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F. Stihli.

Die Cylinderfokalen.

Eingereicht im Januar 1894%.

I. Fokalen des elliptischen Cylinders.

Durch eine Gerade im Raume, deren Richtung normal ist zuw
derjenigen Hauptebene eines elliptischen Cylinders von den Halbaxen
a und b, welche durch die Lingsaxe und durch die grosse Axe des-
selben geht, legen wir ein Ebenenbiischel. Simtliche Ebenen des-
selben schneiden dann die Cylinderfliche in Ellipsen, von konstanter
kleiner und variabler grosser Axe. Die Brennpunkte aller dieser
Schnittellipsen liegen in jener Hauptebene; ihr Ort ist daher eine
ebene Kurve, welche Cylinderfokale heissen mioge. Dieselbe.
zu untersuchen, ist Aufgabe der vorliegenden Arbeit. —

Aufstellung der Gleichung.

Zum Zwecke der Ermittlung der Kurvengleichung legen wir ein
3 rechtwinkliges Koordinatensystem zu Grunde. Die Cylinderaxe sei
vertikal stehend. Als (xy) Ebene wihlen wir diejenige Hauptebene
des Cylinders, in der die Fokale liegt; die (yz) Ebene legen wir
parallel zu den Erzeugenden des Cylinders durch die Axe des Ebenen-
bischels ; durch diese Axe gehe auch die 3. Ebene des Systems senk-
recht zur Cylinderaxe. In dem Fall liegt der Koordinatenursprung O
auf der Biischelkante und diese letztere ist die Axe z.

Eine beliebige Ebene E (Fig. 1) des Biischels bilde mit der
(xz) Ebene den Winkel ¢. Dieselbe schneidet die Cylinderfliche in
einer Ellipse mit den Brennpunkten F und F‘. Bezeichnen wir ihre
Abstinde vom Koordinatenursprung mit ¢ und ¢’, setzen ferner OC = d,
so ergeben sich fir ¢ und ¢’ die Gleichungen:

d
¢= s ¢ = cos ¢ +e

wo e die Excentricitit der Schnittellipse bedeutet.
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Es ist nun aber, da a und b die Halbaxen des Cylinders sind:

die halbe grosse Axe der Schnittellipse: a’ =

cos ¢’
» » kleine » » » : b’: b;
a2
cos? ¢

oder: e = \/
LOS 90

Diesen Werl fiir e in den obigen Gleichungen fir ¢ und ¢’ ein-
gesetzt, ergibt:

somit: e?= — b?,

; (a)

cos2

e d __ h2
= Toso +\/cosz¢ b (b)

Wir bezeichnen nun die rechtwinkligen Koordinaten des ver-
inderlichen Brennpunktes F mit x und y; dann ergeben sich zwischen
ihnen und den Polarkoordinaten ¢ und ¢ die Beziehungen:

X==9.C08¢; Yy ==9.5in¢. (c)

Aus diesen beiden letzten Gleichungen und Gleichung (a) lassen
sich ¢ und ¢ eliminieren, und wir erhalten dann eine Gleichung in
den rechtwinkligen Koordinaten x und y, die uns den Ort des Brenn-
punktes F darstelit.

Aus den Gleichungen (c¢) ergibt sich:

X ¥ ¥
oS ¢ sing — \/1-cos?e
oder: (x4 y?). cos®¢p = x?;

e:

somit : COS ¢ — ————.
VxE -y

Setzen wir diesen Werl fiir cos ¢ in Gleichung (a) ein, nachdem

wir noch zuvor ¢ durch ersetzt haben, so lautet dieselbe dann:

X d /  a®

iy Vedy Y ety
und vereinfacht:
(x—d)2 (x*4y?) — (@2 —Db?). x2—a?y? = 0. ... (1)
Beniitzen wir statt des Brennpunkies F den Brennpunkt F/,
welcher in der Ebene E von O den Abstand o' hat, so erhalten wir
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unter Anwendung des obigen Ganges genau dieselbe Gleichung; sie
stellt uns also den Ort der Brennpunkte aller Schnittellipsen dar.
Gleichung (1) ist daher die Gleichung der Cylinder-
fokalen, und diese ist mithin eine Kurve 4. Ord-
nung. (Fig. 2)

Lisst man d, den Absltand der Biischelkante von der Cylinder-
axe, positiv. von 0 bis oo variieren, so erhdlt man ein Sysiem von
unendlich vielen Fokalen. Das ganz gleiche System, nur in sym-
metrischer Lage zur Cylinderaxe, ergibt sich fiir simtliche Werte von d
von 0 bis — oco. Wir betrachten deshalb in der Folge nur positive
Werte von d.

Liosen wir die Kurvengleichung (1) nach y auf, so wird:

(a? — b?) x2— (x — d)%.x?

y =+ \/ E—df—F Trerrrre (1a).

Zu jedem Werte von x gehiren also 2 gleiche, dem Vorzeichen
nach aber entgegengesetzte Werte von y; die Kurve liegl
also symmetrisch zur x-Axe.

Um die Natur der unendlich fernen Kurvenpunkte zu untersuchen,

machen wir die Gleichung (1) mit x = —:— und y = % homogen und

setzen dann z = 0; dadurch erhalten wir die Gleichung:
PP =0 s sums s %1 (2),

welche uns die Richtungen, die vom Nullpunkt aus nach den Schnitt-
punkten der Kurve mit der unendlich fernen Geraden (z=0) gehen,
gibt. — Der 2. Faklor dieser Gleichung: x? -}-y*=0 zeigt an, dass
die Cylinderfokale durch die imagindren Kreispunkie im Unendlichen
geht. Der 1. Fakior: x2=0 sagt uns, dass die Kurve die unendlich
ferne Gerade in der Richtung der y-Axe in 2 zusammenfallenden
Punkten schneidet. Um die Art dieses Punkies zu ermitteln, sub-
stituieren wir in der allgemeinen Gleichung der Kurve fiir die Vari-

ablen x und y die Werte:
1, x
y yl ’ . yl 2 ‘
dann werden fiir yY=0 x und y unendlich gross; es wird der un-
endlich ferne Punkt der y-Axe in den Nullpunkt projiciert und um-
gekehrt.

Dies ausgefiihrt, gibt:

‘ 2 2 ! 42
X . 1 X 1
(B —a) (k) — @by 2y~ L=

ya yfﬂ y:2 y42
oder (x‘—dy)% (x2}1) — (a® — b?) x?y?—a%y?=0. . .. (3).

v
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. In dieser transformierten Gleichung haben wir nun den Nullpunkt
(x'=0, y'=0) zu untersuchen, welcher dem unendlich fernen Punkte
der urspriinglichen Fokalen entspricht.
Fir y' = 0 wird: X x1)=—=0,
also: 1. x?2=20,
2. x%2= — 1 oder x'= +1i.
Fir x' = 0 wird: d?y? - a%y2 = 0;
also: 3. y2=0.
Aus der 1. und 3. dieser Gleichungen geht hervor, dass der
Nullpunkt (x=0, y'=20), also auch der unendlich ferne
Punkt Doppelpunkt fir simtliche Fokalen ist.

Um die Gleichungen der Tangenten in ihm zu erhallen, setzen
wir in der transformierten Gleichung (3) die Glieder 2. Grades gleich
0; also:

‘ (x' —dy')* — a*y? = 0;
und es stellen uns dann also die Gleichungen:
y _ dtVE@E—dEfa® _ dta oy

F d® — a? T odP—a?
das Tangentenpaar im Nullpunkt der transformierten Kurve dar.
Um die beiden Tangenten im unendlich fernen Punkt selbst zu
erhalten, transformieren wir riickwirts ins alte System. Wir haben

dann in obigen Gleichungen

¢

fir y = % und fir x' == xy’' = —

zu setzen, wodurch dieselben die Form annehmen:

1 A
1. Tangente: —3—r-=i= , also: x=d—a
X X d—a L(ﬁ).
y i
2. Tangente: £ = . somit: x=d -} a
: X d+4a’ )

Es sind dies die beiden in der Kurvenebene liegenden Erzeugenden
E und E‘ der Cylinderfliche, welche Tangenten sind im unendlich
fernen Doppelpunkt.

Hieraus folgt:

Die beiden in der Kurvenebene liegenden
parallelen Erzeugenden des Cylinders sind
Asymptoten an simtliche Fokalen, die man bei

Bern. Mitteil. 1894. Nr. 1348.
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variablem d erhidlt. Sie beriihren die Kurve im
unendlich fernen Doppelpunkt. In der That wird in
Gleichung (1a) fiir x = d - a, die Ordinate y unendlich gross.

Aus der Form der Kurvengleichung (1) ist ersichtlich, dass der
Nullpunkt O, d. h. der Schnittpunkt der x-Axe mit der Biischel-
axe ein Doppelpunkt der Kurve ist. Die Tangenten in dem-
selben erhalten wir, wenn wir die quadratischen Glieder der Kurven-
gleichung (1) gleich O setzen; also aus:

(d%* — a%) (x®*4y®) - b®x® =0 und hieraus:

y'__‘ d?._az_*_bz . 6
T_:t\/ a? — d2 (®)

Aus dieser Gleichung geht hervor, dass die Tangenten im Ur-
sprung O nur reell ausfallen fir d <a und > \/a"’-——bz, d. h., wenn
die Biischelaxe den Cylinder zwischen dem Beriihrungspunkt A und
dem Brennpunkt Fi der Grundellipse schneidet; O istin diesem
Falle Knotenpunkt der Kurve.

Fir specielle Lagen der Biischelkante und damit des auf ihr
liegenden Doppelpunktes O ergeben sich folgende Fille:

1. Liegt die Biischelkante im Unendlichen, also d — oo, so
werden samtliche Ebenen des Biischels unter sich parallel und schnei-
den die Cylinderfliche normal zu deren Axe; die Schnittkurven sind
in diesem Fall kongruente Ellipsen und der Ort ihrer Brennpunkte
hesteht aus zwei zur Cylinderaxe und den Asymptoten parallelen
Geraden im Abstand + \/a2—Db? von derselben; sie gehen durch
die Brennpunkte F1 und F: der Grundellipse.

2. Die Biischelkante beriihrt die Cylinderfliche im Punkte A,
mit welchem nun der Nullpunkt O zusammenfillt; es wird d = a, und
die allgemeine Gleichung (1) nimmt die Form an:

(x — )% (x* 4 y%) — (a — b¥). x? — a?y? = 0
oder x* — 2ax® 4 x2y? — 2axy? + b2x? = 0.
Dieses Polynom zerfillt in 2 Faktoren, nimlich:

{x} {x3—2ax2-—}—xy — 23y —}—bzx}—-—O
Es ist daher: x=20,
und x(x®—2ax—+b?) 4y (x—2a)=0..... (7).
Die 1. Gleichung (x = 0) stellt die y-Axe dar, die Cylinder-
erzeugende E; der 2. Faktor aber reprisentiert eine Kurve 3. Ord-
nung. Es zerfidllt also in diesem Specialfall die
Cylinderfokale in eine Gerade und eine Kurve
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3. Ordnung. Diese letztere besteht aus zwei getrennten Teilen,
einem Oval, das in O die Erzeugende E beriihrt und durch F1 geht,
in der Weise, dass die x-Axe dasselbe halbirt, und einem nach
beiden Seiten ins Unendliche gehenden Kurvenast durch Fa mit der
Erzeugenden E‘ als Asymptote. (Fig. 3.) — Die Tangenten im Punkte

O fallen nach Gleichung (6) fir d — a zusammen in die Gerade:
-i— = oo, d. h. in die von der Fokalen 4. Ordnung sich absondernde
Cylindererzeugende E, welche das Oval der Kurve 3. Ordnung beriihrt.
Der Punkt O ist ein einfacher Punkt der Kurve 3. Ordnung. (Fig. 3.)

3. Denken wir uns die Biischelkante parallel nach dem Brenn-
punkt F1 verschoben, wodurch d = \/.a\2 — b% = e wird, so fallen die
beiden Tangenten im Doppelpunkt O von den Gleichungen (6) zu-
sammen mit der Geraden: y =— 0, d. h. mit der x-Axe. Die Gleichung
der Kurve nimmt in diesem Fall die Form an:

(x —e). (x4 y?) —e?x?—aly2=0

oder XX.x—2e¢) 4y (x—eP—a?)=0..... (8)
' Fir y=0, wird : ==,

» X:O, » y2:0, d. h.
der Nullpunkt O im Abstand d = e von der

Cylinderaxe ist ein Rickkehrpunkt mit der
x-Axe als Rickkehrtangente (nach Gl 6). (Fig. b).

4. Schneidet die Biischelkante die Cylinderaxe, so liegt O auf
dieser letzteren; es ist daher d =— 0, und die Gleichung der Fo-
~ kalen wird:

2. (x4 yH)— (@ —Db}) . x2—a?y?=0....(9
sie enthilt nur gerade Potenzen von xund y; die Kurve
ist deshalb symmetrisch in Bezug auf beide
Koordinatenaxen. Die Tangenten (6) im Doppelpunkt O

werden :
— (a2 — b®)
Y _ 4 \/ —@ =) (10)
X - a

sie sind imaginir ; der Punkt ist also ein isolirter Doppelpunkt.

Das obige Polynom ist sowohl nach x als auch nach y auf-
losbar, und zwar entsprechen jedem Werte der einen Variablen zwei
gleiche, dem Vorzeichen nach aber entgegengesetzlte Werte der andern.

Nach y aufgelost lautet die Gleichung:

2 __ .2 2
y=ix\/x a? +b*

2% — x2
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Fir x erhalten wir:

X ===j_-\/—— 0P —a ) FVE — 2 ) by
2

Diese Gleichung gibt zu jedem y 4 Werle von X, von denen
aber stets zwei imginir sind. Die Kurve besteht aus 2 congruenten
unendlichen Asten, beziiglich durch die Brennpunkte F; und Fe, die
symmetrisch liegen zur Cylinderaxe und welche die Erzeugenden E und
E‘ ebenfalls zu Asymptoten haben.

Fassen wir die oben gefundenen Resultale zusammen, so haben
wir folgendes :

Jedem Werle von d entspricht eine eigene Kurvenform, welche
im allgemeinen aus zwei sich nach beiden Seiten ins Unendliche er-
streckenden Asten besteht. Fir d = oo werden diese Aste zu paral-
lelen Geraden zur Cylinderaxe; mit kleiner werdendem d schniirt sich
derjenige Ast, der gebildet ist von den Brennpunkien Fi, von oben
und unten gegen die x-Axe zusammen, wihrend der andere Zweig
sich in seiner Form nicht wesentlich indert. Ist die Biischelkante
zur Cylindertangente geworden, oder filll O mit A zusammen, so lost
sich von dem Kurvenast durch Fi die Erzeugende E ab; der iibrig
bleibende Teil bildet ein Oval, welches zwischen O und F1 symmetrisch
zur x-Axe liegt; die Ordnung der Kurve ist in diesem Specialfalle
um 1 gesunken (Fig. 3). Mit noch kleiner werdendem d erhalten
wir wiederum eine Kurve 4. Ordnung, deren Ast durch F: eine Schleife
(Fig. 4) bildet; fir d = \/a‘“‘ — b? degeneriert diese Schleife in eine
Spitze ; (Fig, 5) nimmt d Werte an <C \/az—bﬂ, so entstehen wieder-
um 2 einfache, unendliche Kurveniste, (Fig. 6) und wenn d = 0 ist,
so bestehl die Fokale aus zwei zu den Koordinatenaxen symmetrischen,
nach beiden Seiten ins Unendliche gehenden Asten. Fiir negative
Werte von d gehen diese beschriebenen Kurvenformen mit grosser
werdendem d in umgekehrter Reihenfolge ineinander iiber; sie haben
also symmetrische Lage zu denjenigen fiir positive d.

Die Fokale des elliptischen Cylinders be-
sitzt 2 Doppelpunkte, den Schniltpunkt der x-Axe mit der
Biischelkante und den unendlich fernen Kurvenpunkt. Der erstere ist
nur dann ein Knotenpunkt, wenn d <C a und > \/a? — b? ist; in
allen andern Fillen ist er isolierter Doppelpunkt; denn die Tangenten
in ihm sind imagindr, wihrend sie im ersten Falle reell ausfallen. Ist
d = e, so liegt das Tangentenpaar in O vereinigt in der x-Axe;
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wichst d, so wichst auch die trigonometrische Tangente des Richtungs-
winkels der beiden Tangenten, den wir mit « beze‘iclmen wollen; es
‘wird also auch « selbst grosser und fiir:

+ d2—32—]—h2

2 2
also d_\/a—l—e

wird « = + 459 die Tangenten stehen aufeinander senkrecht. Bei
noch grosser werdendem d wichst auch o stetsfort und erreicht fir
d = -+ amit 90° sein Maximum ; das Tangenlenpaar fillt zusammen
mit der Erzeugenden E, beziiglich E‘. (y-Axe).

Die Tangenten im unendlich fernen Dop-
pelpunkte sind fir alle Fokalen die in der
Kurvenebene liegenden Erzeugenden des Cy-
linders.

=1

Tangenten der Kurve parallel zur y-Axe.

Zum Aufsuchen derselben (ransformieren wir zuerst die allge-
meine Kurvengleichung (1) nach C, dem Schnittpunkt der x-Axe mit
der Cylinderaxe, als Ursprung.

Wir setzen zu dem Zweck: x =x‘ -} d;

und y=y".
Dann wird:
ez_xm
= + (x4 d). \/ A E (11).
Die Gerade: x’=—p schneidet die Kurve in zwei zusammen-
fallenden Punktien: 1. fir p=x‘= —d, (y' = 0) Doppelpunkt O,
und 2. » e= %= |- e,

fir welche Werte von x‘ beide Werte von y'= 0 werden.

Diese beiden Parallelen zur Cylinderaxe: x‘ = -} e sind Tangenten
an die Fokale in den Punkten Fi und Fz; weil sie von d unabhingig
sind, so sind sie Tangenten an alle Fokalen, die man fir ein ver-
inderliches d erhilt. Diese beiden Parallelen sind die Fokallinien
des Cylinders, und daraus folgt:

Alle Fokalen, die einem verdnderlichen d
entsprechen, beriihren die Fokallinien des Cy-
linders inden Brennpunkten Fr und Fs der Grund-
ellipse. Diese Fokallinien sind identisch mit
der Cylinderfokalen: d== cc.
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Wird in Gleichung (11) x = —-a, so wird y = - o0

Dies sind die Koordinaten des unendlich fernen Punktes, der,
wie aus der Gleichung hervorgeht, fiir alle Werte fiir d, also fiir simt-
liche Fokalen, ein Doppelpunkt ist. —

Gleichungen der Kurve in elliptischen Funktionen.

Die Gleichung der Cylinderfokalen, wie sie uns in der allgemeinen
Form entgegentritt, ist eine solche 4. Grades. Dieselbe weist zwei
Doppelpunkte auf, den Koordinalenursprung O und den unendlich fernen
Punkt der Kurve; die zugehorige Kurve ist deshalb eine solche vom
Geschlecht 1, und es lassen sich demnach die Koordinaten x
und y rational durch elliptische Funktionen eines
Parameters ausdricken.

Wir substituieren zu dem Zweck .in Gleichung (1), welche lautet:

(x — d). (x4 y%) — (a® — b%) x* - a%y* = 0
fiir y den Wert Ax und erhalten:
(x —d)?. (x2422x%) — (a2 — b x2 —a?22x* =0 (12).

Dieses Polynom zerfilll in die beiden Fakioren:

a) x* =10
by x*— 2dx 4 d? — A2x% — 2d2%x  d%A% — (a® — b?) — a?A? = 0.

Die Gleichung (a) reprisentiert den Koordinatenursprung (x*== 0,
y2==0); seine Koordinalen spalten sich von der allgemeinen Kurven-
gleichung ab, weil derselbe, wie schon friiher gesehen, ein Doppel—
punkt der Kurve ist.

Gleichung (b), nach x aufgeldst, gibt:

(14 4%) 4\ @222 - d®A — (1 J-A%) (d° | d°A% —a? | b2 —a%i%)
14 72

Dabei zerfillt der Ausdruck unter der Wurzel in die beiden Faktoren:
a?— b7 a22% | -{1+z2} = {e2+aﬂz2}.{1+z2}
— {5 (1)

wo wieder e — a® — h? bedeutet.
Es ist dann also:

d (1429 i-\/aﬂ (ﬂﬂ =} 22) (2 +1)

1L 2
_VisE
'_ 7

. (13).

Hierin selzen wir:

, dann geht x tber in:



d.%i—\/z—i (1 —k2%z?)
N 1
Z2
oder x=d -+ a\/l—kzzz.
Wir konnen nun elliptische Funktionen einfiihren,

indem wir nach Jakoby setzen:
Z = sinam u = sn u.

X

Dann wird: V1—k%2f = #amu=dnu.
Also ist:
x=d+adnu l
und gy ‘S’E E d4adnu) | ... .. (14).

= ctgam u (d 4- adn u) ‘

Dividieren wir die untere der obigen Gleichungen durch die
obere, so wird:

_{_ —ctgamu; . .. ....... (15).

Dies ist die Gleichung eines Leitstrahls durch 0. Jedem Werte
des Parameters u entspricht ein solcher Leit-
strahl, auf welchem zwei Punkte Pr und Pz der
Kurve liegen, deren Koordinaten sich dem doppelten Vor-
zeichen entsprechend aus den vorigen Gleichungen ergeben. Be-
zeichnen wir zwei solche Punkte als zugeordnete Punkte, so
folgt aus ihren Koordinaten oder auch nach ihrer geometrischen Er-
zeugungsweise, dass die Mitten der Verbindungslinien
von je zweien derselben auf der Cylinderaxe
liegen.

Ist u der Parameter eines Punktes, der auf dem rechis von der
Cylinderaxe liegenden Kurvenast sich befindet, so ist der Parameter
seines zugeordneten Punktes, welcher auf dem andern Kurvenaste
liegt: 2iK’ —u. Es ist mithin die Summe der Parameter zweier
zugeordneter Punkte immer gleich 2iK‘, wobei 4iK‘ die imaginire
Periode der elliptischen Funktionen ist; denn nach den Periodicitats-
gesetzen der letztern ist:

dn (2iK' — u) = — dn u;
cn (21K — u) = — cnu;
sn (21K — u) = — snu;
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Setzen wir also in den fiir x und y gefundenen Gleichungen (14)
fir den Parameter u den Parameter 2iK‘— u, so indert die Deferente
ihr Vorzeichen, wihrend die Cotgamplitude gleich bleibt. Man hat
daher in diesen Kurvengleichungen fiir die Deferente nur das einfache
Zeichen zu setlzen; dieselben lauten dann also:

X=d-4adnu
y=(d+adnu).ctgamu

Die rechtwinkligen Coordinaten x und y.
simtlicher Kurvenpunkte sind dahereindeutig
durch elliptische Functionen ausgedriickt;
jedem Werte des Parameters u entitspricht nur
ein ganz bestimmter Punkt der Kurve.

Fir u = 0 und = 21 K’ erhalten wir:
x = d -+ 3,
y = - oo,
die Coordinaten des unendlich fernen Doppelpunkies der Kurve; in
diesem Punkte fallen also zwei zugeordnele Punkte zusammen.
Wird u = K und = 2iK‘— K, so nimmt die Deferente die
Werte an:

——_ e
- . FR— — i
nu=4+VI—K=+k=+-

Es wird also: x =d + e,
y == 0k
Dies sind die Coordinaten der Brennpunkte F: und F: der
Grundellipse: ihre Parameter sind also K beziigl. 2 i K — K; sie
sind mithin zugeordnete Punkte.

Es entspricht, wie bereils erwihnt, jedem Werte von u ein be-
stimmter Punkt der Kurve. Umgekehrt aber entspricht nicht jedem
Punkte der Fokalen nur ein Werl von u, sondern unendlich viele;
denn bekanntlich haben die elliptischen Functionen 2 Perioden, eine
reelle, bezeichnet mit 4 K und eine imaginire: 4 1 K‘. Wir erhalten
deshalb unendlich viele Werte von u, welche einem und demselben
Kurvenpunkte entsprechen; dieselben sind enthalten in der Form:

U+ 4mK 4 4nik,

wo m und n positive ganze Zahlen bedeuten. K und K‘, die Perio-
dicititsmoduln werden dargestellt durch die Integrale:
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K—rvl-—kzsnz ”‘f\/ W.

sn2
(A7)

1----- sin2 ¢

" f\/1 k*?smga _{‘\/

wobei k? 4 k2 = 1 isl.

Aus den in Parameterform erhaltenen Kurvengleichungen lassen
sich zwei Eigenschaflen der Radien vectoren zweier zuge-
ordneter Punkte ableiten fiir den Fall der Fokalen 3. Ordnung,
d = a. Bezeichnen wir nimlich die Lingen dieser Radien vecloren
mit r, bezw. r,, so ist:

r’=x2~+y? =@+ adnu)®+4 (a4 adnu)®.ctgam?u

. . (14 dn u)®
| T snfu
r2=x2-4y*=@—adnu)?. (1l 4 clg am? u)
. . (1 — dn u)2
o sn? u
somit ist:
1 b? I |

r2.r2=—a*.(1—dnu)®>—— —a*. (= . sn? ) — bt

5 (1—dn®u) i a (a‘ sn u) =
also: Wl BPe=qiliSa .. susws s (18)

d. h.: das Produkt der Abstinde je zweier zu-
geordneter Punkte vom Coordinatenursprung
auf dem Oval ist eine Constante gleich dem
Quadrat der kleinen Halbaxe b des Cylinders.

Da ferner:
X, . X, —=a? (1 — dn% u) = a? k% sn* u
2

cn
und Y. Ya=2a"k?.sn*u.—— = a*k®en?u
sn?u
S0 ist: X, . X+ ¥, . y. = a? k?. (sn® u -} cn? u)
= = P sww i e (19)

d. h., es ist die Summe der Producte der Ab-
scissen und Ordinaten zweier zugeordneter
Punkte constant gleich dem Quadrat diber der
halben kleinen Axe des Cylinders und gleich
dem Product ihrer Radien vectoren.

Bern. Mitteil. 1894. Nr. 1349.
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Kriimmung der Kurve.

Wir erhalten die Grosse des Kriimmungsradius ¢ eines beliebigen
Kurvenpunktes mit den Coordinaten x und y aus der in der Parameter-
form gegebenen Kurvengleichung durch Anwendung der Formel:

dx \*, [dy\*|™
_il(—aa)“L(ﬁa)l D
&y dx  d%x dy

dx! du  de® du
wo: X=d - a.dnu und y=(d + a.dnu).clg.amu.

Durch Ausfihrung der obigen Differentiationen ergibt sich:

{a*k*sn®ucn®u-4-d*do?o 4 2ad.dn®u4 2adk?.sn?u.cn?u.dnu-adn*n
~+2ak?sn®u.cn®u.dn?n 4 a% k*sn*u.cn'n}’

sn*u{d (3sn*u.dn*u — 2dn*u —cn?u)}adnu(snu.dn®*u— 3 cn’u)}

()=

Indem wir den Zihler etwas vereinfachen und im Nenner alles durch
dn u ausdricken, erhalten wir fiir ¢ den Wert:
{a(1 —k®sn*u).(a+2d.dnu) —a*k?®sn*u.dn?u-}d?.dn?u}?2
sn*uf{a.dn*n+3ddn*u42adn®u— 2dk'*.dn?u—3ak?.donu—dk'}
(21)

¢ =

k’ bedeutet hierin den complementiren Modul: \/1 — k2.

Die Argumente der beiden Brennpunkte der Grundellipse fanden
wir: u =K und = 2iK' —K; diese Werle in Gleichung (21) ein-
gesetzt, gibt fiir die Krimmungsradien in denselben:

Krimmungsradius von Fi:

3
[a2(1—K?) —atk®k2 |- d%k= — 2adk’(1  k9)}"

O kP 83dk— 2ak® — 2dk* |- 3ak® — dk*®
_ k'(at k2 f-d*— 2adk) k¢, .
— —ak® - dk?fak‘'—d ~ k? ==y
Kriimmungsradius von Fz:
{a?(1 — k%) — a2k dzk‘2+2adk‘(1-—k2)} SCG)
&= Ak F 3dk | 2ak° — 2dk'* - 3ak® — dk*
k3. (a%k*® }- d2 -} 2adk")” k’
— k: 2.
k2 (— ak‘’k? — dk?) 7 (k4% )

Bei den verschiedenen Specialfillen ergeben sich fiir die Krim-
mungsradien ¢« und g, der Brennpunkie der Grundellipse folgende
Werte:
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1. d =a. In dem Falle geht die Gleichung (21) des Kriimmungs-
radius tber in:
a%. (1 — k2n*un)”. (1 —~+ dn u)®

¢~ “sn*u(dn*u -+ 2dn®u — 2k‘?dn u — k%) (£5)
und hieraus erhalten wir:
Fiir den Kriimmungs- a2 (1— k)" (1—k*?
radivs in Fi: 7T KT —2k®f 2k —k?
_atk'(l—kY)
o 1}k
. T—— 2 N NIERTY
Fiir den Krimmungs- - a®.(1—k®»)" .14+ k) (24)

radius in Fe: k't 4 2k'®* — 2k'® — k2

_a*kl(14-KkY)
= Ti—w
Nach Multiplication der heiden Gleichungen (24) ergibt sich:

0.0 = a*k’? = a%e?;

d. h.: Fir den Fall, dass d =— a ist, ist das Product der

Krimmungsradien der hbeiden Brennpunkte der

Grundellipse gleich dem Product der Quadrate aus halber
grosser Axe und Excentricitit,

2. d=\a —b'=e.
Krimmungsradius in Fi: )

o 1122 (a_ \/az_bj__\/az—__bé): :

Kriimmungsradius in Fz:
22— p? a2z — b . a3
o W (R )k
Da Fi, derjenige Brennpunkt, in welchem der Coordinatenur-
sprung liegt, in diesem Specialfall zum Rickkehrpunkt wird, wie wir
friilher gefunden haben, so ist die Richtigkeit des obigen Resultates
0 = 0 damit bestitigt. —

(25)

3.d=0.
k! ‘ k8
Kriimmungsradius in Fi: ¢ = — R a2, k% — a2 o I
a2 k:s (26)
Krimmungsradius in Fg: go = — _T;.2 l

Die Krimmungsradien von Fi und F2 sind in diesem Falle ein-
ander gleich, weil eben die Fokale symmetrisch liegt zu den Axen. —
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Bestimmung der Wendepunkte.

Da unsere Kurve eine solche 4. Ordnung mit 2 Doppelpunkten
ist, so besitzt sie nach Massgabe der diesbeziiglichen Pliicker’schen
Formel 12 Wendepunkte. Zur Auffindung derselben beniitzen
wir die Gleichung (20), welche die Linge des Kriimmungsradius eines
beliebigen Kurvenpunktes durch elliptische Functionen des Argumentes
u ausdriickt. In einem Wendepunkt wird aber der Krimmungsradius.
e unendlich gross; damit das in der obigen Gleichung ein-
tritt, muss der Nenner der rechten Seite gleich 0 werden; also:

sn*uja.dn’u-3d.dn*u4-2a.dn%u—2dk‘?. dn®*u—3ak‘2. dnu —dk‘*} =0 (27).

Diese Gleichung zerfilll in die folgenden:
sn*u = 0
und (28)
a.dn®u + 3d.dn*a + 2a.dn3u — 2dk‘%. dn%u0 — 3ak?dnu — dk? =0

Die erste dieser Gleichungen (28) ist erfiillt fir u = 0
und » u= - 2iK’,
Dem Argument u =0 entspricht der Punkt mit den Coordinaten:
x =d 4 a; }
und y = oo.
Dies ist der unendlich ferne Punkt der Asympilote A:.

Dem Argument u = -+ 2iK’ entspricht der Punkt mit den Coor-

dinaten: XxX=d — a;

und y = oo, }
Dies sind die Coordinaten des unendlich fernen Punktes der Asymp-
tote Ai.

Es liegen also zwei Wendepunkte im un-
endlich fernen Doppelpunkt der Kurve; der-
selbe ist mithineindoppelter Inflexionsknoten
fir alle Fokalen. .

Die ibrigen 10 Wendepunkte liefert uns die zweile der Gleich~
ungen (28). Dieselbe ist vom 5. Grade in dn u; sie liefert uns also
5 verschiedene Werte fir dnu. Die Deferente ist aber eine gerade
Funktion; jedem Werte derselben entsprechen deshalb zwei Argu-
mente u, die dem absoluten Werte nach gleich, dem Vorzeichen nach
aber verschieden sind. Wir erhalten also 10 verschiedene Werte u,
von denen sich die einen 5 nur durch das Vorzeichen von den andern
b unterscheiden. Jedem dieser Werte von u entsprechen nun die
Coordinaten eines Wendepunktes, welche mit Hiilfe der Gleichungen
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(16) bestimmt werden konnen; alle 10 Wende.p'unk_t'e lie-
gen paarweise symmetrisch zur x-Axe. —

Wendepunkte der Specialkurve: d = a.

Fir den Fall, dass d — a wird, nimmt die Wendepunkts-
gleichung (27) die Form an: _
snu ‘dn-"u -+ 8dn*u 4 2dn*u — 2k‘%dn%u — 8k‘2. dnu — k'2} =0 (29)

Der 1. Faktor liefert 2 Wendepunkte; der eine derselben ist
der unendlich ferne Punkt der Kurve 3. Ordnung, der andere fillt
auf die sich von der allgemeinen Kurve absondernde Erzeugende E.
' Yom 2. Faktor der Wendepunktgleichung (29) spaltet sich die
Grosse: dn u 4 1 ab; derselbe ist nimlich '

= (dnu-+41).dn*u}2dn*u—2k*dnu—k?*) =0

und hieraus : a. dnu4+1=0
b. dn*u-4}2dn*u—2k®dnu—kZ?=0
Aus (a) erhalten wir also: dnu=—1, somitu = 4+ 21K’ und es

werden die Coordinaten von 2 Wendepunkten: x =0,y =0, d. h,,
zwei Wendepunkte fallen in den Beriihrungspunkt der sich absondern-
den Asymptote A; mit dem Oval der Kurve 3. Grades.

Die Gleichung (b) liefert uns die iibrigen 8 Wendepunkte; sie
ist eine solche 4. Grades in dn u. Jedem Werte von dn u entsprechen
zwei gleiche aber entgegengesetzte Argumente u, welche je zwei
zur x-Axe symmetrische Wendepunkte liefern

Wendepunkte der Specialkurve: d = \/a@—Ab2

= e

Fir diese Kurve lautet die Wendepunktsgleichung:
sn*u. {dn®u—+}-3k‘dn*u—}-2dn®u—2 k®*dn®*u— 3kZdn u— k*3} =0
| (30)
sn* u = 0, liefert uns wiederum die zwei in den unendlich fernen
Punkt fallenden Wendepunkte.
' Der 2. Teil der Gleichung (30) lisst sich in 2 Faktoren zer-
legen und lautet also: o
{(dnu--k).{dn*u+ 2 k*. dn*u(dnu—k’) 4 2dnu(dn u—k’) —k*3}=0
f (31)
Hieraus ergibt sich:
a. dnu -4 k'=0, also: dnu = — Kk
somit : ' u=-+ (2iK’ — K).
Ferner ist: sn iK' — K) = +4-1;
und ' cn (2iK' — K)= 0.
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Die Coordinaten der diesem Argument entsprechenden Wendepunkte.
sind dann:

x=d—-’ak'=e——a--~:~—_—:o;
4 0 i)
y_-(d—ak)-g = 0.

Es fallen also zwei Wendepunkte, den Argumenten
+ (— K 4 2i K‘) entsprechend in den Coordinatenur-
sprung, welcher Punkt, wie friher gesehen, in diesem Fall eine.
Spitze ist.
_ Die noch fehlenden 8 Wendepunkte liefert uns der 2. Faktor
der Gleichung (31):
dn*u—+4 2k‘.dn*u(dnu—Kk’)42dnu(dnu —Kk‘) — k2 =0. (32)

Als eine Gleichung 4. Grades in dn u liefert sie uns 4 Werte
fir dn u, und diesen entsprechen 8 Argumente, die 8 paarweise
symmetrisch zur x-Axe gelegene Wendepunkte ergeben. —

Wendepunkte der Specialkurve: d = 0.

Wir erhalten dieselben wiederum aus der allgemeinen Wende~
punktsgleichung (27), indem wir dort d = 0 setzen; dann wird:

sn*ufa.dnu-}-2a.dn®u—8ak®dnuj=0 ... (33)

Der 1. Faktor enthilt wie bei den vorigen Fillen die beiden
ins Unendliche fallenden Wendepunkte. VYom 2. Faktor dieser Gleich-
ung (33) spaltet sich die Grosse: dn u ab. Es ist aber dn u = 0 fiir
u=-4 (K4 iK").

Die beiden Wendepunkte, welche diesem Argument entsprechen,

sind imagindr, da cn (K +iK) = + % = imaginir.

Der iibrig bleibende Teil der Gleichung (33):
a.dn*u-4+2adn?u—3ak®=0...... (34)
liefert uns die weitern 8 Wendepunkte. Da diese Gleichung nur ge-
rade Potenzen von dn u enthilt, so kann sie ohne weiteres aufge-
16st werden.
Es folgt nimlich:

dnu::i\/—li\/l—l—Sk‘2 ...... (35)
Dem positiven Zeichen der 2. Wurzel entsprechen 2 reelle Werte fiir dn u
» negativen » » » » 2imginire » » dnu

Diese Gleichung liefert uns also 4 reelle und 4 imaginire

Wendepunkte, die paarweise symmetrisch zu den beiden Coor-.
dinatenaxen liegen.
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Zur Bestimmung ihrer rechtwinkligen Coordinaten
beniitzen wir die Gleichungen dieser Fokalen, welche . sich aus (16)
fir d = 0 ergeben als:

x=a.dnu Lo (36)
y=—a.dnu.ctgamu]

Da dn?u=1 — k% sn? u, so ist:
—\/ _|_\/4m3k2
: woa (B1)

und chu = \/ —=o (2 TV4e —3Kk3

Setzen wir die Werte von sn u, cn u und dn u in den Gleichungen
(36) ein, so erhalten wir als Coordinaten der reellen 4 Wendepunkte :

x = + a \/—1+\/4"l-3k2;
e 2 a_\/::w-—-z Vi—3Kk —3k®

- 3
Es liegen somit die 4 reellen Wendepunkte zu je zweien
centralsymmetrisch auf einer durch O gehenden Geraden.
Die Gleichung dieser Wendepunkisgeraden lautet:

¥
~— == clgamu
ol 8

wo fiir cnu und snu die Werte aus Gleichungen (37) einzusetzen sind.
Dies ausgefiihrt, gibt:

y \/ Vi —3k—1

2=+

X 3

: . . . b .
Setzen wir endlich fiir k noch seinen Wert — e, so erhalten

wir die Gleichung der Wendepunktsgeraden in der Form:

Yo g \/\/4&l —8b*—a ., (38).

Dieselben schhessen, da die rechte Seite absolut << 1 ist, mit
der x-Axe einen Winkel << 45° ein.

Die 4 reellen Wendepunkte liegen auf einem Kreis
um den Coordinatenursprung vom Radius:

r=\ -ty
\ \/2 + VI —3KT —k=.

3
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II. Fokalen des Kreiscylinders.

Modificieren wir die zu Anfang unserer Betrachtungen gemachte
Annahme in der Weise, dass wir den elliptischen Cylinder in einen
Kreiscylinder iubergehen lassen, indem wir b — a setzen, so
nehmen die unter den sonst gleichen Bedingungen entstehenden
Fokalen wesentlich andere Eigenschaften an.

Wir haben auch hier wieder die verschiedenen Fille zu unter-
scheiden, wo die Biischelkante ausserhalb der Cylinderfliche
liegt, dieselbe tangirt oder schneidet, und jeder dieser
speciellen Annahmen entspricht eine besondere Form der Kurve.

Befindet sich die Biischelaxe ausserhalb dem Cylinder, so er-
halten wir die Gleichung der so entsiehenden Fokalen aus Gleichung
(1) des 1. Abschniltes, indem wir dort einfach b =—a=:1 setzen, wo-
durch der elliptische Cylinder in einen Kreiscylinder iibergeht vom
Radius 1.

Die Gleichung der allgemeinen Kreiscylinderfokalen laulet also:

x—d2x24yH) -1 =0 ...... (39).
Diese Gleichung stellt uns ebenfalls eine Kurve 4. Ordnung
dar; einem verinderlichen d entsprichl auch hier eine Schar von
Fokalen und negative Werte von d liefern Kurven, die identisch sind
mit denjenigen, welche sich fir gleich grosse positive d ergeben und
symmetrisch liegen zur Cylinderaxe. (Fig. 7.)

Nach y aufgeldst, lautet die obige Gleichung (39):

y — x—dx (392)
— VE—(x—d)?
und hieraus geht hervor, dass die Kurve symmetrisch zur

x-Axe liegl.

Der Coordinatenursprung ist. wie aus der Kurven-
gleichung ersichtlich. ein Doppelpunkt der Fokalen. Die Tan-
genten in ihm erhalten wir aus der Gleichung:

d% (x*4y?) — Py?=0.

Sie sind also enthalten in der Form:

Yoo dd (40).

x  VE—a
Ist d > 1, d. h. liegt die Biischelkante ausserhalb dem Cylinder,
so werden die Tangenten im Doppelpunkt O imagindér; dieser
ist isolirter Doppelpunkt; fir alle Werte von d <1 da-
gegen ist das Tangentenpaar in O reell.
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Ein 2. Doppelpunkt der Fokalen ist, wie sowohl aus der Kurven-
gleichung als auch aus der geometrischen Erzeugungsweise erfolgt:
x==d, y=0; dies ist der Schnittpunkt C der Cy-
linderaxe mit der Axe der x. — Um die Tangenten in
ihm zu erhalten, machen wir ihn zum Ursprung des Coordinaten-
systems, indem wir Gleichung (39) linear transformieren. Wir setzen
nimlich: x =x‘'-} d;

und y =y';
dann erhalten wir als transformierte Gleichung der Kurve:
XX ad4yH —1By?2=0...... (41).

Aus derselben ergibt sich als Gleichung des Tangentenpaares
in C:

e O FRRUPI (42).
X' |

Die Tangenten werden also fiir alle Werte von d, von 0 bis oo,
reell; der Punkt C ist mithin fir alle Fokalen
Doppelpunkt.

Der 3. Doppelpunkt der Kreiscylinderfokalen ist der un-
endlich ferne Punkt. Die Natur desselben wird, indem wir
b = a annehmen, nicht geindert. Die Tangenten in ihm sind des-
halb auch hier die in der Kurvenebene liegenden Erzeugenden E und
E’ des Cylinders; dieselben sind also Asymptoten fir samt-
liche Kreiscylinderfokalen.

Wir haben bereits eingangs erwihnt, dass verschiedenen spe-

ciellen Lagen der Biischelaxe in Bezug auf den Cylinder auch hier
verschiedene Cylinderfokalen entsprechen.
' 1. Ist d = oo, so sind sidmtliche Schnittebenen des Biischels
unter sich parallel und schneiden die Cylinderfliche normal zu deren
Axe. Die Schnittfiguren werden in diesem Fall zu congruenten
Kreisen; ihre Brennpunktle fallen zusammen im Mittelpunkt und der
Ort derselben ist, wie dies geometrisch hieraus hervorgeht, die
Cylinderaxe.

2. Fiir d =1 wird die Biischelaxe zur Tangente an die Cylinder-

fliche, und die aligemeine Kurvengleichung zerfillt in 2 Faktoren:
x). (*—2IX*4+(EF4+y)x—21ly) =0
Der 1. Faktor: x =0 ist die y-Axe, (Erzeugende E)
e 20 s x—D2.x—+y2.(x—20)=0 .... (43)
ist eine Gleichung 8. Grades; dieselbe reprisentiert also eine
Kurve 3. Ordnung. Sie besteht aus einer Schleife, deren Zweige
Bern. Mitteil. 1894. Nr. 1350.




— 122 —

sich im Punkte C durchsetzen und nach beiden Seilen asymptotisch zu
E‘ ins Unendliche gehen. Der Coordinatenursprung O ist in diesem
Specialfall ein gewohnlicher Punkt; denn die Tangenten in ihm fallen

zusammen in die Gerade: yT == oo, welch’ letztere die Cylinder-

erzeugende E ist. Fiir das Tangentenpaar im Doppelpunkt G lauten
die Gleichungen (48):

y _ -
= Tl swscisnwmmas (44)

d. h. die Kurve durchsetzt sich im Doppelpunkt C rechtwinklig,
und es liegen die beiden Tangenten in ihm symmetrisch zur x- und
zur y-Axe. Der unendlich ferne Punkt ist Wendepunkt (Fig. 8) und
die Cylindererzeugende E’ ist Wendetangente in demselben. Dieser
Specialfall der Kreiscylinderfokalen ist bekannt unter dem Namen der
«Logocyclischen Kurve» der «cLogocycloide» oder
der Strophoide; dieselbe hesitzt eine grosse Anzahl interessanter
Eigenschaften, welche Gegenstand verschiedener mathematischer Arbeiten
geworden sind.*) Ihre geometrische Erzeugungsweise ist eine sehr mannig-
faltige ; einige Constructionen finden sich erwihnt bei S. Gtinther in
der unten genannien Abhandlung und in Ed. Bartl, «Ubungsaufgaben
aus der Trigonometrie und analytischen Geometrie der Ebene.»

3. Fir Werte von d < 1 aber > 0 besleht die Kurve aus zwei
Asten, die sich in den Punkten F und C durchsetzen; diese beiden
Punkte sind Knotenpunkte; denn die Tangentenpaare in ihnen sind
reell. (Fig. 9).

4. Verschieben wir endlich die Biischelaxe parallel zu sich selbst
nach dem Schnittpunkt C der x-Axe und der Axe der Cylinderfliche,
so wird d = 0, und wir erhalten als Gleichung dieser Specialkurve:

2.4y —PByt=0........ (45)

Die durch dieses Polynom dargestellte Kurve ist wiederum eine
solche 4. Ordnung. Sie besitzt die gleichen symmelrischen Eigen-
schaften wie die ihr entsprechende Fokale des elliptischen Cylinders,
d. h. sie liegt symmetrisch zu beiden Coordinatenaxen. Bei ihr

*) Darunter sind vorzugsweise die 2 folgenden Schriften zu nennen:

- J. Booth, A trealise on some new geometrical methods containing essays
on tangential coordinates, pedal coordinates, reciprocal polars, the trigonometry
of the parabola, the geometric origin of logarithms, the geometrical properties
of elliptic integrals and other kindred subjects. London 1873.

S. Giinther, Parabolische Logarithmen und parabolische Trigonometrie,
Leipzig 1882.
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fallen die beiden endlichen Doppelpunkte zu-
sammen in C, nimlich:
fir y 0 wird x* = 0

und fiir x 0 > y2=0}
Der Nullpunkt C ist mithin Selbstberihrungs-
punkt oder Selbstherihrungsknoten; die x-Axe
ist Tangente an beide Zweige der Kurve, die
sich in ihm berihren. (Fig. 10.)

Construktion der Kreiscylinderfokalen.

Die auf C als Ursprung bezogene Kurvengleichung lautet.:
XLy 4243 A2 x2P—12y2 =0

2
oder (x% 4 y?) 12 dx |- d2 =12, {? ....... (46)

Es ist nun P ein beliebiger Punkt der Kurve, ¢ sein Radius
vector CP und ¢ der Winkel, welchen ¢ mit der x-Axe einschliesst ;
dann erhalten wir aus (46):

o+ 2do.cosg | d?. (cos’¢ | sin®¢) =12.tg2¢ . (47)
und hieraus:
o= —d.cosg +\VIE—dcos?p . tgg; . . . .. (472)
Ist d > 1, so erhalten wir auf den durch C gehenden Strahlen nur

dann reelle Kurvenpunkte, wenn cos ¢ < T

Die obige Gleichung (47%) fiihrt nun dazu, Punkte der Cylinder-
fokalen zu construieren. Sie liefert uns nidmlich folgenden Satz:

Schldigt man um C als Mittelpunkt einen
Kreis vom Radios 1, zieht durch O einen vari-
ablen Strahl, der diesen Kreis in 2 reellen
Punkten Gund G'schneidet, und fdllt von diesen
Punkten Senkrechte auf OC, so treffen diese
das aus C auf den Strahl OG gefdllte Lot CQ in
2 Punkten P und P unserer Fokalen.

Der Beweis ist der folgende: (Fig. 11.)

Es ist: CQO =d . cose.

Ferner ist: OGP = ¢; denn die Schenkel stehen senkrecht zu
denen von A‘CP; somit:

QP =0Q6.1g¢

und QG = \/I2 —d% . cos?,
also
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op| = EVF— T o055 . g,

Die Radien vectoren geniigen also der Relation (47).

Da der Punkt Q in der Mitte des Strahles PP’ liegt, so folgt daraus:

Der Ort der Mitten der durch den Doppel-
punkt C gehenden Sehnen unserer Kurve ist
derum OC als Durchmesser beschriebene Kreis.

Jeder Lage der Geraden OG entsprechen 2 Punkte der Kurve,
die auf einem Strahl durch den Ursprung C gehen. Bewegt sich da-
her der Strahl OG von der x-Axe aus bis zur Tangentenlage OB’, so
bewegt sich der Kurvenpunkt P vom unendlich fernen Punkte auf der
positiven Seite der y-Axe bis zum Punkte B‘ und der Punkt P’ vom
unendlich fernen Kurvenpunkte auf der negativen Seite der Coordinate
y bis zum némlichen Punkte B — Die Berihrungspunkte
‘der von O an den Kreis um C gezogenen Tan-
genten, die Punkte B’ und B sind also Punkte
der Fokalen; in denselben wird dieser Kreis
von der Kurve orthogonal geschnitten.

Bezeichnen wir ferner den Abstand des Punktes P der Kurve von
der Biischelkante mit r, so haben wir folgende Beziehung:

Es ist:
o® + 2do.cosp -} d* =2
Die linke Seite dieser Gleichung ist aber identisch derjenigen
von (47); somit ist:

rr=1. g% =r?
also P =19 wss:iosnmns:; (48)
oder auch 1.tg¢ = A‘D = AD’; d. h.:

Die Entfernung zweier auf einem Strahl
durch den Ursprung C gelegener Kurvenpunkte
P und P/ vom Doppelpunkt O ist dieselbe und
gleich den Abschnitten, welche dieser Leit-
strahl auf den Cylindererzeugenden E und E
bildet, gemessen von der x-Axe aus.

Construktion der Normalen in einem beliebigen Kurvenpunkte P.

Diese Aufgabe kann gelost werden mit Hiilfe der auf pag. 123 er-
haltenen Construklion eines beliebigen Punktes der Fokalen und wird
durch sie zuriickgefiihrt auf die folgende :

Es ist ein variables Dreieck PGQ gegeben,
dessen eine Seite PQ durch den festen Punkt
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C, dessen 2. Seite QG durch einen andern festen
Punkt O geht und dessen 3. Seite sich selbst
parallel bleibt; dabei bewegt sich die Ecke G
auf einem Kreiseum Cund die Ecke Q aufeinem
Kreise um C und die Ecke Q auf einem solchen
vom Durchmesser CO. Man construiere die Nor-
male der Ortskurve der 3. Ecke P.

Wir bezeichnen (Fig. 12) die Mitte von OC mit M; M ist dann
also der Mittelpunkt des Kreises, auf dem Q liegt, und CG und MQ
sind die Normalen der Ecken G und . Eine in O errichtete Senk-
rechte zu O QG schneide diese Normalen in den Punkten R resp. S;
dann ist QORC ein Rechteck, somit der Punkt R auch Schnittpunkt
der Normalen von Q mit der in C auf QP errichtelen Senkrechten.
PT sei nun die gesuchte Normale von P; sie treffe die in G auf PQ
errichtete Senkrechte im Punkte T. Eine im unendlich fernen Punkte
von GP errichtete Senkrechte treffe endlich die Normalen GS und PT
in den Punkten Uoco resp. Voo, Wenn nun dG, dQ und dP die Kurven-
elemente sind, welche in unendlich kleinen Zeiten von diesen Punkten
beschrieben werden, so ergibt sich nach einem bekannten Satz aus
der kinematischen Geometrie:

Es ist:
G GS )
dQ — OR
dQ — QR L (a)
dp PT
dP  PVoo
dG ~ GUoo |
Durch Multiplikation dieser 3 Gleichungen erhallen wir:
GS . PVeo -
1= %7 600c @

Wenn wir ferner den Schnittpunkt der Geraden GS und PT
mit « bezeichnen, so ist: ‘
PVoo _ aYVoo ©

GUco alUoco
Eine in P errichtete Senkrechte auf PG schneide Ge im Punkte
g und die durch G| zu PT gezogene Gerade in y; dann ist:

aVoo P ——EZ (d)
aloc ~ of G
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Dann wird die Gleichung (b):
GS Gy PT
PT E_ﬁ oder Gy — GB (e)
Indem wir von T aus eine Senkrechte GP ziehen, erhalten wir
2 ihnliche Dreiecke PTz und GPy; in ihnen ist:

1=

PT Pz

Gy GP ()
und wir erhalten daher:

Pz

G 3 > ®
Fillen wir endlich das Lot Sd, so wird:
GS GO
Gﬂ GP (b)
' Pz .

alSO GT) = G—p (1)
oder es ist: Pz = GJ (k)
oder oz =GP ()

Der Schnittpunkt T von zT mit der in C errichteten Senkrechten
auf QP ist zugleich ein Punkt der gesuchten Normalen PT. Da das
Viereck CPzT ein Viereck im Kreise ist mit PT als Durchmesser, so
gilt der Satz:

Der Umkreis des Dreiecks CPz berihrt im
Punkte P unsere Kurve.

Indem wir nun die oben gefundenen Resullate anwenden und
zugleich diejenigen Elemente, die nur zur Ableitung der vorigen Con-
struktion gedient haben, unterdriicken, so ergibt sich folgende Con -
struction der Normalen und der Tangente un-
serer Kreiscylinderfokalen: (Fig. 13)

Die Fokale ist der Ort des Schnittpunktes P der Geraden GH
und QC (oder auch der Geraden OP).

Es sei ferner S der Schnittpunkt des Lotes in O mit der Ge-
raden CG und J der Fusspunkt des Perpendikels von S auf GP, endlich
machen wir noch dz = GP.

Es beriihrt dann der um CPz beschriebene Kreis in P die Fo-
kale, und die Gerade, welche P mit dem Schnittpunkt der Perpendikel
in z und C verbindet, ist die gesuchte Normale der Kurve im Punkte
P, oder nehmen wir im Dreieck QPz zu dem durch P gehenden Héhen-
perpendikel die Winkelgegenlinie, so ist letztere die Normale
der Kreiscylinderfokalen im Punkte P.
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Diezugehorige Tangente ist die durch P Pa-
rallel e zu HU, der Verbindungslinie der Fuss-
punkte der beiden Hohenperpendikel in Cund z.

Darstellung der Coordinaten eines Punktes der Kreiscylinderfokalen
als rationale Functionen eines Parameters.*)

~ Die Fokale des Kreiscylinders besitzt 3 Doppelpunkle; sie ist also
eine Kurve vom Geschlecht Null, und es lassen sich somit
ihre rechtwinkligen Coordinaten (x, y) darstellen als algebraische Funk-
tionen eines variablen Parameters.

Zu dieser Darstellung gelangen wir vermittelst der Gleichungen
(17) und (18) pag. 113, welche die Coordinaten der Fokalen des ellip-
tischen Cylinders in elliptischen Funktionen eines Parameters u aus-

driicken. Fiir den Fall nimlich, dass der elliptische Cylinder in einen
Kreiscylinder iibergeht, wird der Modulus k = —z— = 1, und es
gehen die elliptischen Funktionen iiber in hyperbolische; denn fir
k=1 wird: '

“ dz 1 14z
V=) e g -l
v
hieraus ist:
Z = %— == tg. hyp. u = tang u;
e J e ’
Es ist aber auch: z = sn (u, 1),
Somil:
sn (u, 1) = tang u
ferner en (u, 1) = 1
mlu (49)
1
dn (u, 1) = T

Indem wir diese Werle fiir sn, cn, dn in den Gleichungen (17) .
und (18) einsetzen, gehen diese tiber in:

1
Xx=d4 a. i ,l
: (50)
1 1
yz(d—]—a- cnfu). fimu’

*) Siche Prof. Dr. G. Huber, Die Kegelfokalen, Bern, 1893.
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oder da wir den Radius des Kreiscylinders mit 1 bezeichnet haben:
x=d-41. fetand u } (50)
y =d. cofefand u -}- 2 1 . cofetan3 2 u
Diese Gleichungen driicken also die rechtwinkligen Coordinaten
eines Punktes der Kreiscylinderfokalen in hyperbolischen
Functionen eines Argumentes u aus. Jedem Werte von u entspricht
ein und nur ein Kurvenpunkt; die Fokale ist mithin durch diese
Gleichungen eindeutig bestimmt.
Durch Division der Gleichungen (50) folgt:
y 1 61
X finu
Dies ist die Gleichung eines Strahls durch den Coordinatenursprung
O, der die Fokale in 2 zugeordneten Punkten schneidet von
den Argumenten u und (izz — u).

ﬁnlu -stellt in obiger Gleichung (51) den Richtungscoéffizienten

des Leitstrahls durch O dar. Setzen wir denselben gleich der trigono-

metrischen Tangente eines variablen Winkels ¢, also: = g «,

1
fin u
so erhalten wir die Coordinaten (X, y) eines Punktes der Kreiscylinder-
fokalen ausgedriickt in rationalen Functionen von trigonomet-
rischen Functionen, nimlich:

x=d-}lsine
y=(d—[—l.sina).tga} (54)

Lassen wir hierin ¢ variieren von 0° bis 360° so erhalten wir

simtliche Kurvenpunkte.

Die Gleichungen (52) gehen fiir den Fall, dass d = 1 wird tiber in:
x=1(1-} sin «)
y=1(1 —}—Sina).tga} (8EY

Riickt O nach C oder wird d = 0, so werden obige Gleichungen:
X=1.sin«a
y=1.sinea.lga =(52b)

und hieraus ergibt sich auf einfache Weise die Polargleichung
der Kreiscylinderfokalen d = 0, hezogen auf den Selbst-
beriihrungspunkt als Nullpunkt; nimlich:

X4 y=ri=0".sina4 *.sinfa.tg¥«
oder P lalBbl s a6 v 5 a0 55 85 (53)

Mit Hiilfe dieser Polargleichung lassen sich nun Punkte der Fo-

kalen construieren; dennausihr geht hervor, dass der Radius
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vector eines Kurvenpunktes direkt proportio-
nal ist der trigonometrischen Tangente des
Winkels, den derselbe mit der x-Axe bildet.

Tragen wir also auf einen beliebigen Leitstrahl durch O seinen
Abschnitt auf der Cylindererzeugenden E resp. E’ ab, so ist dieser Punkt
ein Punkt der Fokalen.

Die Gleichungen (52) geben uns die rechtwinkligen Coordinaten
eines Punktes der Kreiscylinderfokalen bezogen auf O als Ursprung in
trigonometrischen Functionen eines variablen Winkels e.

Setzen wir nun in denselben tg % = t, wo t einen variablen

Parameter bedeutet, so gehen sie iber in:

2t
2(d—|—21t+d12) t
1 —tt
oder alles auf gleichen Nenner gebracht:

_ (@42 It 4 dt2) . (1 —12)

1=t S B (54)
2 (d421t4di2).t
T 1—

Es lassen sich also die Coordinaten simtlicher Punkte der Kreis-
cylinderfokalen darstellen mit Hiilfe eines variablen Parameters als
rationale algebraische Functionen.

Fir den Doppelpunkt O ergeben sich die Parameter-
werte aus der Gleichung: d + 21t 4 dt®* = 0;
namlich:

t,] 1V
L) d '

Dieselben sind nur reell fiir 1= d. Firl=d, d. h. fiir den
Fall, dass die Biischelaxe den Cylinder tangiert, erhalten wir aus obiger
Gleichung nur einen Parameterwert; O ist, was wir schon friher
auf andere Weise gefunden haben, unter dieser Voraussetzung ein
einfacher Punkt der Fokalen 3. Ordnung. -

Fiir die Parameterwerte t, — 0 und t, = oo ergeben sich aus
Gleichung (54) die Coordinaten des Doppelpunktes C, und t =
-+ 1 entsprechen die unendlich fernen Kurvenpunkte.

Durch Division der Gleichungen (54) ergibt sich:

Bern. Mitteil. 1894. Nr. 1351.
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Dies ist die Gleichung eines Leitstrahls durch 0. Derselbe schneidet
die Fokale in 2 reellen Punkten, die wir zugeordnete Punkte genannt
haben. Jedem dieser Schnittpunkie entspricht ein bestimmter Para-
meterwert t.

Fassen wir in Gleichung (55) den Ausdruck

1 2_tt2 als Richtungs-

coéfficient des Leitstrahls auf und setzen wir denselben — m, so er-

geben sich aus dieser Gleichung: = m die Paramelerwerte

1 —t2
zweier zugeordneter Punkte t, und (, durch:

t,}=-—1i\/1+m2'
t, m

Ihr Produkt: t, .t = — 1 = constant, stellt eine
elliptische Punkt- oder Strahlinvolution dar von
der Potenz — 1. Der Mittelpunkt derselben ist der Parameterwert
0 des Doppelpunktes C; ihm entspricht der Parameterwert oo des-
selben Punktes.

Fir m = 41/ — 1 = -+ i fallen die sonst verschiedenen Para-
meterwerte zweier zugeordneter Punkte zusammen in -}- i resp. — i;
y = -+ 1x ist aber die Gleichung der Leitstrahlen durch O nach den
imaginiren Kreispunkien im Unendlichen; es ist die Gleichung der
Strahlen absoluter Richtung; dieselben sind mithin Tangenten der
Fokalen in diesen Punkten.

Die hier gefundenen Resultate lassen sich kurz in folgendem
Satz ausdriicken :

Je zwel zugeordnete Punkte einer Kreis-
cylinderfokalen besitzen Parameterwerte, wel-
che einer elliptischen Involution angehdren
von der Potenz — 1; der Mittelpunkt derselben
ist der Parameterwert 0 des Doppelpunktes C.
Dieimaginidren Doppelpunkte dieserInvolution
sind die Parameterwerte der imagindren Kreis-
punkte der Ebene.

Wihlen wir statt des Doppelpunktes O, den Punkt C als Ur-
sprung des Coordinatensystems, so gehen die Gleichungen (54) iiber in:
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,__2h.(1—1¥
X' =
1—t (56)
s 2@d4-2h4d®) .t [ T
= 1—
Es stellt uns dann die Gleichung:

y _ d421t4de
= T — 1% c. (B7)

einen Strahl durch C dar. Jeder solche Strahl schneidet die Kreis-
cylinderfokale in 2 Punkten; ihre Parameterwerte ergeben sich aus:

d4214dt2=1.m (1 — t?);
o s — 14 VI — (a4 —I2 m?)
sie sind: , [= i Fim —d
wo m der Richtungscoéfficient des betreffenden Strahles bedeutet.
Diese Schnittpunkte sind jedoch nur reell fir 12 (1 4 m?) > d? also
fir m > -lr \/d® — I3, fiir den Fall, dass d > 1.
Wird der Radikant: '
24+12m?—d?=0,
80 wird t, = t,, und der Leitstrahl ist Tan gente vom Doppelpunkt
€ aus an die Fokale. Dies tritt also ein fiir

m= 4 VF_E

Es konnen also vom Doppelpunkt C aus zwei Tangenten
an die Kreiscylinderfokale gezogen werden, die symmetrisch liegen
zur x-Axe. Diese Tangenten sind jedoch nur reell fir d > 1, also
fiir den Fall, dass die Biischelkante ausserhalb des Cylinders liegt.

Der Ort der Berihrungspunkte dieser Tangenien
fiir ein System von Kreiscylinderfokalen, das wir erhalten, indem wir
bei constantem Cylinderradius d variieren lassen, ergibt sich aus der
auf C als Ursprung bezogenen Kurvengleichung in rechtwinkligen
‘Coordinaten unter Zuhiilfenahme des oben fiir den Richtungscoéffizi-
enten der Tangenten gefundenen Ausdrucks. '

Es war diese Gleichung der Fokalen in rechtwinkligen Coordi-
naten (pag. 121):

. xl2 . ((X.’ + d)s __I__ yaz) —_— 12 ym = 0.
Es sei ferner: y’= mx’ die Gleichung einer im Coordinaten-

ursprung an die Kurve gezogenen Tangente, deren Richtungscoéffizient
gegeben ist durch:
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m= - —!— ViE—1%;
dann erhalten wir aus. obigen Glelchungen die Coordmaten des Be-
rilhrungspunktes der Tangente als:
—d
1+m*l - (5g)
— md

1 -+ m?

Fihren wir hierin fir m die obige Bedingungsgleichung ein und
eliminieren den constanten Abstand d, so erhalten wir als Ort der Be-
rihrungspunkte simtlicher durch C gehender Tamgenten eines Fokal-
systems den Kreis:

x’:

4-yi=0P... (59
Dies ist ein Kreis um den Doppelpunkt C mit Radius = 1 = dem
Radius des Cylinders; derselbe beriihrt also die Cylindererzeugenden
E und E’ in den Punkten A und A’

Da die beiden von C aus an die Fokale gehenden Tangenten
symmetrisch sind zur x-Axe, so liegen ihre Beriihrungspunkte auch auf
einem Kreis um O, welcher die Kurve in denselben beriihrt; denn:
Ein Kreis mit Radius r um O und unsere Kreiscylinderfokale be-
zogen auf O als Ursprung haben die Gleichungen:

X2 | y2 =r?; @)
(6 +¥9). (x — d)f — Py = 0;

Eliminieren wir aus diesen Gleichungen y?% so erhalten wir eine
Gleichung in x2, welche nach x aufgelost die -Abscissen der Schnitt-
punkte von Kreis und Fokale liefert.

Die Gleichung in x? lautet:

r4-1%).x2*—2d.r2. x4 (@2 —18).r*=0. (b)

Soll nun obiger Kreis die Kurve berriihren, so miissen die beiden
Wurzeln dieser Gleichung (b) zusammenfallen, und hiefiir ist dxe Be-
dingung :

r2413).d@—18.r2 —dr*t=0.
Dieses Polynom zerfillt in 2 Faktoren :
1. ¥ ==10 ©
und 2. (r2+413).(d®— 1?) —d®r?=0
Die Losung r? — 0 bezieht sich auf den isolierten Doppelpunkt 0 und
kommt hier nicht in Betracht.
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Aus dem 2. Faktor ergibt sich:

"= @ — 1 (@)
Aus Gleichung (b) wird die Abcisse der Berihrungspunkte :
£ =
ré-f-1%
da aber nach (d): r? 4+ 12 = d? so ist:
d.x=1r%...... . (60) Fig. 7; BL II; d. h,

Der um O beschriebene Kreis, welcher durch
die Berihrungspunkte der von C an die Fokale d >1
gelegten Tangenten geht, schneidet in diesen Punk-
ten den Kreis um den Doppelpunkt C mit Radius 1
orthogonal; dabei berihrt er auch die Kurve in diesen Punkten.

Fiir die Specialkurven d = 1 (Strophoide) und d = 0
gehen die Gleichungen (54) tiber in die folgenden:

21
il = 15 x_1(1+m) -
2. (1 1)
y= 1 — 1t
2 It
d.=0 x=-i—-_ri§-
412 (62)
¥ =q=v

Bezeichnen wir auch hier die zwei auf einem Leitstrahl durch
den Coordinatenursprung O liegenden Kurvenpunkte als zugeordnet,
so gelten im Specialfall d =1, nach Gleichung
(61), fiir ihre Radien vectoren und fir ihre
rechtwinkligen Coordinaten dieselben Gesetze
wie bei der entsprechenden Fokalen des ellip-
tischen Cylinders (pag. 113).

Transformieren wir die Gleichungen (54), (61) und (62) auf den
Doppelpunkt C als Coordinatenursprung, so lauten dieselben :

21t
EERT
141 (63%)

@221t d).t
L— .

a. d > 1:
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21
1+¢ (63)
2114t
Y="aFo.a-—-y
2 1t
C d=290 X —m ——
14 (63°)
o4
F=1—v

Diese Gleichungen zeigen, dass die Abcisse x fir sdmt-
liche Fokalen eines Systems mit variablem d, aber
constantem Parameter t dieselbe ist.

Es entsprechen aber jedem Werte von x zwei Werte von ft,
die sich aus obigen Gleichungen fiir die Abcisse ergeben als:

n}=liVP—ﬂ_

t, X
Diese Parameterwerte sind nur reell fir 1 > x, d. h. fiir den
Fall, dass die zugehorigen Punkte der Fokalen sich innerhalb den
Erzeugenden E und E‘ befinden, mithin selber reell sind.
Das Produkt der Parameterwerte aus obiger Gleichung ist:
b.t,—=1=constant, d. h.:
Jede Ordinate zwischen den Cylindererzeugen-
den E und E'’ schneidet simtliche Fokalen eines
Kreiscylinders in Punktepaaren, deren Para-
meterwerte bezogen aufden Doppelpunkt C die-
selben sind, und es bilden diese Parameter-
werte aller Ordinaten ein hyperbolisches
Punktsystem von der Potenz = -} 1. Der Mit-
telpunkt dieser Involution wird reprisentiert
durch den Parameterwertt, = 0 des Punktes G;
diesem entsprichtalsunendlich fernes Element
der andere Parameterwert t{ = oo desselben
Punktes; die Doppelelemente sind die Para-
meter der unendlich fernen Kurvenpunkte.

Wendepunkte der Kreiscylinderfokalen.

Lassen wir in der Wendepunktsgleichung (27) pag. 116 den
Modulus k in 1 ibergehen, so erhallen wir eine Gleich-
ung in hyperbolischen Functionen, dieuns die 6 Wende-
punkte der Kreiscylinderfokalen liefert.



— 133 —
Es wird also (27) fir k = 1:

1 -1 1
4 — — —_— =
tang* u . l.miﬁu -+ 3d PmIT -+ 21 cofau]

oder tang* u . {21.cof* u -3 d . cof u 4+~ 1} = 0; . ... (64)
Diese Gleichung zerfillt also in die beiden:

1. fang*u =0 :
und 2. 2l.cof3u=8dcofu—|—1=0] . - - (65)

Der 1. Faktor liefert die zwei im unendlich fernen
Doppelpunkt der Kurve liegenden Wendepunkte; denn
diese Gleichung ist erfiilll fiir u =0 und u=1i s, fiir welche Werte
sich aus Gleichung (50) die rechtwinkligen Coordinaten:
X=d - 1| und X=d—1

} ergeben; der unendlich ferne
Yy = b= ¥y — &

Doppelpunkt ist mithin auch fiir die Kreiscylinderfokalen doppelter
Inflexionsknoten.

Die tibrigen 4 Wendepunkte der Kreiscylinderfokalen sind
gegeben durch den 2. Faktor der Wendepunktsgleichung (64):

21cof?u-}3dcofu-41=0;

Nach cof u aufgeldst, erhalten wir:

—3d4\V9d®2—81I
41

Jedem Werte fir d entsprechen aus dieser Gleichung im allgemeinen
zwei Werte fir cof u und jeder dieser Werte cof u liefert nach
Gleichung (50) die rechtwinkligen Coordinaten zweier Wendepunkte,
die symmetrisch liegen zur x-Axe, also gleiche Abscisse und entgegen-

gesetzt gleiche Ordinaten besitzen. Nur fiir den Fall d = 4 % 1 \/§

fallen die beiden Werte von cof u aus obiger Gleichung zusammen in

cof u =

+ % \/2, und wir erhalten nur 2 symmetrisch zur x-Axe gelegene

Wendepunkte, deren Coordinaten aber imagindr sind.
Die rechtwinkligen Coordinaten der 4 Wendepunkte ergeben

sich aus Gleichungen (50) als:
1

x—d 41
—3d4\9d*—8P
] 412 41 o8]
y_( +—3di\/9d’—812) +\/18d2—241*F-3d.y9d*—81*
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Ist d << 1, d. h., schneidet die Biischelkante den Cylinder, so erhalten

wir aus obigen Gleichungen 4 imaginire Wendepunkte, und zwar

werden fir 1 > d > —3— 1./2 die Ordinaten und fiir d < -—%— 1y/2

die Abscissen derselben imaginir. Hat d den speciellen Wert: % 1\/ 2,

so fallen, wie schon oben gefunden, die beiden imaginiren Wende-
punktspaare in eines zusammen mit den Coordinaten:

¥, = 2 li
1 w 1T §
X—“*’g‘l.VZ,{ 21.}.
Yz‘—'—"—'_s— IJ
Fir d = 0 sind die Coordinaten der Wendepunkte :
( 1
y1=—il\/§—
_ 3
x, = — 11i \/2; s |
YE=+_3_IV3
| )
Y‘x= %l\/v‘:}_
und X = 4 1iV/2; 3
h—— 25
Y= 3
\ J

sie liegen also central-symmetrisch zum Ursprung 0 = C.

Tangiert die Biischelaxe den Cylinder oder wird d = 1, so liegen
2 Wendepunkte im Punkte 0 — A vereinigt, und dieser ist ein ge-
wohnlicher Punkt der Fokale 3. Ordnung. Die beiden andern Wende-
punkte sind wieder imaginir und haben die Coordinaten:

we Aop
! 3

X = l,*y___ilir
P 3

Lassen wir endlich d >kl werden, so virird in der mach cofu
aufgelosten Gleichung auf voriger Seite nur fir das negative
Zeichen der Wurzel cof u absolut > 1; dies ist aber die Bedingung
dafiir, dass die aus den Gleichungen (50) sich ergebenden Coordinaten
(x, y) eines Punktes der Fokalen d > 1 reell ausfallen.
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Es besitzt also die Kreiscylinderfokale d >1 zwei reelle,
symmetrisch zur x-Axe gelegene Wendepunkte, deren Coordinaten wir
erhalten, indem wir in den Gleichungen (66) nur das negative
Zeichen der Wurzel beriicksichtigen; also:

k=¢+ 41 _ —d4\VoE—38r
—38d—\/9d"—8P 2
(m)y_,—d+VmF—8P. 41
2 +1/18d2 —24 12} 3dy9d®* —8 I8
{ =i\/%(212—3d2+d\/9d2—81“‘.)

Die beiden andern Wendepunkte sind imaginaér; ihre Coor-
dinaten ergeben sich aus den Gleichungen (66) fir das positive
Wurzelvorzeichen des Ausdrucks fiir cof u.

Beziehen wir in obigen Gleichungen (67) die Coordinaten der
reellen Wendepunkte statt auf O auf C als Ursprung, so gehen die-
selben iiber in:

. 2___ Q12 )
ot e 3d 4 \/94d 8
2
' (68)
i 2 2 2 2 2
y = y=+\/3@1r—3d +dV9daE—8T
J

Betrachten wir hierin d, den Abstand der Biischelaxe vom
Doppelpunkt C, als variabel und eliminieren denselben aus diesen Aus-
driicken fiir x‘ und y‘, so erhalten wir eine Gleichung, welche uns den
Ort der im Endlichen liegenden, reellen Wende-
punkte eines Systems von Fokalen, fir die d > 1 ist, darstellt.

Wir erhalten als Ortskurve dieser reellen Wendepunkte
eine Ellipse von der Gleichung:

xdﬁ ) y42 .
B -+ ST\® = 1; (Blatt II'; Fig. 73)

(%)

Um einen Wert fiir den Krimmungsradius der Kreis-
cylinderfokalen zu bekommen, koénnen wir die auf pag. 114, Gl. 20
citierte Formel fiir o anwenden auf unsere in Parameterform gegebene
Kurvengleichung (54). Die in dieser Weise sich ergebenden Aus-
driicke werden aber sehr complicierte, und es ist daher vorzuziehen,

Bern. Mitteil. 1894. Nr. 1352.

(69)
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mit Hiilfe der Polargleichung unserer Kurve deren K rim-
mung zu bestimmen.¥)
Dies ausgefiihrt, ergibt :

{l“—l—d“—}— 2 dl sin ¢ (1 4 cos® ¢) 12 . sin® g . COstp}%
¢ = 1.cos*¢ . (214 84d.sin ¢ + 1sin® ¢) —5(70)

Erteilen wir hierin ¢ die Werte 0 und sz, so erhalten wir die
Krimmungsradien der beiden im Doppelpunkt C sich schneidenden
Kurveniste und zwar wird in beiden Fillen:

(* 4 s

00 = o8 , Wwas aussagt, dass beide im Doppelpunkt

C sich schneidenden Aste in diesem Punkte dieselbe Kriimmung haben.
Fir die Specialkurven d = 1 und d = 0 nimmt g die Werte an:

— 1
1. d=1: g = 1.2 2. d=10: o9 = 5

Quadratur von Segmenten der Kreiscylinderfokalen.

Ein durch den Doppelpunkt O gehender Strahl (Fig. 14) treffe
die Cylindererzeugenden E und E‘ in den Punkten U und V und die
Fokale in F und G.

Dann ist;
1 e
Sector 0CG = ¥ r? . dg;
0
. __d+4 lsing )
Da aber: r = i (Polargleichung),
so wird:
1
1 (7 . |
Sector 0CG = 5 (d -+ 1sin ¢) T8ty ,
’ (71
und  Sector OCF = L S(Dd—lsin i dg e
2 £ Costg
0

Hieraus wird durch Subtraktion:

P & ¢
Segment FCG =2d.lf w_—Zd.l.g 1 ]
cos? ¢

*) Siehe Prof. G. Huber, die Kegelfokalen, S. 49.
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Indem wir die Grenzen einsetzen, bekommen wir:

1
= . — 1Y s omw (72)
Segment FCG 2d.l1 {cosgo 1‘
Bezeichnen wir den Schnittpunkt des Leitstrahls OUG mit der
Cylinderaxe mit J, so ist: O0J = d = 0T
Cos ¢
d
und CT = — d;
oS ¢
Da aber nach Gleichung (72): Fliche FCG = 21 {%ﬁ— d‘,
s0 konnen wir den Inhalt derselben angeben durch ein Rechteck,
dessen eine Seite = 21 = dem Durchmesser des Cylinders ist und
dessen andere Seite uns durch die Strecke CT = coggo — d dar-

gestellt wird. Tragen wir daher diese letztere Entfernung nach unten
oder oben von C aus auf die Cylinderaxe ab und ziehen durch den
Endpunkt S eine Parallele zur x-Axe, so ist:

Fliche FCG = AA'B'B, g k.,
gleich dem Inhalt des Rechtecks gebildet von den
Cylindererzeugenden E und E‘ einerseits und der

— d Paral-

X-Axe und der zu ihr im Abstandcoz
lelen andrerseits.
Fir den Fall, dass d den speciellen Wert O annimmt,
lautet die Polargleichung der Fokalen, wie friiher gefunden:
r=1.tgy;

r bedeutet dabei die Linge eines Halbstrahls von O = C aus, welcher
-mit der x-Axe einen Winkel ¢ bildet.

Es ergibt sich dann als Inhalt des von diesem Halbstrahl r und
der Kurve (d = 0) eingeschlossenen Flichenstiicks :

Fliche OMP

B 1 9’2 . 12 ¢ . 12 @ dq‘J P
0 0 0
12 P 12
=?.{tg¢——¢} =—2——{tgcp——-go}; ...... (73)



— 140 —

Da diese Fokale central-symmetrisch ist, so schliesst der nach der
negativen Seite verlingerte Strahl r mit der Kurve ein gleich grosses
Flichenstiick ein, und wir haben daher, wenn wir mit J die Summe
der Inhalte der beiden Knrvensegmente bezeichnen:

J=1F.(tge —¢).......... (74)
Ferner ist:
Segment OMPGA’ = 40A'G — Sektor OMP;

2
da aber: A0AG = —ﬂ, so wird :

2 .

2 2 2
Flichenstick OMPGA' = l—%‘ii"-—- —12-(tgga —go)=—12—.¢;
und fir ¢ = —g— erhalten wir, indem wir den Inhalt des unendlich

langen Flichenstreifens zwischen der Kurve, der Asymptote A’ und der
x-Axe mit S bezeichnen:

B=D, 4 i
Die Kurve (d = 0) schliesst aber mit den beiden Erzeugenden E
und E‘, welche zugleich Asymtoten sind, 4 solcher unendlich langer
Flichenstreifen ein, deren Inhalte einander gleich sind. Es betrigt also

die Summe aller 4:
4 S=0V2. .= ........ (75) d. h,,

Die von der Kreiscylinderfokalen (d = 0) und den
Asymptoten eingeschlossenen unendlich langen
Flichenstreifen haben einen endlichen Inhalt; ihre
Summe ist gleich dem Inhalt des Kreises mit Radius
1 des Cylinders.

Aus der Figur 14 geht weiter hervor:

— 12
Es ist: Fliche ACFU_.-—f{ « 2)}.d¢;
cos
Da aber: r = w, so wird:
cos ¢

g (d— 12 (d--—IS111go)2—(d----l)2 2d.1.(1—sinjp)—I12 sin%p
" eoste cos?o cos? ¢
2d1 o dl s

T Idsimg T T cos”,(45°——- 2)
2

Setzen wir diesen Wert unter dem Integral ein, so ist:
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? d(45°-—£)
Inhalt von Flﬁche:ACFU=-——dl.f
§ cos? (45"—%)

2 ?
—-lg— dgo=dl.‘1-—tg(45°—~§-)}—%12.¢;...(76)

0
Nun ist:
1— tgs‘o'2 2 tg “012 2sin ¢l2
(1—_tg(45°_.29‘3)=1_. —  _ |
14 tg ?lg 141tg ‘P~2 sin¢l2+cos¢,2

V2. sinsp 2

sin (45° + ¢ 2) ’

Also wird dann:
d.1\/2 sin ¢

sin (45“—{—90'2) =
Setzen wir endlich in Gleichung (76) eine trigonometrische Funktion
des ganzen Winkels ein, also:

1 — sin
¢ 450_90’ )=_¢
g( 2 coS ¢

Fliche ACFU =

so geht sie tber in:
. . 1 1., b

Fliche ACFU = dl.tggo——dl(@ - 1)-—--2—1 .¢ (76Y)

Diese Formel gibt mit Beriicksichtigung der Ausdriicke (71)
folgende Construktion des Inhalts des Flichen-
stickes ACFU. (Fig. 15.)

Es ist also:
Fliche ACFU = Rechteck HIKL — Kreissector ACS;

Vorteilhafter als diese Gleichung ist die Formel fiir den Inhalt
des Flichenstickes ACFU, welche uns gegeben wird
durch Construktion vom Ausdruck (76). (Fig. 16.)

Derselbe war:

Fliche ACFU — dI {1 — ig (450--5”[2)} _ 1

"g .

12 . «a,

Dies construiert, ergibt die Gleichung:
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Inhalt von Fliche ACFU = Rechteck DEGH —
' Kreissectors A’CS;

Die letztere Construction, sowie auch die Gleichungen (76) oder

(76*) lassen sich auf den Grenzfall ausdehnen, wo ¢ =

g wird, und es riickt fiir diesen Wert von ¢ der Kurvenpunkt F

ins Unendliche.
Aus den Gleichungen (76) oder (76°) ergibt sich fir ¢ = 7_; .
2

Fliche F = dl — ﬂ;l _als unendlich langer Flichenstreifen

zwischen der Kurve, der Erzeugenden E und der x-Axe, und hieraus

folgt durch Construction: (Fig. 17.)

Unendl. langer Flichenstireifen F = Fliche AOKLM,
d. h.

Es besitzt auch bei der Fokalen (d > 1) der
unendlich lange Flichenstreifen, begrenzt
von der Erzeugenden E, der x-Axe und der
Kurve einen endlichen Inhalt gleich dem
Flichenstick AOKLM, gleich dem Rechteck
OKLC vermindert um den Kreissector CAL.

Betrachten wir in Fig. 14 den Fliachenstireifen CA‘VG
in analoger Weise, so ergibt sich fiir ihren Inhalt der Ausdruck :

? 2
Inhaltvon CA‘VG=—11— Ld_'}__l)__rfﬁl_dsa;
2 cos® ¢ l

0
Da nun aber

@+ 1D ,_@+1)*—@+1 sing®_ 2d1(1 —sing)
cos?g o cos? ¢ cos®g

+,

so sehen wir, dass sich dieser Integrant von demjenigen, den wir bei
der Quadratur der Fliche ACFU erhielten, nur durch das Vorzeichem
des Gliedes 12 unterscheidet.

Es ergibt sich also:

Inhalt v. Fliche CA‘VG — Inhalt v. Fliche ACFU = I%
(77)
und ferner:

Fliche (CA'VG) = d.1|1 — tg (450— 9”|2)} - %12.;0
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. - i T 2
Gehen wir zur Grenze iiber und seizen ¢ = 3 S0 wird:

2
F‘u—-d.l—[——-——”: ,d.h.:

Der von der Erzeugenden E‘, der x-Axe und
dem Kurvenast CGoo eingeschlossene, unend-
lich lange Flidchenstreifen hat ebenfalls
einen endlichenlInhalt, und zwar istderselbe
gleich dem auf voriger Seite gezeichneten
Rechteck OCLK vermehrt um den Kreissector
CL A

Addieren wir die Inhalte aller 4 von den Erzeugenden und der
Fokalen eingeschlossenen Flichenstiicke, so ergibt sich, es ist:
' S=2F +2F=44d.1;..... (78) d. h.:
Die Kreiscylinderfokale (d > 1) schliesst mit
ihren Asymptoten zweli wumnendlich lange
Flichenstreifen ein, deren Summe gleich ist
dem Inhalt eines Rechtecks von den Seiten
2d und 2L , '

Subtrahieren wir diese beiden zwischen der Fokalen (d >> 1) und
den beiden Cylinderzeugenden E und E‘ liegenden unendlich langen
Flichenstreifen 2 F* und 2 F, so wird ihre Differenz:

D= 23F —QF =2 . ) .... 006 (78%)

da diese Differenz von d unabhingig ist, so folgt der Satz:
5 Die Differenz der Flicheninhalte der beiden
unendlich langen Streifen zwischen der Fo-
kalen und den zugehorigen Asymptoten ist
constant fir alle Fokalen d > 1 gleich dem
Inhalteines Kreises vom Radiusdes Cylinders
und gleich dem Inhalt der entsprechenden
unendlich langen Flichenstreifen der Fo-
kalen'd = 0.

Ist d << 1, also O ein Knotenpunkt, so lautet die Polargleichung
der Fokalen ebenfalls:

d 4 1.sng¢
cos ¢
Die Tangenten im Doppelpunkt O haben die Richtungswinkel:

. — d
SN ¢ = F -

—_—

]
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¢ = JF arc sin —(11—-=¢ @o

Fiir Werte von ¢ zwischen — ¢o und % stellt die Gleichung:

—————-d —l—(;olss;ngo den rechts von O liegenden Teil des obern Astes

d —1lsing

(Fig. 9) dar, der Gleichung r = ey

aber entspricht der

links von O gelegene Teil des obern Astes fiir ¢ zwischen g— und

T — 0. .
Es ist nun der Inhalt des Segmentes OLC, welches begrenzt
wird von dem Kurvenbogen OLC und der x-Axe und welches gleich

ist der Hilfte des Segmentes OLCKO, eingeschlossen von den beiden
zwischen den Doppelpunkten O und C liegenden Kurvenbogen:

S_1(Ts g4, ‘@+1sing)?
2 2 ’ cos? ¢

~%a 'S"o

de
@ Odgo td.l smgo q +1_2 :2 d
2,/ cosfe ! T cos®e ' $1 g ) 8 % OF

) ~%o -

2 0
—[t@+mge+ L 2]

€oS ¢
"?0

sin ¢, =

Setzt man die Grenzen 0 und — ¢, = —arcsin — —— ein,

[7
so ergibt sich:

S d.I® I3 . d
E_-d.l———(d —|—l).\/12 i \/lz_dg——.arc sin —~

12 d
—_— 2 — —
=d.1 2 d\/l d 5 - are sin — T

S=2d.1—d\/IF —d® — I*. arc sin %— ceses (79

; also:

als Inhalt jenes doppelten Segmentes OLCKO;

Fir d =1 geht dieses Doppelsegment in die Schleife der
Strophoide iiber, und es wird der Inhalt derselben aus oblger
Formel, wie schon gefunden :

— 2 ___ 12 f.._.z _7_':
S, =21 | .2___1 .(2 2),
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Fir d = 0 verschwindet das Doppelsegment, da sich die beiden
Kurveniste in O = C beriihren, und damit iibereinstimmend gibt
Gleichung (79) den Wert: S = 0.

Der Inhalt des oberhalb der x-Axe liegenden und von dem
Kurvenast M und dem Leitstrahl OG begrenzien Sectors OCMG wird:
1 (f -1 sin ¢)?

Fliche (OCMG) = 9 cbs*«p . de

0

1 . d.1 12 ¢
=[§(d2+12)-18¢_+ "'g-‘r”]
: 0

oS¢

Die Grenzen eingesetzt, gibt:

d.l 12
g 5 ¢—d.1..(80)

Fliche OCMG = ;— (a2 4 1% . tge

Nun wird das zwischen der Kurve, der Erzeugenden E‘, der x-
Axe und dem Leitstrahl GV liegende Flichenstiick :
Fliche CA‘VGMC — Dreieck OA‘V — Fliche OCMG
d.!1

_1 2 1 ermge L1
=5 @+D* . ge— 5 (@ +)lgy 03¢
12

+ gl
; I* 4.1
€os ¢ +—2_¢+ '
1 —sing 1?

=—d.l.1g (’%—-g)+d.1+12.—§,

=d.l.tg¢ —

oder endlich :

Fliche CA'VGM =d .1 + I . g——d.l.tg.(% — %) ... (81)
Fir ¢ = —2”1—- erhilt man den unendlich langen Flichenstreifen
oberhalb der x-Axe zwischen Kurve und Cylindererzeugenden E‘; nimlich:
F=d.l1412. —Z’—,

somit wird der Inhalt des ganzen Streifens, der sich nach beiden
Seiten der Asymptote A’ ins Unendliche erstreckt:

2F=2d.1+12.%.... ..... (82)

Bern. Mitteil. 1894. Nr. 1358.
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Dieselbe Formel haben wir friiher auch erhalten fiir den entsprechen-
den unendlich langen Flichenstreifen der Fokalen d > 1; es wichst
also der Inhalt desselben proportional mit d, d. h.,, mit der Ent-
fernung der Biischelkante vom Doppelpunkt C.

Fiir d = 1 (Strophoide) wird: 2 F =212 4 12 —72';— =" (2 + %)

Fird =0 wird: 2F =12, 721 welch letztere Gleichung

iibereinstimmt mit der friher gefundenen Gleichung 75.

Der Inhalt des links der y-Axe oberhalb der x-Axe gelegenen
Sectors ONFO der Kurve wird:

U T 1 (% (@—1sing)?
Sector (ONF) = -gfr .dc,_—z—f v . de

%o %o

1 d.l 12 e

= —(dz—}—l2) lggﬁ——— __(i’] )

[2 cos ¢ 27 o,

Die Grenzen eingesetzt, erhalten wir:
2 N - 4 2 2 d.1 I? 2 2
Sector (ONF) = —- (& 4 1%) . 159 — - gu—l— V12— g?
2
+ 1§ - Sm% ......... (83)

Ferner wird der Inhalt des Flichenstreifens OAUF oberhalb der

x-Axe zwischen der Kurve und der Erzeugenden E:
Fliche (OAUF) = Dreieck OAU — Sector ONF

J— 1 2 n 1 2 2
=5 (—d". g — 5 ("), tg¢+005 +
— P
.. N g =
\/I — g arcsin 5
I2 ——— . d
= —1d. tg¢+cos¢ —}— g.-—-— ViE=4d -3 arc sin 1
oder
3 L T ¢ I# VT 2___1_ E
Fliche OAUF = 1d . g(4 2)—{—2 @ \/1 d 2arcsml
(84)

Fir ¢ = g erhilt man den unendlich langen Flichenstreifen

oberhalb der x-Axe zwischen Kurve und Asymptote A; es wird also:
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E—ir—- arc sin 9,

1
somit der Inhalt des ganzen Strelfens, der sich nach beiden Seiten
der Asymptote A zwischen dieser und der Kurve ins Unendliche erstreckt:

F‘_-

2Ff=12.52‘--d . \/lg—d"“——l"'.arcsin%—, . . (85)

welcher Ausdruck sich leicht geometlrisch darstellen lisst.
Fir d = 1 wird 2F = 0 und

Fird =0 » 2F =1? .%, wie schon gefunden.
Aus den Gleichungen (79), (82) und (85) folgt ferner:
S+2F—2F =44d.1........ (86)

d. h.: Das zwischen den Doppelpunkten O und
C liegende Doppelsegment vermehrt um den
unendlich langen Flichenstreifen lings der
Erzeugenden E und vermindert um den unend-
lich langen Fléichenstreifen lings der Er-
zeugenden E hat gleichen Inhalt mit einem
Rechteck von den Seiten 21 und 2d und ist
gleichderSumme der beiden unendlich langen
Flichenstreifen 2F und 2F der Fokalen d>1
(Gleichung 78).
Ferner folgt aus den auf voriger Seile citirten Gleichungen:
2F - 2F — S=1V=n ........ (87)

d. h.: Die Summe der beiden zwischen den
Asymptoten und den entsprechenden Kurven-
disten liegenden unendlich langen Flichen-
streifen vermindert um das zwischen den
Doppelpunkten O und C gelegene Doppelseg-
ment der Fokalen d <1 ist constant fir alle
Fokalen des Systems (d <1) gleich dem Inhalt
des Kreises mit Radius 1 und gleichK der
Summe der beiden unendlich langen Fldchen-
streifen, welche die Fokale d = 0 mit den
Asymptoten einschliesst.

Statt von der Fokalen d <1 auf die Quadratur der Strophoide
(d = 1) iiberzugehen (pag. 146), konnen wir auch die friiher ge-
fundenen Flichengleichungen der Kurve d > 1 anwenden auf diesen
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Specialfall. Es gibt uns dann dieses so gefundene Resultat eine Kon-

trolle fiir die Richtigkeit obiger Sitze.
Wenden wir also die friiher gefundenen Flichengleichungen (76)

an auf den Specialfall (d = 1); (Strophoide), so wird: (Fig. 8.)
Sector: ACF = 12.‘1— tg(45° ——; 90)} —_ —21— 1% ¢

Fliche: CAVG =1? .{l—lg(élb“——g)} -+ % 2o

und diese Resullate lassen sich analog den friihern konstruiren. (Fig. 8.)
Fir ¢ = 90° wird:

2
Halbe Schleifenfliche: AGFA = i — 21
2
Streifen F =1 4 22,
daher:
Ganze Schleife -} Streifen F = 412; . .. .. (88)

d. h.: Die Summe der Inhalte von Schleife und
~unendlich langem Flachenstreifen, der von der
Strophoide wund der Cylindererzeugenden E
(Asymptote) eingeschlossen wird, ist gleich dem
Quadrat tGiber dem Durchmesser des Cylinders.¥)

Mit Ausnahme der Strophoide fiihrt die Rektifikation
unserer Kurven auf elliptische Integrale, und wir erhalten des-
halb hier k eine einfachen Beziehungen.

Schlussbemerkung.

Uber die Fokalen des elliptischen Cylinders, sowie tiber den
allgemeinen Fall d == 1 und die Specialkurve d = 0 des Kreiscylinders
habe ich mit Ausnahme einer jiingst erschienenen Arbeit von Herrn
Prof. Huber iiber «Die Kegelfokalen» in der vorhandenen Litteratur
nichts finden kénnen. Dagegen die Strophoide (specielle Kreiscylinder-
fokale d = 1) ist in zahlreichen Arbeiten behandelt worden, und es
dirfte daher der Umstand, dass diese lelztere ein Specialfall einer
Klasse von Kurven ist, welche in vielen Eigenschaften mit ihr iiber-

*) 8. Giinther hat in seiner schon frither erwihnten Schrift iiber «Die
logocyklische Kurve» diese Beziehung mit Hiilfe ;von hyperbolischen Funktionen

gefunden.



— 149 —

einstimmen, einiges Interesse bieten. Ob vielleicht die hier behandelten

Cylinderfokalen fiir die Weiterentwicklung der Bessel’schen Funktionen

von Wert sind, das muss die Untersuchung lehren. Eigentiimlich ist

immerhin, dass bei einigen Integralformen dieser Funktionen Wege
in Betracht kommen, welche Ahnlichkeit haben mit den hier be-
handelten Fokalen des Cylinders.

Yon der iiber die Strophoide vorhandenen Litteratur sind neben
der bereits in der Arbeit angefiihrten Schriften noch folgende zu
nennen :

1. H. Dureége. Uber die Kurve 3. Ordnung, welche den geo-
metrischen Ort der Brennpunktie einer Kegelschnittschar bildet.
Clebsch Annal. V 83—95.

2. St. Gervais. Elude géometrique sur la unoide et de la stro-
phoide. Mathesis X 9—14.

3. W. W. Johnson. The strophoids, Sylv. Ann. J. Ill. 320—355.

. E. Barnes. A note on the strophoids; J. Hopkins circ. 1I. 145,

P. Mansion. Longueur de la boucle de la logocyclique ou

strophoide. Mathesis, VI. 108—110.

6. C. Moser. Uber Gebilde, welche durch Fixation einer sphirischen
Kurve und Fortbewegung des Projektionscentrums entstehen ;
Inaugural-Dissertation, vorgelegt der phil. Fakultit Bern, 1887.

Weitere Litteraturangabe siehe: S. Giinther, Parabolische Loga-
rithmen und parabolische Trigonometrie, Seite 58.

o

Bern, 20. Juni 1893.

Mit Vergniigen benutze ich die hier sich bietende Gelegenheit,
um dem Direktor des physikalischen Instituts, Herrn Prof. Dr. Forster,
ebenso wie den Herren Prof. Dr. Huber, Prof. Dr. Graf, Prof. Dr.
Sidler und Privatdocent Dr. Moser meinen herzlichsten Dank fiir
das mir wihrend meiner Studienzeit stets entgegengebrachte Wohl-

wollen auszusprechen.
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