — 22 32 4
^7 ± • ' '

2 1 1 1 1
J(A) =-y A* — -27J-^+ 22.3.4 ^- 22.32.4.5_A8 —'

jw-=-A-^--^4-^-^5+ l
2.3 2.3.4 ' 22 3 4 5

1
X*-h

22 32 4 5 6

u. s. w.

Substituiert man nun die Reihen 48) in Gleichung 47) und führt
die Integration wirklich aus, so entsteht:

y j j- J(^) v* — 1(X) x-3 + !{X) x-2 — i(X) x-1 + J'X) + J(A) x

+ J(A)x2 + •••)•

w-f-4 w + 3 — w
Jffl j_ JW_ x-l

w— 1

2

+ J^x'H +Konst.ta—2

Um zu zeigen, dass alle hier vorkommenden J-Funktionen mit
den betreffenden Bessel'schen identisch sind für k 2A, setzt Hansen:
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x -\ 2 cos z,'
X

woraus bekanntlich folgt:

x2 -\ 5- 2 cos 2 z
1 x2

X3 -| :r 2 COS 3 Z U.S. W.
1 XJ

x 2 0 sin z
x *

x2 5- 2 ç sin 2 z

x8 s- 2 0 sin 3 z u. s. w.,x3 s

wobei: o =y — 1.

Substituiert man diese Gleichungen in die erste Reihe der
Gleichung 48), so erhält man:

c2ÇAeinz _ j^_|_ 2q j(7) sin z-|_ 2 J(A) cos 2 z + 2çJ(A)sin3z + ---
Nach bekannten Sätzen ergibt sich nun, wenn i eine ungerade

Zahl bedeutet :

i 1 r2n
49) Q J(X) ~— I c2^Binzsin i z dz.

Ist i eine gerade Zahl, so wird:
i 1 r2n

50) i(X)=—— c2;e8inz(
2 7t I

Setzt maa jetzt, wenn i eine ungerade Zahl bedeutet:

C * COS 1 Z,

so wird:
d V ç X c2^"nz(cos (i + 1) z + cos (i — 1) z)dz - ic2<?A,lnzsiniz dz

weil :

cos (i + 1) z + cos (i — 1) z 2 cos i z cos z.

Ist aber ungerade, so ist sowohl (i + 1) als auch (i — 1)
gerade ; deshalb and weil :

*2?r

dV 0,

o

entsteht folgende Gleichung:

ß
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I i+i i-i i i
51) 0 X j i(X) + i(X) — i i'X)

Es sei ferner, wenn i eine gerade Zahl bedeutet:

^^
2 o sin z

c <• sin i z,

mithin :

d V qX c2^sinzjsin(i + 1)z +sin(i — l)z)dz + ic^;-8inzcosizdz.

In ganz gleicher Weise wie vorher entsteht hieraus die Gleichung:

51) 0 À j j(/ì) + J(-l)) — i J(X),

welche
g

mit der von Bessel gefundenen 22b) identisch ist. Für

A= — k entsteht nämlich:
a

PtVl .\ ,';Vik^| .i/i
oder:

51tt) -g-kp'(-o-M+"J'( o k)l-ii(4k)=-=o,2 y
' v2 ì\ \2

22b k fj(k) + J(k)} — 2 i J(k) 0.

Für i 0, wird Gleichung 50)

o j fi271
S(X) —— I c2()A8inz dz, oder

Z 7t J
0

° i r r ij(^) — I )cos (2 ^ sin z) + ç sin (2 À sin z)J dz.

o
Da nun aber:

/2nsin (2 X sin z) d z 0,

u

so folgl:
0 i fi2n

52) JO*) -g^- | cos (2 A sin z) da,

o

welches der bekannte Ausdruck für diese Transcendents ist, wenn man
k für 2 X einführt, (conf. Gleichung 18).

Im weite-rn gibt Hansen Ausdrücke zur Be-
i

rechnung von J(A) auch für den Fall l oc, Dieselben er-
0

hält er durch Entwicklung der Transcendenten i(X) in eine nach fallenden

Potenzen von X fortschreitende Reihe.
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Die Gleichungen 49) und 50) ergeben:
*2?r

c2?Xsin» dzi r
0

1 i c2n
Q i(X) — C2?*8hlZ sin z dz

2tt J
0

2 1 ^27r
i(X) —— cVsinzcos2zdz.

2tt J
o

Differenziert man die erste dieser drei Relationen, so entsteht:

dì« e f2^
¦ ' -£- I c2?Asinz sin z dz — 2 J(X)

o

d2J(X) « r2"
1 c2?XBin* |t _ cos 2 z) dz s= 2 J(À) — 2 J (X).

dX2
0

Diese letzten Gleichungen geben in Verbindung mit der Be-

dingungsgleichung

Ì(X) — ~ )(X) + iß) 0

o
die folgende lineare Differentialgleichung der J-Funktion:

-> # + !#+-»=»•
Für den Fall: A oo, d. h. -^ 0,

geht vorsiehende Gleichung über in:

d8Jq) t°,„ n

deren Integral bekanntlich ist:
o

J(A) k cos 2 X + k' sin 2 -*,

wobei k und k' zwei dem Integral hinzugefügte Inlegrationskonstan-
o

ten sind. Diesen Wert für J (X) kann man als Näherungswert
betrachten, falls X gleich einer sehr grossen Zahl wird.

Substituieren wir denselben nun in Gleichung 53) und sehen dabei

k und k' als veränderliche Grössen an, so entsieht eine identische

Bern. Mitteil. 1894. Nr. 1364.
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Gleichung und die Koeffizienten von sin 2 X und cos 2 X müssen

daher jeder für sich gleich Null werden; mithin muss sein:

d2k 1 dk-
dX*

1

X dX +"
4dk'

d/l +
2k'

0

d2k' 1 dk'
dx2 ' X dX

4dk
dvi

2k
X

— 0.

Setzt man jetzt:

X" ^ X*1
«2

-t" ^a+2 + '

k' - ß 4- ^1 /9.
-t /+2 + ' • * J

wobei a, m, ß, ßi, Konstanten sind, in die vorhergehenden

Gleichungen ein, so findet man zuerst a —-, und nach weitern Um-
a

0

formungen ergibt sich schliesslich für J (X) folgender Ausdruck:

o t j 9 3675 î
J(A) c T,F - ^^ + 524288 //a - T •. • cos (2X - cO +

75 297675 |

^~r- Ti uiQn4n;"/3 .••• sin (4 x — c;,+ Cjl6/3/a 8192 J>~ ' 41943040/"/» +
wobei: a c cos c', /? c sin c'.

Die Konstanten c und c' bestimmen sich nach einem von
Laplace angegebenen Verfahren (Seite 112 u. ff. der cilierten
Abhandlung), und zwar wird:

1 1
C 7=—, C' — 7t.

\J7t 4

Mithin lautet der vollständige Integralausdruck der Gleichung 53):

u\ ìm 1 f 1 9 3675
54) J(X) —=- —jr —-7- +— —sfc 1 /Vl\/n \ X'" 512 X1/' 524288 À* +

cos 2X — 7t +
1 | 1 75 297675

* i/~ l1fiîs/> R1Q9 J'/i "T^« I16A'/* 8192 XI' ' 41943040/"/«

sin 2X — 7t
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Je grösser nun X ist, desto genauer kann man mit Hilfe dieser
o

Gleichung J (X) berechnen. Ist X sehr gross, so reicht man mit dem

ersten Gliede der ersten Reihe aus, und in diesem Falle gewährt also

vorliegender Ausdruck eine ungemein kurze Rechnung. Aber auch,

wenn X nicht sehr gross ist, kann man doch den obigen Ausdruck
o

1(X) mit einer in den weitaus meisten Fällen hinreichenden Genauigkeit

berechnen.
Wendet man die eben gefundene Formel auf die früher abgeleitete

Gleichung:
1 1 d i(X)
i(X) - dX

an, so entsteht:

K*W/^ if1! 15 4725
I ¦ 1 /o) 1 \55)JW=y^fe+5Î2^-524288^±---Si(2^-T7r)+

1 ¦ 3 105 363825

\ln il6^ 8192 ;> + 41943040Xn" + " '1 '

cos 2X j-
Da nun allgemein gilt

j+\ i *,.. i d j(;.)
J(/) _TJ(/)_2X w 2 dX '

so kann man durch fortgesetzte Differentiation des eben gefundenen
o i

Ausdruckes für J (X) alle anderen J (X) explicite durch Reihen, welche
nach fallenden Potenzen von X geordnet sind, darstellen.

Als Anwendung der Bessel'schen Funktionen, welche Hansen

machte, ist, wie schon bemerkt, diejenige auf die Mittelpunktsgleichung
zu erwähnen. Hansen hat darüber zuerst in den «Comptes rendus»

und in den «Astronomischen Nachrichten» eine vorläufige Notiz gegeben

und später in seiner Abhandlung «Entwickelung des Produktes
einer Potenz des Radius vector», welche im Jahre 1853 erschien,
eine ausführliche Erörterung des Gegenstandes veröffentlicht. Näher

hierauf einzugehen, halte ich nicht für angebracht, zumal ich später
doch noch einmal auf diese Materie zurückkommen muss.

Anger, Direktor der naturforschenden Gesellschaft in Danzig,
hat in den «Neuesten Schriften der Naturforschenden Gesellschaft in
Danzig» vom Jahre 1855 eine Arbeit veröffentlicht, welche den Titel
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h

führt: «Untersuchungen über die Funktion J (k) mit Anwendungen auf
das Kepler'sche Problem», worin er zeigt, dass die einfachen Gesetze,
denen diese Funktion unterworfen ist, wenn für h eine ganze Zahl

genommen wird, sich sehr einfach und im Zusammenhange aus

ihrer Erklärung in Verbindung mit dem zuerst von Euler
aufgestellten allgemeinen Theorem, nach welchem eine Funktion in eine nach

den Sinus und Cosinus der Vielfachen des Argumentes fortschreitende
Reihe entwickelt werden kann, ableiten lassen. Ferner gibt er auf
höchst scharfsinnige und elegante Weise die Entwicklung der Funktion
für den Fall, dass h eine gebrochene Zahl ist, und teilt für die Ent-

h

Wicklung von J (k) in eine nach den absteigenden Potenzen von k
fortschreitende Doppelreihe zwei neue Methoden mit, von denen
namentlich die zweite grösseres Interesse verdient.

Die bekannten Ausdrücke für sin2l+1 e und für sin21 e als

lineare Funktionen der Sinus und Cosinus der vielfachen Winkel*), wo

i jede ganze Zahl bedeutet, geben leicht die Gleichungen:
•>2n

sin 2i' e sin2i+1e de 0,

56) fo
>2?r/cos (2i' + 1) e sin2ie de 0,

o

wo i' ebenfalls jede ganze Zahl bedeutet.

Da nun keine geraden Potenzen von sin e in der Entwicklung
von sin (k sin e), und keine ungeraden in der Entwicklung von
cos (k sin e) vorkommen, so wird nach Gleichung 56), wenn h eine

gerade Zahl bedeutet:

*) Es ist nämlich für jedes ganzzahlige i:

(_ i)1. 22i sin2L+1 « sin (2i -f- 1) t — ?!±i sin (2i — 1) e

¦ (2i + l)2isip(2i_3)f (2i + l)2i(2i-l)...(i+2)8int^ 1.2 } ^ 1.2.3. .i
und

(_ i)1 2-i_1 sin211 cos 2i t — %io%% (i — 1) t -f 2l(f ~ ^ cos 2 (i — 2) e

1 2i (2i - 1) (2i - 2) ¦ (i + 1)

:t2 1.2.3...Ì
Multipliziert man die erste dieser Gleichungen mit sin 2i' e, die zweite mit

cos (2i' + 1) t und integriert zwischen den Grenzen 0 und 2n, so entstehen die

Gleichungen 56).
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/•sin h e sin (k sin s) de 0,

und für ein ungerades h:

•coshe.c„s(ksiMd« 0./'
Ist schliesslich h eine ganze Zahl, gleichviel ob gerade oder

ungerade, so ist:
¦>2n

sin h e cos (k sin s) de 0,
Ü

cos h e sin (k sin e) de =0;

fo
/2nsin (he — k sin e) de 0.

f2ncos (h e — k sin e) de durch

o
h

27t J(k), so folgt durch Auflösung des Cosinus :

h i r271 r2n
J(k) —— I cos h e cos (k sin e) de + —- I sin h e sin (k sin e) de,l 7t J l7tj
mithin :

h i fi271 - fi271

J(k)
1 fi2n r*2n

i ——- I cos h e cos (k sin e) de — — | sin h e sin (k sin e) de.
l7t J ZTtJ

0 0

Es wird demnach, wenn h eine gerade Zahl bedeutet:

J(k) =.V) "V),
oder allgemein :

"j(k) (— D W
Für ein negatives k gelten ebenso die Gleichungen:

J(-k)=J(k) (-l)h.J(k);
und schliesslich:

J(— k) J(k).
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Anger leitet weiterhin einige Reihen ab, so für cos (k sin e),

sin (k sin e), sin (k cos e) u. s. w., welche nach Bessel'schen
Funktionen fortschreiten, und welche ich hier der Übersicht wegen nochmals

zusammenstellen will; zu bemerken ist hierbei, dass die Reihen

für sin (k cos e) und cos (k cos e) schon von J a c o b i als direkte
Folgerung aus Gleichung 44) aufgestellt worden sind, und dass auch

Bessel schon einige derselben gefunden hat. Es ist:

(cos (k sin e) J(k) + 2 J(k) cos 2 e + 2 J(k) cos 4 e +• • •

a \ 1 3 5
Uin (k sin e) 2 J(k) sin e + 2 J(k) sin 3 e + 2 J(k) sin 5 e -\

Setzt man hierin — e statt e, so ergeben sich daraus die folgen-
di

den Reihen:

ß)

| 0 2 4

cos (k cos e) J(k) — 2 J(k) cos 2 e + 2 J(k) cos 4 e -j- •

i i 3 s
Isin (k cos e) 2 J(k) cos e — 2 J(k) cos 3 e +2 J(k) cos 5 e

3 5
L-1»- PAO F\ e

Differenziert man diese Gleichungen nach e, so findet man:

7)
lk sin (k cos e) sin e 2 2 J(k) sin 2 e — 2.4 J(k) sin 4 e +13'k cos (k cos e) sin e 2 .1 J(k) sin s — 2.3 J(k) sin 3 e + •

Statt zu differenzieren, kann man auch obige Gleichungen mit
k sin e multiplizieren, darauf nach den Sinus der Vielfachen ordnen
und erhält alsdann:

{13 3 5

k sin (k cos s) sin e k [J(k) + J(k)] sin2e — k [J(k)+J(k)] sin4 e+•••
0 2 2 4

k cos (k cos e) sin e k [J(k)+J(k)] sin e — k [J(k)+J(k)] sin 3 e + • • •

Durch Vergleichung ergibt sich demnach:

k (J(k) + J(k)) 2.1 J(k) ; k (J(k) + J(k)) 2.2. J(k);

k (J(k) + J(k)) =2.3 J(k); k (J(k) + J(k)) 2.4. J*(k); u. s. w.

d. h. allgemein:

h-l h+l h

57) k [J(kJ + J(k)] 2 h J(k).
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Durch Differentiation der Gleichungen ß) nach k erhält man:

• /. x d J(k) n
d J(k)

sin (k cos e) cos e £-*- + 2 —r—- cos 2 ev / dk ' dk

d J(k)
dk

3

cos 4 e -\- •

\ o
d J(k) o

d J(k)
COS (k COS £) COS £ 2 tt^- COS £ — 2 rr-^ COS 3 £

dk dk

+ 2ÄCOS5.T-
1 dk -+-•

Es ist aber auch durch Multiplikation der Gleichungen ß) mit
cos e, wenn man nach den Cosinus des Vielfachen von e ordnet:

1 13sin (k cos e) cos £ J(k) + [J(k) — J(k)] cos 2 £

l) — [J(k) - J5(k)] cos 4 £ + • • •

0 2 2 4

cos (k cos e) cos £ [J(k) — J(k)] cos e — [J(k) — J(k)]cos3e+-"

also:

J(k) -^p;J(k)-J(k)=2^p;
1 d J(k) i s • d J(k)

4

J(k) - J5(k) 2 ~ä u. s. w.

1 3

°J(k) - J(k) 2 Ä; J(k) _ J(k) 2-^- u. s. w.

In Verbindung mit Gleichung 57) ergibt sich aus diesen
Gleichungen :

5W-!W--y^-£*»-»¦«-4*

hieraus:
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2 1 1

J(k) -FJ(k)

allgemein :

J(k) -lj(k)---";^-u.s.w.;

hfi j, h

W TJ« dk

d J(k)
dk

dl(k)
dk

dJ(k)

Als Differentialgleichung für die J-Funktion findet Anger auf
bekannte Weise die folgende:

d2y 1 dy / h2\
dx2 x dx ' \ x

h
wobei x k, y J (k) ist. Für h 0 wird dieselbe:

£+4-5+»-*
0

d. h. die Differentialgleichung für die Funktion J (k).

Setzt man nun:

y 1 — a2 x2 + a* x4 — ae x6 + • • •

so ergeben sich zur Bestimmung der Koeffizienten der Glieder auf
bekannte Weise die folgenden Gleichungen:

32 — "5ï~; a* — Vi ô~vï ö* ' as —2s" (1 2)2. 24' (1.2. 3)2. 26

und man erhält:

k V /k
0 / .- \2

60) J(k) 1 — ' k V '
V 2 ' V 2

2 / ' (1 2)2 (1.2. 3)2 ^-

Die Integration der Differentialgleichung 58) liefert, wenn man
setzt

v aiXh-a2 xh+2 + a4Xh+4=F"-

in bekannter Weise:
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ai ai
a, _ ai ; a2 — 22-^-qri); a" — 172 24. (h + 1) (h + 2);

ai
a4

1 2 3 26 (h + 1) (h + 2) (h + 3)

wo der Koeffizient von xh aus der Gleichung 57) bestimmt werden

kann. Setzt man nämlich den Koeffizienten von kh_1 in der Entwick-
b-l v., h+1

lung von J (k) gleich ou, den von k T in der Entwicklung von J (k)
gleich Ai, dann muss sein:

„kh-l — kh -I U~ kh+2 -1aK + ~2hk + + 2ti +
Es wird also für

h 1 : ai 2 ai; ai — oh.
a

h 2 : ou 2 2 ai ; ai ——— ou.

h 3: ai 2. 3. ai; ai ———ai.
Ci o

0

Da aber in der Reihenentwicklung für J(k) der Wert von ai
gleich 1 ist, so wird

für h 1, ai — ; für h 2, ai y-y • -^;
oder allgemein, für ein beliebiges ganzes h, der Koeffizient von kh

h
in der Reihe für J (k)

1 1

ai

und man erhält:
1 2 3 h 2h

61) J(k) J2W t1 - hTllx) +1.2(h+ì)(h+2)U) + -l'
welches die Reihenentwicklung für die J-Funklion ist, wenn h eine

ganze Zahl bedeutet, und welche mit der von Bessel gegebenen
(Gleichung 21) genau übereinstimmt.

h

Von den Integralen, welche Anger durch die Funktion J (k)
darstellt, wollen wir hier nur dasjenige betrachten, welches schon früher

Bern. Mitteil. 1894. Nr. 1365.
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von Bessel, wenn auch auf anderem Wege, auf die J-Funktion zurückgeführt

wurde, nämlich:

¦>2n

2« J
2h „ • ^

1 3 5 (2h — 1) *
cos £ cos (k sin £) d£ £ J(k).

o

Da ist:

22h"\ cos2h e cos 2 h e +y cos (2h — 2) e

2 h. (2 h— 1)
1

cos (2 h — 4) e +1 1.2
JL 2h(2h — 1) (h + 1)'" "" 2 1 2. 3 h

so wird, wenn man auf beiden Seiten mit cos (k sin e) multipliziert,
von 0 bis 27t integriert und berücksichtigt, dass

/2n
r*2n

cos (2 li e — k sin £) d£ J cos (2 h £ + k sin s) de

ist,

/2n
2h 2 h 2h"2

cos2h e (cos k sin e) d£ 2rt\ J(k) + — J(k) -f

1 2h (2h - 1) (h + 1) o

+ "2~ 1.2...h W

Da aber, wie durch wiederholte Anwendung der allgemeinen
Gleichung

h-l h+l h
k J(k) + k J(k) 2h J(k)

leicht gefunden wird,

fW + fm + ¦ ¦ ¦ + A. SM2h-i)...o,+_1L ;(k)

=ri.3.5^2h-i) ;(tx

wo h irgend eine ganze Zahl bedeutet, so entsteht:

»2tti r2
— c

2h n v
1 3 5 (2h - 1) i}

cos £ cos (k sin £) d£ j-^ J(k),
27t J kh

womit die Zurückführung beendet ist.
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Hebt man die Voraussetzung, dass h eine ganze Zahl bedeute,
auf und setzt statt h die Grösse h y — 1 i h, wo h eine beliebige,

gleichviel ob ganze oder gebrochene Zahl ist, so erhält man

allgemeinere Gleichungen, welche Anger ebenfalls schon aufgestellt
hat. Es ist:

/2tt
r*2n

cos (i h e — k sin £) d£ I cos i h £ cos (k sin £) d£

/2nsin i h e sin (k sin e) de.

Da nun nach teilweiser Integration :

ht n e
e sin""1 £ (h sin £ — n cos £)

e sin e d£
h2 + n2 -—~

und:

I n(n —1) f1" (h2i-n2)J
'

/h« n j ehs cos""1 e (h cos £ + n sin e)
e cos£d£

h2 + „2^ ¦-

¦ n(n-l)' f*
~*~ h2 4- n2 J

'

h« • n-2 je sin e de

ehé cos11"2 e de ist,

so folgt für n 0:

fi"-ì e

Dieses Integral geht für £ 0 in —> für £ 2tt in — e2h7r über.

Ferner ist

/•*•*—T'~
welches für e 0 in —.h

für e 2rt in r- e"27Ih übergeht. Demnach wird:

f>2n he i -he 1
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Fährt man in gleicher Weise fort, d. h. betrachtet man die
einzelnen auftretenden Glieder in Bezug auf die Grenzen 0 und 27t, so

ergibt sich schliesslich aus Gleichung 62), wenn man darin die
bekannten Exponentialgrössen für cos i h e und sin i h e einführt und
sie demnach schreibt:

n2n r>2n ^ ^t62a) I cos (i h e — k sin e) de I ^ cos (k sin e) de

0 0
r*2n ehf _ e-h£

+ i I
g

sin (k sin e) de,

folgender Wert:

/2%he+e-hï esh,r_e-2h*
— cos (k sin e) de =-—2 v ' 2h

I k2 k4

X1-SÎTÎÎK +(h2 + 22) '
(h2 + 22) (h2 + 42) + j

Für den imaginären Teil der Gleichung 62a) erhält man
folgendes :

Es ist für spö resp. e 2n

h. k e2h71 k
e k sin e de

h2 + 1
reSP" h2 + 1

k e"2h7r k- J e-n£ k sin e de + fa, ^ - resp. + ^ j
Durch Addition entsieht folglich ein Glied von der Form:

k
_ (e2** _ e-2h7r)

h2+ 1

Fährt man in derselben Weise wie vorher fort, indem man auf
die Integralionsgrenzen Rücksicht nimmt, so wird schliesslich:

/2n hî -he -2h7r -2h7i
e — e e — e

sin (k sin e) de
2

^ Ih2 + 1 (h2 + 1) (h2 + 32) ^
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Durch Zusammenfassen beider Teile entsteht die Gleichung:

/2n
e2h?r e-2h7r

cos (i he — k sin e) de --r

xfi--^-+ ki

1

h2 + 22 ' (h2 + 22) (h2 + 42)+

(fihn _ e-2h;T f k j^8

h2 + 1 (h2 +1) (h2 + 32)

+ *^ (h2 + 1) (h2 + 32) (h2 + 52) +

Geht man wieder von den imaginären Grössen zurück, indem
man in diese Gleichung für h den Wert — h i einsetzt, so ergibt sich:

h C271 k2
63) - -— I cos (h e — k sin e) de 1 + -^ -ö-sin 2 h 7tJ v ' h2 — 22

o

k* k6
+ (h2 — 22) (h2 — 42) + (h2 — 22) (h2 — 42) (h2 — 62)

~^~" "
|_k ¦ k3 k5 Ì

h2— 1 ' (h2— l)(h2 — 32)
' (h2—l)(h2—32)(h2—52) ' j

Diese neue Entwicklung für die J-Funktion, welche für alle Werte
von h, mögen sie ganze oder gebrochene Zahlen sein, giltig ist, enthält

als Specialfall die von Bessel gegebene Reihenentwicklung, was

leicht zu beweisen ist, wenn man die Werte der die Form —
annehmenden Glieder bestimmt.

Versteht man also unter h irgend eine ganze oder gebrochene
Zahl, so gibt die ebengefundene neue Entwickelung folgende allgemei-

h

nere Differentialgleichung für J (k):

n d2J(k) 1 dJ(k) /. h2\ hTn, h + k _.0== -dk2- + x"V+ K1-*) J(k)+S-sm2hn'
für ein ganzes h geht dieselbe in die von Bessel gegebene über, da

für diesen Fall sin 2h 7t 0 ist.
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Setzt man in der Differentialgleichung:

0~dx2+x dx+y\ x2/

x'z ein, so wird:

^ia-.^ +^ + x-g,
dy • i i i+i dz

x -r- i x z + xT —,dx ' dx

(x2 — i2) y xi+2 z — i2. x'z,
also :

i j(i- 1) zx' + zx1 —ix1 zj+xi+2;

dx "T" A dx2'+ lai xi+1 + xi+H Ü _j_ xi+2
d2/

l 1 Hy '

oder, da das erste Klammerglied verschwindet:

0 X^2z + (2i + l)x^ + x^-d2z
dx ' dx2

d2z 2i -f-1 dz
d.h. 0 ^ + —f---^ + z.

Die Differentialgleichung hat die einfachste Form, wenn die Funk-
h

tion J (k) für den Fall, dass h eine ganze Zahl bedeutet, untersucht
¦werden soll. Setzt man nämlich

so wird:
J(k) kh z,

oa.\ n
d*z J_ 2h+ 1 dz

6i) 0 -dk2-+—k"-dk + Z'

und es bleibt nun die Untersuchung der Funktion z übrig.
h

Anger gibt im weiteren die Entwicklung der Funktion J(k)
in eine Reihe, welche nach fallenden Potenzen von k fortschreitet,
und zwar teilt er dafür zwei Methoden mit, von denen die eine die

Benutzung der Differentialgleichung fordert, die andere durch
Anwendung der JT-Funktion leicht zu erhalten ist.
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Die erste Darstellungsmelhode ist folgende: Setzt man in der
Differentialgleichung 64) statt 2 h + 1 die Grösse — 2i, so geht sie
über in:

d2z12, «

d? + g 2i+* z 0,

wo k (2i + 1) £2i+1 ist.

Das vollständige Integral dieser Gleichung ist nach E u 1 e r:

z
k4l — i(i2-D(i + 2) j(i2-l)(i2-4)(i2-9)(i + 4)

__
I

| 1.2.4 k2 "r 1.2.3.16 k2 +'"[
(a cos k + ß sin k)

i( i (i + 1) i(i2-l)(i2-4)(i + 3)^ 2k 1.2.3.8k3 ^
g. - 4) (i2 - 9) (i2 - 16) (i + 5) |

1.2.3.4.5.32 k5 + •j(PC08k ftSink)'
i(i2 —l)(i2- 4) (i2 - 9) (i2 - 16) (i + 5)^ 1

woraus folgt, da

2h-M ki+h_._j_ist
2 'k - yT

1St'

65) jVk) a C0S k +J Sin k | 1 - (1-4 h2) (9-4 h2)

y'k i Jl (2) (8 k)2

(1 — 4 h2) (9—4 h2) (25 — 4 h2) (49 — 4 h2) + I

+ JI(4)(8k)4 "j +
asink—ffcoskll — 4 h2 (1 — 4 h2) (9 —4h2)(25 —4h2 ]

y'k" (8k JT(3)(8k)3 _ J

wo a und ß die beiden Integrationskonstanten sind, und zwar, wie
früher gezeigt:

"-'—vT'
Für h 0 entsteht:

66)J°(k)=COSk + Sink(l gl—+32-58-7' ...1
V/kTT I JT(2)(8k)2 JI(4)(8k)* + J

sin k — cos k [ 1 32 52 32 52 72 92 \
\J\T^ j 8 k JT(3) (8 k)s 11(5) (8 k)fi +'"*]'
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o

Die Entwickelung von J(k) in vorstehender Gleichung kann aber
auch ohne Benutzung der Differentialgleichung zugleich mit der
Bestimmung der Konstanten leicht direkt gefunden werden.

Da nämlich:

'.,. cosk /*2k/cosw costo 1 ta costo 1.3 to2 \j7t. J(k) =-t= | —7=H—7= —7= \dta.
\J2\iJ \\fto \/io 2 2k yw 2.4 4k2 /

o

sin k /*2k/sintd sino» 1 ta sinto 1.3 to2 \ *)

"\/2kJ \ »/w V w 2 2k \/« 2 .4
'
Tk2 / **'

o

so ist, wenn k eine grosse Zahl bedeutet, näherungsweise, und für
k oo genau

° 2cosk Scosta ta1/' 1.3 1 Nj67) 7T.J(k)=—7=- | f —=H cosw-I w8/'cosw +-ldw' v/2k J ^ \/a» 4 k ^ 2.4 4k2 ^ J
o

2 sin k r^/sinto to1/» ,1.3 1 \ JH 7=— I I —7=- H sin w -\ ta I' sin w + • ¦ • I dw.
t/ak J \ ?/»

'
4 k '2.44k2 /

o

Nach der gewöhnlichen Beziehung aber ist:
/»oo

/TfjO= I e^x^dx,/ooe-xxiu-l(

und es gelten die bekannten Beziehungen

r(4-)-V=i
Diese Gleichung folgt aus der Beziehung :

0
1 pn

J(k) — j cos (k cos e) de
7t

oder : ö

7T.J(k)= I I cos k cos/2k sin2 — e j+ sin k sin( 2k sin2 — e Jde;

o

oder für
1

2k sin2 — e fi,
m

0 r2k du /*2k dtt
7t. J(k) cos k | cosu — + sin k | sin u -,

j/ 'VaM-f" j! M\/2kA<-M2'

wenn man in Reihen entwickelt.
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und

sowie :

J i
1 \ 1. 3. 5 (2m — 1) ._I\m+-2-)== di -^

a ncos —
x cos b x dx 21(a),

a n
m~2"

x*x sin b x dx — T(a);
»oo sin

also auch:

Dcosw, fnrdw=» /_ (nach Laplace),

r°°Va 3.T _/s \ i i ,/-| to' costodto cos — Fl -—- r= y7t,
J i \2J V/2 2
0

r°°'" a 57r7^/5\ i !-3,/-I ta coswdw cos-r-i |—- 7= • \7t,J 4 V 2 / \J2 22
V

o

r°°s/i i7trii\ i 1.3.5,/-| ta' coswdw cos-— rl —r- H 7= \7t,J i \2 J ^ s/2 2*
V

u. s. w.

j sin to —r-^r i/— (nach Laplace),

o

f°% 8* _/3 \ .1 1 ./-I to'sin to dw sin— W — J + _._\^r,
o

/
/

*•* ¦ ^ • *™ ^( 5 \ 1 1.3,/-w sin w dto sm -r- J { —- — Klrt,
4 I 2 \]2 2*

V

°°./. • a ¦ l7t -nf1 \ 1 1.3.5 ./-w' sinwdw sin-^ r I -^- | *-• \j7t,i \ 2 \/2 23

u. s. w.

Bern. Mitteil. 1894. Nr. 1366.
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Durch Substitution dieser Werte in Gleichung 67) ergibt sich:

68)J°(k) -^-|l- 32 88-52
y'k TT \ H(2)(8k)2 JT(3)(8k)3

sink I 1 32 32. 52

\/k7t \ 8 k Ji(2)(8k)2 11(3) (8 k)3

oder (in Übereinstimmung mit Gleichung 66))

• °. cos k + sin k 32 32 52 72
J(k) -j=±= 1 - +\Jk7t \ JT(2)(8k)2 JT(4)(8k)4 —

sink —coskfl 32 52 32 52 72 92 —+y'k TT (8 k JT(3) (8 k)3 11(5) (8 k)5 j

Um die von Bessel gegebene Auflösung der Kepler'schen Aufgabe

resp. die Entwickelung der Mitlelpunktsgleichung in noch einfachere
Formen zu bringen, transformiert Anger im Verlaufe seiner Arbeit die

von Bessel bereits gegebene Gleichung 35), welche lautet:

-g- A® J(i e) + X [jj'e) + /(fe)] + X2 [J(le) + J(Te)] +• • ¦

Setzt man hierin

e sin tp,

so wird :

<T«-f-, ie
Sitg-f-

:2Ìtg
1

2 ^ COS:

i + W-J-

und man erhält, wenn man der Kürze wegen einführt :

2y l COS'' -— f»

woraus folgt:
Ìe

2

h J
aus der Reihenenlwickelung von J(k) nach Potenzen von -— k:
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i ,i i+2 a+2 i+4 ji+4
V X V^ K^ VA'

1.2.3...Ì 1 .2.3...(i+l) ' 1.2.1.2.3...(i+ 2)

vi+6 Xi+6 IÎ+* Xi+S
_.1.2.3.1.2.3... (i + 3)"1" 1.2.3.4.1.2.3 (i + 4)+

'

\+} ri+1 X** vì+3 Ài+4
AJ(ie) _ + 1-2.3_(i + 1)- 1.2.3... (i + 2)

^i+5^+6 vi+7Ai+8

1.2.1.2.3...(i + 3) 1. 2. 3.1.2. 3... (i + 4) -1-

i_1 i-l ìi i+l ii+2 i+3 ;i+4
- '..k _

v X JL__A!_ |
v X

(-ie; — 1 .2 .3 (i — 1)
~~ 1.2.3...Ì i~1.2.1.2.3...(i+l)

„i+5^+6 ^+^»+8 _
1.2.3.1.2.3...(i+2) ' 1.2.3.4.1.2.3...(i+3)^

i+2 „i+2 ;i+*
**™ +1.2.3...(i+2)

i» J(ie)

1. 2 3 (i + 3) ' 1 2 .1. 2. 3 (i + 4)

i-2 ii i oi+2 i+2 ,i+4VX V K^ V X^
1.2.3... (i — 2) 1.2.3...(i —1) ' 1.2.1.2.3...i

vi+i Xi+6 /+6Ai+8 —+r1.2.3.1.2.3...(i + l) ' 1.2.3.4.1.2.3...(i+2) '

u. s. w.

Durch Summation aller entsprechenden Glieder ergibt sich, wenn
man mit Hansen setzt :

v2 v3
Pi 1+^ + 1.2+1.2.3+-

i
• 1

v
1 1.2.3...Ì

i+l
Pi+1-Pi+1.2.3...i(i+l)'

i+2
Pi+2 _ P£+l | j 2 g (i + 2)

s. w.
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Q, 1 — v, Qî Qi +
vs

Q8 Q2 — 2.3
u. s. w.

als Wert für —- A(i> folgender:
a

4- A(i) P, 1« - j, Pi+1 - —J^-^} /+2+

ri+3 1/+2

+ {t^Pì+2 )i+4
1.2 l_hä 1.2... (i + 2) ' 1.2...(i + 2)J

1.2.3 Pi+3 "~ 1.2.1.2.3...(i + 3) +
i+4 i+8 \

1.2.3... (i+3) 1.2... (i+3)
i+7

~^"l 1.2.3.4 Pi+4 1.2.3.1.2.3...(i + 4)

,,i+« „H-5

+ ¦

1 .2. 1.2. 3... (i + 4) 1.2. 3... (i + 4)

i+4

+1.2.8... (i+4)r
Diese Koeffizienten der Potenzen von / lassen sich aber auch

der Reihe nach in folgender Weise darstellen:

Pi - Pi,

v Pi+1 - (Pi+1 - Pi) (v — 1) Pi+1 + Pi,

-fi^- Pi+2- V (Pi+2 - Pi+1 + (Pi+2- Pi+1 (£-2- V + 1J Pi+2

+ V Pi+1 — Pi+1,
3 2

OT3Pi+8 ~ ^2(Pi+3-Pi+2)+ "(Pi+3—Pi+2) —(Pi+Ï —Pi+2)=
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Mithin :

i- A© Pi X1 + (Q, Pi+1— PO /+2 + (Q, Pi+2 - Qi P1+1) Xi+i

+ (Qi Pi+3 - Q2 Pi+2) Xi+e + (Q* Pi+4 - Qs Pi+3K+8+
oder:

JL A« Pi X1 (1 - >i2) + Qi Pi+1 Ai+2(l-r) + Q2Pi+2r+4(l -l*)
+

also auch:
OO I -,

69) v-(i*=(l~/2)2j|PiAi + P1+i(Bi*h* +Pi+2Q2^i+4+- siniju,

weil war:

v — /it Ai sin jw + A2 sin 2jtt + As sin 3jtt + • • • •*)

Die Gleichung 69) stellt in dieser Form die von Hansen für die

Mittelpunktsgleichung gegebene Entwickelung dar.

Was die Entwickelung des Radius-vector betrifft, so ist, wenn
man denselben durch r und die halbe Axe durch a bezeichnet,
und setzt:

r Ao + Bi cos fi + B2 cos 2fi + B8 cos 3ft + • • •

/2nsin (ie — ie sin e) sin e de.

0

Man hat aber:

sin(ie—ie sin e) sin e =— jcos ((i—1) e — ie sin e)—cos ((i+l) e — iesinej •

Demnach :

ç** i-i i+i
— I sin (ie — ie sin e) sinede=J(ie) — J(ie)

also:
i+l 1-1 1

i B(i) a e j J(ie) — J(ie) j.

Der Fall i 0 macht eine Ausnahme. Nach bekannten Sätzen ist
nämlich das erste Glied der Reihenentwickelung, d. h. der Koeffizient
von cos o.fi:

*) Seite 224.
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»2?r r>2n

è/rd^ è/(1-ecose)2d£ a(1+T-)Ao

Man hat demnach

1

und die Entwicklung ergibt

70Ì B - 2 '^/Ji * + 2 /ieY-l-70) B(i)_-T-Sür{i-1_(i + 1).^—J-r-

+ Ì + 4

1.2(i+l)(i + 2) (i)V-)
V.

S c h 1 ö m i 1 c h gibt im II. Jahrgang der Zeitschrift für Mathematik

und Physik vom Jahre 1857 einen Abriss der Bessel'schen Funktion,

worin er ausser den bereits früher abgeleiteten Formeln und

Beziehungen neue aufstellt, namentlich andere Integrationswerte für die
Funktion. Er bedient sich stets der Hansen'schen Bezeichnungsweise,
von welcher man ja, wie früher gezeigt, leicht zu der Bessel'schen

übergehen kann.

Nachdem er die bekannten Formeln:

iß) (- l)n fa),

j(_ i) (_ i)» fa)t
n n—1 n+l

• nIß) X(l(X)+l{X)),
in sehr einfacher, der Hansen'schen Ableilungsart ähnlicher Weise

n
hergeleitet hat, gibt er zuerst eine Entwicklung für iß). Er
multipliziert die beiden Reihen

c- l+^x + T^x2+r-^7Fx3+...

-r__i_i_ J_ i _ÜL_ JL„ p Jl_>
C

1
¦

x "*" 1 .2 ' x* 1.2.3" x3*- ""
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miteinander und vergleicht dieses Produkt mit der bereits von Hansen

abgeleiteten Gleichung (48.1) Das Resultat stellt sich in folgender
Form dar:

0 J2 J4 16

1! 1! ¦ 2! 2! 3! 3! —
1 2 I3 J5

w 1 1 2 ~ 2 3 ~
2 A2 X* X6 X»

J(A)=~2-- ÏTT! + 2TTT - 3TT! ± - u-s-w-

allgemein :

n ^ ^n+2 ^n+4
71) J(A) —— - - _!_!-,,+ 2! (n +2)I+'"'1"1"

m=oo
5n+2m

-Sc-«- r
m (n + m)

m=0

Von der Richtigkeit dieser auf dem Wege der Induktion gefundenen

Formel überzeugt man sich leicht vermittelst des Schlusses von
n auf n + 1, wenn man die nach Gleichung 71) gebildeten Werte

il n—1

von i(X) und I(X) in die bekannte Formel substituiert, welche lautet:

n n—l n+l
n iß) X [iß) + Iß)].

Eine weitere Eigenschaft erhält Schlömilch durch die Multiplikation

der beiden von Hansen gegebenen Gleichungen 48). Links ergibt

sich die Einheit und rechts eine nach Potenzen von x und — fort-
x

schreitende Reihe, deren konstantes Glied der Einheit gleich sein

muss, während die Koeffizienten der verschiedenen Potenzen von

x und — verschwinden müssen. Die erste Bemerkung führt zu der

Relation

72) 1 [Iß)? + 2 [W + 2 [jW + 2 [jV)]2 +
o

woraus hervorgeht, dass die Funktion I(X) die Einheit nicht
übersteigen kann, und dass die übrigen Transcendenlen nie grösser als

1

-j== werden können.
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Das allgemeine Glied der Gleichung 71) war, vom Vorzeichen

abgesehen
An+2p

p! (p + n)!;
durch Differentiation dieser Gleichung 71) erhält man eine neue Reihe,
deren allgemeines Glied ist

(n + 2 p) f**1-1 r+2p-1 ggg
p! (n + p)! p! (n + p - 1)1 + (p - 1)1 (n + p)!

'

und man hat daher:

d iß) r-1 xa+l xn+3 TdX ~~(n —1)! l!n! "*" 21 (n + 1)1

jn+1 2n+^
—

(n + 1)1
"*" 1! (n + 2)!-1

d. h.

73) iÄ.S,-«.
Aus dieser Formel lässt sich in Verbindung mit der bekannten

Relation

n iß) X (iß) + Jß))

eine neue Gleichung zwischen zwei aufeinander folgenden Transcen-
n—1

denten herleiten; die Elimination von Iß) ergibt nämlich:

741 ìtx\- n Jttl ±dJW74) iW~2X JW
2 -AT'

oder

durch Differentiation folgt (wenn man vorstehende Gleichung als

Reduktionsgleichung benutzt) :

d2J(/l) n (n — 1) n
„ 4 n -4- 2 "+1 n+2

n+2 n
und wenn man noch (wie früher ausgeführt wurde) i(X) durch iß) und
n+l
JO?) darstellt:
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75) ^H^-^+x^
In dieser Weise kann man alle Differentialquotienten von Iß)

n n+l
successive durch J(^) und Iß) ausdrücken.

Multipliziert man die Gleichung 74a) mit -j- und addiert sie zu

n+l
Gleichung 75), so hebt sich I(X), und es bleibt:

™> VT + 4-U-^- [£ - *] fa) 0,
d2lß) J^ dlß)
dX* + / d %

welches die allgemeinere Form der Differentialgleichung für J (X) ist;
ein Specialfall für n o wurde bereits früher von Hansen behandelt

(Gleichung 53).
n

Die Darstellung der J-funktion durch ein bestimmtes Integral
macht sich nach Schlömilch nun folgendermassen :

Aus der von Hansen gegebenen etwas anders geschriebenen
Gleichung 48.i)

c* (X~^ fa) + fa) (*2 + ~) + iß) (x* + ^r) + • • •

+ J«(x- \)+fa) (x3-^)+ •••

ergibt sich mit Hülfe der Substitution

x ta y— 1 ito,

und bei Vergleichung der reellen und imaginären Teile:
0 2 4

cos (2 X sin ta) iß) + 2 iß) cos 2 ta + 2 iß) cos 4 ta -|
1 3

sin (2 X sin to) 2 Iß) sin w + 2 Iß) sin 3 w + • • •

Aus der ersten dieser Gleichungen folgt:

rn n
77) I cos (2 X sin ta) cos n ta dta 7t. I(X) für gerades n

o

0 » ungerades n;
aus der zweiten:

Bern. Mitteil. 1894. Nr. 1367.
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Jl78) J sin (2 X sin ta) sin n ta dta 7t Iß) für ungerades n

0 • gerades n;
oder allgemeiner für jedes n:

r79) I cos (n ta — 2 X sin ta) dta — 7t Iß),
o

was leicht durch Auflösen von cos (n ta — 2 X sin to) und Integrieren
der einzelnen Glieder als Zusammenfassung der Gleichungen 77) und

78) zu erkennen isl.

Eine andere Zusammenziehung der Gleichungen 77) und 78) zu

einer für jedes n gültigen Formel lässt sich durch folgende Umwandlungen

erreichen : Man setzt in 77)

1
10 T n ' z;

es wird alsdann für ein gerades n:

.+ 1*
n u C 2

n. l(X) cos —— | cos (2 X cos z) cos n z dz.

Die Funktion cos (2 / cos z) cos n z hat für negative Werte von
z denselben Wert wie für positive z, daher

n
n n n f*2

7t iß) 2 cos —-— I cos (2 X cos z) cos n z dz
2 4

cos —-— I cos (2 À cos z) cos n z dz.

ô

Auf dieses letzte Integral wendet nun Schlömilch die bekannte
Jacobi'sche Reduktionsformel

/TT
1 f*n

f (cos z) cos n z dz -^———-
I f(n)(cos z) sin2nz dz.

o

an und erhält für gerade n, wenn isl:

f(x) cos 2 X x
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n (2 A)nC0S -jr- nn
cos (2 À cos z) cos nz dz=7—^—- r- -r- I cos (2 À cos z) sin2" z dz,1.3.5 (2n—\1)J v

mithin :

(2 X)"
___ ,n _x 2n/""TT J(/l) — -—-— — TT | cos (2 X cos z) sin z dz.

1 3 5 (2 n — 1) '

Transformiert man auf gleiche Weise die Gleichung 78), so erhält

man für ungerade n ganz denselben Ausdruck wie eben für 7t Iß),
letzterer gilt daher für alle n.

Da die Funktion cos (2X cos z) sin2n z von z —- 7t bis z

7t die nämlichen Werte besitzt, wie von z 0 bis z -— n,ò

so kann man auch schreiben:
n

3W » £1.8. 5(2.')n(2
n - 1) JL & X C0S * sin2D * dz-

Setzt man hierin:
cos z x

so wird:

8°) JW fl.B.i'^n-l) « (1 -X8)n"C0S(2Ax)dx

oder:

¦ I (1 — x2)n-¥i

» 2;n r1 1

81) JO*) —;—r—=-7 r C1 — x2)n" cos (2 ^ x) dx.

Im weiteren Verlaufe seiner Abhandlung gibt Schlömilch den

Weg, wie man den für die J-funktion vorkommenden Integralausdruck
in eine zur numerischen Berechnung der Funktion dienende Reihe
entwickeln kann. Er beschränkt sich dabei auf den Fall n 0, weil

1 0

ja Iß) exe leicht aus Iß) hergeleitet werden kann.
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Gleichung 80) ergibt für n o den Wert:

o 2 f1cos2-?x.
1(X) — I dx ;

^j/ \/l —x2

setzt man hierin:

x 1 — y und 2 X fi,
so wird:

0 A C cos (* — y) ft
"**/ ~\/y(2-y)J« 1-f-Zt}1-»* dy.

Die Auflösung des Cosinus ergibt:

°„, \/2 T cos ft y dy iJ(A) -— cos j« i ———-.— _ +

v^I sm ft fjHLfty iy

£

^-^fTl'+ï'ftj+r
und durch Entwickelung von —/ z erhält man

2 y

•3/y
4vai +-li

7t

2
i

»/2-«n ft f' sin /i y 1 /y\ 1 .3/y \ dy.

Die Werte der einzelnen hierin vorkommenden Integrale sind

aus den ersten beiden

fij^ipL dy und f«*pL dy

durch Differentiation nach ft leicht herzuleiten. Bezeichnet man

ihre Werte nämlich einstweilen mit P und Q, so hat man folgende
Gleichungen :



— 261 —

P^dy P, /Hf-* 0,

Ç y "Ti* y
dy Q< f*

JJ»LftJl_ dy _ p-

y \/y J »/y

rly2cJS_^y dy - P<< r'-y2 S|"i*
y

dy - Q«

V cos ft y
dy _Q„, f1 y8 Sin_^ y

dy + P"'
\Ty '~ v ji »/T

u. s. w.,
wobei die Zeichenwechsel dieselben sind wie bei den Cosinus und
Sinus der vier Quadranten. Demnach ist also:

iß) VI Ip cos ^ + Q sin ft — ^f (P" cos fi + Q" sin ft) -|
7t \ 4: o

1 1 Q Fi

+ — (Q' cos ft — P' sin u) — 4 "8
'

12
(Q"'cos ft —P'"sin ft)+ -)

Nach einer bekannten Formel aber ist:

fiW-«Ì~^-rir«
- \l-h S~ c»s f i dy.

\Ty
1

Das noch übrige Integral kann nun durch fortgesetzte partielle
Integration leicht in eine halb konvergente Reihe verwandelt werden
und man erhält:

_ t nr .i 1.3.1.3.5.7 ip V2T~sin^rft~~22v+^V 1

r 1 1 3 5 1 3.5.7.9+ C08ft|T^---2V-+—2V }'
ebenso in ähnlicher Weise

i • I1 1.3.5,+ sinft(i_i--1F-r- +
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Hieraus sind P', P" sowie Q', Q" leicht herzuleiten,
und durch Substitution dieser Werte ergibt sieht nach einigen
Umformungen endlich:

cos 2X

82) Iß) VT ('
l2 ,32

4 8 4/1 +
l2 32 52 72 / 1 V i+ 4 .8. 12 16

' \4A/+'¦'[
m\2X-jj7t) (lY_ l2 ¦ 32 ¦ 52 (±y± V

VXÜ 'lU 4.8.12 \iXt '"''
oder in anderer Form

cos

83) Iß)=-
(aA-i«). i 9 3675

Y7t

in 2X j-7t
'TT llfWl

j_^ ^ __
«VA 512 (VX)5 524288 (Vi)9 +

75 297675

16 {VXf 8192 (VX)1 41943040 (VZ)"+u 4."f
Diese Gleichung stimmt mit der von Hansen gegebenen

(Gleichung 54) vollständig überein ; derselbe leitete sie jedoch auf anderem

Wege (mit Hilfe der Differentialgleichung) ab.

Am Schlüsse des angeführten Werkes stellt Schlömilch ein
Theorem auf, welches von der Entwicklung einer beliebigen Funktion

in eine nach Bessel'schen Funktionen fortschreitende Reihe handelt.
Dasselbe ist nahe mit dem Fourier'schen Satze verwandt und unter
dem Namen Schlömilch'scher Satz allgemein bekannt. Seinen

Beweis gibt auch Lo m mei in seinem oben citierten Werkchen:
• Studien über die Bessel'schen Funktionen». (§ 20. Seite 73.)

Geht man von der bekannten für h > z > o geltenden
Entwicklung aus

F(z) — Ao + A, cos
7t Z

+ A2 cos
2 n z

An — h
I F(u) cos Il^U du

wo

ist,
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und setzt darin

h -5- 7t, z X x,
Ci

so erhält man die Gleichungen:

Fßx) — Ao + Ai cos 2 X x + A2 cos 4 X x +
a

»JF(U

1
n

cos 2 n u du,

welche gültig sind für — 7t > X x > 0.

Multipliziert man ferner obige Gleichung für F(X x) mit

2 dx

7t vr^2
und integriert zwischen den Grenzen x 0 und x 1, so entsteht:

2 f1 F0*x) 1 0 0 0

84) -j- I ^==dx===-|-Ao+AtJa)+AiJ(2A) + A«J(8Â) + .«,
0

und es gilt diese Gleichung von X 0 bis X —- 7t, weil x die

Einheit nicht überschritten hat. Nimmt man weiter:

85) ±r^a.fc_fro>-/" J Vi X

so ergibt sich durch Differentiation nach X:

ra) --- I -V (xÀ)dx.•»-*,/"£
In dieser Gleichung schreibt man mit Schlömilch s stalt x, ft t

statt X, multipliziert beiderseits mit

dt
** vr^i2

und integriert nach t zwischen den Grenzen t 0 und t 1. Man

erhält durch diese Operation:
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lü f-JU f SyF^St) d s M f-^ÜLdt-IW - F(o)«J vi—t2J vi-s2 PJ vr^T2 wOO 0

nach einem von Abel herrührenden Satze. Den Beweis für dessen

Richtigkeit gibt Schlömilch ebenfalls in seiner Abhandlung (siehe
Seile 156 und 157).

Für X o gibt Gleichung 85)

F(o) f(o),
mithin :

86) F(ft) f(o) + ftJ>^Ldt.
Wir schreiben nun in Gleichung 84) iß) für die linke Seite,

drücken rechts F(u), welches in An enthalten ist, vermittelst der
vorstehenden Gleichung 86) durch (u) aus, und gelangen somit zu
dem Satze, dass die beliebige Funktion f(X) unter der Bedingung

~ 7t> X > 0
dà

in die Reihe

87) fß) — 4~ Ao + Ai iß) + A3 J(2 X) -\

entwickelt werden kann, wenn die Koeffizienten A nach der Formel

88) An — I u cos 2 n u du I f<^U % dt«J J Vi — t2
0 0

bestimmt werden.
Durch Differentiation nach X, wobei die Formel

d Iß) _
1

dX Iß)

anzuwenden ist, und f'00 Fß), sowie — 2 n An Cn sein möge,
erhält man ein zweites Theorem

89) Fß) Ci iß) + C2 J(2A) + Cs i(3X) -\

wobei die Koeffizienten C nach der Formel:
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90) C„ — — f ii cos 2 n u du |
F(u 2 dt

zu bestimmen sind.

Lo m mei zeigte, dass allgemein auch die Entwicklung

mm m

dt

91) iß) Bi J(>0 + B21(2X) + Bs I(3X) -\

wobei ist:
i j

92) Bn 2.(—l)m.nm— | ucos2nudu | ,^1iL
**J J Vi — l2

7t
unter der Bedingung — > X > o güllig ist.

Die vorher angeführte Reihe ist ein Specialfall der Entwicklung
91); nämlich für m 1 wird aus Gleichung 91) die Gleichung 89)
und Gleichung 92) geht unter Berücksichtigung der gemachten
Voraussetzungen in Gleichung 90) über.

Damit möge vorliegender Aufsatz abgeschlossen sein. Wie sich
die Bessel'sche Funktion erster Art durch die Untersuchungen von

Lommel, C. Neumann, Lipschitz und anderen weiter
entwickelte, werde ich in einer zweiten Arbeit zu schildern versuchen.
Dabei werde ich auf ihr Verhältnis zu den Kugelfunklionen näher
eingehen, die Funktion mit negativ-gebrochenem Index untersuchen und
ihre Darstellung als Summenformel nach H a n k e 1 geben. Ferner
sind die Bessel'sche Funktion II. Art, ihre Differentialgleichung und

ihre Beziehungen zu derjenigen I. Art zu betrachten, und schliesslich
sind die von S c h 1 ä f 1 i eingeführten Hülfsfunklionen

K(x), S(x), T(x) u. s. w.
zu berücksichtigen, und darauf die neuesten Arbeiten von Heine,
Gegenbauer, Graf, Hurwitz und anderen einer Betrachtung
zu unterziehen.

Bern. Mitteil. 1894. Nr. 1368.
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Errata.
Seite 208: Gleichung 9): ist als untere Grenze des ersten Integrals 0 zu

setzen.

Seite 209: Zeile 23 und 24: soll es statt a richtig ap heissen.

Seite 216 : Zeile 14 soll es richtig heissen 11(0) 1.

Seite 221 : In G1 e i c h u n g 30: ist auf der rechten Seite 0 zu setzen.
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