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C. Wagner.

Beitrige

zar

Entwicklung der BesseI'schen Funktion I Art.

Vorbemerkung.

Die vorliegende Arbeit wurde auf Anregung meines verehrien
friheren Lehrers, Herrn Prof. Dr. J. H. Graf in Bern, unternommen.
Sie ist im allgemeinen eine Abhandlung historisch-analytischen Inhaltes
und will im Zusammenhange kurz die Entwicklung der fiir Mathema-
tiker, wie Physiker und Astronomen gleich wichtligen Bessel’schen
Funktion erster Art von ihrer Einfiihrung in die Wissenschaft an bis
zum Jahre 1858 darsiellen, die Eigenschaften derselben klarlegen und
ihre hauptsichlichsten Anwendungen kurz vorfiihren.

Abschnitt I enthilt die Resullate der diesbeziiglichen Forschungen
von Fourier (Darstellung der Bessel’schen Funktion als bestimmtes In-
tegral, Fourier'scher Satz) und Poisson (Reihenentwicklung, Konstanten-
bestimmung u. s. w.). Im Abschnitt II wird sodann auf die grund-
legende, diese Materie betreffende Arbeit von Bessel niher eingegangen,
ferner werden die Beziehungen, welche er gefunden hat, abgeleitet und
die Anwendung dieser Transcendenten auf die Mittelpunktsgleichung
gezeigt. Abschnitt III ist der Schilderung jener interessanten und
eleganten Methode gewidmet, welche Jacobi anwandte, um aus ganz
aligemeinen Betrachtungen die Bessel’sche Funktion herzuleiten. Ab-
schnitt IV beleuchtet im ndheren die Verdienste von Hansen und
Anger, gibt neue Darstellungsarten und Beziehungen der Funktion
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(gebrochener und imaginirer Index) und leitet nochmals in einfachster
Weise vollstindig die Mittelpunktsgleichung ab. Abschnitt V endlich
weist auf die Resultate hin, welche Schlomilch erhalten hat, und ist
vorzugsweise der Betrachtung jenes unter dem Namen «Schlomilch’scher
Lehrsatz» bekannten Theorems gewidmet.

Bei der Bearbeitung dieses Stoffes wurde auf moglichste Kiirze
und Exaktheit der grosste Wert gelegt; deshalb blieben jegliche histo-
rische Notizen, welche anderswoher leicht zu entnehmen sind, von
der Aufnahme in vorliegende Arbeit ausgeschlossen. Dafiir wurde aber
auf genaue, wenn auch oft nur angedeutete Durchfiihrung der Neben-
rechnungen Riicksicht genommen, weilich 6fters, namentlich beim Studium
der Bessel’schen Arbeiten, fand, wie miihsam und zeitraubend es unter

Umstéinden sein kann, derartige fehlende Zwischenrechnungen zu er-
ganzen.

Yon der Herleitung vieler Gleichungen, von denen ich auszu-
gehen gezwungen war, musste indessen, um die Einheit vorliegender
Arbeit nicht zu stéren, abgesehen werden; ihre Ableitung kann in den
am Schlusse angegebenen Schriften eingesehen werden.

Um sich leichter auf bereits gefundene Gleichungen bheziehen zu
konnen, wurden einige derselben numeriert; eine sonstige engere Zu-
sammengehorigkeit soll damit nicht ausgedriickt sein.

Die Bessel’'sche Funktion erster Art fiir das Argument x und den -
Index n sei ausgedriickt durch:

n
y =1J(x);
sie ist als partikulire Losung der Gleichung:
d?y 1 dy I
wtya t-g@lv=0

A X
anzusehen, welche die Differentialgleichung oder Definitionsgleichung
der Bessel’schen Funktion erster Art genannt wird.

Fiir den Specialfall: n = 0 wird:

0
yi=171(x)
und die entsprechende Differentialgleichung lautet:
dye 4 L o

dx? X dx+yl=0'
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L

Fourier war zweifellos der erste, welcher derartige mit den
Bessel’schen Transcendenten iibereinstimmende Funktionen herleitete,
und zwar in seiner: «Théorie analytique de la chaleur», welche 1822
erschien. Im Kapitel VI, das er mit «Du mouvement de la chaleur
dans un cylindre solide» tiberschrieb, findet er derartige Beziehungen,
und zwar ausgehend von den Gleichungen:

K 2y dv h v

= E—[T(g—{z- -}—-1—(1—7‘) und 2) R—v—l—%}_—.:o,

welche die Wirmebewegung in einem festen Cylinder von unendlicher
Linge darstellen.

In diesen Gleichungen bezeichnet x den Radius eines cylindri-
schen Ringes, dessen Punkte sidmtlich den gleichen Abstand von der
Axe besitzen; v die Temperatur, welche alle Punkte im Abstande x
von der Axe nach einer Zeit t, vom Beginn der Abkiihlung an ge-
rechnet, besitzen sollen; G, D und K sind Konstanten, und zwar be-
zeichnet C die specifische Wirme, D die Dichtigkeit und K die Einheit
der Wirmemenge. Es ist demnach v sowohl eine Funktion von t
als auch von x.

Um vorstehende Gleichungen zu integrieren, gibt Fourier fiir v fol-
genden sehr einfachen Wert. Er setzt analog der gewohnlichen Auf-
losungsmethode

dv
1) i

| -mt
v.-::em u,

wobei m irgend eine Zahl und u eine Funktion von x ist.
Aus Gleichung 1) entsteht alsdann:

m d%u 1 du
Ixitaw v ="
wobei: ——-——K = k gesetzt ist
: ch 8 )

Als Wert fiir u, welcher dieser Gleichung 3) Geniige leistet, fin-
det Fourier folgenden:

1 1 1
Hou=l—gedtapdy—gget vt

wobel g = —111:— ist.

Gleichung 3) stimmt mit der friher angegebenen Definitions-
gleichung fiir die Bessel’sche Funktion erster Art in der Struktur
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vollkommen iiberein. Wie leicht zu ersehen ist, ist sie die Differen-
0 -
tialgleichung fiir J (x\/g). Mithin wird:

N 1, 1, L,
¢) TaV) =1 — g ex+ g e X g ae

Die Summe dieser Reihe findet Fourier mit Hiilfe der nach ihm
benannlen Reihen und erhilt schliesslich folgendes Resultat:

0 . T —
4 J (x\g) = %J cos (x\/g sin r) dr =u,
7
welcher Wert bekanntlich mit der Normalform Bessels

- L ™ .
I(x) =—”—f cos (x sinr—nr)dr

iibereinstimmt, wenn man n = 0 und x\/ g fir x substituiert. ,
Dieser Wert geniigt also der Differentialgleichung 3) und behalt
auch einen endlichen Werl fir x gleich Null.

Die Gleichung 2) geht durch Einsetzen des fiir v angegebenen
Wertes iiber in:

h - du
a 5 — =0.
22) 7 U -+ i 0
Diese Gleichung muss auch erfiillt sein, wenn x=X, gleich dem
Radius des Cylinders wird. In diesem Falle erhilt man:
1 1 —_
5) u:l——z—ng2+22.42g2X4+...

Setzt man nun in Gleichung 22) fiir den Quotienten K die Grosse

h, so wird mit Beriicksichtigung von Gleichung 5):

1 1 — 2 4
2b) h(l——-—?ﬁgxz_‘_ g? X4+--.>=—27gX— g2 xXs+-..

22 . 42 22 | 42
Setzt man ferner in Gleichung 5):
1
 — —2—; g X2
und bezeichnet mit f(3) = y diese Funktion von %, so wird:
1 1
6) y=f3H=1—39+ -é—é-ﬁz-—— 22'3235&_...

Multipliziert man weiter beide Seiten der Gleichung 2°) mit 5 X,

so erhilt man nach einigen Umformungen:
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§— gy 9 g BT
1 22 2%.8
g hA= 1 i
1=+ P —ggm:P

oder schliesslich: _
1 (3 er __df(9)

7 5 hX 4+ 9 IO 0, wobei ' (9) = i bedeutet.
Diese Gleichung gibt nun die verschiedenen Werte von %, und

jeder Wert von ¢ einen fiir g, wegen der bestehenden Relation

1
Die einzelnen Werte mdigen sein gi, g2, gs . . . . . . Da nun
schliesslich war: '
__m
g — k ?

so sind auch die Werte von m leicht zu bestimmen.

Fourier fiihrt diese hier nur kurz angegebene Rechnung voll-
stindig durch und findet als Werte fiir die einzelnen m schliesslich
folgende: y

22 k-9 22 .k 9 22. kI3

mi :———XT—; m::T; ma=———X2— u

Der Wert fir u in Gleichung 4®) wird alsdann:

Y B ol
[ — - 3
4¢) u= fcos (2 x\/31 smr)dr
§

mithin
____-mt . 1 -Ek_tz‘,l n X e
8) v=e u=-—e X oS 2—)?\/31smr dr.
Setzt man nun jede der Wurzeln &1, 92 . . . . . , so erhilt man

einen allgemeineren Wert fiir v, nimlich:

¥kt ¥ X -
9) mv=ae X oS ZT\/& sinr)dr
2ktga [ X j—
+ a2z e X cos | 2 Y-\/&z sin r)dr
0

_22kt19~3 4 X —_—
+ase x COS(2T\/333inI‘)dI‘—{—...
Q
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Es bedeuten ai, az, as u.s. w. willkiirliche Koefflzienten, welche noch
zu bhestimmen sind.

Die Gleichung 9) kann man mit Anwendung der Bessel’schen
Bezeichnungsweise auch schreiben:

2'~‘kt31 2‘kt3¢ 0
9%) v=ae x J|[2 —\/31 a2z X* J (2 ———\/32
Bei der Bestimmung von ai, az . . . . stellte Fourier den nach

ihm benannten Lehrsatz auf, welcher fiir die Theorie der Bessel'schen
Funktionen von grundlegender Bedeutung geworden ist. Derselbe
lautet in allgemeiner Fassung: «Bezeichnet man die posi.-
tiven Wurzelwerte der Gleichung:

z0J(2)=0
ihrer Grosse nach geordnet mit Jo, I, F2... 8, ...,
so kann jede innerhalb der Grenzen 0 bis 1 ge-

gebene Funktion f(x) in eine nach (9,0™ ?(&,x) fort-
schreitende Reihe entwickelt werden-.

Auf den Beweis dieses Satzes will ich hier nicht eingehen, ob-
gleich ihn Fourier nur in etwas weitldufiger Form und zwar nur fir den
speciellen Fall m = 0 gegeben hat. Den allgemeinen Nachweis fiir
seine Richtigkeit findet man bei Lommel in seiner Schrift: «Studien
iber die Bessel’schen Funktionen» (Seite 69).

Auf Grund dieses Salzes sind a1, az . . . ap. . . leicht zu be-
stimmen, und zwar findet Fourier (wenn auch mit anderer Bezeichnungs-
weise) folgenden Wert fiir das allgemeine Glied a :

Ay == —T-—‘éﬂTf_xf(x)g(.‘}p x) dx,
[1n]” 5

0
f(x) = Za, J(Jp x) ist.
Diese Werte werden alsdann in Gleichung 9a) eingesetzt, und
damit ist v als Funkuon der gegebenen Grossen vollstindig bestimmt,

wobei :

und zwar durch die J- und JFunktlon von Bessel.

Auch Poisson kommt in seiner Abhandlung: «Sur la distribution
de la chaleur dans les corps solides», welche er am 31. Dezember
1821 der Akademie der Wissenschaften zu Paris vortrug und welche
im XIX. Heft des Journal de 1’école polytechnique publiziert ist, auf
derartige Funktionen. '

Bern. Mitteil. 1894. ; Nr. 1361.
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Im dritten Abschnitte des citierlen Werkes behandelt er die
Wirmeverteilung in einem homogenen Cylinder, der in irgend einer
Weise vorher erwirmt wurde und sich nun langsam - abkihlt. Mit
grossem Scharfsinne entwickelt er dabei diesbeziigliche, oft recht kom-
plizierte Formeln, und zwar zuerst fiir den allgemeinen und dann fir
die beiden speciellen Fille, wo der Radius des Grundkreises ein Mal
sehr klein und das andere Mal unendlich gross ist. Dabei findet er
eine Integralformel, welche noch die verinderlichen Werte einer Grosse
k enthilt, die der Gleichung

k? k® kt —
A=kt aor s Tazs o

geniigen muss.

Aus dieser Gleichung kann man zwar, bei dem kleinsten begin-
nend, nach und nach die ersten Werte fiir kK bestimmen; bel den
grosseren aber ist dies Verfahren schon schwieriger und unpraktischer,
und Poisson gibt aus diesem Grunde eine andere Bestimmungsart an.

Er betrachtet k als eine stetige Variabele und setzt:

T
10) y :f cos (k cos w) do.
U

Differenziert man diese Gleichung nach k, so wird:

T
11) g—;’(:——f sin (K cos @) cos w dw,
(0]

und durch nochmalige Differentiation folgt:

d?y i
12) i cos (K cos w) cns? o dw.
]

folglich

d? "
y -+ dks; =f [cos (k cos w) — cus (K cuos w) cos®? w] dw  °

0
T
:—f cos (k cos ) sin? o do.
o

Durch teilweise Integration nach der bekannten Formel:

fu dv == uv -—fvdu,
[ %

wobei: u = sin w, und dv = k cos (k c¢os w) sin w dw zu setzen ist,
findet man:
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T 7T
| kfc.os (k cos w) sin®* w dw = | sin (k cos w) cos w dw.
0 E
Mithin wird:
o _ 1 1 dy
y + dk® -—Tfsm (k cos w) cos w dw = — T 3K

0
und darum schliesslich:

dy 1 dy
18 HErtyxxty=

Diese Gleichung kann (wie leicht einzusehen) auch so geschrie-
ben werden:

d® (y \/k) 1 o
a ——
13%) T -+ ]2—}—1 y Vk = 0.
Das vollstindige Integral dieser Diﬁ‘erentialgleichung lautet :

—_ AMI
14) y \/k =[ k“’ tE ] cos k

+[B e e ]sink.
A und B sind zwei willkiirliche Konstanten, A‘, A“, A" . . .
B, B#, B/, ... bezeichnen unabhingige Koefflzienten von k, welche
sich vermiitelst A und B bestimmen lassen.
Substituiert man ndmlich den in Gleichung 14) gefundenen Wert
fir y \/E in Gleichung 132) und vergleicht die entsprechenden Terme

mit einander, so erhdlt man fir A . .., B’ . . . leicht die folgen-
den Bestimmungsgleichungen :

2A‘+%B=0

2.2A~+<1.2-{-—i-) B =0
2.8A”‘—|—(2.8+—i—)B“=
2.4A(4)—|—(3.4—{——1—)B“‘=0 W s w

und :

-—-ZB'—f—ji—A:O

—9.9B" —{—(1.2+-1—)A‘=—_0
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—2.38“’+(2.8+~}~)A”=0
—248(4)+(3.4++2—)A“‘=0 U s, W.

Die Konstanten A und B bekommt man, wenn man in y \/k und

AOVEO ok —
n T selzl: kK = oo,
Man hat alsdann (nach Gleichung 14):
15) y VK == A cos k -}- B sin k;
ferner:
16)—‘/—"1_\/1( — — Asin k + B cos k,

woraus folgt:

A = (y cos k — =2 sin k)\/k
B = (y sin K + —— C0S k) \/E.
dy

Setzt man in diesen Resultaten an Stelle von y und~a—E die in
Gleichung 10) und 11) angegebenen Werte, so entsteht:

T

A= \/Em [cos (k cos w) cos k | sin (k cos w) cos w sin k] dw,

17) -
B= \/Eﬁf[cos (k cos w) sin k — sin (k cos w) cos w cos k] dw.
\ 0
da nun: |
3 Y il B a® oY
cos® — —+ sin 5 1 und cos 9 sIn® — oS w,
so wird:
¥/
A= \/kfcos (2 k sin® %) cosz—;— dw
0
| —l—\/kfcos(zkcosz —g—) sinz—;% do,
0 - : ‘
17%)

B \/kfsm (2 k sin? %) cos2—g— dw
—}-\/kfsm (2 k cos? %) sin® —(g——dw.
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Durch zweckmissige Umformung dieser Integrale findet Poisson
fiir den Fall: Kk = oo folgende Werte:

T
Vk ‘{vcos (2 k -sin® (—2)> cos? % do = —;—\/}Z
0 .
" ‘ 1
s . . I
Vk ‘fb (2 k sin 5 )cos de 5 V7,
0
m
VE | cos(2Kk cost = )sin? — do = LN
2 2 2 ’
0

1
Vk fsin (2 k cos? ‘21) sin? —;’— do = é— 7.
0
Mithin erhilt man fir A und B schliesslich die Werte:

1) A=B=\/x,
.demnach

y VK = (cos k 4 sin k) \/7z; dy\/ = (cos k — sin k) { 7.

Aus dieser eben betracheten Untersuchung von Poisson geht nun
fiir die Theorie der Bessel'schen Funktionen folgendes hervor:
1) Da sowohl, wie Fourier gefunden (Gleichung 4®), das Integral:

n
fcos (k sin @) dow
&

| ; ; . .
(abgesehen vom Faktor _7;)’ als auch, wie Poisson zeigle (Gleichung

m
fcos (k cos @) dw

0
derselben Differentialgleichung:

d?y 1 dy

geniigt, so folgt hieraus, dass emerseltb ist:

0 1 L
J (k) = — | cos (k sin w) dw,
0

10), das Integral:

und andrerseits:

0 1 (" _
J (k) = — | cos (k cos o) do,
0
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0
dass man also die J-funktion durch zwei von einander verschiedene

bestimmte Integrale darstellen kann; auch allgemein gilt dieser Satz

fir die J-funktion; Bessel hat dies, wie ich im Abschnitt II zeigen
werde, sehr einfach bewiesen.

0 2) Fir dusserst grosse Werte von k ist der Wert der Funktion
J (k) dargestellt durch die Formel:

0 21
TR = Acosk—{:lenk :
VK
1 0
wobei A = B = ——; d. h. die Funktion J (k) verschwindet, so-
T

bald man ihr ein reelles Argument zuerteilt und dieses ins Unendliche
wachsen lasst.

Auf einen Punkt, der vielleicht zu Bedenken Anlass geben konn-
te¥), will ich hier jedoch noch aufmerksam machen. Poisson fand

fir die Konstanten A und B den Wert \/;, wihrend oben als Wert

—l—angegeben wird. Dass beide Wertbestimmungen ganz auf dasselbe

V=
hinauskommen, sieht man sofort ein, wenn man bertcksichtigt, dass
Poisson von der Formel (Gleichung 10):

0 i1
V=g, (K] = JCOS (k cos w) dw
; 0
ausging, und man mithin, um die Konstanten fiir J (k) zu finden, noch

1 i
durch 7z dividieren muss, wodurch man den Wert —— erhilt, den,
77T

wie ich zeigen werde, spiter auch Hansen und andere fanden."

II.

Sehr eingehend beschiftigte sich Bessel mit den fraglichen
Funktionen, welche daher auch nach ihm ihren Namen erhalten haben,
und zwar in einer Arbeit, welche den Titel trigt: «Untersuchung
des Teils der planetarischen Storungen, welcher aus der Bewegung
der Sonne entsteht».**) Dieselbe legte er am 29. Januar 1824 der kgl.
Akademie der Wissenschaften zu Berlin vor.

*) Siehe Neumann: «Theorie der Bessel'schen Funktionen» Seite 50, An-
merkung.
*#%) Abhandlungen der Berliner Akademie der Wissenschaften 1824. Mathemat
Kl. p. 1 und Abhandlungen von F. W. Bessel I. Bd. S. 84 u. ff.
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Er untersucht darin den Teil der Stérungen des Radius-Vektors,
der Linge in der Bahn und der Breite iiber der mittleren Ebene
derselben. Bei der Berechnung dieser Storungen treten noch ver-
schiedene Integrationskonstanten auf, welche, um die Aufgabe vollstindig
zu losen, genauer zu bestimmen sind. Eine sehr zweckmissige Be-
stimmungsmethode hat er in seiner « Analytischen Losung der Kepler’schen
Aufgabe», welche am 2. Juli 1818 der Akademie vorgelegt wurde,
angegeben.

In den so entstandenen Resultaten spielen nun die zwei folgen-

den Integrale
fcns g . cos e. de

fsiniy.sine.de.
[ 8

eine Hauptrolle, wobei u die mittlere, ¢ die excentrische Anomalie und
1 die Neigung der Bahn bezeichnet.

Diese beiden Integrale kann man leicht auf die Form

{cas (he — k sin &) de

[ 5

reduzieren, wobei h eine ganze Zahl bedeutet. Bessel war nun der
erste, welcher dieses Integral zweckmissig bezeichnele, und zwar
setzte er:

2n h
18) [cus (he — K sin ¢) de = 27z J (k).

Man hat nimlich, wenn man mit e die Excentricitit bezeichnet:

2n 2n de
fcosiy.coss.de:fcosi;z(l [1—60036])?‘
)
0 .

Y
1 igbi d 1 (2,:)Isi d
— . g— — | ¢
a w = u du,
0

weil bekanntlich die Gleichung gilt:
p=¢&— e sin g,
und folglich auch
du = (1 — e cos &) de.
Beriicksichtigt man die Integrationsgrenzen 0 und 2 =, so ver-
schwindet das letzte Integral und man erhilt:
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2n 1 20
19) fcos iu cos ede = BJCOS i u de
0
1 2n
= —P—J\cos (ie—1esing) de
)

—Z—Jl(le)

|

Ferner hat man:

fslnlusmeda___fcosl,ucosede—-{‘cob(e—l—ly) de

by
oder

P2 1 i i1
ZO)Jsiniysineds——-Zn. 3 Jie) —2ml(ie)

2 2
weil: fcos (e +1iu)de= fcos (i 4+ 1] e —iesin¢) de
0 b
i+1
==2m.J (ie).
h

Die Reihenentwicklung fiir J (k) erhilt er mittelst der in seiner
Abhandlung tiber die Kepler'sche Aufgabe angewandten Methode und
findet:

(k)h |
b 2/ 1 (k) 1 K\
21) JW)::Hmﬂl‘dp+1(§>*“Lzm+4xu+m(§)¥”}’

wo II(h) die von Gauss eingefiihrie II-Funklion vorstellt, also
HO)=0, 1nH1)y=1, MI(2)=1.2,....

Aus dieser Reihe lassen sich verhilinismissig schnell und leicht
h

die Zahlenwerte fir J(k) berechnen.

Weil die eben behandelten Integrale in der physischen Astronomie
eine grosse Rolle spielen, und sich die meisten Probleme auf der-
artige Entwicklungen zuriickfiihren lassen, so untersucht Bessel
am Schlusse seiner citierten Arbeit dieselben noch
etwas eingehender auf ihre sonstigen Eigenschaften
und findet dabei einige sehr interessanite Bezieh-
ungen, welche im folgenden kurz angegeben sein mogen.

Aus
cos[(i+1) e —ksine] 4-cos[(i—1) e — ksin &]= 2 cos (ie— k sin&) cose
erhilt Bessel, wenn er das Glied auf der rechten Seite schreibt:
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Zklcos (ie—ksins)—% [cos (1 e — k sin &)] (i — k cos &),

dasselbe mullipliziert mit de und integriert zwischen den Grenzen 0
und 27,

2
22) fcos [(i-} 1) e—k sin ¢] d£+f('os (i—1)e—ksing] de

=:—- rms(lsw—ksm e)da—-—-i—

cos (1e —k sin &) (i— k cos ¢) de.

0
Das letzte Integral auf der rechien Seite verschwindet fiir die Grenzen 0

und 2 -z und man erhéilt
: i—1 2 2 7T i

293) 2nJ(k)+2nJ(k)—— (k)
oder
i—1 211
29b) J(k)—}—J(k)——J(k)_—O

Aus dieser Gleichung geht hervor, dass man durch
zwel bekannte J-Funktionen alle ibrigen ausdriicken
kKann; ferner folgt hieraus:

23) J (k) = (— 1) I(K).
Man braucht also nur J-Funktionen mit positiven
ganzen Inkrementen zu betrachten

lm Weitern gibt Bessel den Werl fiir J(k) ausgedruckt durch J(k)

und J (k) nach der bekannten Eigenschaft der Kettenbriiche.*) (Seite
31 der angefiihrten Abhandlung.) ‘

Die Differentialgleichung fir die J-Funktion,
welche er bereits ebenfalls abgeleitet hat, findet man folgendermassen:
Differenziert man die Gleichung:

i 2
2 )k = fcos (i &€ — ksin ¢) de
0
nach k, so erhalt man:

¥) Wie ich von Prof. Dr. J. H. Graf weiss, hat derselbe bereits den Annali
di Matematica einen lingern Artikel eingesandt iiber den Zusammenhang der
Kettenausdriicke und der Bessel’schen Funktion I. Art. Derselbe wird demnéchst
erscheinen.

Bern. Mitteil. 1894. Nr. 1362.
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dJ (k)

2 K

% ii ikt
= | sin(ie—Ksineg) sinede=2n {EJ(k')_J (k)}

0
: . g -
oder: 24) J(RK) =—1J (k) — <.
o\ i41
Dividiert man vorstehende Gleichung durch (-——) so entsteht:
/

41k} . i
dk ittt 2!t d J (k)

H I
J(k) ——— ——
. k't dk

J (k)

K irn K S K\ T
) (&) ()

Ferner ist aber:

[ Tl
x 2 al : 2/
ol 16Ty e
1 (5) | ()
iz: d i;((k) 1k3:‘ F oo
folglich: .
. .f(k)1|
M
= i1 ] 2 2
(+) o((%))

oder allgemein :

4"
R {(z) l
(5"

Aus Gleichung 24) folgt nun durch nochmalige Differentiation

i i . i+1
e*Ik) i odiw) i j(k)_, dJ (k)
dk2  ~ k dk k2 dk

26)
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. Wendet man auf die ersten Differentialquotienten von J (k) und
J (k) Gleichung 24) an, so entsteht:

423 &) i2 i i

27) ‘——(ﬁzz—=FJ(k)—TJ(k)“E§-J(k)
i 1 i+1 i4-2

— t T k) 4 J(K).

Dividiert man ferner Gleichung 24) durch k, so erhilt man:

| Coi i1
S O ()

k dk
Addiert man diese Gleichung zu Gleichung 27), so folgt:
GBIk 1 dik) @ 41-}-1)1
Tae o Tk Tk TR i + 1Tk

Als Reduktionsformel gilt nun:

—2-@%'1 5K =3 (k) 4 J k).

Mit Benulzung derselben erhélt man schliesslich:

dZJ(k) dJ (k) i? .
28) St o - —q— T (1 — —)J(k) 0,

womit die Differentialgleichung fir J(k) hergeleitet ist. Bessel
hat sich auch schon mit der Addition der Argumente bei
der J-Funktion beschiftigt.

Fiir das Argument (k -- z) gibt er nidmlich die J-Funktion in
folgender Darstellung:

Nach Gleichung 26) ist:

[ i

TN
vo| =
\-_—ﬁ
s —

h‘-‘

—~+

WH

p—
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g | 3®)
&)
2 o Imw
K 2135 k i}8:
["(?)] (-2—)

also nach dem Taylor’schen Satze:

u. 8. W

Jk42  JK N

|
2 [ kz + z?
G Y

oder

- ™ 41
29) J(k+z):< 14 )I:J(k)____']__(ik_)_z(l “l'zik)

I :
t1 2 (1 + 2k) ' ]
Bessel macht die Bemerkung, dass jene Reihe zur Berechnung
und Interpolation einer Tafel dieser Funktionen verwendet werden

konne, und in der That hat er mit ihrer Hiilfe eine seiner Ab-
handlung beigegebene, von k = 0 bis k = 8,2 mit der Differenz 0,1
0

1
gehende, J (k) und J (k) enthaltende berechnet.

Auf die Funktion J lassen sich, wie Bessel eben-
falls schon zeigte, noch andere Integrale zuriick-
fiihren; als Beispiel moge folgendes geniigen:

2n 2i . i
—1——fcos(k sin &) cos ¢ de = 1'3'5".'(2] 1) J (k).
2 K

0

Beweis: Durch teilweise Integration erhilt man fiir das angege-
bene Integral folgenden Wert:
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_ 2i-1 k Kk 21 - 27
sin & . cos ¢ . cos (k sin ) — ———— cos & sin (k si
€.C0S & ( €) ST T & sin (k sin ¢) 1

2n 2i-2
4 (2im1)Jcos (k sin &) cos ¢ de

T 9% 2 27 gite
—(@i—1) | cose.cos(ksing)de+ —— | cos e cos (k sin &) de.
2141
if 0 _
Beriicksichtigt man die angegebenen Grenzen, so verschwinden
die beiden ersten Glieder, und man hat:

27 i 27 9
30) (2i — I)Jcos ¢ . cos (k sin &) de — 2'1J~ cos & . cos (k sin &) de
K2 an 2i42 e
—{—m cos & .cos (k sin &) de.
0
Fihrt man nun folgende Grosse ein:

2”2;. T
fcoss.cos(ksine) de = 1.3'5'](}'(21 L @ (1),

0
so entsteht aus Gleichung 30)

31) ke(i—1)—2i¢(i)+ke(i41)=0.
Diese Gleichung ist identisch mit Gleichung 22P); demnach:

o =1K, ¢@)=1IK),

¢ (1) = J (k).
Auch das Integral:
1 ‘
——fsinz’e . cos (K cos &) de

27
0

ist eine Darstellung der Bessel’schen Funktion erster
Art; dasselbe ist deshalb bemerkenswert, weil es, wie ich
spiter zeigen werde, auch Jacobi aus allgemeinen Betrach-
tungen und zwar auf eine hochst interessante Weise abgeleitet hat.

Von den weiteren Beziehungen, welche Bessel noch

0 0
angibt, seien hier die wichtigen Reih en fiir cos k . J(k) und sin k . J(k)
angefiihrt. Es ist: :
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J (k)————fcos (k cos &) de,

und ————fsm (k cos &) de.

Durch Multiplikation heider Gleichungen mit cos k resp. sin k

und sin k resp. — cos k und geeignete Addition findet man:

cos k. I(k)=—fcos(k—kcosa)ds-——————6fcos 2ksm2
sin k. J(k)—_——fsm (k — k cos &) de == ——Jsm 2ksm2

oder in Reihen entwwkelt:

de

ds

. . [ (2k)? sin* -;- (2k)* sin® 52
cosk.J(k):—ﬁfde{l —
0

T (2) LA TT7Y

ok)® sin1e £
_”( )° sin 5
I1(6)

o 1 2 c sin®
sink . J (K) = —— fde{2k sin? = — (2K)°

k- -

2 II(3
o (3)
(2K)®sin1® £
S S
mGB)  +
Mit Berticksichtigung der Grenzen ergibt sich schliesslich:
0 3 3.5.7
32) cosk.J(k)y=1———5 Kk? *
b ook T @y © T )
3.5.7.9.11
(I1(6))*
- g 3.5 3.5.7.9
33) sink . Jky)=Kk———F5 kK* 4+ ———— k°
_83.5.7.9.11.138 KT 4. .

. | (I (7)* -
Ahnliche Reihen leitete spiater auch Anger her.
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Im weitern fand Bessel, dass die Funktion f (k) mit den Sinus
und Cosinus die merkwiirdige Eigenschaft gemein hat, immer,
wenn ihr Argument von 2ns bis zu (2n -} 2)zz wichst, zweimal
zu verschwinden und dann das Vorzeichen zu wechseln. Zum Beweise

0 1
zeigt er, dass J (k) von kK = m s bis (m -+ ?) 7z immer positiv

ist, wenn m eine gerade Zahl, und immer negativ, wenn m eine un-
gerade Zahl ist.

0
Diese Eigenschaft kommt der J-funktion nicht allein zu, sondern
alle J-funktionen besitzen eine idhnliche. Man hat nimlich, wenn man
Ky k\
in Gleichung 26) der Kiirze wegen J (k) durch (*Q_) R® und(—z‘)
durch » bezeichnet: '
M
pitn 4B
dz ’
woraus folgt, dass R%TV verschwindet, wenn R” ein Maximum oder
Minimum ist; allein zwischen zwei Werten von k oder x, fiir welche

R® verschwindet, liegt notwendig ein Maximum oder Minimum, also
. 1
auch ein verschwindendes R, Es ist daher klar, dass J (k) ebenso
0
oft Null wird, so oft J (k) ein Maximum oder Minimum ist. Zwischen

1
diesen beiden Werten von k, fiir welche J (k) verschwindet, liegt in
ganz gleicher Weise immer ein Maximum oder Minimum von Rm,

daher ein verschwindendes .%(k) u. S. w.

Als Anwendung, welche Bessel von der J-funktion machte,
ist diejenige auf die Mittelpunktisgleichung zu erwihnen.
Er war bekanntlich der erste, welcher die Entwicklung der
Mittelpunktsgleichung und des Radius-Vektors in
Reihen, die nach den Sinus und Cosinus der mittleren Anomalie fort-
schreiten, durch eine Integration angegeben hat, wobei er einen schon
von Euler im XI. Bande der «Nova Acta» der Petersburger Akademie
veroffentlichten Satz benutzte. In der Zeitschrift fir Astronomie und
in den Abhandlungen der Berliner Akademie von 1816 und 1817 ist
seine Methode zuerst publiziert worden. Spiter hat er dieselbe Auf-
gabe in der citierten Abhandlung von 1824 nochmals mit Anwendung
der J-funktion zu losen versucht und erhielt dabei ein ganz einfaches
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Resultat, welches spiter von Hansen und namentlich von Anger
noch verallgemeinert und vereinfacht wurde.

Bezeichnet man mit w die mittlere, & die excentrische und »
die wahre Anomalie, mit e die Excentricitit, und setzt man:

v — pu = Ay sin p + A2 sin 2u -} As sin 3 + - -

A 1 008 i s dy — \/l—e- - cos (i e—1iesing) de
i { prome L]
® 27 k 7€ 1—ecose

weil bekanntlich ist:

u=¢e—esin¢und dv =
Ferner ist:

1
34) =
1—ecose /1 — e

{1—|—2}.cose—|—212cos2s

—1—21300338—}—---},

wobel :

e
1 +\/1=¢?
Multipliziert man Gleichung 34) auf die beiden Seiten mit
cos (1 &€ -— 1e sin &) de und integriert von O bis 2 7z, so erhilt man
die Glelchung

35)

i—2

Ay = J (ie) + A (J (1 e) + J(l e)) + A? (J(1 e) -+ I(ie)
| 43 UG+ Tae) e
worin die Entwicklung der Mittelpunktsgleichung, wie Bessel sie gibt,
enthalten ist.

Auf die Entwicklung des Radius-Vektors will ich hier nicht ein-
gehen; im Verlaufe der Arbeit bietet sich Gelegenheit, einige Be-
merkun gen dariiber zu machen.

2

II1.

Dieser Abschnitt sei der Darstellung jener eigentimlichen
Methode gewidmet, welche Jacobi anwandte, um die schon friiher

von Bessel gegebene Form
T

i K )
T (k)= | {' oy
7w . I (k) [ 3.5..@=0, cos (K cos ¢) sin™ ¢ de
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aus ganz allgemeinen Betrachtungen, auf einem ganz anderen Wege
von neuem herzuleiten., Diese Bestimmungsweise findet sich in seiner
Abhandlung «Formula transformationis integralium definitorum», vom
Jahre 1835, welche zuerst im XV. Bande des Crelle’schen Journal
abgedruckt wurde. Sie findet sich auch im VI. Bande der gesammel-
‘ten Werke Jacobis, welche Weierstrass herausgegeben hat.

Es ist:

T

2 om on _ (2m—1)(2m—3)...1...(2n—1)(2n—3)...1 =
36),’ I K08 XK= @m-+2n)@mF2n—2....2 2

0
T T

K 2m : n —2—- 2m
37 cos xcos (2nx)dx = (— 1) sin” x cos (2n x) dx

)

1 2m@m—1)...(m-+4n+1) i
g 1.2...(m —n) )

?

T

7T
2 2 '
38) ' cos (2n + 1) x cos®™ ' x dx=(—1)nfsin2m+1xsin (2n4-1)x.dx
0 0
1 C@um+12m...(m+n-42).x

- PR 1.2...(m —mn).2
oder allgemein, wenn p — i eine gerade positive Zahl bedeutet:

i
8 1 p(p—-i)...(p‘z" +1) -
39) fcospxcosixdx=—-
2P
0

. —. E 2
p—i
1.2...( 2)

_pp—1) ... (p—i1) (p—i—1) (p—i—38)..1.. 2i— D)2 —3).1 =

!

1.3...2i— 1) 2.4.6...(p+1) 2
Durch Vergleichung mit Gleichung 36) folgt:
T : T
2

£ ; '
a b ivae PO —1 ... (p—i41) [ 2o o
39*) J\ cos'x cosix dx = 1.3..._(21—1) sin” x cos™ xdx.

Damit diese Formel auch gilt, wenn p — i eine ungerade Zahl
bedeutet, wihlt man als Integrationsgrenzen 0 und sz; in diesem
Falle verschwinden nimlich, fir p — i gleich einer ungeraden Zahl,
beide Integrale. Bezeichnen daher i und p irgendwelche ganze Zahlen,
so wird:

Bern. Mitteil. 1894. Nr. 1363.
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T : . T
40)Jcospx cos i x dx = P (1p—3 lé (129:1_—';)1) sin® x cos™x dx.
0

Nimmt man nun an, die Funktion f(z) konne nach ganzen, posi-
tiven Potenzen von z entwickelt werden, und diese Entwicklung laute:

f(z) = 2 Ap 2P

d' f(2)
(dz)

und setzt man:
= 19 (2),
WO
1% () =Ep O—1D@—2)...0 —it1) 4, 2,
so entsteht aus Gleichung 40) folgende Relation:

T 7T
41) J‘f (cos x) cos ix dx =2 Ap Jcospx cosix dx

1 (4

_ g i‘ _ . i

1.3.5...(21—1)fsm x{; |p(P 1)...(p—i 1) A, costixpdx
h

oder endlich :

T T
. _ 1 @ . 9
42) Jf(cosx)c051xdx_1‘3_5.“(2.[_1))]‘ f* (cos x) sin” x dx.
)

Diese Formel benutzte nun Jacobi zur Herleitung des angege-

1
benen Wertes von J (k).
Bezeichnen néamlich ¢ u, e beziigl. die excentrische, mittlere
Anomalie und die Excentricitit, so dass

@ = & —e sin g,
so mogen folgende Reihenentwicklungen gelten:

13) oSN & == Py - 2 Prcos - 2pncos2p |2y cos B - -
Sin N & = o sin g - sin 2u - qn sin B - - -
wobei.:
' b3 1 7T
o _ L , N i P
Pa = — cos 1 ucosnedu iﬂ‘fsml,usmnede
0

= 2?7vaf\7fcos[(i-—n)e——iesine}—cos{(i—]—n)s—iesins}]da

und:
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7 T
(i)_i siniusinned ——g—r—l- cosipucosnede
qn 7 ‘LL& ‘ll_- i” H

0 0

== % [vfcos{(i—n)s—iesine}-—]—cos{(i—{—n)s-—iesine}] de.
0

Vorstehende Werte erhillt man leicht durch teilweise Integration,
wobei die Glieder, fir welche die Integration ausgefiihrt ist, zwischen
den angegebenen Grenzen verschwinden.

Setzt man nun mit Bessel:

1 T i
”Jvcos (ie —ksine)de=7J(k)

so wird:
a _i i-n . B i—l—-!!
Pn’ = 2i{J(lB) J(ie)
. i-n i+n
und - q@ =iil1(ie)+s(ie)

Je nachdem i eine gerade oder ungerade Zahl bhezeichnet, er-
hilt man:

2i 1 %
§ (k) = — | cos (k sin ) cos (2i¢) de
' 0

=y ("
= fcos (k cos &) cos (21i¢)de.
44) | 2i41 U

T
I} == %fsin (k sin €) sin (2i + 1) ede
0

(—1 (™ .
=-—— | sin (k cos &) cos (21} 1) ede.

\

In gleicher Weise gelten folgende Reihenentwicklungen:

cos iy:k(i) + 2 k® cos s—|—2k§i) cos2¢e-4---

45) PR ¢ \ R @ - A o4
siniu=1" sine-41," sin2¢&-41," sin3e -}

wobei:
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, 1 ™
kf,‘)=¥fcos iwcosneds

=§%ffcos[(i—n)e—iesins} -} cos I(i -+ n) e —iesin e}] de;
0

: 9 &
lg)=—~fsiniy sinnsde
7T
0

' T
=;; [‘[cosl(i—-n)e—iesinsf — CO0S {(i—]— n) ¢ —ie sin ei] de.
ki _
oder:
i i-n i 1
K = JGie)-|1J 1)e)} B (Isl)

9 =13 0) — iie) = %1 Py

Die Umformung des Integrales fiir .i (k) gestaltet sich demnach
folgendermassen. Selzt man
f(z) = cos (kz) oder f(z) = sin (Kk z),
so wird mit Beriicksichtigung von Gleichung 42)

ani(k) = (—l)iJcos (k cos &) cos (2i e)de

K3 i+ :
=13 % ai—1) (k cos &) sin*sde;
0

und:
2i4-1 <h
nJ(k)_(-——l) sin (k cos &) cos 2i -} 1) e de
0 .
k>t ” dit2
=1.3.5”.(M_,_l))fcos(kcose)sm ¢ de;

oder allgemein fiir jedes positive i:

i i 7‘ )
46) wJ(k) = 1.3“1'{(21_1) bfcos(k(:oss)sing'sde,

womit die von Bessel angegebene Form wieder hergeleitet ist.
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IV.

P. A. Hansen, Direktor der Sternwarte Seeberg, hat eben-
falls die Bessel’'schen Funktionen in das Bereich seiner Untersuch-
ungen gezogen und zwar im ersten Teile seiner Abhandlung: «Ermit-
telung der absoluten Storungen in Ellipsen von beliebiger Excentricitit
und Neigung», 1843, der als Beispiel «die Berechnung der absoluten
vom Saturn erzeugten Storungen des Encke’schen Kometen» enthalt,

B In dem Abschnitte, welcher von der Integration der von ihm ge-
fundenen Differentiale handelt, stosst er auf derartige Grossen, und

bezeichnet sie mit ?l(},), .i(l) ...Jd0) ... Hier muss nun be-
merkt werden, dass Hansen fir diese Funktion eine
-von der hier angenommenen abweichende Schreib-
weise gebraucht. Zwischen der unsrigen und ihr besteht nim-
lich folgende einfache Relation:

T =1 @0,

i i 1
JA) =1 (? k),
sie ist also identisch mit der Bessel’schen Transcendenten J(k), wenn

man 2A statt k schreibt.

0
Wie schon bemerkt, hat Bessel eine Tafel der Funktionen J(k) und

oder umgekehrt :

J1 (k) konstruiert, welche fiir alle um 0,1 verschiedenen Werle des
Argumentes die zugehorigen Funktionswerte zehnstellig angibt und zwar
.von Kk = 0 his k = 3,20. Hansen hat Tafeln von griosserem Umfange be-
rechnet; dieselben gehen von 4 = 0 bis 2 = 20, d. h. von k = 0 bis
k =10, mit einem Inkremente von 0,05 resp. 0,1, und geben die
Funktionswerte bis auf sechs Decimalstellen richtig an.

Durch Integration der im Verlaufe jener citierten Abhandlung
gefundenen Gleichung:

dy © Ay 1
WH(—-’““—) =5

- o X
erhilt Hansen folgenden Wert fiir y:

| 47) y=x" cl(x"i—) fx“"lv c'l(x'%) dx 4 Konst.

Die beiden Reihen:



= BBG

k=_—1+2x+-1—1.2x2—{—21 A3 x8 ..
d A 1 2 1 28
e L B B Bl =
gehenlelcht
( )”J(l)+x3(1)+x21(l)+ -—J(l)
1 2 1 8
+ 1A —FIDt--
18) _;_(x__l_) 0 1 s 1 1
c % =J(/1)-—xJ(l)—|—x2J(l)+...+_J(L)
1 2
L +_2J3‘)+"'
wobei: ‘
=1 —a gt e o
PR 27 3z "~ '
) =a— eyt s 1 e
2 2% .3 2t . 3% 4 -

1 1 1

2 1
L " 6__ 8 1 ...
IH 2 A 2.3 M 22.83.4 4 2% 32.4.5 s =

1 1

2 1
. 8 __ __* 15 7
J(R)__2.3]L 2.3.4A+ 22.3.4.5){

1 9
22 .32 . 4.5.6 s bl

u. S. w.

Substituiert man nun die Reihen 48) in Gleichung 47) und fiihrt

die Integration wirklich aus, so entsteht:

y=

- S

{ —|—J(l)x4—J(l) x~3+m) -t — Jo x1 + J(A)—}—J(l)x
+J(l)x2—f—- 3t

4 3 .
(%) IA) J(fi) w
+mx‘—m’li"'+ T o7 !

w—

+ —= " (l) x24 - } —+ Konst.

Um zu zeigen, dass alle hier vorkommenden J-Funktionen mit

den betreffenden Bessel'schen identisch sind fiir k =24, setzt Hansen:
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1
X + T = 2 cos z,
woraus bekanntlich folgt:

‘ x’+—;;=20052z

x3—|-——$5~=2cos3z u. S. W.
X ——~)—1c—=298inz

o 1 .

X —F=2gsm2x

. 1 ;

X ———}:5—:—2951113:5 U, 8. W,

wobei: o=y — 1.
Substituiert man diese Gleichungen in die erste Reihe der Glei-
chung 48), so erhélt man:

2 oAsin z 0 1 . 2 3 .
¢ =JA) + 20 J(A) sinz4-2J(A) cos 2z 4 290 J(A)sin8z-{---
Nach bekannten Sitzen ergibt sich nun, wenn i eine ungerade
Zahl bedeutet:

49) .iI(A) =1 2Z2*0“‘“”sin izdz
¢ 2 7 ’
Ist 1 eine gerade Zahl, so wird:
' . : 2
50) 3(1)::—1— 7(f,”"“ﬁnzcos izdz.
2
Setzt man jetzl, wenn i eine ungerade Zahl bedeutet:
V= 0 o5 j g,
so wird:
dV=o4 czlﬁ”i”{cos i+1)z4cos(i—1) z}dz — i ginizdz
weil
cos(i—+ 1)z cos(i—1)z=2 cosizcos z.
Ist aber ' ungerade, so ist sowohl (i - 1) als auch (i — 1) ge-

rade; deshalb and weil :
2
fd ¥ ==,

0
entsteht folgende Gleichung:
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i1 i—1
b1 0=A{IAMF+IA)}—i J(A)
Es sei ferner, wenn i eine gerade Zahl bedeutet:
V= c* e gip i g,
mithin :
dV =) ciersn z{sin (i41)z4sin(i— 1)z} dz 4 ic* ™ cosizdz.

In ganz gleicher Weise wie vorher' entsteht hieraus die Gleichung:
i1 i1

50 0 =2 {1 + I} —ilw,

welche mit der von Bessel gefundemen 22%) identisch ist. Fiir

A= % k entsteht namlich:

519) _%_ Kk rfl (%_ k) +i31<—21— k)} —iJ (% k) _ 0,

oder:
i-1

29%) K (k) + It} — 2k =o0.
Fir i = 0, wird Gleichung 50)

J(l) = f c2edsinz qz. oder

27
g 1 - , ’
JA) = Tr—f {cos (2 4 sin z) - ¢ sin (2 A sin z)} dz
0
Da nun aber:
27
fsin(lein z)dz =0,

0

so folgt:
52) J(l) = ————fcos (2 4 sin z) ds,

welches der bekannte Ausdruck fiir diese Transcendente ist, wenn man
k fir 2 4 einfiihrt. (conf. Gleichung 18).

Im weitern gibt Hansen Ausdriicke zur Be-
rechnung von J(A) auch fiir den Fall A= o<. Dieselben er-

hilt er durch Entwicklung der Transcendenten J(l) in eme nach fallen-
den Potenzen von A fortschreitende Reihe.
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Die Gleichungen 49) und 50) ergeben:

1 2
f C2g}.sin 2 dz
2

0

1) =

1 1 2
: d) === c20Asinz gin z dz
¢ 2

0

J3) = f c20Asinzeos 2 7 dz.
2
0

Differenziert man die erste dieser drei Relationen, so entsteht:

A 2n
d'](z) __ 9 20 Asinz
“F B ﬂfc(’ sin z . dz_—ZJ(l)
0
0
el 1 [

“chw}mz {1 — €08 2;} dz = 2J(l)—-—2 1(1)

0

dA?

Diese letzten Gleichungen geben in Verbindung mit der Be-
dingungsgleichung

2 11 0
JO) — =3I + I =0

0
die folgende lineare Differentia]gleichung der J-Funktion:

0
d? J(4) 1 d J(Z)
53) W—{— o +4J(A)_0
Fir den Fall: A =00, d. h. i———O

| A ’
geht vorsiehende Gleichung tiber in: ‘

0
dz J(A 0
B i =o,

deren Integral bekanntlich ist:

0
J(A) =k cos 2 2 - Kk’ sin 2 4,
wobei k und k‘ zwei dem Integral hinzugefiigte Inlegrationskonstan-

0
ten sind. Diesen Wert fiir J (A) kann man als Niherungswert be-
trachten, falls A4 gleich einer sehr grossen Zahl wird.

Substituieren wir denselben nun in Gleichung 53) und sehen dabei
k und k‘ als veridnderliche Griossen an, so entsteht eine identische
Bern. Mitteil. 1894. Nr. 1364.
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Gleichung und die Koeffizienten von sin 24 und cos 2 miissen
daher jeder fiir sich gleich Null werden; mithin muss sein:
d2k 1 dk- 4dk’ 2k’
o trata Tt =0
dzk‘_l__l_ dk’  4dk 2K
da® A di d4 i
Setzt man jetzt:
« (241

o2
k:l—‘_l- et + o o+

==

wobei «, a1, . . . B, 1, . . . Konstanten sind, in die vorhergehenden
Gleichungen ein, so findet man zuerst a = —;—, und nach weitern Um-
0
formungen ergibt sich schliesslich fiir J (4) folgender Ausdruck:
i [ 1 9 3675 : .
W =c\7w — §1o7w T Baaessm [ CS@A—OT
1 75 297675

L

— o . dah_ o
o\ — stoexn T divasosors S0 (2 ¢),

wobei: @ =¢c . cos ¢/, #=c¢ . sin c'.

Die Konstanten ¢ und c¢’ bestimmen sich nach einem von L a-
place angegebenen Verfahren (Seite 112 u. ff. der cilierten Ab-
handlung), und zwar wird: ,

1 1
C—=—F—, O = —7T.

T

Mithin lautet der vollstindige Integralausdruck der Gleichung 53):

0 1 1 9 3675
54) J(A) = —— - —_— — .l
) 14 V7 { A" 512 A% T 524288 A%t }
. COS (21—-%7:) -+
L1 11 n 207675 )
Ve 1647 8192 4% 1 41948040 2"+ —+ }

) 1
. sin (21-———4— n)
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Je grossel nun A ist, desto genauer kann man mit Hllfe dieser

Glelchung.l () berechnen. Ist A sehr gross, so reicht man mit dem
ersten Gliede der ersten Reihe aus, und in diesem Falle gewihrt also
vorliegender Ausdruck eine ungemein kurze Rechnung. Aber auch,

wenn A nicht sehr gross ist, kann man doch den obigen Ausdruck
0

J(A) mit einer in den weitaus meisten Fillen hinreichenden Genauig-
keit berechnen.

Wendet man die eben gefundene Formel auf die friiher abgelei-
tete Gleichung:

0
1 dIQ)
J(l T 5 dA
an, so enisteht:
1 1 (1 15 4725 . 1
55)1(1)2\/—; (7t 5120~ oamss =S (ZA—T )+
-3 105 363825
V7 \T6 7% — 8108 77 T Ti9430807% F }

Da nun allgemein gilt
1 d J())
S da
s0 kann man durch fortgebetzte Dlﬁerentlauon des eben gefundenen

it1
J() = J(z)

Ausdruckes fiir J(/l) alle anderen J(l) explicite durch Reihen, welche
nach fallenden Potenzen von A geordnet sind, darstellen.

Als Anwendung der Bessel'schen Funktionen, welche Hansen
machte, ist, wie schon bemerkt, diejenige auf die Mittelpunktsgleichung
zu erwihnen. Hansen hat dariiber zuerst in den «Comples rendus»
und in den «Astronomischen Nachrichten» eine vorliufige Notiz gege-
ben und spiter in seiner Abhandlung «Entwickelung des Produkies
einer Potenz des Radius vector», welche im Jahre 1853 erschien,
eine ausfiihrliche Erorterung des Gegenstandes veréffentlicht. Naher
hierauf einzugehen, halte ich nicht fir angebrachf, zumal ich spiter
doch noch einmal auf diese Materie zuriickkommen muss.

Anger, Direktor der naturforschenden Geselischaft in Danzig,
hat in den «Neuesten Schriften der Naturforschenden Gesellschaft in
Danzig» vom Jahre 1855 eine Arbeit veriffentlicht, welche den Titel
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h
fihrt: «Untersuchungen tiber die Funktion J (k) mit Anwendungen auf

das Kepler’sche Problem», worin er zeigt, dass die einfachen Gesetze,
denen diese Funktion unterworfen ist, wenn fir h eine ganze Zahl
genommen wird, sich sehr einfach und im Zusammenhange aus
ihrer Erklirung in Verbindung mit dem zuerst von Euler aufge-
stellten aligemeinen Theorem, nach welchem eine Funktion in eine nach
den Sinus und Cosinus der Vielfachen des Argumentes fortschreitende
Reihe entwickelt werden kann, ableiten lassen. Ferner gibt er auf
‘hochst scharfsinnige und elegante Weise die Entwicklung der Funktion
fir den Fall, dlfiss h eine gebrochene Zahl ist, und teilt fiir die Ent-

wicklung von J (k) in eine nach den absteigenden Potenzen von k
fortschreitende Doppelreihe zwei neue Methoden mit, von denen na-
mentlich die zweite grisseres Interesse verdient.

Die bekannten Ausdriicke fir sin®t'¢ und fir sin® & als li-
neare Funktionen der Sinus und Cosinus der vielfachen Winkel*), wo

1 jede ganze Zahl bedeutet, geben leicht die Gleichungen:

2n )
f sin 2i ¢ . sin”T'e de = 0,

56) {0
2 )
fcos (2 +1) ¢ . sin”e de=0,
\

0
wo i’ ebenfalls jede ganze Zahl bedeutet.

Da nun keine geraden Polenzen von sin & in der Entwicklung
von sin (k sin ¢), und keine ungeraden in der Entwicklung von
cos (k sin & vorkommen, so wird nach Gleichung 56), wenn h eine
gerade Zahl bedeutet:

*) Es ist ndmlich fiir jedes ganzzahlige i:
(—1)'. 2% sin®t e —sin (24 1) e — 21—1’_1 sin (21 — 1) ¢
+ (2ii1—;) 2isin(2i—3)£. s e @Ri4+1D2€E@—1)...(i+2) L8

LoBud. wl
und
(— 1)i oU—1 gin?l ¢ — cos 2ie-—?1-100326——1)e—|—%—)-cos2(i—2)em
+_1__ RIRI—1) R —2). ..(i-{-l).
— 2 1.2.8...1

Multipliziert man die erste dieser Gleichungen mit sin 2i’ ¢, die zweite mit
cos (2i’ 4 1) ¢ und integriert zwischen den Grenzen 0 und 27, so entstehen die
Gleichungen 56).
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sin h & . sin (k sin ¢) de = 0,

R

und fiir ein ungerades h:

cos he. cos (k sin g) de = 0.

—

Ist schliesslich h eine ganze Zahl, gleichviel ob gerade oder un-
gerade, so ist:
' 2n

sin h e . cos (k sin ¢) de = 0,

T
cos he. sin (k sin ¢) de =0;

%"%

27
demnach auch: fsin (he — ksin ¢) de = 0.

0
2

Bezeichnet man nun mit Bessel f cos (he — Kk sin &) de durch
G

h
27¢ J(k), so folgt durch Auflosung des Cosinus:

I(k) _————Jcos h e . cos (k sin &) de ——~f51n h & . sin (k sin &) de,

| mithin :
2

b
I(k) = ——fcos he. cos (ksin ¢) de — 2—1— sin h ¢ . sin (k sin &) de.
0

Es wird demnach, wenn h eine gerade Zahl bedeutet:

h -h -h
J(k) = I(K) = — I(k),
oder allgemein :

-h h
JK)=(—1) J(K).
Fir ein negatives k gellen ebenso die Gleichungen:
h -h h h
I(=Kk)=Ik)=(—1)" . J(Kk);
und schliesslich:
-h h
J(— k) = J(k).
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Anger leitet weilerhin einige Reihen ab, so fir cos (K sin &),
sin (k sin &), sin (k cos &) u. s. w., welche nach Bessel’schen Funk-
tionen fortschreiten, und welche ich hier der Ubersicht wegen noch-
mals zusammenstellen will; zu bemerken ist hierbei, dass die Reihen
fiir sin (k cos &) und cos(k cos &) schon von Jacobi als direkte
Folgerung aus Gleichung 44) aufgestellt worden sind, und dass auch
Bessel schon einige derselben gefunden hat. Es ist:

\icos(ksms)__J(k)—l—2J(k) cos 2€—I—2J(k) 00%48—[— .
sin (k sin &) = 2 J(k) sin ¢ | 2 J(k) sin 3e+2J(k) sin He—4---

Setzt man hierin %— — ¢ stalt ¢ so ergeben sich daraus die folgen-

den Reihen:

0 2 4
ﬁ)]cos(k cos &) = J(k) — 2 J(k) cos 2 ¢ + 2 J(k) cos4a_|~—_- .

1 3 5
]Sin (k cos &) = 2 J(k) cos ¢ — 2 J(k) cos 8 ¢ —[—2J(k)cos5s__-r_---

Differenziert man diese Gleichungen nach & so findet man:
2 4
Mk . sin (k cos €) sin e ==2.2 . J(k)sin2e — 2.4 J(k) sin4 ¢ - ---
1 3
k.cos (kcose)sine=2.1.J(k)sine—2.3J(k)sin3e—---

Statt zu differenzieren, kann man auch obige Gleichungen mit
k sin ¢ multiplizieren, darauf nach den Sinus der Vielfachen ordnen
und erhilt alsdann:

& {k sin (k cos €) sine—k [J(k) +J(k)] sin2¢ — [.?(k)—l—?l(k) sind e
kcos (k cos €)sine =k [J(k)—[—J(k)] sine — [J(k)+J(k)} sin3 e+

Durch Vergleichung ergibt sich demnach:
k (g(k) -+ j(k)) ==2.1 }(k); k (.ll(k)—{— .?i(k)) =2.%2. j(k)-
k (f(k) + .14(k)) =9.3 }(k); k (J(k) -+ J(k)) =2 .4, J(k) U. S. W.

d. h. allgemein:

h-1 h41 h
57) k [J(k) 4 J(k)] = 2 h . J(k).
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Durch Differentiation der Gleichungen ) nach k erhilt man:

{

d J(k) d J(k)

sin (k cos €) cos € = — ——~ -} 2 cos 2 ¢
‘k
— 2 d;l(()coséei---
’) ik i(k)
d J(k d J(k
cos (k cos €) cos e = 2 K cos € — 2 3k cos 3 ¢
+ 2 ——= dJ(k) 005531‘---

Es ist aber auch durch Multiplikation der Gleichungen ) mit
cos &, wenn man nach den Cosinus des Vielfachen von & ordnet:

sin (k cos ¢) cos ¢ = }(k) + [}(k) — 3(k)] cos 2 ¢
) — [J(K) — J(K)) cos 4 &+ - -
cos (k cos €) cos € = [?I(k) —-2J(k)] coS € — [?l(k)——j(k)]t:os 3¢

also :
3(k)=——d;,'§—“) (k) —§(k) =2 d;ﬂ‘) ,
J(k) — J(k) = 2 ‘”l((k) 5.
3
1K) — () = 2 3 ;l({") 3(k) — J() = 28 dJl({k) ws W

In Verbindung mit Gleichung 57) ergibt sich aus diesen Glei-
chungen:

=t — 280 _ 350 oy 200
: : aik) 2. N 2 a J(k) ,
J(k) =J(k) — 2 * = (k) — J(k) —2 u. S. W.;

hieraus:
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1
NEES ML )
2
J(k)——-% I(k) — _ddj_l(zljl_ 0. S. W.;
allgemein:
h41
Ty =gy — ’(")

Als Differentialgleichung fiir die J-Funktion findet Anger auf be-
kannte Weise die folgende:

dy | 1 d h?
58) xg—l— y-l—(l——)y:O,

x dx

b
wobei x =Kk, y = J (k) ist. Fir h =0 wird dieselbe:

d?y 1 dy .
= TR TI=0

0
d. h. die Differentialgleichung fiir die Funktion J (k).
Setzt man nun:

y=1-—asx®} asx* —as x®4-- .-

so ergeben sich zur Bestimmung der Koefflzienten der Glieder auf be-
kannte Weise die folgenden Gleichungen:

1= LI 1
gr U= T . 2.3)7. 2%

) _ (3)

0 k \?
60) J(k)=1_(?)+(1.2)"_(1.2.3)2i"'

Die Integration der Differentialgleichung 58) liefert, wenn man
setzt

az —

und man erhilt:

y=ar x* — ag XM ag XM

in bekannter Weise:
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a1

1.2.2% (a1 (012’

a1 — a1, az ; a8 =

_ a1

22 (h1)
a1 o

1.2.83.2th }1)(h~+2)(h43)

wo der Koeffizient von x" aus der Gleichung 57) bestimmt werden

kann. Setzt man nimlich den Koeffizienten von k™" in der Entwick-
h—1 h+1
lung von J (k) gleich &1, den von K™ in der Entwicklung von J (k)

gleich A:, dann muss sein:
By o yn o A e
ek =gk g KT

Es wird also fir

a4 =

h=1: a1 = 2 a1; al=—La1.
2
h=2: a1 =2.2.21;, a1= d ai.
2.2
h=3: a1 =2.83.a1; a= : at,
’ 2.8

Da aber in der Reihenentwicklung fiir J (k) der Wert von o1
gleich 1 ist, so wird

, 1 .. 1 1
fur h = 1, a1 — "E"; fllI‘ h — 2, a = —1—:‘5‘ . —§§-; .
oder allgemein, fiir ein beliebiges ganzes h, der Koeffizient von k"

h
in der Reihe fiir J (k)

1 1
o1 o

~1.2.3...n 2
und man erhalt;

(3)

h 2 1 (kY 1 k\*
Gl dik)s= II(h) {1  h41 (?) +1 .2(h--1)(h}-2) (§)+ }
welches die Reihenentwicklung fiir die J-Funktlion ist, wenn h eine
ganze Zahl bedeutet, und welche mit der von Bessel gegebenen (Glei-

chung 21) genau tbereinstimmt.

h
Yon den Integralen, welche Anger durch die Funktion 7 (k)
darstellt, wollen wir hier nur dasjenige betrachten, welches schon friiher
Bern. Mitteil. 1894, Nr. 1365.
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von Bessel, wenn auch auf anderem Wege, auf die J-Funktion zurick-
gefiihrt wurde, namlich:

27 _ B
fcosm‘e cos (k sin ¢) de = 1.3.9 l-(h(% L J(k).

27
0

| Da ist:

o1 cos®™e = cos 2h e 27'3 cos (2h —2) e

s 2h‘£21‘2—“1) cos (2h — 4) e J -

1 2h(2h —1). (h+1)
T 1.9.3.

so wird, wenn man auf beiden Seiten mit cos (k sin &) multipliziert,
von 0 bis 27z integriert und beriicksichtigt, dass

2 27
fcos (2he—Xk sin ¢) de = | cos (2 h € + Kk sin ¢) de
0
ist

Zn
9*h, f " ¢ (cos k sin €) de =2 ‘J(k) 1. 35’ ﬁ?ﬁ) .

0

1 2h(2h—1)... (1) O
T3 1.2...h "(k)}

Da aber, wie durch wiederholte Anwendung der a]lgemeinen
Gleichung

h-1 h+1 h
k J(k) 4 k J(k) = 2h J(k)

leicht gefunden wird,

TR (1 INERPREE ST it EEELUS S ()
_ 2 1.3, 5k(2h—-1) g(k)’

wo h irgend eine ganze Zahl bedeutet, so entsteht:

2

2 Kt

J(k),

womit die Zuriickfihrung beendet ist.
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Hebt man die Voraussetzung, dass h eine ganze Zahl bedeute,
auf und setzt statt h die Grosse h \/ — 1 =1h, wo h eine belie-

bige, gleichviel ob ganze oder gebrochene Zahl ist, so erhilt man

allgemeinere Gleichungen, welche Anger ebenfalls schon aufgestellt
hat. Es 1st:

2n 2
62) J‘cos (ihe — Kk sin ¢€) de =Jcos ihe.cos (k sin ¢) de

27
—-}—J‘sinihs.sin(ksins) de.

Da nun nach teilweiser Integration :

he . n-1 A
: e sin e(hsine—ncose
fehs sin" e de = ( )

h? 4 n?

-4~ ———-——-—I(lh(zn;nlzi e sin®? ¢ de
und:

he n-1 ‘
he e cos ¢ (hcose - nsine)
fe cos" ¢ de = T
n(n— 1)'
+ h2 __I_ n2

he ___1__h£
fe de_he.

Dieses Integral geht fir ¢ == 0 in -111_’ fir e = 2 in Tlf e iiber.

e™ cos™? e de ist,
so folgt fir n = 0:

Ferner ist

welches fir e = 0in — —i—

—111— ™ iibergeht. Demnach wird:

27T he -he
e e 1 song shn
f”'a—de——zﬁ(e L

fir e = 27 in —
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Fihrt man in gleicher Weise fort, d. h. betrachtet man die ein-
zelnen auftrelenden Glieder in Bezug auf die Grenzen 0 und 2z, so
ergibt sich schliesslich aus Gleichung 62), wenn man darin die be-
kannten Exponentialgrossen fiir cosih ¢ und sini h ¢ einfiilhrt und

sie demnach schreibt:

2n obe _,
cos (k sin &) de

623) fcos (ih e — ksin ¢) de =
0
(P et — et .
+ i ——5———sin (k sin &) de,
%
folgender Wert:

21 ke -he shr -2hm
e | e . e —e
f —g cos (k sin ¢) de = oh

k? k*
ey T F oo +4& -+ 7T
Fir den imaginiren Teil der Gleichung 62°) erhilt man fol-

gendes:
Es ist fir e = 0 resp. e = 2x

0

Pl ==

k e?7 k
he oo . _ &K
fe K sin ¢ de = h2+1resp. e

-2h7r k

~he
—f ks1neds_-—|—12+1resp—|—h2+1

Durch Addition entsteht folglich ein Glied von der Form:
k
h? 41
Fihrt man in derselben Weise wie vorher fort, indem man auf
die Integrationsgrenzen Riicksicht nimmt, so wird schliesslich:

2 " -2h
T ehe . ehe . (k - )d ezhyr___ 62 T
_ & & = -
2 2

0

_ (62!17: _ e-2h.rr)

K k®
& {h2+1 BGES (h2+32)i"'}
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Durch Zusammenfassen beider Teile entsteht die Gleichung:

shmr @~ 2hw

e
b - —_
62b) Jcos (i he — k sin ¢) de = h

k? k*
X{l_‘ h2—|—23+ (h2+22)(h2+4:2)$'“}

e2hﬂ _ e-2h7t Kk k3
2 1 (h®J-1) (h239%)

—1

k? .
T wFDEF @ T }

Geht man wieder von den imaginiren Grossen zuriick, indem
man in diese Gleichung fiir h den Wert — h i einsetzt, so ergibt sich:

h 27T k2
63) m[COS(h e—-—-ksins) d£=1+-ﬁ-§-—;—§2—
[}
k¢ k¢
t o Te—me—mo—o

k® k®
+ h {h2 +(h2 1) (h2 32) _I_ (h2 1) (h2 32) (h2 52)+ }

Diese neue Entwicklung fiir die J-Funktion, welche fiir alle Werte
von h, mégen sie ganze oder gebrochene Zahlen sein, giltig ist, ent-
hilt als Specialfall die von Bessel gegebene Reiheneniwicklung, was

. — ; ; 0
leicht zu beweisen ist, wenn man die Werte der die Form o anneh-
menden Glieder bestimmt.

Versteht man also unter h irgend eine ganze oder gebrochene
Zahl, so gibt die ebengefundene neue Entwickelung folgende allgemei-

h
nere Diﬁ'erentialgleichung fir J (k):
2
0= 41 J(k) +L ‘”(k) + ( h) J(k) 4 2o h’H‘ sin 2h 7 ;

fir ein ganzes h geht dieselbe in die von Bessel gegebene iiber, da
fir diesen Fall sin 2h = = 0 ist.
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Setzt man in der Differentialgleichung:

1 i2
dx2+x dx +y( x2)
y=xiz ein, so wird:
d2

Z_y_- 5 i 5 H‘lﬂ i+2fz‘
xdx3_1(1 1)xz 4 2ix dx-[—x i

dY___ 1+1dZ
X-&;-——IX z+x i

(x*—it)y=x1"z — i x'g
also :

0 =i {(i — 1) zxi—{— zx' —ix z}—]—-xi'*'?z
o ) G e 0

dx dx?
oder, da das erste Klammerglied verschwindet:

0=x"z 4 @i F1)x ‘+1dz -+ x e dz
dz 2% 1 dz
d. h. 0= e -} ” " ix + z.

Die Differentialgleichung hat die einfachste Form, wenn die Funk-

h
tion J (k) fiir den Fall, dass h eine ganze Zahl bedeutet, untersucht
werden soll. Setzt man nimlich

b h
Jk) =k z,
so wird:

d%z 2h—]—1 dz
8 0= k2+ dk

und es bleibt nun die Untersuchung der Funktion z iibrig.

Anger gibt im weiteren die Entwicklung der Funktion .lll(k)
in eine Reihe, welche nach fallenden Potenzen von k fortschreitet,
und zwar teilt er dafiir zwei Methoden mit, von denen die eine die
Benutzung der Differentialgleichung fordert, die andere durch An-
wendung der I'-Funktion leicht zu erhalten ist.
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Die erste Darstellungsmethode ist folgende: Selzt man in der
Differentialgleichung 64) statt 2 h 4 1 die Grosse — 2i, so geht sie
tber in:

d?z

dg?

1
wo k = (2i - 1) ¥ jst.
Das vollstindige Integral dieser Gleichung ist nach Euler:

4i
+& =0,

T 1(F—1)3A+2) i@ EFE—-4HE*—9)(i+4)
‘_k{l_ 1.4 T 1.2.3.16 k2 F- I
(e cos k -+ B sin k)
i) i (i 1) i(i?—1)(0*—4)3(--3)
+k{ 2k “ 1.2.8.8Kk8 +

([ — D@ — 4@ — 9 —16) (45 .
+ 1.2.8.4.5.32k° T "](‘9""51‘_“5"..”‘)’

woraus folgt, da
2h. _‘I— 1 ki*h——'—“ 1

=—"— _-\/E_ ist,
65) }l(k)_: acosk 4 g sin k {1 (1 —4h*)(9—4h?
VK I1(2) (8 k)*
(1—4h%) (9 —4h*) (25 —4h?) (49 —4h?) 4
+ T4) (8 K)* |+
+asink—-ﬁcosk 1—4h* (1—4h? (9—4h2)(25”—4h2+,..},
Vk { 8 k II(3) (8 k)° N

wo o und @ die beiden Inlegrationskonstanten sind, und zwar, wie
friher gezeigt:

1
aﬁp':—\/i—-
Fiir h = 0 entsteht:
0 cos k - sin k 32 32.5%. 7%
66) J(k) = - 1 == ——
%) Vkz { ) ek | IO @k T }

+sink~—cosk 1 3% . b® __}_32*52'72‘92.—..’..
Vk 8k II(3) (8 k)® 1) 8k T+
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5 ,
Die Entwickelung von J(k) in vorstehender Gleichung kann aber

auch ohne Benutzung der Differentialgleichung zugleich mit der Be-
stimmung der Konstanten leicht direkt gefunden werden.

Da nimlich:

2 cosk (%k/cosw , cosw 1l w ,cosw 1.3 w?
ﬂ.Jk —_—— Ty R Bl e el = ---dw.
(k) \/21«]v (\/(a_l—\/w 2 2k+\/w 2.4 4k2+ )
0
smk 2k sinw sine 1w smw 1.3 of *)
. —l— o) o,
\/2k \/w Vo 2 2k Vo 2.4 4k
so ist, wenn k eine grosse Zahl bedeutet, ndherungsweise, und fir
k = oo genau

0
67) n.J(k):fvf% f (c&l“’ +_ ‘;.,_kawafscosw—{— )
2 sink [*°° smw W'’ 1.3 1
+ —sinw4—- '’ sin w ©.
\/2k f 4k T e T )

Nach der gewohnhchen Beziehung aber ist:

o0
I'(w) =[ e xH1dx,

und es gellen die bhekannten Beziehungen

(3)= s

*) Diese Gleichung folgt aus der Bezichung:

0 1 e
J(K) = ﬁf cos (k cos ¢) de
: T

0

oder:

0 T
2. (k)= f [cos Kk cos(2k sin? % e) 1-sink . sin ( 2k sin? é— e)]ds;
0

oder fiir

2k.sin2—;—£=,u,

3() k | co 4 sink due
. = c0s cos — J-sink | sinpu ——,
J #\/Zk‘u——y bf ‘u\/2ky——‘u2

wenn man in Reihen entwickelt.




und T(m +—;:) = L 2n(12m —1) \/nr,

sowie

a
oo, cos —~
J X cosbxdx== I(a),

. am
60 Sin —2—"
J x*! sin b x dx = o I'(a);

also auch:

Pcosw

——dco__ \/__ (nach Laplace),

o0
1z 3 3 1 1 /-

w" coswdw=c¢cos — I — |=— — - — V=,
J F(e)= Y
0

. 57z 5 1 1.3 ,—
fw coswdw_cosTF(2)——72_—- o8 \/m
0

005 _
f wl’COSCwa-—_COSZ—,vF(_;._)____,_ \/12_ . 1 .23 . b \/n‘,
0

u. 8. W,

o0
g - (nach Laplace),

Vo .
focj‘/’sinwdw_—_sin"’{-r(—g_)r..-l——\/%-—;—\/?r',
0
Jﬁ”’sinwdw:sini;—r']‘(%)=—-\712="1*"2?\/;,
J'oa?/"sinwdw:sinz:—cl‘(—;—)=— \}2— A '25;. §\/7;

u. S. wW.
Bern. Mitteil. 1894. ' Nr. 1366.
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Durch Substitution dieser Werte in Gleichung 67) ergibt sich:

0 b=~ ey~ mam ]
s —*:“/";:71;— {1 + ﬁ— m2)3(28 K? 11(332).(21)3 iim}’
oder (in Ubereinstimmung mit Gleichung 66))
‘3@: Cos\l;g{smk[l_ﬁi(%ﬁg+%%§iml
Al Ealn

Um die von Bessel gegebene Auflosung der Kepler’schen Aufgabe
resp. die Entwickelung der Mittelpunktsgleichung in noch einfachere
Formen zu bringen, transformiert Anger im Verlaufe seiner Arbeit die
von Bessel bereits gegebene Gleichung 35), welche lautet:

i—1 i—2

: i i1 it2
_él_ Ap = I{ie) + 2 [Jie) + Jde) + 42 [Jie) + Jie)] 4

Setzt man hierin:

e == sin ¢,
so wird:
I
21 tg ——
A = tg —g—, e = '——2—=211g';—¢ . 0082?1_ ¢,
1+ 1g7 £

und man erhilt, wenn man der Kiirze wegen einfiihrt:

v=icosz—;—¢,

woraus folgt:
l;— = A»,
h

aus der Reihenentwickelung von J(k) nach Potenzen von —;— k:
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Ji' B A i i n e i
(0 =93 . i 1.2.3.6F)"121.23..0F2
6 it S8 it

Ti23123. G 91234123 G D+

3 i-*i; . + yi+1 )uH;ﬂ " vi+3 li+4
(e) == 1.2.3...(i+1) 1.2.3..(i42
yi+5 li+6 1,i+7 Z.i+8
tisiss . (F3 1235123 . aFHt "
—1.2.8..i—1) 1.2.3..i "1.2.1.2.8...(i41)
yi+5 li+6 S li+s

_1.2.3.1.2.3...(i+2_)+1.2.3.4.1.2.3...(i—|—3):Fm

. i42 ,‘}i+2 Plan
AR = U R )
4 g6 6 it

T 1.2.3...0F3 _+1.2.1.2.3...(_1+4)+"'

2‘2 }age ) . vi-2 li _ ']Ji li+2 + yi+2 Al+4
— 1.2.8.(i—2) 1.2.3.(G1—1) ' 1.2.1.2.3...1
i it S5 7i+8

F...

_1.2.3.1.2.3...(i—|—1)+1.2.3.4.1.2.3...(i—|—2)
u. S. w.

Durch Summation aller entsprechenden Glieder ergibt sich, wenn
man mit Hansen setzt:
p »? 4 V'
=1yt tigst o tres

i+1
" s

Pits =P+ 1.2.3..i041)

S

P =P + 1537 15

u. s. W.
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Q1 =1—w,Q2;Q1-|——,}2—a
ys
G=0—53
u. S. W.
als Wert fiir -%— A folgender:
¥ i1
2 A =p A —bLp, — ¥ i42
g Ao =Pid —p P 1.2.5*...(1'—]—1)]2 +
2 S8 S2 -
+‘1.2Pi+2—1.2...(i+2)+1.2...(i—|—2)A
Ut y 15
_{1.2.3Pi+3‘"1.2.1.2.3...(14-3)""
it4 it8 .
+ v . _ 14 ‘ a‘l-{-ﬁ
1.2.3..(1+3 1.2...0F3
vt AT
+l1.2.3.4 pi+4—1.2.3.1.2.3...(i+4)
n Sit6 _ JitS
1.2.1.2.3...(iF4  1.2.3...(149
i+4
i+8
+1.2.3...(i+4)]7L

Diese Koeffizienten der Poienzen von A lassen sich aber auch
der Reihe nach in folgender Weise darstellen:

P; =Py
v Piyy — (Piga — Pi) = (v — 1) Piy1 + Py
»? v
5 Piys—v (Piys — Pip1) + (Pije— Pijy) = 12" +1) Piye
+ v Pign — Pigy,
",3

v?
12 30— 1. g P — Pipa) v (Pi+3f— Pit2) — (Pips—Piye)=

1,2

‘ 1’3 yg .
=(1 .2.8 1 .2+"“1) Pits 1 (1 ) 2—1'—'—1) Piys u. s. W,




Mithin:
-~ Ag = Py ' 4 (Q1 Piya— P) A% - (Q2 Py — Q1 Pigq) AT

2
+ (Qs Piys — Q2 Pigp) A% - (Qu Piyy — Qs Piyg) A0 -0
oder:

% AD = Py A (1 — %) 4~ Q1 Py APP(1—22) - QePiys AT (1 —2Y)
4

also auch:

o0
69) v_—u=(1-—l‘*)2—2i— {Pi B 4 Pip1 Qe AT - Piyp Qe AT - sinip,
1
weil war:
v — u = A1 sin u + Az sin 2u 4 As sin 3u | - - - %)

Die Gleichung 69) stellt in dieser Form die von Hansen fiir die Mit-
telpunktsgleichung gegebene Entwickelung dar.

Was die Entwickelung des Radius-vector betrifft, so ist, wenn
man denselben durch r und die halbe Axe durch a bezeichnet,
und setzt:

r= Ao + Bi cos u + Bz cos 2u -} Bs cos 3 -+ - - -
By = — ——fsm (ie — ie sin &) sin ¢ de.
Man hat aber:

sin(ie—iesine)sine =}2- {cos (@—1)e —iesing)—cos((i4-1)e —iesine} .

Demnach :

1 2n i—1 i1
- sin (ie —ie sin &) sin e de ==J(ie) — J(ie)

also:
. i—1 !

. By =ae {J(le) — J(ie)j.

Der Fall i = o0 macht eine Ausnahme. Nach bekannten Sitzen ist
nimlich das erste Glied der Reihenentwickelung, d. h. der Koeffizient
von CoS 0.u:

*) Seite 224.
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| 5 L e?
Ao = oy rdy_-—bf(l——ecos ¢)? de = a(l +—é—)
0

Man hat demnach:

r 02 oy 1 (itl. i—1
7—- 1—"——2—' —_— 32—1—{-'(10) — J(le)}
1
und die Entwicklung ergibt

2 (1;) ] i 2 ie \*
- Ll T — i .
0) By = i TI) {1 1_.(i+1) (a)‘t
| 1.2(i1—}—1)4(i—|—2) (129)-1-‘}

V.

Schlomilch gibt im II. Jahrgang der Zeitschrift fiir Mathema-
tik und Physik vom Jahre 1857 einen Abriss der Bessel'schen Funk-
tion, worin er ausser den bereits friher abgeleitelen Formeln und
Beziehungen neue aufstellt, namentlich andere Integrationswerte fiir die
Funktion. Er bedient sich stels der Hansen’schen Bezeichnungsweise,
von welcher man ja, wie friilher gezeigt, leicht zu der Bessel'schen
ibergehen kann. '

Nachdem er die bekannten Formeln:
—n n

JA) = (— 1)* I3,
n n

(—4) =1 1(2),

n—i

. i) =1 40 +30),
in sehr einfacher, der Hansen’schen Ableitungsart ihnlicher Weise

n
hergeleitet hat, gibt er zuerst eine Entwicklung fiir J(2). Er multi-
pliziert die beiden Reihen

3
1‘:1—{—%){ 4

YTigsr Tt

1 A2 1 3 1

A
=l-T ' xT1Ts ¥ T.z.3 ¥

c

M| >




W -

miteinander und vergleicht dieses Produkt mit der bereits von Hansen
abgeleiteten Gleichung (48.1) Das Resultat stellt sich in folgender
Form dar:

0 E: 14 )8
W=1—q1tarer 5131 L™
1 2 E 25
W= —meartarsi— T
2 : 12 24 2'6 }VS
W=5—mstaa st %W
allgemein:
n bl Zn+2 : }un+4
W= —earoi T ary TS
m=oo
m ln+2m
—2( m'(n—l—m)l
m=0

Von der Richtigkeit dieser auf dem Wege der Induktion gefun-
denen Formel iiberzeugt man sich leicht vermittelst des Schlusses von
n auf n 4+ 1, wenn man die nach Gleichung 71) gebildeten Werle

n—1

von J(Z.) und J(4) in die bekannte Formel substituiert, welche lautet:
n—i
n J(l) =1 [J4) + J(l)
Eine weitere Eigenschaft erhilt Schlomilch durch die Multiplika-
tion der beiden von Hansen gegebenen Gleichungen 48). Links ergibt

) ) v . 1
sich die Einheit und rechts eine nach Potenzen von x und ~ fort-

schreitende Reihe, deren Lkonstantes Glied der Einheit gleich sein
muss, wihrend die Koeffizienten der verschiedenen Potenzen von

X und = verschwinden miissen. Die erste Bemerkung fiihrt zu der

Relation
12) 1= HOF 4 2 P 42 IO 42 JOF + . ..,

0
woraus hervorgeht, dass die Funktion J({) die Einheit nicht tiber-
steigen kann, und dass die iibrigen Transcendenlen nie grosser als

1
V——z‘ werden koOnnen.
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Das allgemeine Glied der Gleichung 71) war, vom Vorzeichen

abgesehen
ln—}-Zp

Pl (0+m!’
durch Differentiation dieser Gleichung 71) erhilt man eine neue Reihe,
deren allgemeines Glied ist
(n 4 2p) jotee- +2e-1 Jotee-
p! (n—+ p)! pl(erp—l)!+ —1!'m4p)!

und man hat daher:

d J (/'L) joel o+ n 4243
a2 T (@—1!  1ral 2!(n+1)!
a‘n+1 Z’n+3

—(n+1)!+ 11 (n 4 2)!

F-..
d. h.

Qi) _m e

18) — =) —I@.

- Aus dieser Formel lisst sich in Verbindung mit der bekannten
Relation

n n-1 n+41
nJ(A) = 4 (3 + J@a)
eine neue Gleichung zwischen zwei aufeinander folgenden Transcen-

n—1

denten herleilen; die Elimination von J(4) ergibt nimlich:

n+-1 n T
74) () == én_l ) — % Q-C‘I—(%)-
oder
.y 4 J(Z.)
742) i = u—J(Z)——ZJ(Z)

durch Differentiation folgt (wenn man vorstehende Gleichung als Re-
duktionsgleichung benutzt):

@)  nm—1)3  4n + g
=i

T + 4 100

+
und wenn man noch (wie friiher ausgefiihrt wurde) J(A) durch J(A) und

i (2) darstellt:
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n

d2J() [n (n— 1) | = 2 ot

75) iE = o — 4‘ IR + T I(2).

In dieser Weise kann man alle Differentialquotienten von li(l)
n+l

successive durch J(R) und J(A) ausdriicken.

Multipliziert man die Gleichung 74“) mit — und addiert sie zu

1

A
n+1

Gleichung 75), so hebt sich J(4), und es bleibt:

eI, 1 dl) [n2

76) — + = F—4]J(Z)=O,

n
welches die allgemeinere Form der Differentialgleichung fir J (4) ist;
ein Speciaifall fiir n = o wurde bereits friilher von Hansen behandell
(Gleichung 53).

n
Die Darstellung der J-funktion durch ein beslimmtes Integral
macht sich nach Schlomilch nun folgendermassen :

Aus der von Hansen gegebenen etwas anders geschriebenen
Gleichung 48.1)

& C=3) oy + i) (x2+ —l—g) 11 (x‘—]»- }1?) I

+iw(x = 1) +im (2 =)+ -

ergibt sich mit Hiilfe der Substitution

x=w\/-—1 == 1w,

und bei Vergleichung der reellen und imaginiren Teile:
0 2 4
cos (24sinw) =JA)+2JA)cos 2w+ 2JA)cosd4 w4
1 3
sin (24 sinw) =2J(A) sinw -} 2JA)sin3w 4} ---

Aus der ersten dieser Gleichungen folgt:

L/ A n
77) Jcos (2 4 sin w) cos n w dw = 7. J(2) fir gerades n

0
=0 » ungerades n;
aus der zweiten:

Bern. Mitteil. 1894. Nr. 1367.
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T n
78) f sin (2 4 sin w) sin n w dw = . J(A) fiir ungerades n

=0 » gerades n;
oder allgemeiner fiir jedes n:
& n
79) J.cos (hw — 242sin w) do = = . JA),

was leicht durch Auflésen von cos (n w — 2 4 sin w) und Integrieren
der einzelnen Glieder als Zusammenfassung der Gleichungen 77) und
78) zu erkennen ist.

Eine andere Zusammenziehung der Gleichungen 77) und 78) zu
einer fir jedes n giilligen Formel ldsst sich durch folgende Umwand-
lungen erreichen: Man setzt in 77)

1
W= -5 T+ 7;
es wird alsdann fir ein gerades n

n:.J()) == 008 ———fcos (2 4 cos z) cos n z dz.

~F

Die Funktion cos (2 4 cos z) cos n z hat fiir negative Werte von
z denselben Wert wie fiir posilive z, daher

n nsmx ?
T . JA) 2608-—2— fcos (2 A cos z) cos nz dz

T
nsw
= C0S -—-2--fcos (2 4 cos z) cos nz dz.
[ ]

Auf dieses letzte Integral wendet nun Schlémilch die bekannte
Jacobi’sche Reduktionsformel

7T ; 7T
— 1 (n) . 2n
J‘r(cosz)cosnzdz_lig.f).”(2n_’1)ff (cos z) sin™z dz.
5

an und erhilt fir gerade n, wenn ist:
f(x) =cos 21x
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. (2 l)“cos—%ff n
— + 20
6j'cos(%cosz)cosnzdz.._1 3.5 . @n ) cos (24 cosz) sin”" zdz,
0
mithin:
LI @ )" " o om
n"m)"l.3.5...(2n—1) cos (2 A cos'z) sin”" z dz.

Transformiert man auf gleiche Weise die Gleichung 78), so erhilt

n
man fir ungerade n ganz denselben Ausdruck wie eben fiir -z J(A),
letzterer gilt daher fiir alle n.

Da die Funktion cos (22 cos z) sin™ z von z — —%— 7 bis 7 =
sz die nimlichen Werte besitzt, wie von z — o bis z = —;—n,
so kann man auch schreiben:

T
- 2 2A" 2 . 20
(W) = —;1.3'5.”(211__1) .fcos@&cosz)sm 7 dz.
Setzt man hierin: |
cos Z = X
so wird:
1
n. 2 2" —
80) J(A) = = 1.3 5. @n—0 J(l_—x )"~z cos (24x)dx
oder:
o 2 ) 1
81) I = " : (1 —x%)""% cos (2 2x) dx.
d (?) ’"(“ T ?)

Im weiteren Verlaufe seiner Abhandlung gibt Schlémilch den
Weg, wie man den fiir die J-funktion vorkommenden Integralausdruck
in eine zur numerischen Berechnung der Funktion dienende Reihe
entwickeln kann. Er beschrinkt sich dabei auf den Fall n = o, weil

1 0
ja J(A) exc ... leicht aus J(A) hergeleitet werden kannm.
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Gleichung 80) ergibt fir n = o den Wert:

1

0

) 2 cos2ixdx;
7T \/l—x2

setzt man hierin:
X=1—yund 24 =y,

so wird:

1
0 N
i | ~SREHE g

7z Vy @ —y)

Die Auflosung des Cosinus ergibt:

0 Ve " cos py dy
o) = - cosp _ |

und durch Entwickelung von 1_ erhilt man :

;1
\/1—?y
0 2. cos 1 (y\, 1.8(yY\
iy =Y :‘Eﬂf“ov;y {1 —;—-~--(§)+2'4(—2—-)+---ldy
b _

+\/_2~.:M‘J1 Si\?_ng{l +%_(%)+;__i<g_)z_|_dy

Die Werle der einzelnen hierin vorkommenden Integrale sind
aus den ersten beiden :

f cos.uy dy undJ nyy dy

durch Differentiation nach o leicht herzuleiten. Bezeichnet man
ihre Werte niamlich einstweilen mit P und Q, so hat man folgende
Gleichungen: -
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L 005py dy =i P | ' sin uy dy = Q

Vs

0
yGOSyy dy — ' IYSmuS dy = — P!
0 V&

"yleosuy dy — — pu f Yisinpy dy — — Q"

Wy

f y (I ,u Y d Q,“ J‘ y sin M ¥ dy — + P/

u. S. w.,

wobei die Zeichenwechsel dieselben sind wie bei den Cosinus und
Sinus der vier Quadranten. Demnach ist also:

0 V2 . 1.3 :
J(l):-:—;{l’cosy+Qsmy—n(P”cosu—|~Q“smy)+---

1 i I &3 135 " gy
+T (Q Cos u P/ sin ,u) —_— m(Q COSM—"P Slnﬂ)—{—'--}

Nach einer bekannten Formel aber ist:

[cosMydyJ‘ cos,uyd_f oS pY 4
\/ f"’"cosyy dy.

Das noch iibrige Integral kann nun durch fortgesetzte partielle
Integration leicht in eine halb konvergenie Reihe verwandelt werden
und man erhiilt :

p” . 1 1.3 , 1.8.5.7
P= PR R ) i e il e T
\/2u sm“{u 2% u’ T 2% ut }
1 1.3.5 , 1.3.5.7.9
-+ cos‘u{ 5 — 5 —+ __2_5M_6___.._...};

ebenso in dhnlicher Weise
Q_“\/ +GOS;¢{“—2 a‘l" }

—]-sm.u{ 5 1233y;5+"'}'

2 u
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Hieraus sind P/, P . . . sowie Q’, Q¥ ... leicht herzuleiten,
und durch Substitution dieser Werle ergibt sicht nach einigen Um-
formungen endlich:

1
coS (21 _ n) R
82) (1) = % {1 Ll (

VA

; 1
+Sln(2}u'—‘ T 71»') {_11(_}_)2.__ 12‘32.52 (1)3
Virz 4

oder in anderer Form

1
o 998 (“‘"T”) 1 3675
83) J(A)= [ N
) ) Ve Wi 512 (\/1)5_'— 524288 (V1) + |
. 1
o (2}' - T") { 1 | 29767 y
' Ve 16 V2 8192 (\/l)" 41943040 (V )"+ }

Diese Gleichung stimmf{ mit der von Hansen gegebenen (Glei-
chung 54) vollstindig liberein; derselbe leitete sie jedoch auf anderem
Wege (mit Hilfe der Differentialgleichung) ab.

Am Schlusse des angefiihrten Werkes stellt Schlémilch ein
Theorem auf, welches von der Entwicklung einer beliebigen Funk-
tion in eine nach Bessel’schen Funktionen fortschreitende Reihe handelt.
Dasselbe ist nahe mit dem Fourier’schen Satze verwandt und unter
dem Namen Schléomilch’scher Satz allgemein bekannt. Sei-
nen Beweis gibt auch Lommel in seinem oben citierten Werkchen:
«Studien iiber die Bessel’schen Funktionen». (§ 20. Seite 73.)

Geht man von der bekannten fir h > z > o geltenden Ent-
wicklung auos

p.;

TZ

F(z) = Ao + A4 cos——-}—Azcos 211 + -

h
2 nmu
__—h—fF(u)cos % d
0

wo

ist,



und setzt darin

[y

h-=—'"*§-

so erhilt man die Gleichungen:

F(ﬂx)‘:% Ao }- At cos 2 Ax | Az cos 4 Ax -} ---

1
4 (27
A, S F(u) cos 2 n u du,
0

welche giiltig sind fiir -1? T =>AXx =0

Multipliziert man ferner obige Gleichung fir F(4 x) mit
2 &
7z V1—x*

und integriert zwischen den Grenzen x = o0 und x =1, so entsteht:

g (™ F(Ax) { 0 0 0
84) ;f ﬁdx =—§—Ao + A1 JA) 4 A23(22) + As J(BA) 4 -+-»
0

und es gilt diese Gleichung von 4 = o0 bhis 4 = -é- 7, weil x die

Einheit nicht iberschritten hat. Nimmi{ man weiter:

1
2 F(A

so ergibt sich durch Differentiation nach 4:
1
2 x F/' (x1)
fA)y=— | ———dx.
® “J Vi — x?
In dieser Gleichung schreibt man mit Schlomilch s statt x, ut
statt A, multipliziert beiderseits mit
dt
“Vi—e
und integriert nach t zwischen den Grenzen t =0 und t=1. Man
erhilt durch diese Operation:
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1 1 1
2 u f dt s Fi(ust) /(1)
S ds = —E 7 qt=F(u) — F(o
7T Vi —+¢ V1 —¢? ”0 Vi — 13 () = FO)

nach einem von Abel herrihrenden Satze. Den Beweis fiir dessen
Richtigkeit gibt Schlomilch ebenfalls in seiner Abhandlung (siehe

Seite 156 und 157).
Fir A = o gibt Gleichung 85)

F(o) = (o),
mithin :
8) F(u) = f0) + f L

Wir schreiben nun in Gleichung 84) f(4) fiir die linke Seite,
driicken rechts F(u), welches in A, enthalten ist, vermittelst der
vorstehenden Gleichung 86) durch (u) aus, und gelangen somit zu
dem Satze, dass die beliebige Funktion f(4) unter der Bedingung

1

5 A

v

0

T

IV

in die Reihe
0 0
87) )= Ao+ A J() 4 As J(2H) }- -+

entwickelt werden kann, wenn die Koeffizienten A nach der Formel

1

37 1
- 88) An=—2—fucos 2nu du vf(ut)gdt
s 1—1t

bestimmt{ werden.
Durch Differentiation nach 4, wobei die Formel

0
d J(4)

a W

anzuwenden ist, und f'(A) — F(A), sowie — 2n A, = (C, sein moge,
erhilt man ein zweiles Theorem

89) F@) =G 3(1) -+ Ce i(m) -+ Cs 3(3/1) 4 ...

wobei die Koeffizienten C nach der Formel:
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1
?;rr 1
90) Ch = — ~8—I-lfu cos 2nu du M dt
7T _ Y1 — t?

0
zu bestimmen sind.
Lommel zeigte, dass allgemein auch die Entwicklung

91) 1(2) = By J() 4 B2 J(24) - Bs J(3) 4 - - -

wobei ist:

4 ,ljn 1
92) By =2. (=— l)m nm—[ﬂ cos 2n u du ——dt
7 o Vi—12

unier der Bedingung %— >4 z‘o giillig ist.

Die vorher angefiihrte Reihe ist ein Specialfall der Entwicklung
91); namlich fir m = 1 wird aus Gleichung 91) die Gleichung 89)
und Gleichung 92) geht unter Beriicksichtigung der gemachten Voraus-
setzungen in Gleichung 90) iiber.

Damit moge vorliegender Aufsatz abgeschlossen sein. Wie sich
die Bessel'sche Funktion erster Art durch die Untersuchungen von
Lommel, C. Neumann, Lipschitz und anderen weiter ent-
wickelte, werde ich in einer zweiten Arbeit zu schildern versuchen.
Dabei werde ich auf ihr Verhélinis zu den Kugelfunktionen niher ein-
gehen, die Funklion mit negativ-gebrochenem Index untersuchen und
ihre Darstellung als Summenformel nach Hankel geben. Ferner
sind die Bessel'sche Funktion II. Art, ihre Differentialgleichung und
ithre Beziehungen zu derjenigen I. Arl zu betrachten, und schliesslich
sind die von Schlidfli eingefiihrten Hiilfsfunktionen

n n n

K(x), S(x), T(x) u. s. w.
zu beriicksichtigen, und darauf die neuesten Arbeiten von Heine,
Gegenbauer, Graf, Hurwitz und anderen einer Betrachtung

zu unterziehen.

Bern. Mitteil. 1894, Nr. 1368.
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Errata.
Seite 208: Gleichung 9): ist als untere Grenze des ersten Integrals 0 zu
_ setzen.
Seite 209: Zeile 23 und 24: soll es statt a richlig ap heissen.
Seite 216: Zeile 14 soll es richtig heissen /7(0) = 1.
‘Seite 221:In Gleichung 30: ist auf der rechten Seite — 0 zu setzen.
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