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F. Stähli.

Die Cylinderfokalen.
Eingereicht im Januar 1804.

I. Fokalen des elliptischen Cylinders.
Durch eine Gerade im Räume, deren Richtung normal ist zu>

derjenigen Hauptebene eines elliptischen Cylinders von den Halbaxen

a und b, welche durch die Längsaxe und durch die grosse Axe
desselben geht, legen wir ein Ebenenbüschel. Sämtliche Ebenen
desselben schneiden dann die Cylinderfläche in Ellipsen, von konstanter
kleiner und variabler grosser Axe. Die Brennpunkte aller dieser

Schnittellipsen liegen in jener Hauptebene; ihr Ort ist daher eine
ebene Kurve, welche Cylinderfokale heissen möge. Dieselbe

zu untersuchen, ist Aufgabe der vorliegenden Arbeit. —

Aufstellung der Gleichung.

Zum Zwecke der Ermittlung der Kurvengleichung legen wir ein
3 rechtwinkliges Koordinatensystem zu Grunde. Die Cylinderaxe sei
vertikal stehend. Als (xy) Ebene wählen wir diejenige Hauplebene
des Cylinders, in der die Fokale liegt; die (yz) Ebene legen wir
parallel zu den Erzeugenden des Cylinders durch die Axe des
Ebenenbüschels ; durch diese Axe gehe auch die 3. Ebene des Systems senk»

recht zur Cylinderaxe. In dem Fall liegt der Koordinatenursprung 0
auf der Büschelkante und diese letztere ist die Axe z.

Eine beliebige Ebene E (Fig. 1) des Büschels bilde mit der
(xz) Ebene den Winkel tp. Dieselbe schneidet die Cylinderfläche in
einer Ellipse mit den Brennpunkten F und F'. Bezeichnen wir ihre
Abstände vom Koordinatenursprung mit g und g', setzen ferner OC d,.

so ergeben sich für q und q' die Gleichungen:

g e, g' \- e,cos q>
v cos <p

wo e die Excentricität der Schnittellipse bedeutet.
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Es ist nun aber, da a und b die Halbaxen des Cylinders sind:
a

die halbe grosse Axe der Schnittellipse : a' :

cos <p

kleine » » »
'

: b'= b;
a2

somit : e2 —5 b2,
COS^y

Y cos-^
oder: e \/—\ b2.

9
Diesen Wert für e in den obigen Gleichungen für g und g'

eingesetzt, ergibt:
d / a2

e V/—5 b2; (a)s cosy V COSitf

<?'
—^- + V/-4 1>2. 00
cosy y cos'ip

Wir bezeichnen nun die rechtwinkligen Koordinaten des

veränderlichen Brennpunktes F mit x und y; dann ergeben sich zwischen

ihnen und den Polarkoordinaten g und <p die Beziehungen:
x g. cos <p ; y g. sin ip. (c)

Aus diesen beiden letzten Gleichungen und Gleichung (a) lassen

sich g und ip eliminieren, und wir erhalten dann eine Gleichung in
den rechtwinkligen Koordinaten x und y, die uns den Ort des

Brennpunktes F darstellt.
Aus den Gleichungen (c) ergibt sich:

* __ y ___y
Q

cosy sin y \/l-cos2y
oder : (x2 -f- y2). cos2 y x2 ;

somit : cos y —, —.
\/x2 + y2

Setzen wir diesen Werl für cos y in Gleichung (a) ein, nachdem

wir noch zuvor 0 durch ersetzt haben, so lautet dieselbe dann:
5 cos y
x_ _d_ /
X X V/; — b2

\/x2+y*~ \/x2 + y2 V x2-f y2

und vereinfacht:
(x — d)2. (x2-f y2) — (a2 — b2). x2 — a2 y2 0. (1).
Benützen wir statt des Brennpunktes F den Brennpunkt F',

welcher in der Ebene E von 0 den Abstand g' hat, so erhalten wir
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unter Anwendung des obigen Ganges genau dieselbe Gleichung; sie

stellt uns also den Ort der Brennpunkte aller Schnitlellipsen dar.

Gleichung (1) ist daher die Gleichung der C y
linderfokalen, und diese ist mithin eine Kurve 4.

Ordnung. (Fig. 2)
Lässt man d, den Absland der Büschelkante von der Cylinderaxe,

positiv von 0 bis oo variieren, so erhält man ein System von
unendlich vielen Fokalen. Das ganz gleiche System, nur in
symmetrischer Lage zur Cylinderaxe, ergibt sich für sämtliche Werte von d

von 0 bis — oo. Wir betrachten deshalb in der Folge nur positive
Werte von d.

Lösen wir die Kurvengleichung (1) nach y auf, so wird :

/(a2-b2)x2-(x-W-
y — V (x-d)2—a2

K '
Zu jedem Werte von x gehören also 2 gleiche, dem Vorzeichen

nach aber entgegengesetzte Werte von y; die Kurve liegt
also symmetrisch zur x-Axe.

Um die Natur der unendlich fernen Kurvenpunkte zu untersuchen,
x v

machen wir die Gleichung (1) mit x — und y — homogen und

setzen dann z 0 ; dadurch erhallen wir die Gleichung :

x2.(x2 + y2) 0 (2),
welche uns die Richtungen, die vom Nullpunkt aus nach den

Schnittpunkten der Kurve mit der unendlich fernen Geraden (z 0) gehen,

gibt. — Der 2. Faktor dieser Gleichung: x2-f-y2 0 zeigt an, dass

die Cylinderfokale durch die imaginären Kreispunkte im Unendlichen

geht. Der 1. Faktor: x2 0 sagt uns, dass die Kurve die unendlich
ferne Gerade in der Richtung der y-Axe in 2 zusammenfallenden

Punkten schneidet. Um die Art dieses Punktes zu ermitteln,
substituieren wir in der allgemeinen Gleichung der Kurve für die
Variablen x und y die Werte :

_ _1_ ^y~r,x~r'
dann werden für y' 0 x und y unendlich gross; es wird der
unendlich ferne Punkt der y-Axe in den Nullpunkt projiciert und

umgekehrt.

Dies ausgeführt, gibt:

oder (x' — dy')2. (x'2 + l) — (a2 — b2) x'2y'2—a\v'8=0. (3).
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In dieser transformierten Gleichung haben wir nun den Nullpunkt
(x' 0, y' 0) zu untersuchen, welcher dem unendlich fernen Punkte
der ursprünglichen Fokalen entspricht.

Für y 0 wird : x'2. (x'2 ~f-1) 0,
also: 1. x'2 0,

2. x'2— — 1 oder x'= + i.
Für x' 0 wird: d2y'2--a2y'2= 0;

also: 3. y'a= 0.
Aus der 1. und 3. dieser Gleichungen geht hervor, dass der

Nullpunkt (x' =0, y' 0), also auch der unendlich ferne
Punkt Doppelpunkt für sämtliche Fokalen ist.

Um die Gleichungen der Tangenten in ihm zu erhalten, setzen

wir in der transformierten Gleichung (3) die Glieder 2. Grades gleich
0; also:

(x' — dy')2 — a2y'2 0;
und es stellen uns dann also die Gleichungen:

r_ d + W-d2 + a2 d+a (4)
x' d2 —a2 da —a2

das Tangentenpaar im Nullpunkt der transformierten Kurve dar.
Um die beiden Tangenten im unendlich fernen Punkt selbst zu

erhalten, transformieren wir rückwärts ins alte System. Wir haben
dann in obigen Gleichungen

1 x'
für y' — und für x' xy' —

y y
zu setzen, wodurch dieselben die Form annehmen:

1vi 1
1. Tangente: -i— — =— also: x d — a

x x d — a

y

2. Tangente: — ——;—, somit: x d-f-a
x d-f-a

(5).

Es sind dies die beiden in der Kurvenebene liegenden Erzeugenden
E und E' der Cylinderfläche, welche Tangenten sind im unendlich

fernen Doppelpunkt.
Hieraus folgt:
Die beiden in der Kurvenebene liegenden

parallelen Erzeugenden des Cylinders sind
Asymptoten an sämtliche Fokalen, die man bei

Bern. Mitteil. 1894. Nr. 1348.
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variablem d erhält. Sie berühren die Kurve im
unendlich fernen Doppelpunkt. In der That wird in
Gleichung (la) für x d + a, die Ordinate y unendlich gross.

Aus der Form der Kurvengleichung (1) ist ersichtlich, dass der
Nullpunkt 0, d. h. der Schnittpunkt der x-Axe mit der Büschelaxe

ein Doppelpunkt der Kurve isl. Die Tangenten in
demselben erhallen wir, wenn wir die quadratischen Glieder der
Kurvengleichung (1) gleich 0 setzen; also aus:

(d2 — a2) (x2-f- y2) -f- b2x2 0 und hieraus:

x + K/il^+Jx — y a2 — d2
(6).

Aus dieser Gleichung geht hervor, dass die Tangenten im
Ursprung 0 nur reell ausfallen für d<a und > \/a2 — b2, d. h., wenn
die Büschelaxe den Cylinder zwischen dem Berührungspunkt A und

dem Brennpunkt Fi der Grundellipse schneidet ; 0 ist in diesem
Falle Knotenpunkt der Kurve.

Für specielle Lagen der Büschelkante und damit des auf ihr
liegenden Doppelpunktes 0 ergeben sich folgende Fälle:

1. Liegt die Büschelkante im Unendlichen, also d oo, so

werden sämtliche Ebenen des Büschels unter sich parallel und schneiden

die Cylinderfläche normal zu deren Axe; die Schnittkurven sind

in diesem Fall kongruente Ellipsen und der Ort ihrer Brennpunkte
besteht aus zwei zur Cylinderaxe und den Asymptoten parallelen
Geraden im Abstand + \/a2 — b2 von derselben; sie gehen durch
die Brennpunkte Fi und F2 der Grundellipse.

2. Die Büschelkante berührt die Cylinderfläche im Punkte A,
mit welchem nun der Nullpunkt 0 zusammenfällt; es wird d a, und
die allgemeine Gleichung (1) nimmt die Form an:

(x — a)2. (x2 -f y2) — (a2 — b2). x2 — a2y2 0

oder x* — 2axs + x2y2 — 2axy2-f-b2x2 0.
Dieses Polynom zerfällt in 2 Faktoren, nämlich:

jxj-jx8—2ax2-f xy2 —2ay2 + b2xj =0.
Es ist daher : x 0,

und x(x2 — 2ax -f-b2) -f- y2. (x— 2a) 0 (7).
Die 1. Gleichung (x 0) stellt die y-Axe dar, die Cy

lindererzeugende E; der 2. Faktor aber repräsentiert eine Kurve 3.

Ordnung. Es zerfällt also in diesem Specialfall die
Cy 1 in d e r f 0 k al e in eine Gerade und eine Kurve
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3. Ordnung. Diese letztere besteht aus zwei getrennten Teilen,
einem Oval, das in 0 die Erzeugende E berührt und durch Fi geht,
in der Weise, dass die x-Axe dasselbe halbirt, und einem nach

beiden Seiten ins Unendliche gehenden Kurvenast durch F2 mit der

Erzeugenden E' als Asymptote. (Fig. 3.) — Die Tangenten im Punkte

0 fallen nach Gleichung (6) für d a zusammen in die Gerade:
y

— 00, d. h. in die von der Fokalen 4. Ordnung sich absondernde

Cylindererzeugende E, welche das Oval der Kurve 3. Ordnung berührt.
Der Punkt 0 ist ein einfacher Punkt der Kurve 3. Ordnung. (Fig. 3.)

3. Denken wir uns die Büschelkante parallel nach dem Brennpunkt

Fi verschoben, wodurch d \/a2 — b2 e wird, so fallen die

beiden Tangenten im Doppelpunkt 0 von den Gleichungen (6)
zusammen mit der Geraden : y 0, d.h. mit der x-Axe. Die Gleichung
der Kurve nimmt in diesem Fall die Form an:

(x — e)2. (x2 -f y2) — e2 x2 — a2 y2 0

oder x8. (x - 2 e) -f- y2 ((x — e)2 - a2) 0 (8)
Für y 0, wird : x3 0,

» x 0, » ya 0, d. h.

der Nullpunkt 0 im Abstand d e von der
Cylinderaxe isl ein Rückkehrpunkt mit der
x-Axe als Rückkehrtangenie (nach Gl. 6). (Fig. 5).

4. Schneidet die Büschelkante die Cylinderaxe, so liegt 0 auf

dieser letzteren; es ist daher d 0, und die Gleichung der
Fokalen wird :

x2 (x2 + y2) — (a2 - b2) x2 — a2 y2 0 (9)
sie enthält nur gerade Potenzen von x und y; die Kurve
ist deshalb symmetrisch in Bezug auf beide
Koordinatenaxen. Die Tangenten (6) im Doppelpunkt 0
werden :

-hW— (a2 — b2) (10)
a'

sie sind imaginär ; der Punkt ist also ein isolirter Doppelpunkt.
Das obige Polynom ist sowohl nach x als auch nach y

auflösbar, und zwar entsprechen jedem Werte der einen Variablen zwei

gleiche, dem Vorzeichen nach aber entgegengesetzte Werte der andern.
Nach y aufgelöst lautet die Gleichung:

Ir^+b2"-±V-
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Für x erhalten wir:

x + / — (y2 — a2 -f- b2) + W - a2 + b2) -fääy

Diese Gleichung gibt zu jedem y 4 Werte von x, von denen

aber stets zwei imginär sind. Die Kurve besteht aus 2 congruenten
unendlichen Ästen, bezüglich durch die Brennpunkte Fi und F2, die

symmetrisch liegen zur Cylinderaxe und welche die Erzeugenden E und

E' ebenfalls zu Asymptoten haben.

Fassen wir die oben gefundenen Resultate zusammen, so haben

wir folgendes :

Jedem Werte von d entspricht eine eigene Kurvenform, welche
im allgemeinen aus zwei sich nach beiden Seiten ins Unendliche
erstreckenden Ästen besteht. Für d 00 werden diese Äste zu parallelen

Geraden zur Cylinderaxe; mil kleiner werdendem d schnürt sich

derjenige Ast, der gebildet ist von den Brennpunkten Fi, von oben

und unten gegen die x-Axe zusammen, während der andere Zweig
sich in seiner Form nicht wesentlich ändert. Ist die Büschelkante

zur Cylinderlangente geworden, oder fällt O mit A zusammen, so löst
sich von dem Kurvenast durch Fi die Erzeugende E ab; der übrig
bleibende Teil bildet ein Oval, welches zwischen 0 und Fi symmetrisch
zur x-Axe liegt; die Ordnung der Kurve isl in diesem Specialfalle
um 1 gesunken (Fig. 3). Mit noch kleiner werdendem d erhalten
wir wiederum eine Kurve 4. Ordnung, deren Ast durch Fi eine Schleife

(Fig. 4) bildet; für d \/a2 — b2 degeneriert diese Schleife in eine

Spitze ; (Fig. 5) nimmt d Werte an <; \/a2 — b2, so entstehen wiederum

2 einfache, unendliche Kurvenäste, (Fig. 6) und wenn d 0 ist,
so besteht die Fokale aus zwei zu den Koordinatenaxen symmetrischen,
nach beiden Seiten ins Unendliche gehenden Ästen. Für negative
Werte von d gehen diese beschriebenen Kurvenformen mit grösser
werdendem d in umgekehrter Reihenfolge ineinander über ; sie haben

also symmetrische Lage zu denjenigen für positive d.

Die Fokale des elliptischen Cylinders
besitzt 2 Doppelpunkte, den Schnittpunkt der x-Axe mit der
Büschelkante und den unendlich fernen Kurvenpunkt. Der erstere ist
nur dann ein Knotenpunkt, wenn d < a und > \J a2 — b2 ist ; in
allen andern Fällen ist er isolierter Doppelpunkt ; denn die Tangenten
in ihm sind imaginär, während sie im ersten Falle reell ausfallen. Ist
d e, so liegt das Tangentenpaar in 0 vereinigt in der x-Axe;
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wächst d, so wächst auch die trigonometrische Tangente des Richtungswinkels

der beiden Tangenten, den wir mit a bezeichnen wollen; es

wird also auch a selbst grösser und für:

d^i8^
1,

y a- — u"

/ a« _1_ e*
also - 2

wird a + 45°, die Tangenten stehen aufeinander senkrecht. Bei
noch grösser werdendem d wächst auch a Stetsfort und erreicht für
d + a mit 90° sein Maximum; das Tangentenpaar fällt zusammen

mit der Erzeugenden E, bezüglich E'. (y-Axe).
Die Tangenten im unendlich fernen

Doppelpunkte sind für alle Fokalen die in der
Kurvenebene liegenden Erzeugenden des
Cylinders.

Tangenten der Kurve parallel zur y-Aze.

Zum Aufsuchen derselben transformieren wir zuerst die
allgemeine Kurvengleichung (1) nach C, dem Schnittpunkt der x-Axe mit
der Cylinderaxe, als Ursprung.

Wir setzen zu dem Zweck : x x' -f- d ;

und y y'.
Dann wird:

/ p2 x'2
r ±(x<-rd)y±_Ì2- ai)-

Die Gerade : x' p schneidet die Kurve in zwei zusammenfallenden

Punkten: 1. für p x' —d, (y'=0) Doppelpunkt 0,
und 2. » p==x' + e,

für welche Werte von x' beide Werte von y' 0 werden.
Diese beiden Parallelen zur Cylinderaxe : x' + e sind Tangenten

an die Fokale in den Punkten Fi und F2; weil sie von d unabhängig
sind, so sind sie Tangenten an alle Fokalen, die man für ein
veränderliches d erhält. Diese beiden Parallelen sind die F 0 k a 11 i n i e n
des Cylinders, und daraus folgt :

Alle Fokalen, die einem veränderlichen d

entsprechen, berühren die Fokallinien des
Cylinders in den Brennpunkten Fi und F2 der
Grundellipse. Diese Fokallinien sind identisch mit
der Cylinderfokalen: d oo.
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Wird in Gleichung (11) x + a, so wird y + oo.
Dies sind die Koordinaten des unendlich fernen Punktes, der,

wie aus der Gleichung hervorgeht, für alle Werte für d, also für sämtliche

Fokalen, ein Doppelpunkt ist. —

Gleichungen der Kurve in elliptischen Funktionen.

Die Gleichung der Cylinderfokalen, wie sie uns in der allgemeinen
Form entgegenIritt, ist eine solche 4. Grades. Dieselbe weist zwei

Doppelpunkte auf, den Koordinalenursprung 0 und den unendlich fernen
Punkt der Kurve; die zugehörige Kurve ist deshalb eine solche vom

Geschlecht 1, und es lassen sich demnach die Koordinaten x

und y rational durch elliptische Funktionen eines
Parameters ausdrücken.

Wir substituieren zu dem Zweck in Gleichung (1), welche lautet:

(x — d)2. (x2 -f- y2) — (a2 — b2) x2 - a2y2 0

für y den Wert Ax und erhalten:
(x — d)2. (x2 -f- À2x2) — (a2 — b2) x2 — a2P\2 0 (12).

Dieses Polynom zerfällt in die beiden Faktoren:
a) x2 0;
b) x2— 2dx-f d2— ;.2x2 — 2d;.2x + d2r— (a2— b2) - a2l2 0.

Die Gleichung (a) repräsentiert den Koordinatenursprung (x2 0,

y2=0); seine Koordinaten spalten sich von der allgemeinen
Kurvengleichung ab, weil derselbe, wie schon früher gesehen, ein Doppelpunkt

der Kurve ist.
Gleichung (b), nach x aufgelöst, gibt:

__ d(l-}-A2)+ \/d2+2d2Â2-|-d2^-(l-f-r)id24-d2A2-a2 fb«-a'A»)
x ~ i -f i2
Dabei zerfällt der Ausdruck unter der Wurzel in die beiden Faktoren:

ja2—b2 + a2;,2| • Î1 + -Î2) je2-f aa^a} - {l~H2)
-a2JA2 + |-j.(;.2 + lj'

wo wieder e2 a2 — b2 bedeutet.
Es ist dann also:

d(l+^2)±ya2(A2+ f2)(/2 + D

i + ;.2

V/I^z2"
Hierin setzen wir: l al

j dann geht x über in:

(13).
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-+J-z2 ^V z*
(1 — k2z2)

X= V"
z2

«der x d + a \jl — k2z2.

Wir können nun elliptische Funktionen einführen,
indem wir nach Jakoby setzen:

z sin am u sn u.

Dann wird : \/l — k2z2 J am u dn u.

Also ist:
x d + a dn u

und y Xx (d -f- a dn u) (14).
sn u —

ctg am u (d + a dn u)

Dividieren wir die unlere der obigen Gleichungen durch die

obere, so wird:
y

— ctgamu; (15).

Dies ist die Gleichung eines Leitslrahls durch 0. Jedem Werte
des Parameters u entspricht ein solcher
Leitstrahl, auf welchem zwei Punkte Pi und P2 der
Kurve liegen, deren Koordinaten sich dem doppelten
Vorzeichen entsprechend aus den vorigen Gleichungen ergeben.
Bezeichnen wir zwei solche Punkte als zugeordnete Punkte, so

folgt aus ihren Koordinaten oder auch nach ihrer geometrischen
Erzeugungsweise, dass die Mitten der Verbindungslinien
von je zweien derselben auf der Cylinderaxe
liegen.

Ist u der Parameter eines Punktes, der auf dem rechts von der

Cylinderaxe liegenden Kurvenast sich befindet, so ist der Parameter

seines zugeordneten Punktes, welcher auf dem andern Kurvenaste

liegt : 2 ÌK' — u. Es ist mithin die Summe der Parameter zweier

zugeordneter Punkte immer gleich 2iK', wobei 4iK' die imaginäre
Periode der elliptischen Funktionen ist; denn nach den Periodicitäts-

gesetzen der letztern ist:
dn(2iK' —u) — dnu;
cn (2iK' — u) — en u ;

sn (2 iK' — u) — sn u ;
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Setzen wir also in den für x und y gefundenen Gleichungen (14)
für den Parameter u den Parameter 2iK'—u, so ändert die Deferente
ihr Vorzeichen, während die Cotgamplitude gleich bleibt. Man hat
daher in diesen Kurvengleichungen für die Deferente nur das einfache
Zeichen zu setzen ; dieselben lauten dann also :

x d + a dn u i

y (d -J- a dn u). ctg am u j l }'

Die rechtwinkligen Coordinaten x und y.

sämtlicher Kurvenpunkte sind daher eindeutig
durch elliptische Functionen ausgedrückt;
jedem Werte des Parameters u entspricht nur
ein ganz bestimmter Punkt der Kurve.

Für u — 0 und 2 i K' erhalten wir :

x d + a,

y + oo,

die Coordinaten des unendlich fernen Doppelpunktes der Kurve; in
diesem Punkte fallen also zwei zugeordnete Punkte zusammen.

Wird u K und 2 i K' — K, so nimmt die Deferente die
Werte an :

dnu + \/ 1 — k2 -f- k' + —•
Es wird also: x d + e»

y 0.

Dies sind die Coordinaten der Brennpunkte Fa und Fi der
Grundellipse: ihre Parameter sind also K bezügl. 2 i K' — K; sie

sind mithin zugeordnete Punkte.

Es entspricht, wie bereits erwähnt, jedem Werte von u ein
bestimmter Punkt der Kurve. Umgekehrt aber entspricht nicht jedem
Punkte der Fokalen nur ein Werl von u, sondern unendlich viele ;

denn bekanntlich haben die elliptischen Functionen 2 Perioden, eine

reelle, bezeichnet mit 4 K und eine imaginäre : 4 i K'. Wir erhallen
deshalb unendlich viele Werte von u, welche einem und demselben

Kurvenpunkte entsprechen ; dieselben sind enthalten in der Form:

u + 4mK + 4niK',
wo m und n positive ganze Zahlen bedeuten. K und K', die Perio-

dicilätsmoduln werden dargestellt durch die Integrale:
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und

K=fjA

n

dy

-k2sn2y

dy

'2sin2y

n

_
/*"2~ dy

r"ä~ dy
J l\ e2

» Y1 — -Vsin29

(17)

wobei k2 -f- k'2 1 ist.
Aus den in Parameterform erhaltenen Kurvengleichungen lassen

sich zwei Eigenschaften der Radien vectoren zweier
zugeordneter Punkte ableiten für den Fall der Fokalen 3. Ordnung,
d a. Bezeichnen wir nämlich die Längen dieser Radien vectoren
mit r, bezw. ra, so ist:

r,2 x,2 -f- y,2 (a -f- a dn u)2 -f- (a -j- a dn u)2 ctg am2 u

(1-f-dn u)2
a*

sir u

r22 x22 + y22 (a — a dn u)2 (I + clg am2 u)

__ 2 (1 - dn u)2.

somit ist:

r, : a4. (1 — dn2 u)2- —r-

sn 2 u

1

sn4u
sn" u

1
b4

sn4 u

also: r, r2 b2 constant (18)
d. h.: das Produkt der Abstände je zweier
zugeordneter Punkte vom Coordinatenursprung
auf dem Oval ist eine Constante gleich dem
Quadrat der kleinen Halbaxe b des Cylinders.

Da ferner:

und

so ist

y.

x, a2 (1 — dn2 u) — a2 k2 sn2 u

y2 a2 k2 sn2 u •
«r u

a2 k2 cn3 u,
sir u

x, x8 -f- y,. ys a2 k2. (sn2 u -4- cn2 u)
b» r, r, (19)

d. h., es ist die Summe der Producte der Ab-
scissen und Ordinaten zweier zugeordneter
Punkte constant gleich dem Quadrat über der
halben kleinen Axe des Cylinders und gleich
dem Product ihrer Radien vectoren.

Bern. Mitteil. 1894. Nr. 1349.
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Krümmung der Kurve.

Wir erhalten die Grösse des Krümmungsradius g eines beliebigen
Kurvenpunktes mit den Coordinaten x und y aus der in der Parameterform

gegebenen Kurvengleichung durch Anwendung der Formel :

f

g
±I®'+(*)T

(20)
d2y dx d2.\ dy
dx'2 du du2 du

wo: x d -f- a dn u und y (d -J- a dn u) ctg am u.

Durch Ausführung der obigen Differentiationen ergibt sich :

{a2k4sn6ucn2u-f-dsdn2n-f 2ad.dnsu-|-2adk2.sn2n.cn2u.dnu-f a2dn4u

-f- 2a k2sn* u.en2n. dn'n + a*. k4 sn4 u. cn4 u)'/a
Q

sn4u{d(3sn2u.dn2u — 2dn2u — cn2u)-|-adnu(sn2n.dn2u— 3cn2u)}

Indem wir den Zähler etwas vereinfachen und im Nenner alles durch
dn u ausdrücken, erhalten wir für g den Wert :

{8(1 — k2sn4u). (a -f 2 d. dn u) — a2k2 sn4 u. dn2u -f d". dn2u}8/*
n

sn4u{a.dnsn-)-3ddn'u-f 2adnsu — 2dk'B.dn2n— 3ak'2.dnu — dk'2}
(21)

k' bedeutet hierin den complementären Modul : y 1 — k2.

Die Argumente der beiden Brennpunkte der Grundellipse fanden

wir: u K und 2iK' — K; diese Werte in Gleichung (21)
eingesetzt, gibt für die Krümmungsradien in denselben:

Krümmungsradius von Fi :

8/,

e>

ja2(l — k2) — a2k2k'2-f~ d2k'2 — 2adk'(l k2)j
"

— ak'5-f-3dk'4—2ak'3—2dk'4-f3ak'8—dk'2~

__ k'(a2.k'2 + d2-2adk')3'a k^ _— ak'8 + dk'2 + ak' —d ~ k2 ' '

Krümmungsradius von F2 :

gs

{a2(l — k2) — a2k2k'2-f d2k'2 -j- 2adk'(1 — k2)}
'*

ak'5 + 3dk'4-f 2ak'3 2dk' 3ak': dk'
k'3. (a2k'2 -f d2 + 2adk')3/3 J^ (ak# d)2;

(22)

k'2 (— ak'k2 - dk2)

Bei den verschiedenen Specialfällen ergeben sich für die

Krümmungsradien ßi und g2 der Brennpunkte der Grundellipse folgende
Werte:
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1. d a. In dem Falle geht die Gleichung (21) des Krümmungsradius

über in:
a2. (1 — kasn4u)8/a. (1 -j- dn u)2

ç sn4u(dn4u-f-2dn3u — 2k'2dnu — k'2)
lind hieraus erhalten wir:

(23)

Für den Krümmungs¬
radius in Fi:

Für den Krümmungs¬
radius in F2:

Çl

gs==

a2.(l— k2r.(l—k')2
k'4—2k'3-f 2k'3 —k'2
a^k'a —k')

1 + k'

a2.(l-kf.(l+k')!
k'2

(24)
k'4-f-2k'3—2 k'3-

_ a2k'.(l + kQ
_~~

1 — k' '

Nach Multiplication der beiden Gleichungen (24) ergibt sich:

ç,.^ a4k'2=a2ea;
d. h.: Für den Fall, dass d a ist, ist das Product der
Krümmungsradien der beiden Brennpunkte der

Grundellipse gleich dem Product der Quadrate aus halber
grosser Axe und Excentricität.

2. d \/a2 -b8 e.

1Krümmungsradius in Fi :

\/aa — ba

^ — ¦ a

Krümmungsradius in F2:

0>2 — b2) 0;
(25)

a\/a2_b2 / \/a2_b2 y k,3

* V-Aa 1 + v/a2-b2j=-4a*.p-
Da Fi, derjenige Brennpunkt, in welchem der Coordinatenur-

sprung liegt, in diesem Specialfall zum Rückkehrpunkt wird, wie wir
früher gefunden haben, so ist die Richtigkeit des obigen Resultates

Q 0 damit bestätigt. —
3. d 0.

Krümmungsradius in Fi : gi — —

Krümmungsradius in F2 : 52 —

a2. k'2 a2. -7-5-k2

a2. k'3
(26)

Die Krümmungsradien von Fi und F2 sind in diesem Falle
einander gleich, weil eben die Fokale symmetrisch liegt zu den Axen. —
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Bestimmung der Wendepunkte.

Da unsere Kurve eine solche 4. Ordnung mit 2 Doppelpunkten
ist, so besitzt sie nach Massgabe der diesbezüglichen Plücker'sehen
Formel 12 Wendepunkte. Zur Auffindung derselben benützen
wir die Gleichung (20), welche die Länge des Krümmungsradius eines,

beliebigen Kurvenpunktes durch elliptische Functionen des Argumentes,
u ausdrückt. In einem Wendepunkt wird aber der Krümmungsradius.

g unendlich gross; damit das in der obigen Gleichung ein-
tritt, muss der Nenner der rechten Seite gleich 0 werden ; also :

sn4uja.dn5u+3d.dn4u+2a.dn3u-2dk'2.dn2u-3ak'a.dnu-dk'2j=0(27>
Diese Gleichung zerfällt in die folgenden:

sn4u 0 i
und

(28)
a.dn5u + 3d.dn4u + 2a.dnsu - 2dk'2. dnau - 3ak'2dn u - dk'2 0

Die erste dieser Gleichungen (28) ist erfüllt für u 0
und » u + 2iK'.

Dem Argument u 0 entspricht der Punkt mit den Coordinatene

x=:d -f a; I

und y — oo. j
Dies ist der unendlich ferne Punkt der Asymptote A2.

Dem Argument u + 2iK' entspricht der Punkt mit den
Coordinaten : x d — a ; 1

und y 00. f

Dies sind die Coordinaten des unendlich fernen Punktes der Asymptote

Ai.
Es liegen also zwei Wendepunkte im

unendlich fernen Doppelpunkt der Kurve;
derselbe ist mithin ein doppelter Inflexionsknoten
für alle Fokalen.

Die übrigen 10 Wendepunkte liefert uns die zweite der Gleichungen

(28). Dieselbe ist vom 5. Grade in dn u ; sie liefert uns also

5 verschiedene Werte für dn u. Die Deferente ist aber eine gerade-

Funktion; jedem Werte derselben entsprechen deshalb zwei
Argumente u, die dem absoluten Werte nach gleich, dem Vorzeichen nach

aber verschieden sind. Wir erhalten also 10 verschiedene Werte uy

von denen sich die einen 5 nur durch das Vorzeichen von den andern
5 unterscheiden. Jedem dieser Werte von u entsprechen nun die
Coordinaten eines Wendepunktes, welche mit Hülfe der Gleichungen
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(16) bestimmt werden können ; alle 10 Wendepunkte liegen

paarweise symmetrisch zur x-Axe. —

Wendepunkte der Specialkurve: d a.

Für den Fall, dass d a wird, nimmt die Wendepunktsgleichung

(27) die Form an:
sn4u j dn5u -j- 3 dn4u -f- 2dn3u — 2 k'2dn2u — 3k'2. dn u — k'2 J 0 (29)

Der 1. Faktor liefert 2 Wendepunkte; der eine derselben ist
der unendlich ferne Punkt der Kurve 3. Ordnung, der andere fällt
auf die sich von der allgemeinen Kurve absondernde Erzeugende E.

Vom 2. Faktor der Wendepunktgleichung (29) spaltet sich die
Grösse : dn u -f- 1 ab ; derselbe ist nämlich

(dn u -4- 1). (dn4 u + 2 dn3 u — 2 k'2 dn u — k'2) 0

und hieraus : a. dn u -j- 1 0

b. dn4 u-f-2 dn3 u — 2 k'2 dn u — k'2 0

Aus (a) erhallen wir also : dn u — 1, somit u + 2 i K' und es

werden die Coordinaten von 2 Wendepunkten : x 0, y 0, d. h.,
zwei Wendepunkte fallen in den Berührungspunkt der sich absondernden

Asymptote Ai mit dem Oval der Kurve 3. Grades.

Die Gleichung (b) liefert uns die übrigen 8 Wendepunkte; sie
ist eine solche 4. Grades in dn u. Jedem Werte von dn u entsprechen
zwei gleiche aber entgegengesetzte Argumente u, welche je zwei

zur x-Axe symmetrische Wendepunkte liefern

Wendepunkte der Specialkurve: d \/a2 — b2

*= e:
Für diese Kurve lautet die Wendepunktsgleichung:

sn4u {dn8u-f- 3 k' dn4u -f 2 dn3 u — 2 k'8 dn2u — 3 k'2 dn u — k'8} 0

(30)
sn4 u 0, liefert uns wiederum die zwei in den unendlich fernen
Punkt fallenden Wendepunkte.

Der 2. Teil der Gleichung (30) lässt sich in 2 Faktoren
zerlegen und lautet also:

(dnu + k/).{dn4u-f-2k1.dn2u(dnu—k') + 2dnu(dnu—k') — k'2}=0
(31)

Hieraus ergibt sich:
a. dn u -f k' 0, also : dn u — k'

somit : u + (2 i K' - K).
Ferner isl : sn (2 i K' — K) + 1 ;

und cn (2 i K' — K) 0.



— 118 —

Die Coordinaten der diesem Argument entsprechenden Wendepunkte-,

sind dann:

x d — ak' e — a — 0;
a

y (d-ak')~ =0.
Es fallen also zwei Wendepunkte, den Argumenten

+ (— K -j- 2i K') entsprechend in den Coordinatenur-
sprung, welcher Punkt, wie früher gesehen, in diesem Fall eine

Spitze ist.
Die noch fehlenden 8 Wendepunkte liefert uns der 2. Faktor

der Gleichung (31) :

dn4 u -f 2 k'. dn2 u (dn u — k')+ 2 dn u(dnu — k') — k'2 0. (32>
Als eine Gleichung 4. Grades in dn u liefert sie uns 4 Werte

für dn u, und diesen entsprechen 8 Argumente, die 8 paarweise

symmetrisch zur x-Axe gelegene Wendepunkte ergeben. —
Wendepunkte der Specialkurve: d 0.

Wir erhalten dieselben wiederum aus der allgemeinen
Wendepunktsgleichung (27), indem wir dort d 0 setzen; dann wird:

sn4 u {a dn5 u -f- 2 a dn8 u — 3 a k'a dn u} 0 (33)
Der 1. Faktor enthält wie bei den vorigen Fällen die beiden

ins Unendliche fallenden Wendepunkte. Vom 2. Faktor dieser Gleichung

(33) spaltet sich die Grösse: dn u ab. Es ist aber dn u 0 für
u + (K + iK').

Die beiden Wendepunkte, welche diesem Argument entsprechen,
i k<

sind imaginär, da cn (K + i K') -+• —— imaginär.

Der übrig bleibende Teil der Gleichung (33):
a dn4 u -f- 2 a dn2 u — 3 a k'a 0 (34)

liefert uns die weitern 8 Wendepunkte. Da diese Gleichung nur
gerade Potenzen von dn u enthält, so kann sie ohne weiteres aufgelöst

werden.
Es folgt nämlich:

u ± v/— 1 ± \/l + 3 k'2dn u ± V/ — 1 ± Vi + 3 k'2 (35)

Dem positiven Zeichen der 2. Wurzel entsprechen 2 reelle Werte für dn u
» negativen ». » » » 2 imginäre » »dnu

Diese Gleichung liefert uns also 4 reelle und 4 imaginäre
Wendepunkte, die paarweise symmetrisch zu den beiden Coor-
dinatenaxen liegen.
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Zur Bestimmung ihrer rechtwinkligen Coordinaten
benützen wir die Gleichungen dieser Fokalen, welche sich aus (16)
für d 0 ergeben als:

x a.dnu l (36)
y a dn u ctg am u |

Da dn2 u 1 — k2 sn2 u, so ist :

W2^4-
(37)

sn u i — V / 2 + V4 — 3 k2

und cnu= V/1 —p- (2 +\Ji — 3 k2)

Setzen wir die Werte von sn u, en u und dn u in den Gleichungen

(36) ein, so erhalten wir als Coordinaten der reellen 4 Wendepunkte :

x - ± a yj.

V
l-f-v7*--3 k2;

5 — 2 \/4--3 k2--3k2
y ± a.

Es liegen somit die 4 reellen Wendepunkte zu je zweien
centralsymmetrisch auf einer durch 0 gehenden Geraden.

Die Gleichung dieser Wendepunktsgeraden lautet:

y
— clgam u
x

wo für en u und sn u die Werte aus Gleichungen (37) einzusetzen sind.

Dies ausgeführt, gibt:

i-±\l y/4 —3k2—l

Setzen wir endlich für k noch seinen Wert — ein, so erhalten
a

wir die Gleichung der Wendepunktsgeraden in der Form:

i-W-V/4a2— 3 b2
(38).

3a
Dieselben schliessen, da die rechte Seite absolut < 1 ist, mit

der x-Axe einen Winkel < 45° ein.
Die 4 reellen Wendepunkte liegen auf einem Kreis

um den Coordinatenursprung vom Radius:

r V/xTTF
!2 -f- \fi — 3k2 —k2.^
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II. Fokalen des Kreiscylinders.
Modiflcieren wir die zu Anfang unserer Betrachtungen gemachte

Annahme in der Weise, dass wir den elliptischen Cylinder in einen

Kreiscylinder übergehen lassen, indem wir b a setzen, so

nehmen die unter den sonst gleichen Bedingungen entstehenden
Fokalen wesentlich andere Eigenschaften an.

Wir haben auch hier wieder die verschiedenen Fälle zu
unterscheiden, wo die Büschelkante ausserhalb der Cylinderfläche
liegt, dieselbe tangirt oder schneidet, und jeder dieser
speciellen Annahmen entspricht eine besondere Form der Kurve.

Befindet sich die Büschelaxe ausserhalb dem Cylinder, so
erhalten wir die Gleichung der so entstehenden Fokalen aus Gleichung
(1) des 1. Abschnittes, indem wir dort einfach b^=a l setzen,
wodurch der elliptische Cylinder in einen Kreiscylinder übergeht vom
Radius 1.

Die Gleichung der allgemeinen Kreiscylinderfokalen lautet also:

(x — d)2. (x2 -f y2) - l2y2 0 (39).
Diese Gleichung stellt uns ebenfalls eine Kurve 4. Ordnung
dar ; einem veränderlichen d entspricht auch hier eine Schar von
Fokalen und negative Werte von d liefern Kurven, die identisch sind
mit denjenigen, welche sich für gleich grosse positive d ergeben und

symmetrisch liegen zur Cylinderaxe. (Fig. 7.)

Nach y aufgelöst, lautet die obige Gleichung (39):

Y -f (X ~ d)
- (39a)- \/p_ (x—d)2

und hieraus geht hervor, dass die Kurve symmetrisch zur
x-Axe liegt.

Der Coordinatenursprung ist. wie aus der
Kurvengleichung ersichtlich. ein Doppelpunkt der Fokalen. Die

Tangenten in ihm erhalten wir aus der Gleichung:
d2.(x2 + y2)- l2y2=0.

Sie sind also enthalten in der Form:

_L + d
(40).

x \/l2 — d2

Ist d > 1, d. h. liegt die Büsclielkante ausserhalb dem Cylinder,
so werden die Tangenten im Doppelpunkt 0 imaginär; dieser

ist isolirter Doppelpunkt; für alle Werte von d < 1

dagegen ist das Tangentenpaar in 0 reell.
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Ein 2. Doppelpunkt der Fokalen ist, wie sowohl aus der
Kurvengleichung als auch aus der geometrischen Erzeugungsweise erfolgt:
x d, y 0; dies ist der Schnittpunkte der
Cylinderaxe mit der Axe der x. — Um die Tangenten in
ihm zu erhalten, machen wir ihn zum Ursprung des Coordinaten-

systems, indem wir Gleichung (39) linear transformieren. Wir setzen
nämlich : x x' -f- d ;

und y y';
dann erhalten wir als transformierte Gleichung der Kurve :

x'2 ((x' + d)2-f y'2) - l2y'2= 0 (41).
Aus derselben ergibt sich als Gleichung des Tangentenpaares

in C:

4 - + -1 (42).
x' — 1

Die Tangenten werden also für alle Werte von d, von 0 bis oo,
reell ; der Punkt C ist mithin für alle Fokalen
Doppelpunkt.

Der 3. Doppelpunkt der Kreiscylinderfokalen ist der
unendlich ferne Punkt. Die Natur desselben wird, indem wir
h a annehmen, nicht geändert. Die Tangenten in ihm sind
deshalb auch hier die in der Kurvenebene liegenden Erzeugenden E und

E' des Cylinders ; dieselben sind also Asymptoten für sämtliche

Kreiscylinderfokalen.
Wir haben bereits eingangs erwähnt, dass verschiedenen spe-

ciellen Lagen der Büschelaxe in Bezug auf den Cylinder auch hier
verschiedene Cylinderfokalen entsprechen.

1. ist d oo, so sind sämtliche Schnittebenen des Büschels

unler sich parallel und schneiden die Cylinderfläche normal zu deren
Axe. Die Schnittfiguren werden in diesem Fall zu congruenten
Kreisen; ihre Brennpunkte fallen zusammen im Mittelpunkt und der
Ort derselben ist, wie dies geometrisch hieraus hervorgeht, die
Cylinderaxe.

2. Für d 1 wird die Büschelaxe zur Tangente an die Cylinderfläche,

und die allgemeine Kurvengleichung zerfällt in 2 Faktoren:
(x) (x3 — 2 Ix2 -f (l2 + y2) x — 2 ly2) 0

Der 1. Faktor: x 0ist die y-Axe, (Erzeugende E)
» 2. • (x — l)2 x + y2 (x - 2 1) 0 (43)

ist eine Gleichung 3. Grades; dieselbe repräsentiert also eine

Kurve 3. Ordnung. Sie besteht aus einer Schleife, deren Zweige

Bern. Mitteil. 1894. Nr. 1350.
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sich im Punkte C durchsetzen und nach beiden Seiten asymptotisch zu

E' ins Unendliche gehen. Der Coordinatenursprung 0 ist in diesem

Specialfall ein gewöhnlicher Punkt; denn die Tangenten in ihm fallen
y

zusammen in die Gerade : — oo, welch' letzlere die Cylinder-
x

erzeugende E ist. Für das Tangentenpaar im Doppelpunkt C lauten

die Gleichungen (48):
1- + 1 (44)
x —

d. h. die Kurve durchsetzt sich im Doppelpunkt C rechtwinklig,
und es liegen die beiden Tangenten in ihm symmetrisch zur x- und

zur y-Axe. Der unendlich ferne Punkt ist Wendepunkt (Fig. 8) und
die Cylindererzeugende E' ist Wendetangente in demselben. Dieser

Specialfall der Kreiscylinderfokalen ist bekannt unter dem Namen der

«Logocyclischen Kurve» der «Logocycloide» oder
der Strophoide; dieselbe besitzt eine grosse Anzahl interessanter

Eigenschaften, welche Gegenstand verschiedener mathemalischer Arbeiten
geworden sind.*) Ihre geometrische Erzeugungsweise ist eine sehrmannigfaltige

; einige Constructionen finden sich erwähnt bei S. Günther in
der unten genannten Abhandlung und in Ed. Bartl, «Übungsaufgaben

aus der Trigonometrie und analytischen Geometrie der Ebene.»
3. Für Werte von d ¦< 1 aber > 0 besieht die Kurve aus zwei

Ästen, die sich in den Punkten F und C durchsetzen; diese beiden
Punkte sind Knotenpunkte ; denn die Tangentenpaare in ihnen sind

reell. (Fig. 9).
4. Verschieben wir endlich die Büschelaxe parallel zu sich selbst

nach dem Schnittpunkt C der x-Axe und der Axe der Cylinderfläche,
so wird d 0, und wir erhalten als Gleichung dieser Specialkurve:

x2 (x2 -f y2) — la y2 0 (45)
Die durch dieses Polynom dargestellte Kurve ist wiederum eine

solche 4. O r d n u n g. Sie besitzt die gleichen symmetrischen
Eigenschaften wie die ihr entsprechende Fokale des elliptischen Cylinders,
d. h. sie liegt symmetrisch zu beiden Coordinatenaxen. Bei ihr

*) Darunter sind vorzugsweise die 2 folgenden Schriften zu nennen:
J. Booth, A treatise on some new geometrical methods containing essays

on tangential coordinates, pedal coordinates, reciprocal polars, the trigonometry
of the parabola, the geometric origin of logarithms, the geometrical properties
of elliptic integrals and other kindred subjects. London 1873.

S. Günther, Parabolische Logarithmen und parabolische Trigonometrie.
Leipzig 1882.
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fallen die beiden endlichen Doppelpunkte
zusammen in C, nämlich :

für y 0 wird x4

und für x 0 » y2

Der Nullpunkte ist mithin Selbstberührungspunkt
o d er S e lb s t b er üh r un gs kno t en; die x-Axe

ist Tangente an beide Zweige der Kurve, die
sich in ihm berühren. (Fig. 10.)

Construktion der Kreiscylinderfokalen.

Die auf C als Ursprung bezogene Kurvengleichung lautet:
x2 (x2 4- y2) 4- 2 dx3 4- d2 x2 — l2 y2 0

oder (x2-j-y2)-f-2 dx-f d2 l2.-^-; (46)

Es ist nun P ein beliebiger Punkt der Kurve, g sein Radius

vector C P und y der Winkel, welchen g mit der x-Axe einschliesst ;

dann erhallen wir aus (46):
g2 4- 2 dg cosy -j- d2 (cos2y -f- sin2y) l2 tg2y (47)

und hieraus:

g — d cosy + yd2 — d2 cos2y tgy ; (^7a)
Ist d > 1, so erhalten wir auf den durch C gehenden Strahlen nur

dann reelle Kurvenpunkte, wenn cos y •< — •

Die obige Gleichung (47a) führt nun dazu, Punkte der Cylinder-
fokalen zu construieren. Sie liefert uns nämlich folgenden Satz :

Schlägt man um C als Mittelpunkt einen
Kreis vom Radius 1, zieht durch 0 einen
variablen Strahl, der diesen Kreis in 2 reellen
Punkten G und G' schneidet, und fällt von diesen
Punkten Senkrechte auf OC, so treffen diese
das aus C auf den Strahl OG gefällte LotCQ in
2 Punkten P und P' unserer Fokalen.

Der Beweis ist der folgende: (Fig. 11.)
Es ist : CQ d cosy.
Femer ist : OGP y ; denn die Schenkel stehen senkrecht zu

denen von A'CP; somit:
QP QG tgy

und QG =- v/l2 — d2 cos2y,
also
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qI\ ± \/l2-d2.cos2y tgy.
Die Radien vectoren genügen also der Relation (47).
Da der Punkt Q in der Mitte des Strahles PP' liegt, so folgt daraus:

Der Ort der Mitten der durch den Doppelpunkt
C gehenden Sehnen unserer Kurve ist

der.um OC als Durchmesser beschriebene Kreis.
Jeder Lage der Geraden OG entsprechen 2 Punkte der Kurve,

die auf einem Strahl durch den Ursprung C gehen. Bewegt sich
daher der Strahl OG von der x-Axe aus bis zur Tangentenlage OB', so

bewegt sich der Kurvenpunkt P vom unendlich fernen Punkte auf der

positiven Seite der y-Axe bis zum Punkte B' und der Punkt P' vom
unendlich fernen Kurvenpunkte auf der negativen Seite der Coordinate

y bis zum nämlichen Punkte B'. — Die Berührungspunkte
der von 0 an den Kreis um C gezogenen
Tangenten, die Punkte B' und B sind also Punkte
der Fokalen; in denselben wird dieser Kreis
von der Kurve orthogonal geschnitten.

Bezeichnen wir ferner den Abstand des Punktes P der Kurve von
der Büschelkante mit r, so haben wir folgende Beziehung:

Es ist:
g2 4- 2 d g cos y 4- d2 r2.

Die linke Seite dieser Gleichung ist aber identisch derjenigen
von (47); somit ist:

r2 l2 tg2y r'2
also r r' 1. tg q, (48)
oder auch 1 tgy •= A'D AD' ; d. h. :

Die Entfernung zweier auf einem Strahl
durch den Ursprung C gelegener Kurvenpunkte
P und P' vom Doppelpunkt 0 ist dieselbe und
gleich den Abschnitten, welche dieser
Leitstrahl auf den Cylindererzeugenden E und E'

bildet, gemessen von der x-Axe aus.

Construktion der Normalen in einem beliebigen Kurvenpunkte P.

Diese Aufgabe kann gelöst werden mit Hülfe der auf pag. 123
erhaltenen Construktion eines beliebigen Punktes der Fokalen und wird
durch sie zurückgeführt auf die folgende :

Es ist ein variables Dreieck PGQ gegeben,
dessen eine Seite PQ durch den festen Punkt
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C, dessen 2. Seite QG durch einen andern festen
Punkt 0 gehl und dessen 3. Seite sich selbst
parallel bleibt; dabei bewegt sich die Ecke G

auf einem Kreise um C und die Ecke Q aufeinem
Kreise um C und die Ecke Q auf einem solchen
vom Durchmesser CO. Manconstruiere die
Normale der Ortskurve der 3. Ecke P.

Wir bezeichnen (Fig. 12) die Mitte von OC mit M; M ist dann
also der Mittelpunkt des Kreises, auf dem Q liegt, und CG und MQ
sind die Normalen der Ecken G und Q. Eine in 0 errichtete
Senkrechte zu O Q G schneide diese Normalen in den Punkten R resp. S ;

dann ist QORC ein Rechteck, somit der Punkt R auch Schnittpunkt
der Normalen von Q mit der in C auf QP errichteten Senkrechten.
PT sei nun die gesuchte Normale von P; sie treffe die in C auf PQ

errichtete Senkrechte im Punkte T. Eine im unendlich fernen Punkte

von GP errichtete Senkrechte treffe endlich die Normalen GS und PT

in den Punkten Uoo resp. Voo. Wenn nun dG, dQ und dP die
Kurvenelemente sind, welche in unendlich kleinen Zeiten von diesen Punkten
beschrieben werden, so ergibt sich nach einem bekannten Satz aus

der kinematischen Geometrie:
Es ist:

GS
'

QR

QR

PT

PVoo

dG

dQ

dQ

dP

dP

dG GUoo

(a)

Durch Multiplikation dieser 3 Gleichungen erhalten wir:
GS PVoo

1
PT GUoo

<b)

Wenn wir ferner den Schnittpunkt der Geraden GS und PT

mit « bezeichnen, so ist:
PV< aVoo

(c)
GUoo aUoo

Eine in P errichtete Senkrechte auf PG schneide Ga im Punkte

ß und die durch G n zu PT gezogene Gerade in y; dann ist:

aVoo
«Uoo

aP ^ (d)
aß Gß w
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Dann wird die Gleichung (b) :

GS Gr PT GS
1 Pf •

Gß
°der

G"y Gß
(e)

Indem wir von T aus eine Senkrechte GP ziehen, erhalten wir
2 ähnliche Dreiecke PTz und GPy; in ihnen ist:

PT Pz
—- — ff)
Gy GP K)

und wir erhalten daher:
Pz _GS
GP Gß (gj

Fällen wir endlich das Lot So, so wird:
GS GÔ

Chi
G7 GP(h)

Pz Gd
also

gp ^p (i)

oder es ist: Pz Gd (k)
oder dz GP (1)

Der Schnittpunkt T von z T mit der in C errichteten Senkrechten
auf QP ist zugleich ein Punkt der gesuchten Normalen PT. Da das

Viereck CPzT ein Viereck im Kreise ist mit PT als Durchmesser, so

gilt der Satz :

Der Umkreis des Dreiecks CPz berührt im
Punkte P unsere Kurve.

Indem wir nun die oben gefundenen Resultate anwenden und

zugleich diejenigen Elemente, die nur zur Ableitung der vorigen
Construktion gedient haben, unterdrücken, so ergibt sich folgende
Construction der Normalen und der Tangente
unserer Kreiscylinderfokalen: (Fig. 13)

Die Fokale ist der Ort des Schnittpunktes P der Geraden GH
und QC (oder auch der Geraden OP).

Es sei ferner S der Schnittpunkt des Lotes in 0 mit der
Geraden CG und d der Fusspunkt des Perpendikels von S auf GP, endlich
machen wir noch dz GP.

Es berührt dann der um CPz beschriebene Kreis in P die
Fokale, und die Gerade, welche P mit dem Schnittpunkt der Perpendikel
in z und C verbindet, ist die gesuchte Normale der Kurve im Punkte
P, oder nehmen wir im Dreieck QPz zu dem durch P gehenden
Höhenperpendikel die Winkelgegenlinie, so ist letztere die Normale
der Kreiscylinderfokalen im Punkte P.
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Die zugehörige Tangente ist die durch P

Parallele zu HU, der Verbindungslinie der Fuss-
punkte der beiden Höhenperpendikel in C und z.

Darstellung der Coordinaten eines Punktes der Kreiscylinderfokalen
als rationale Functionen eines Parameters.*)

Die Fokale des Kreiscylinders besitzt 3 Doppelpunkte; sie ist also

eine Kurve vom Geschlecht Null, und es lassen sich somit

ihre rechtwinkligen Coordinaten (x, y) darstellen als algebraische
Funktionen eines variablen Parameters.

Zu dieser Darstellung gelangen wir vermittelst der Gleichungen

(17) und (18) pag. 113, welche die Coordinaten der Fokalen des

elliptischen Cylinders in elliptischen Funktionen eines Parameters u
ausdrücken. Für den Fall nämlich, dass der elliptische Cylinder in einen

Kreiscylinder übergeht, wird der Modulus k — 1,
3

und es

gehen die elliptischen Funktionen über in hyperbolische; denn für
k 1 wird :

r dz i" =J 1=* 2
Lg

14-z

hieraus ist:
e — e

somit:

ferner

e -f- e

Es ist aber auch: z sn (u, 1).

sn (u, 1)

cn (u, 1)

dn (u, 1)

— tg. hyp. u tangu;

tätig u

1

cof u

1

cof u

(49)

Indem wir diese Werte für sn, cn, dn in den Gleichungen (17)
nnd (18) einsetzen, gehen diese über in :

x d 4- t
l

cof u

1

y (d+a-^)
V co| u / fin u

(50)

*) Siehe Prof. Dr. G. Huber, Die Kegelfokalen, Bern, 1893.
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oder da wir den Radius des Kreiscylinders mit 1 bezeichnet haben:

x d 4-1. fefans u I

y d cofeïanS u + 2 1 cofefanS 2 u J
v }

Diese Gleichungen drücken also die rechtwinkligen Coordinaten
eines Punktes der Kreiscylinderfokalen in hyperbolischen
Functionen eines Argumentes u aus. Jedem Werte von u entspricht
ein und nur ein Kurvenpunkt; die Fokale ist mithin durch diese

Gleichungen eindeutig bestimmt.
Durch Division der Gleichungen (50) folgt:

JL= 1 ...(51)
x fin u

Dies ist die Gleichung eines Strahls durch den Coordinatenursprung
0, der die Fokale in 2 zugeordneten Punkten schneidet von
den Argumenten u und l\n — u).

-= stellt in obiger Gleichung (51) den Richtungscoëflizienlen

des Leitstrahls durch 0 dar. Setzen wir denselben gleich der

trigonometrischen Tangente eines variablen Winkels a, also : -= tg a,

so erhalten wir die Coordinaten (x, y) eines Punktes der Kreiscylinderfokalen

ausgedrückt in rationalen Functionen von trigonometrischen
Functionen, nämlich:

x d -f- 1 sin a

y (d 4- 1. sin ce) tg
Lassen wir hierin a variieren von 0° bis 360°, so erhalten wir

sämtliche Kurvenpunkte.
Die Gleichungen (52) gehen für den Fall, dass d 1 wird über in :

;«1(52)

x i(i + sin«) l

lg«y 1 (1 4- sin a)
Rückt 0 nach C oder wird d 0, so werden obige Gleichungen :

x I sin a ._(52 b)
y 1 sin a tg a

und hieraus ergibt sich auf einfache Weise die Polargleichung
der Kreiscylinderfokalen d 0, bezogen auf den Selbst-

berührungspunkt als Nullpunkt; nämlich:
x2 4- y2 r2 l2. sin2 a -f- l2 sin2 a .ig2 a

oder r 1. tg a (53)
Mit Hülfe dieser Polargleichung lassen sich nun Punkte der

Fokalen construieren; denn aus ihr geht hervor, dass der Radius
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vector eines Ku r v enp un k t e s direkt proportional
ist der trigonometrischen Tangente des

Winkels, den derselbe mit der x-Axe bildet.
Tragen wir also auf einen beliebigen Leitstrahl durch 0 seinen

Abschnitt auf der Cylindererzeugenden E resp. E' ab, so ist dieser Punkt
ein Punkt der Fokalen.

Die Gleichungen (52) geben uns die rechtwinkligen Coordinaten
eines Punktes der Kreiscylinderfokalen bezogen auf 0 als Ursprung in
trigonometrischen Functionen eines variablen Winkels a.

Setzen wir nun in denselben tg — t, wo t einen variablen

Parameter bedeutet, so gehen sie über in:

A I 1 2t
x d + 1r+li;

_ 2 (d 4- 2 lt 4- dt2). t
y— 1 —t4

oder alles auf gleichen Nenner gebracht :

(d 4-2 lt 4-dt2) (1 —t2)x=- 1 —t4
2 (d 4-21t 4-dt2), t

(54)

1 - t4

Es lassen sich also die Coordinaten sämtlicher Punkte der
Kreiscylinderfokalen darstellen mit Hülfe eines variablen Parameters als

rationale algebraische Functionen.
Für den Doppelpunkt 0 ergeben sich die Parameterwerte

aus der Gleichung : d -f- 2 It -f dt2 0;
nämlich :

— 1 + \J\2 — d2ìl d

Dieselben sind nur reell für 1 > d. Für 1 d, d. h. für den

Fall, dass die Büschelaxe den Cylinder tangiert, erhalten wir aus obiger
Gleichung nur einen Parameterwert ; 0 ist, was wir schon früher
auf andere Weise gefunden haben, unter dieser Voraussetzung ein

einfacher Punkt der Fokalen 3. Ordnung.
Für die Parameterwerte t, 0 und t, — oo ergeben sich aus

Gleichung (54) die Coordinaten des Doppelpunktes C, und t
4-1 entsprechen die unendlich fernen Kurvenpunkte.

Durch Division der Gleichungen (54) ergibt sich:

Bern. Mitteil. 1894. Nr. 1351.
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f-£p w
Dies ist die Gleichung eines Leitstrahls durch 0. Derselbe schneidet

die Fokale in 2 reellen Punkten, die wir zugeordnete Punkte genannt
haben. Jedem dieser Schnittpunkte entspricht ein bestimmter
Parameterwert t.

2 t
Fassen wir in Gleichung (55) den Ausdruck - p als Richtungs-

coëfflcient des Leitslrahls auf und setzen wir denselben m, so er-
2t

geben sich aus dieser Gleichung: -—-^ m die Paramelerwerte
¦L v

zweier zugeordneter Punkte t, und t, durch:

— 1+V/l+m2ìl- m

Ihr Produkt: t, t, — 1 constant, stellt eine

elliptische Punkt- oder Strahlinvolution dar von
der Potenz — 1. Der Mittelpunkt derselben ist der Parameterwert
0 des Doppelpunktes C; ihm entspricht der Parameterwert oo
desselben Punktes.

Für m +\J — l==-f-i fallen die sonst verschiedenen
Parameterwerte zweier zugeordneter Punkte zusammen in 4- i resp. — i;
y a + i x ist aber die Gleichung der Leitstrahlen durch 0 nach den

imaginären Kreispunklen im Unendlichen; es ist die Gleichung der
Strahlen absoluter Richtung; dieselben sind mithin Tangenten der

Fokalen in diesen Punkten.

Die hier gefundenen Resultate lassen sich kurz in folgendem
Satz ausdrücken:

Je zwei zugeordnete Punkte einer
Kreiscylinderfokalen besitzen Parameterwerte, welche

einer elliptischen Involution angehören
von der Potenz — 1; der Mittelpunkt derselben
ist der Parameterwert 0 des Doppelpunktes C.

Die imaginären Doppelpunkte dieser Involution
sind die Parameterwerte der imaginären
Kreispunkte der Ebene.

Wählen wir statt des Doppelpunktes 0, den Punkt C als

Ursprung des Coordinatensystems, so gehen die Gleichungen (54) über in:
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2 It. (1 — t2)
1 —t4

2 (d -f- 2 lt -f- dt2) t
(56)

(57)

1 —t4
Es stellt uns dann die Gleichung:

y^_ d 4- 2 lt -f dt2

x' ~~
1 (1 — t2)

einen Strahl durch C dar. Jeder solche Strahl schneidet die Kreis-

cylinderfokale in 2 Punkten; ihre Parameterwerte ergeben sich aus:
d -f-'2 It -j- dt2 1 m (1 — t2);

-, t, Ì — 1 + \/la — (d2 —l2 m2)
sie sind: ; >= — --;t, J d 4- Im '

wo m der Richtungscoëfflcient des betreffenden Strahles bedeutet.

Diese Schnittpunkte sind jedoch nur reell für l2 (1 -f- m2) > d2, also

für m > — v/d2 — Î2", für den Fall, dass d > 1.

Wird der Radikant:
12 -f-12 m2 — d2 0,

so wird l, t,, und der Leitstrahl ist Tangente vom Doppelpunkt
€ aus an die Fokale. Dies tritt also ein für

m ± -y- \/d2 — la.

Es können also vom Doppelpunkt C aus zwei Tangenten
an die Kreiscylinderfokale gezogen werden, die symmetrisch liegen
zur x-Axe. Diese Tangenten sind jedoch nur reell für d > 1, also

für den Fall, dass die Büschelkante ausserhalb des Cylinders liegt.
Der Ort der Berührungspunkte dieser Tangenten

für ein System von Kreiscylinderfokalen, das wir erhalten, indem wir
bei constantem Cylinderradius d variieren lassen, ergibt sich aus der
auf C als Ursprung bezogenen Kurvengleichung in rechtwinkligen
Coordinaten unter Zuhülfenahme des oben für den Richtungscoëfflzi-
enten der Tangenten gefundenen Ausdrucks.

Es war diese Gleichung der Fokalen in rechtwinkligen Coordinaten

(pag. 121):
x'2 ((x' 4- d)2 -f y'2) — l2 y'2 0.

Es sei ferner : y' mx' die Gleichung einer im Coordinalen-

ursprung an die Kurve gezogenen Tangente, deren Richtungscoëfflzient
gegeben ist durch :
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ra ±~\Jd2-\2;
dann erhalten wir aus obigen Gleichungen die Coordinaten des

Berührungspunktes der Tangente als:

— d
X'~~l4-m2

— md
y'

(58)

14-m2

Führen wir hierin für m die obige Bedingungsgleichung ein und

eliminieren den constanten Abstand d, so erhalten wir als Ort der
Berührungspunkte sämtlicher durch C gehender Tangenten eines
Fokalsystems den Kreis:

x2 4- y2 l2 (59)

Dies ist ein Kreis um den Doppelpunkt C mit Radius 1 <== dem
Radius des Cylinders; derselbe berührt also die Cylindererzeugenden
E und E' in den Punkten A und A'.

Da die beiden von C aus an die Fokale gehenden Tangenten
symmetrisch sind zur x-Axe, so liegen ihre Berührungspunkte auch auf
einem Kreis um 0, welcher die Kurve in denselben berührt; denn:
Ein Kreis mit Radius r um 0 und unsere Kreiscylinderfokale
bezogen auf 0 als Ursprung haben die Gleichungen:

x2 + y2 r2; 1

(x2 -f y2). (x — d)2 — l2 y2 0 ; w
Eliminieren wir aus diesen Gleichungen y2, so erhalten wir eine

Gleichung in x2, welche nach x aufgelöst die Abscissen der Schnittpunkte

von Kreis und Fokale liefert.
Die Gleichung in x2 lautet:

(r2 4- l2). x2 — 2 d r2. x 4- (d2 - l2). r2 0. (b)
Soll nun obiger Kreis die Kurve herrühren, so müssen die beiden

Wurzeln dieser Gleichung (b) zusammenfallen, und hiefür ist die
Bedingung :

(r2 4-12). (d2 — l2). r2 — d2 r4 0.
Dieses Polynom zerfällt in 2 Faktoren:

1. r2 0 I

nund 2. (ra -f-12). (d2 — l2) — d2 r2 0j w
Die Lösung r2 0 bezieht sich auf den isolierten Doppelpunkt 0 und
kommt hier nicht in Betracht.
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Aus dem 2. Faktor ergibt sich :

r2 d2 — l2 ; (d)

Aus Gleichung (b) wird die Abcisse der Berührungspunkte:
dr2

X ~~ r24-l2
da aber nach (d): ra 4- l2 d2, so ist:

d x r2 (60) Fig. 7; Bl. II; d. h.

Der um 0 beschriebene Kreis, welcher durch
die Berührungspunkte der von C an die Fokale d > 1

gelegten Tangenten geht, schneidet in diesen Punkten

den Kreis um den Doppelpunkt C mit Radius 1

orthogonal; dabei berührt er auch die Kurve in diesen Punkten.

Für die Specialkurven d 1 (Strophoïde) und d 0
gehen die Gleichungen (54) über in die folgenden:

d 1: x 1 (l + -^)
2 lt. (1 4-1)2

1 — l4

(61)

' 1 |4

2 lt
d 0: x 14-t2 v

y — 1 - t4

Bezeichnen wir auch hier die zwei auf einem Leitstrahl durch
den Coordinatenursprung 0 liegenden Kurvenpunkte als zugeordnet,
so gelten im Specialfall d 1, nach Gleichung
(61), für ihre Radien vectoren und für ihre
rechtwinkligen Coordinaten di e s e lb e n G e se tz e

wie bei der entsprechenden Fokalen des
elliptischen Cylinders (pag. 113).

Transformieren wir die Gleichungen (54), (61) und (62) auf den

Doppelpunkt C als Coordinatenursprung, so lauten dieselben:

a. d > 1: x 1+12 \ (63»)
2 (dt2 4- 2 lt 4- d) t r

~ 1 —t4
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b. d 1: x

y

c. d 0: x

2 lt
14-t2

2 1 (1 4- t) t
(1 + t2) (1 - t

2 lt

(63b)

1 + t2 l (630)
41t2 f V ;

Diese Gleichungen zeigen, dass die Abcisse x für sämtliche

Fokalen eines Systems mit variablem d, aber
constantem Parameter t dieselbe ist.

Es entsprechen aber jedem Werte von x zwei Werte von t,
die sich aus obigen Gleichungen für die Abcisse ergeben als:

t, \ _ 1 4 \/l2 —x2.
ta I x

Diese Parameterwerte sind nur reell für 1 > x, d. h. für den

Fall, dass die zugehörigen Punkte der Fokalen sich innerhalb den

Erzeugenden E und E' befinden, mithin selber reell sind.
Das Produkt der Parameterwerte aus obiger Gleichung ist:

t, .ta l= constant, d. h. :

JedeOrdinate zwischen denCylindererzeugen-
den E und E' schneidet sämtliche Fokalen eines
Kr eiscy lin d er s in P unk te p aar en deren Para-
me terwerte bezogen aufden Doppelpunkt C

dieselben sind, und es bilden diese Parameterwerte

aller Ordinaten ein hyperbolisches
Punktsystem von der Potenz 4-1. Der
Mittelpunkt dieser Involution wird repräsentiert
durch den Parameterwert t, Odes Punktes C;

diesem entspricht als unendlich fernes Element
der andere Par am et er w e rt t, oo desselben
Punktes; die D op p el el eme n t e sind die
Parameter der unendlich fernen Kurvenpunkte.

Wendepunkte der Kreiscylinderfokalen.

Lassen wir in der Wendepunktsgleichung (27) pag. 116 den

Modulus k in 1 übergehen, so erhalten wir eine Gleichung

in hyperbolischen Functionen, die uns die 6 Wendepunkte

der Kreiscylinderfokalen liefert.
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Es wird also (27) für k 1:

tan9'»4-^+3d^+2i^}==o
oder long4 u {21. cof2 u -f 3 d cof u -f 1} 0; (64)

Diese Gleichung zerfällt also in die beiden :

1. tätig* u 0

und 2. 21. cof2u=3dcofu-f-l 0 (65)

Der 1. Faktor liefert die zwei im unendlich fernen
Doppelpunkt der Kurve liegenden Wendepunkte; denn
diese Gleichung ist erfüllt für u 0 und u i n, für welche Werte
sich aus Gleichung (50) die rechtwinkligen Coordinaten:

x d 4- 1} und x d — 1

ergeben; der unendlich ferne
y oo y oo '

Doppelpunkt ist mithin auch für die Kreiscylinderfokalen doppelter
Inflexionsknoten.

Die übrigen 4 Wendepunkte der Kreiscylinderfokalen sind

gegeben durch den 2. Faktor der Wendepunktsgleichung (64):
2 lcof2u + 3dcofu 4-1 0;

Nach cof u aufgelöst, erhalten wir :

— 3 d + V/öd2 —812„f u =|i
Jedem Werte für d entsprechen aus dieser Gleichung im allgemeinen
zwei Werte für cof u und jeder dieser Werte cof u liefert nach

Gleichung (50) die rechtwinkligen Coordinaten zweier Wendepunkte,
die symmetrisch liegen zur x-Axe, also gleiche Abscisse und entgegen-

2 i—
gesetzt gleiche Ordinaten besitzen. Nur für den Fall d + — 1 .y 2

o
fallen die beiden Werte von cof u aus obiger Gleichung zusammen in

+ -ç- \/2, und wir erhalten nur 2 symmetrisch zur x-Axe gelegene

Wendepunkte, deren Coordinaten aber imaginär sind.
Die rechtwinkligen Coordinaten der 4 Wendepunkte ergeben

sich aus Gleichungen (50) als:

x d-
— 3d4\/9d2 — 812

4 12 \ 41

lì2/ ±V/18d2—23d + \/9d2 —812/ iV^d2—2412+3d.v/9d2— 81a

(66)
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Ist d -< 1, d. h., schneidet die Büschelkante den Cylinder, so erhalten
wir aus obigen Gleichungen 4 imaginäre Wendepunkte, und zwar

werden für 1 > d > — 1. y 2 die Ordinaten und für d < — 1 \/2

die Abscissen derselben imaginär. Hat d den speciellen Wert: — l\/2,
so fallen, wie schon oben gefunden, die beiden imaginären
Wendepunktspaare in eines zusammen mit den Coordinaten:

---J-I.VSI
h li
y. —8-ii

Für d 0 sind die Coordinaten der Wendepunkte:
i

und

x, — 1 i \J2;

+ 1 i S/2;

y, —f-i^s

ys + -|-1 V/ä"

y'.= -f-i^
y'2 --|-Iv/3"

sie liegen also central-symmetrisch zum Ursprung 0 C.

Tangiert die Büschelaxe den Cylinder oder wird d 1, so liegen
2 Wendepunkte im Punkte 0 A vereinigt, und dieser ist ein
gewöhnlicher Punkt der Fokale 3. Ordnung. Die beiden andern Wendepunkte

sind wieder imaginär und haben die Coordinaten:

x -1;
y.

y>

~3

4

li
li

Lassen wir endlich d > 1 werden, so wird in der nach cof u

aufgelösten Gleichung auf voriger Seite nur für das negative
Zeichen der Wurzel cof u absolut > 1 ; dies ist aber die Bedingung
dafür, dass die aus den Gleichungen (50) sich ergebenden Coordinaten

(x, y) eines Punktes der Fokalen d > 1 reell ausfallen.
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Es besitzt also die Kreiscylinderfokale d > 1 zwei reelle,
symmetrisch zur x-Axe gelegene Wendepunkte, deren Coordinaten wir
erhalten, indem wir in den Gleichungen (66) nur das negative
Zeichen der Wurzel berücksichtigen; also:

4J2 — d-f-y^d2,— 812

(67)

x d

y

•— 3 d - \/9 da — 8 l2 2

— d + \/9d2 — 812 41

2 +v/18d2 —24124-3dv/9 d2 — 8 l2

± \J-j- (212 - 3 da -f- d \/9da —81a.)

Die beiden andern Wendepunkte sind imaginär; ihre
Coordinaten ergeben sich aus den Gleichungen (66) für das positive
Wurzelvorzeichen des Ausdrucks für cof u.

Beziehen wir in obigen Gleichungen (67) die Coordinaten der
reellen Wendepunkte statt auf 0 auf C als Ursprung, so gehen
dieselben über in:

— 3 d 4- v/9 d2 — 812
x' x — d !—— >

y' y + y! (2 l2 — 3 d2 4- d \/9 d2 — 8 l2;

(68)

Betrachten wir hierin d, den Abstand der Büschelaxe vom

Doppelpunkt C, als variabel und eliminieren denselben aus diesen
Ausdrücken für x' und y', so erhalten wir eine Gleichung, welche uns den

Ort der im Endlichen liegenden, reellen
Wendepunkte eines Systems von Fokalen, für die d > 1 ist, darstellt.

Wir erhalten als Ortskurve dieser reellen Wendepunkte
eine Ellipse von der Gleichung:

(69) I*" + tSv 1 ; (ßlatt u ; Fig- 7 ;)
'al» "

T
Um einen Wert für den Krümmungsradius der

Kreiscylinderfokalen zu bekommen, können wir die auf pag. 114, Gl. 20

citierte Formel für g anwenden auf unsere in Parameterform gegebene

Kurvengleichung (54). Die in dieser Weise sich ergebenden
Ausdrücke werden aber sehr complicierte, und es ist daher vorzuziehen,

Bern. Mitteil. 1894. Nr. 1352.
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mit Hülfe der Polargleichung unserer Kurve deren Krümmung

zu bestimmen.*)
Dies ausgeführt, ergibt :

l2 4- d2 4- 2 dl sin <p (1 -f- cos2 <p) 4- l2 sin2 <p cos2 <p}
'''

Q
1 cos> (2 1 4- 3 d. sin <p -f- 1 sin2 <p)

;(7°*

Erteilen wir hierin <p die Werte 0 und tv, so erhalten wir die
Krümmungsradien der beiden im Doppelpunkt C sich schneidenden
Kurvenäste und zwar wird in beiden Fällen:

ç(0) i—ô i» » was aussagt, dass beide im Doppelpunkt

C sich schneidenden Äste in diesem Punkte dieselbe Krümmung haben.

Für die Specialkurven d 1 und d 0 nimmt ç(0) die Werte an:

1. d 1: «t) 1 \ßi 2. d 0: «a) i —

Quadratur von Segmenten der Kreiscylinderfokalen.

Ein durch den Doppelpunkt 0 gehender Strahl (Fig. 14) treffe
die Cylindererzeugenden E und E' in den Punkten U und V und die
Fokale in F und G.

Dann ist:

Sector OCG i-J r2 df ;

(71)

~ d + 1 sin <p ,nDa aber: r —= (Polargleichung),

so wird:

Sector OCG 4- j (d 4-1 sin <p)2. —£-
2 J v ' r cosrip

0

und Sector OCF —v (d — 1 sin <p)a. —%-
2 J v r cos2f

o

Hieraus wird durch Subtraktion:

Segment FCG 2 d 1 fJ*£fÌ=2d.l.(-U?J cos^ <p |COSÇ> f
0

' /0

*) Siehe Prof. G. Huber, die Kegelfokalen, S. 49.
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Indem wir die Grenzen einsetzen, bekommen wir:

Segment FCG 2 d 1 I— ll (72)
I cos <p

Bezeichnen wir den Schnittpunkt des Leitstrahls OUG mit der

Cylinderaxe mit J, so ist: OJ OT
cos <p

und CT — d;
COSÇ?

Da aber nach Gleichung (72) : Fläche FCG 21
[COSf

so können wir den Inhalt derselben angeben durch ein Rechteck,
dessen eine Seite 21 dem Durchmesser des Cylinders ist und

dessen andere Seite uns durch die Strecke CT d dar-
COStf

gestellt wird. Tragen wir daher diese letztere Entfernung nach unten
oder oben von C aus auf die Cylinderaxe ab und ziehen durch den

Endpunkt S eine Parallele zur x-Axe, so ist:
Fläche FCG AA'B'B, d. h.,

gleich dem Inhalt des Rechtecks gebildet von den
Cylindererzeugenden E und E' einerseits und der
x-Axe und der zu ihr im Abstand — d Paral-

cos <p

lelen andrerseits.
Für den Fall, dass d den speciellen Wert 0 annimmt,

lautet die Polargleichung der Fokalen, wie früher gefunden:

r 1 tgy;
r bedeutet dabei die Länge eines Halbstrahls von 0 C aus, welcher
mit der x-Axe einen Winkel <p bildet.

Es ergibt sich dann als Inhalt des von diesem Halbstrahl r und
der Kurve (d 0) eingeschlossenen Flächenstücks:

Fläche OMP

-*p-^fw^if^- ru
ö o lo 0 J

-g-.jtgç» — f\ — \ig<p—ip 1; (73)
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Da diese Fokale central-symmetrisch ist, so schliesst der nach der
negativen Seite verlängerte Strahl r mit der Kurve ein gleich grosses
Flächenstück ein, und wir haben daher, wenn wir mit J die Summe
der Inhalte der beiden Kurvensegmente bezeichnen:

J la (tg<p — <p) (74)
Ferner ist:
Segment OMPGA' JOk'G — Sektor OMP;

l2 tg w
da aber: JGk'G ' T so wird:

l2 luü) l2 l2
Flächenstück OMPGA' £+¦ — (tg<p — <p)=^r f ;

TZ
und für <p —- erhalten wir, indem wir den Inhalt des unendlich

langen Flächenstreifens zwischen der Kurve, der Asymptote A' und der
x-Axe mit S bezeichnen:

C 12 n

Die Kurve (d 0) schliesst aber mit den beiden Erzeugenden E

und E', welche zugleich Asymtoten sind, 4 solcher unendlich langer
Flächenstreifen ein, deren Inhalte einander gleich sind. Es beträgt also

die Summe aller 4:
4 S l2 n (75) d. h.,

Die von der Kreiscylinderfokalen (d 0) und den
Asymptoten eingeschlossenen unendlich langen
Flächenstreifen haben einen endlichen Inhalt; ihre
Summe ist gleich dem Inhalt des Kreises mit Radius
1 des Cylinders.

Aus der Figur 14 geht weiter hervor:

i r*\ (d —i)2i
Es ist: Fläche ACFÜ — r2 — i ^- dip;

2 J cos2 w T

o I '

nu d — 1 sin yDa aber: r -, so wird:

V — (d- l)2

cos <p

(d — 1 sin ip)2 —-(d — I)2 2d..1.(1--sn%?)--l2. sin2^
cos!'¦9

2dl
14-siny

cos2<p

— I2 :

dl
COS2Ç!

¦I2;
cos2/45°—

Setzen wir diesen Wert unter dem Integral ein, so ist:
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Inhalt von Fläche:AC

-~Jdf il. jl - tg(<

r d(45°-ï)
F U — — d 1 I \ ^r

x «n«2(450_ Z]

Nun ist:

(1 -*(«•-£) '

tg us»

1 - tg^lo

cosa

- j l2 y ; (76)

2tg 2 sin 9

1 + tg 1+tg 9 sin7 ,+cosJP

Also wird dann:

Fläche ACFU

\J 2 sin [2

sin(450 + ^|2);

d.l\/2 sin^L

sin (45°4-^|2)
•> (76»)

Setzen wir endlich in Gleichung (76) eine trigonometrische Funktion
des ganzen Winkels ein, also:

so geht sie über in:

tg(45°-^L)=1-sin^,\ \&1 COSf
n:

Fläche ACFU dl. tgy — dl (— lì — ~lz.^> (76*)

Diese Formel gibt mit Berücksichtigung der Ausdrücke (71)
folgende Construktion des Inhalts des Flächenstückes

ACFU. (Fig. 15.)
Es ist also :

Fläche ACFU Rechteck HI KL — Kreissector ACS;
Vorteilhafter als diese Gleichung ist die Formel für den Inhalt

des Flächenstückes ACFU, welche uns gegeben wird
durch Construktion vom Ausdruck (76). (Fig. 16.)

Derselbe war:

Fläche ACFU dl jl — tg (45°— fü| - ~ I2 a.

Dies construiert, ergibt die Gleichung:
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Inhalt von Fläche ACFU Rechteck DEGH —
Kr ei ss e et o rs A' CS;

Die letztere Construction, sowie auch die Gleichungen (76) oder

(76») lassen sich auf den Grenzfall ausdehnen, wo ç>

TZ
— wird, und es rückt für diesen Wert von <p der Kurvenpunkt F
a
ins Unendliche.

TZ
Aus den Gleichungen (76) oder (76°) ergibt sich für <p - :

ttI2
Fläche F dl — als unendlich langer Flächenstreifen

4

zwischen der Kurve, der Erzeugenden E und der x-Axe. und hieraus

folgt durch Construction: (Fig. 17.)

Unendl. langer Flächenstreifen F Fläche AOKLM,
d. h.

Es besitzt auch bei derFokalen(d>l)der
unendlich lange F 1äeh enstreifen begrenzt
von der Erzeugenden E, der x-Axe und der
Kurve einen endlichen Inhalt gleich dem
Flächenstück AOKLM, gleich dem Rechteck
OKLC vermindert um den Kreissector CAL.

Betrachten wir in Fig. 14 den Flächenstreifen CA'VG
in analoger Weise, so ergibt sich für ihren Inhalt der Ausdruck :

I n h a 11 v o n CA'VG ^- l ^ "t ^ — r'2 dw;
2 J cos2^ T

Da nun aber

(d + O2 r^Cd +1)2 - (d +1 ¦ sin y)2 2dl(l-siny)
cos2ç>

~ '
cos2 <p COS2f '

so sehen wir, dass sich dieser Integrant von demjenigen, den wir bei
der Quadratur der Fläche ACFU erhielten, nur durch das Vorzeichen
des Gliedes l2 unterscheidet.

Es ergibt sich also :

Inhalt v. Fläche CA'VG — Inhalt v. Fläche ACFU 12<p

(77)
und ferner:

Fläche (CA'VG) d.l 1 — tg 45° — O + -^ la f



— 143 —

TZ
Gehen wir zur Grenze über und setzen <p —, so wird:

F' d.l+-^-,d.h.:
Der von der Erzeugenden E', der x-Axe und
dem K u r v e n a s t C G oo eingeschlossene, unendlich

lange Flächenstreifen hat ebenfalls
einen endlichen Inhalt, und zwar ist derselbe
gleich dem auf voriger Seite gezeichneten
Rechteck OCLK vermehrt um den Kreissector
CLA'.

Addieren wir die Inhalte aller 4 von den Erzeugenden und der

Fokalen eingeschlossenen Flächenstücke, so ergibt sich, es ist:
S 2F'4-2F 4d.l; (78) d. h. :

Die Kreiscylinderfokale (d > 1) schliesst mit
ihren Asymptoten zwei unendlich lange
Flächenstreifen ein, deren Summe gleich ist
dem Inhalt eines Rechtecks von den Seiten
2d und 21.

Subtrahieren wir diese beiden zwischen der Fokalen (d > 1) und
den beiden Cylinderzeugenden E und E' liegenden unendlich langen
Flächenstreifen 2 F' und 2 F, so wird ihre Differenz :

D 2 F' — 2 F 7t I2 ; (78a)
da diese Differenz von d unabhängig ist, so folgt der Satz:

DieDifferenz d e r F lächeninhalt e der beiden
unendlich langen Streifen zwischen der
Fokalen und den zugehörigen Asymptoten ist
constant für alle Fokalen d > 1 gleich dem
Inhalt eines Kreises vom Radius des Cylinders
und gleich dem Inhalt der entsprechenden
unendlich lang "en Flächenstreifen der Fokal

e n ' d "= 0.
Ist d < 1, also 0 ein Knotenpunkt, so lautet die Polargleichung

der Fokalen ebenfalls:
d + 1 sin a

r —= —
costp

Die Tangenten im Doppelpunkt 0 haben die Richtungswinkel:

_ d
sm^ + -r,
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_ d _<p 4- arc sin — -j- <po

TZ
Für Werte von <p zwischen — <po und — stellt die Gleichung:

a

r —4^ x_ ,jen recht« von q hegenden Teil des obern Astes
cosip

(Fig. 9) dar, der Gleichung r — aber entspricht der

TZ
links von 0 gelegene Teil des obern Astes für <p zwischen — und

a
7t <pO.

Es ist nun der Inhalt des Segmentes OLC, welches begrenzt
wird von dem Kurvenbogen OLC und der x-Axe und welches gleich
ist der Hälfte des Segmentes OLCKO, eingeschlossen von den beiden
zwischen den Doppelpunkten 0 und C liegenden Kurvenbogen:

2 2J * 2J cos2ç> v
-n -fo

-Po -?« -fo

-fo

Setzt man die Grenzen 0 und — ç>„ — arc sin —, sin % —— eini

so ergibt sich:

S 1 — d d. I2 12 a
_ d.l--(d2 + l2). ^==_^== -g -arc sinT

=d.l—— dyV—d2 — — .arc sin--; also:

j
S 2 d. 1 — d 0a — d2 — l2 arc sin — (79)

1

als Inhalt jenes doppelten Segmentes OLCKO;

Für d l geht dieses Doppelsegment in die Schleife der
Strophoïde über, und es wird der Inhalt derselben aus obiger
Formel, wie schon gefunden:

Sr 212 — l2.Ç=l2
a •(-f>
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F ü r d =s 0 verschwindet das Doppelsegment, da sich die beiden
Kurvenäste in 0 C berühren, und damit übereinstimmend gibt
Gleichung (79) den Wert: S 0.

Der Inhalt des oberhalb der x-Axe liegenden und von dem
Kurvenast M und dem Leitstrahl OG begrenzten Sectors OCMG wird:

(d -f-1 sin <p)2

COS2<p
Fläche (OCMG) ^f^^Z^ *9

[1
d 1 l2 ~\f

Die Grenzen eingesetzt, gibt:

Fläche OCMG ì (d2 4- l2) • tgy + -^~ - jV — d.l.. (80)

Nun wird das zwischen der Kurve, der Erzeugenden E', der x-
Axe und dem Leitstrahl GV liegende Flächenstück:

Fläche CA'VGMC Dreieck OA'V — Fläche OCMG

-> + l)a.lgy-{(d2+l2)tgy-^
l2

+ 2^ + d.l
d.l l2

A

==d-1-tg^--co7^ + ^ + d-'

-d-..tg(f-|) + d., + l2.f
oder endlich :

Fläche CA'VGM d 1 4- l2 |- — d. 1. tg /J — |- J (81)

TZ
Für ip —- erhält man den unendlich langen Flächenstreifen

dt

oberhalb der x-Axe zwischen Kurve und Cylindererzeugenden E'; nämlich :

F d 1 4-12 ~,4

somit wird der Inhalt des ganzen Streifens, der sich nach beiden

Seiten der Asymptote A' ins Unendliche erstreckt :

2F 2d.l+l2.^ (82)
di

Bern. Mitteil. 1894. Nr. 1353.
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Dieselbe Formel haben wir früher auch erhalten für den entsprechenden

unendlich langen Flächenstreifen der Fokalen d >¦ 1; es wächst
also der Inhalt desselben proportional mit d, d. h., mit der
Entfernung der Büschelkante vom Doppelpunkt C.

Für d 1 (Strophoïde) wird : 2F 212 + 12 -J IM 2 + -J)
TZ

Für d 0 wird : 2 F l2. — welch letztere Gleichung
di

übereinstimmt mit der früher gefundenen Gleichung 75.

Der Inhalt des links der y-Axe oberhalb der x-Axe gelegenen
Sectors ONFO der Kurve wird:

c mm 1 C9 1 H (d - 1 Sin <f)2
Sector (ONF) — | r2 d<p — I — 5—^— d»v ' 2J r 2J cos2 y T

Po Po

I"1 1A2 I ,.\ d-1 1" >
[ä" (*• + !•). tg f-—-g fjft;

Die Grenzen eingesetzt, erhallen wir:

Sector (ONF) -i- (d2 4- l2) lg y - ~ - ^ <p 4-| ^l^d"2

-f- — arc sin — (83)
d i

Ferner wird der Inhalt des Flächenstreifens OAUF oberhalb der
x-Axe zwischen der Kurve und der Erzeugenden E:

Fläche (OAUF) Dreieck OAU — Sector ONF

f (l-d)2.tg,-4-(l24-d2).tg,4-^+^
d ,/fi—Au 12

•
d

— - • yI2 — d2 — — arc sin -di di 1

,A i d.l i2 d ,-2—— l2 d
_ld.tgy-f — 4--.f---V/l2-d2-- arc sin T

oder

Fläche OAUF= 1 d lg J — |j 4- ^ tp -
d

\fW=d2 —^ arc sin y
(84)

TT
Für y —- erhält man den unendlich langen Flächenstreifen

a
oberhalb der x-Axe zwischen Kurve und Asymptote A; es wird also:
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d

2
arc sm -,valili _ .VprUd*--!!

4 2V 2

somit der Inhalt des ganzen Streifens, der sich nach beiden Seiten

der Asymptote A zwischen dieser und der Kurve ins Unendliche erstreckt:

2 F' l2 J — d \]\2 — d2 - la arc sin \, ¦ • (85)
dt 1

welcher Ausdruck sich leicht geometrisch darstellen lässt.

Für d 1 wird 2 F' 0 und

TZ
Für d 0 » 2 F' I2 —, wie schon gefunden.

di

Aus den Gleichungen (79), (82) und (85) folgt ferner:

S4-2F — 2 F' 4 d.l (86)

d.h.: Das zwischen den Doppelpunkten 0 und
C liegende Doppelsegment vermehrt um den
unendlich langen F 1äch enstreifen längs der
Erzeugenden E und vermindert um den unendlich

langen F 1äch enstreifen längs der
Erzeugenden E' hat gleichen Inhalt mit einem
Rechteck von den Seiten 21 und 2d und ist
gleich der Summe der beiden unendlich langen
Flächenstreifen 2F' und 2F der Fokalen d>l
(Gleichung 78).

Ferner folgt aus den auf voriger Seile citirten Gleichungen:

2F4-2F' — S 12tt (87)

d. h.: Die Summe der beiden zwischen den
Asymptoten und den entsprechenden Kurvenästen

liegenden unendlich langen Flächenstreifen

vermindert um das zwischen den
Doppelpunkten 0 und Cgelegene Doppelsegment

der Fokalen d < 1 ist constant für alle
Fokalen des Systems (d < 1) gleich dem Inhalt
des Kreises mit Radius 1 und gleich* der
Summe der beiden unendlich langen
Flächenstreifen, welche die Fokale d 0 mit den
Asymptoten einschliesst.

Statt von der Fokalen d < 1 auf die Quadratur der Stropho'ide
(d 1) überzugehen (pag. 146), können wir auch die früher
gefundenen Flächengleichungen der Kurve d > 1 anwenden auf diesen
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Specialfall. Es gibt uns dann dieses so gefundene Resultat eine
Kontrolle für die Richtigkeit obiger Sätze.

Wenden wir also die früher gefundenen Flächengleichungen (76)
an auf den Specialfall (d 1); (Strophoïde), so wird : (Fig. 8.)

Sector: ACF l2 1- lg 45° — ~ <p — -| l2 <p

Fläche: CA'VG l2 1 — lg U5° — |4 -f ^ la ip

und diese Resultate lassen sich analog den frühem konstruiren. (Fig. 8.)
Für ip 90°, wird:

Halbe Schleifenfläche: ACFA l2 —

Streifen F l2 4-

l2

4

ttI2

daher :

Ganze Schleife + Streifen F 4 l2; (88)

d. h.: Die Summe der Inhalte von Schleife und
unendlich langem Flächenstreifen, der von der
Strophoïde und der Cylindererzeugenden E

(Asymptote) eingeschlossen wird, ist gleich dem
Quadrat über dem Durchmesser des Cylinder s.*)

Mit Ausnahme der Strophoïde führt die Rektifikation
unserer Kurven auf elliptische Integrale, und wir erhalten
deshalb hier keine einfachen Beziehungen.

Schlussbemerkung.

Über die Fokalen des elliptischen Cylinders, sowie über den

allgemeinen Fall d ^ 1 und die Specialkurve d 0 des Kreiscylinders
habe ich mit Ausnahme einer jüngst erschienenen Arbeit von Herrn
Prof. Huber über «Die Kegelfokalen» in der vorhandenen Litteratur
nichts finden können. Dagegen die Strophoïde (specielle Kreiscylinder-
fokale d 1) ist in zahlreichen Arbeiten behandelt worden, und es

dürfte daher der Umstand, dass diese letztere ein Specialfall einer
Klasse von Kurven ist, welche in vielen Eigenschaften mit ihr über-

*) S. Günther hat in seiner schon früher erwähnten Schrift über tDie
logocyklische Kurve» diese Beziehung mit Hülfe ,von hyperbolischen Funktionen
gefunden.
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einstimmen, einiges Interesse bieten. Ob vielleicht die hier behandelten

Cylinderfokalen für die Weiterentwicklung der Bessefsehen Funktionen
von Wert sind, das muss die Untersuchung lehren. Eigentümlich ist
immerhin, dass bei einigen Inlegralformen dieser Funktionen Wege
in Betracht kommen, welche Ähnlichkeit haben mit den hier
behandelten Fokalen des Cylinders.

Von der über die Strophoïde vorhandenen Litteratur sind neben

der bereits in der Arbeit angeführten Schriften noch folgende zu

nennen :

1. H. Durège. Über die Kurve 3. Ordnung, welche den geo¬

metrischen Ort der Brennpunkte einer Kegelschnittschar bildet.
Clebsch Annal. V 83—95.

2. St. Gervais. Elude géométrique sur la unoïde et de la stro¬

phoïde. Mathesis X 9—14.
3. W. W. Johnson. The strophoïds, Sylv. Ann. J. III. 320—355.
4. E. Barnes. A note on the strophoïds; J. Hopkins cire. II. 145,
5. P. Mansion. Longueur de la boucle de la logocyclique ou

strophoïde. Mathesis, VI. 108—110.
6. C. M o s e r. Über Gebilde, welche durch Fixation einer sphärischen

Kurve und Forlbewegung des Projektionscentrums entstehen ;

Inaugural-Dissertation, vorgelegt der phil. Fakultät Bern, 1887.
Weitere Lilteraturangabe siehe: S. Günther, Parabolische Loga¬

rithmen und parabolische Trigonometrie, Seite 58.

Bern, 20. Juni 1893.

Mit Vergnügen benutze ich die hier sich bietende Gelegenheit,

um dem Direktor des physikalischen Instituts, Herrn Prof. Dr. Forster,
ebenso wie den Herren Prof. Dr. Huber, Prof. Dr. Graf, Prof. Dr.

S id 1er und Privatdocent Dr. Moser meinen herzlichsten Dank für

das mir während meiner Studienzeit stets entgegengebrachte

Wohlwollen auszusprechen.
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