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Dieser neue Ausdruck erleichtert nicht nur die sehr zahlreichen
theoretischen und praktischen Anwendungen des Bernoulli’schen Theo-
rems, sondern ermdoglicht auch genauere Resultate, und ich behalte mir
vor, gelegenllich einige dieser Consequenzen zu ziehen.

Anhang.

Note 1. Laplace gibt folgende Darstellung des Bernoulli’schen
Theorems*): Seien p und q resp. die einfachen Wahrscheinlichkeiten der
Ereignisse E und E’; dann ist die Wahrscheinlichkeit, dass in m - n
= u Versuchen das Ereigniss E m mal; E, n mal eintreffe, gleich dem
(m 4+ 1) Terme in der Entwicklung von (p 4+ q)*, nimlich gleich

1:2:8 : 04 u
* 1.2.3....m1.2.3...1

Bezeichnen wir den grossten Term in dieser Entwicklung mit M,

Mp n
T 1

m
gleich l;)l—g S sein. Damit aber M der grisste Term ist, muss

m n
p q.
1

gso wird sein ihm vorangehender gleich sein nachfolgender

gelten
I e B xd m-}1

41 q n
und hieraus folgt, dass
(u+1) p—1<<m<<(utl)p
oder m= (u+4+1) p— 6, wo o < 1, ist.
Nun wird

B o= T q=1—p=n+1_0v p_ mto

-1 w1 g ﬂlvo"
und sind m und n sehr grosse Zahlen, so gilt die Relation
P . m
q o’

d. h. das Eintreffen derjenigen Combination .der Ereignisse E und E’ hat
ein Maximum von Wahrscheinlichkeit, die wunter der Relation p: q=m:n
steht.

*} Théorie analytique des probabilités (3. éd. Paris 1820) Liv. 1I, Chap. II,
p- 280 e. L. s.
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Der 1t Term nach dem grossten M ist gleich
w! m-l n-tl

m—tmdny P

Nun ist
L oo 1
1.2.8....0n=n"t3 17/ox {1 +12n + }
und es wird
1 _m-l
N 7 T R
(m—I1)! Ver 12(m—I)
1 n-l
R (n-v—l)l'"'E _e_L__ {1 oy }
(n_]‘) ! \/271 12(11—])

Durch logarithmische Entwicklung und unter Vernachldssigung der Glieder

1
von der Ordnung = wird
1 Bt 1 I3
(m—i)l-mh‘f = eom m™g {1 + 9m b_'iii*}
1 | 1 1 13
4D = oo 0y {1 o P G—,ﬁ}~

m -} s m— ¢
Weil p = .uil ist (s << 1), so kann man setzen: p = —u——{’—, wenn
; ; 1 #—n
¢ sich in den Grenzen W F1 und — %1 bewegt, also ein H&chter
. . n 4 ¢
Bruch ist. Dann wird ¢ = — und man hat
mﬁ:-l LH "
m-1 nfl__ et }
P u {1 + mn |’
u
woraus sich ergibt
v wl?
w! m-l a1 Vu e‘énTn{ ool loem) 1 __13_}
(m—DOingnr P 4 = V22mn 1+ ma ™t 2m 6n12+ 6n?

Nimmt man in der letzten Gleichung 1 negativ, so erhilt man einen
Ausdruck fiir den Term, der dem grissten um 1 Glieder vorausgeht, und
die Summe der beiden ist gleich

2 Ve st

€ 2mn
V2amn

Nun wird die Summe derjenigen Terme in der Entwicklung von (p 4+ @),
welche gelegen sind zwischen 2 Termen, die nach links und rechts aequi-
distant um 1 Terme vom grossten M abstehen (inclus. die Hussersten),
ausgedriickt durch das endliche Integral :
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viobei beriicksichtigt ist, dass man das grosste Glied, welches man fiir
1 = 0 bekommt, nur einmal zu zdhlen hat.

Wenn nun y, eine Funktion von 1 bezeichnet, so gilt die Formel
(nach Maclaurin und Euler):

1d
2 Vi —fﬁdl e s > dly . . - + Const.,

2 e
i—- e 2mn jst. und die
\/2 amn

1
erste Derivirte nach 1 von der Ordnung — wird und vernachlissigt

welche sich in unserm Falle, wo y;, =

1
werden kann, in erster N#dherung reduzirt auf:

2: 1

Und nimmt man rechts die bestimmten Integrale (deren obere Grenze
um eine Einheit hoher ist als bei der Summe links) so wird, wenn man
das Maximalglied fiir 1 = 0 mit Y bezeichnet:

A=I-1

El ¥, = f&’d) — 50 Y oder auch

A=0
k==l

A=0 ‘%
Substituirt man nun fiir y, und fiir Y die gegebenen Werthe in den
. 1V e
Ausdruck 1), so wird derselbe, wenn man t = ———
\/ mn
1 i
\/2’;11 ("tz\/u,
- ——
\/7{ \/2mnn
0

Weil nun m = u p 4 & ({ < 1), so hat man
m41 14-¢ ty/2mn
——‘u———p== u - u\/‘u

also driickt die Formel 2) die Wahrscheinlichkeit aus dafiir, dass die

Differenz zwischen dem Verhiiltniss der Zahl des Eintreffens des Ereig-

nisses E zu u«, der Gesammtzahl aller Versuche und der einfachen Wahr-
scheinlichkeit dieses Ereignisses E innerhalb der Grenzen

t\/?m n

- e
gelegen ist.
Bern. Mittheil. 1893. Nr, 1327.

setzt, gleich

+5
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Note 2. In Propos. XXI enterpolirt Stirling die Fakultdten-
reihe 1, 1, 1.2, 1.2.3, 1.2.3.4, .
und zwar speciell das zwischen 1 und 1 liegende Glied,

Wegen der stark vorhandenen Divergenz der Differenzen der Reihe
interpolirt er deren Logarithmenreihe, sucht zunichst den Logarithmenterm
zwischen 10! und 11! und findet*) dafiir 7.0 755259569 dem als Numerus
11899423. 08 entspricht. In Propos. XVI hat Stirling aber zugleich
gezeigt, dass, wenn die intermediiren Glieder der obigen Fakultéiten-

reihe mit a, b, ¢, d, . . . ... bezeichnet werden, die Relationen bestehen:
3 5 1

b = 5 8 = 5 b, d = IR Indem er nun das

17 3

Glied zwischen 10! und 11! successive durch 129 3 %9—, T 0}

dividirt, erh#lt er fiir das gesuchte intermediire Glied die Zahl
0.8862269251. Das Quadrat dieses Werthes ist gleich der Fliche des

1 g
Kreises vom Durchmesser 1, also wird das Glied selber gleich 5 \/ n

scin, Ebenso folgt hieraus, dass dasjenige intermediire Glied, das dem

ersten vorausgeht, gleich \/“7}_ sein wird.

Stirling findet also durch &usserst mithsame numerische Berechnung
folgende Reultate:

1—.(23) 21 19 17 ..... 22 1(3) 11899423.08

I(3) = 0.8862269251 = = \/
I(?) =/

Dieses letzte Resultat benutzt Stirling bei der ersten Losungsmethode
des Coeffizientenproblems in Propos. XXII, die im wesentlichen darin be-

*) Mit Hiilfe der Interpolationsformel (T = allgemeines Glied):
A+t az, 3B+4bz 22—1 5G4 ez (22—1)(2*—9)
T=—m =15 T 16.8.10 ©

Die Formel gilt allgemein (auch fiir die intermediiren Glieder) einer Reihe
mit 2 Mittelgliedern, von der Form

oooooo

....................... s A Ap Ay susimesms snrsmu sks sEb 5 a
wenn die 1. Differenzen . ....... Y SO W - VO
die 2. B mssswmmiews B Bisemmssinvisusininninsins snEsq
die 3. P it | | et
------ I'U.OA-."I‘DO!ODI'Oc‘ll-..lbvvillitlluiln-l"o.'oll',
wenn man ferner A = A+ A, B= B+ B, C=,04+0C ........ setzt

und mit z das Verhéltniss bezeichnet, welches die Entfernung des zu interpoliren-
den Gliedes T von der Mitte zum constanten Intervall der Variabelen hat. Stir-
ling gibt diese Formel in Propos, XX. deutet aber nur an, er sei mit Hiilfe der
Differenzenrechnung auf dieselbe gekommen.
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steht, mit Hiilfe der unten gegebenen Interpolationsformel das mte Glied
der Reihe

6

2 4
17 TAy ? B1_5"

8
C, - | ) I
zZu bestimmen.

Note 3. Die Inflexionspunkte der Wahrscheinlichkeitscurve be-
stimmt Moivre*) wie folgt: Wenn alle Glieder einer binomischen Ent-
wicklung (a + b)" in gleichen Abstinden auf eine gemeinsame Basis
aufgetragen werden und man durch die Endpunkte derselben eine Curve
legt, so hat diese 2 Inflexionspunkte, die auf verschiedenen Seiten des
Maximalgliedes gelegen sind. Um nun den Inflexionspunkt zu bestimmen,
sei H die zugehorige Ordinate, deren Stelle vom Anfang der Reihe aus

mit 1 bezeichnet werde, dann wird das niichste Glied gegen den Anfang
der Reihe hin gleich

e "0

n—I142 b
und das ndchste gegen das Ende der Reihe gleich
n—41 H. b
l a

‘Werden nun die Differenzen dieser Glieder in Bezug auf H gleichgesetzt,
8o ergibt sich aus

n—41 b 1 e

1 " a - n—I142 b
als Werth fiir 1
| — 2+8b-2bn v \/a’ + 6ab - 4nab | b*
2a + 2b

‘Wird im letzten Ausdruck die Wurzel mit r bezeichnet, so wird das
Intervall, um welches der Inflexionspunkt links resp. rechts vom grissten

—b b— 4
Gliede absteht, gleich -—a-%_{_———_g—;— resp. —%i-—_lz—g—'— sein, und wenn a = b

{wenn also die Wahrscheinlichkeitscurve symmetrisch zum grossten Terme
verliuft), ist jeder der beiden Inflexionspunkte vom gréssten und mittleren

Gliede um das Intervall —;—\/n—f—.? oder % V n (fir n = sehr gross)
abstehend.

Note 4. Laplace findet auf folgende Weise einen Ndherungs-
werth fir die Fakultdt**): Sei

*) Miscell. analytica lib. V, c. IV.

*%) V. Mémoires de 1'Académie royale des sciences pour l'année 1778: Mé-
moires sur les probabilités par P. S. Laplace art. XXIII. Dort gibt Laplace mittelst

1
des Euler’schen Integrals ‘fxp (1-x)2dx auch einen Niaherungswerth fiir den
Binomialcoeffizienten. o
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¥ = éz e, so wird

P X
x e dx = p!
0

Ql'—‘

y liefert sein Maximum, wenn x = p ist. Setzt man nun p =

X = ~(1~;~—|— 6, so wird
Logy — LogpPe®? = % Log (1 4-«®) — © und

1
e o Log 1+e®) — 6
ydx = pPe® | ¢ d6.

0

Substituiren wir noch
Log (1 +} «¢9) — «¢® = — «t?, so wird

@ 3Q3 w39t __ Ty

2 3 T4

2 3
Nun kann man finden:

— L (ht 4 WoaF B b et ),

«©

2_, h“:——— LY

. = 2
worin h = \/2, h! = 3 3’

und
46 = U h 4 ohtett - Shretr ... )
o

Dann wird

>0 ) _— 1
fy dx = pp-l—g e? f(h + 2h'ezt 4 3h'ct? - .. - ) e-tdt.

G e OO

Nun ist
o0 o0
1.8:5:muss 2n—1
f 20 e gt = on ¢ ) f etdt.
[ §

und mit Hiilfe von

OO 0O
f fe;‘(l—kn) dé dn = 7—; findet man, dass
o o
o0

f eVdt = %\/; Somit ergibt sich

0

o0
ftgne-tzdtzl.?)..’).....(211—-—1) _;_ -

211
(]

und
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o0
und wenn darnach die letzte Formel fiir f ydx integrirt wird, erhélt

man schliesslich®): .

o 1 . fﬂh“ (‘shl“i
pl= [yix =prtge®n+1.8%5 +1.83.65— + )

2
0

oder
1 -
p! =Ptz ?Ven (e )

Nach dem Vorgange von Lagrange gibt Laplace**) die Eulersche
Summationsformel durch den Beweis, dass

_ | a¥ -
y=|]edx—1 -+ Const.

wenn man in der Entwicklung der rechten Seite die Exponenten zugleich

auf die Ordnung der Derivation % bezieht und wenn h = 1 das Incre-

ment der unabhéngigen Variabeln x bedeutet. Es wird dann, wie man
zeigen kann:

E: 1 1 hB(1) h’B) ,,
.__h_fydx_gy_!_ 21 y_Ty i-.--—-’—COﬂSt-

%) Die Integrale von der Form fo?Q“"'l e¥ dt sind = 0.
Y oo
*#) V. Lacroix, Grand Traité, 2. édit. t. ILI, p. 98.

Berichtigungen.

Seite 126, 10. Zeile v. o. lies: S H 1 < I8 + 8
» 128, 14.° » v. 0. » 42787536.
» » 17 » v.o. »  44623980.

» » 13. » v.u » 25500 Versuchen.
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