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VI.
20. Zeigte sich im letzten Abschnitt die Unzulänglichkeit des

Moivre'schen Verfahrens für die Ueberführung einer nach endlichen
Incremenlen fortschreitenden Summe zum Integral, so geht hinwieder
aus den Abschnitten III und IV hervor, dass die Summationsformeln

von Moivre und Stirling zur angenäherten Bestimmung eines Werthes
für Log I\x 4- 1) mehr empirischer Natur waren und daher der

Allgemeingültigkeit ermangelten. Aber bis um die Mitte des vorigen
Jahrhunderts halte sich die Analysis schon bedeutend entwickelt, und

es musste sich in der Reihenlheorie selbst das Bedürfniss nach
allgemeinen Summationsformeln gellend machen.

Maclaurin*) war der erste, der auf Grund der von Newton begründeten

mechanischen Quadratur eine allgemeinere Summationsformel
für Reihen mit endlichen Differenzen aufstellte. Er betrachtet**) eine

parabolische Curve von der Gleichung:
y A 4- Bz 4- C;2 +- Dz3 +-

oder wenn a die Anfangsordinate bezeichnet,
zda z2d2a z3d3a

y ~ a "i dz ¦" 2 dz2 "+"
3 dz3 ""

Maclaurin setzt nun dz 1 und bezeichnet mit A, B, C, D,

die Flächen, deren gemeinsame Basis gleich dz und deren Ordinaten

respective y, dy, d2y, d3y sind und findet für

a i
da

i
d2

i
d8a

iA:=a + TT + -3T- + ~4T-+
dann wird

da d2a d3a
a —A ~~ Ti 3~i Fi

Werden nun auf analoge Weise da, d2a, d3a, d*a

bestimmt, wie z. B.
d2a d3a d4a

da B - "Ti Fi IT-
so ergibt sich schliesslich durch Substitution :

B_ _C_ _
E G _a ~~ 2 + 12 720

"*""
30240 +

oder allgemein :

*) Colin Maclaurin. geboren zu Killnodden in Schottland im Jahre 1698,
war Professor der Mathematik zu Aberdeen und Edinburgh. Er starb 1746.

**) Treatise of Fluxions (Edinburgh 1742) art. 830. a. fs.
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a A — KB 4- LC — MD 4- NE +
worin die Coeffizienten K, L, M, N wenn man k — 2! »

1

-q-j-j ni -7-7-> setzt, nach folgendem Gesetze

fortschreiten :

K k A
1 =kK - ' à
M kL — 1K 4- m =0
N kM — IL 4- mK — n

720

so dass also die Coeffizienten der Flächen D, F, H verschwinden.
Nun ist A gleich dem Integral von ydz, B dasjenige von dy dz, G

von d2y dz, alle Integrale innerhalb der Grenzen 0 und
dz 1 genommen. Daher ist B gleich der Differenz der
Ordinalen yt — y0 yx — a, und C ist gleich der Differenz der
ersten Ableitungen dieser Ordinaten nach z, E und G gleich der
Differenz der 3. resp. der 5, Ableitungen derselben Ordinaten,
Bezeichnet man diese Differenzen mit a, ß, y, ö, so wird a

oder:

Vn A - — 4- -L _ _JL -+ _J h" 2 ^ 12 720 r 30240 —
Setzt man nun eine Basis z0 zn in n aequidistante Theile zerlegt

voraus, von denen jeder Theil' gleich dz 1 sei, bezeichne S

die Summe der aequidistanten Ordinalen y04-yi 4-y2 4- yn-2 -f- y.i-1,
sei ferner nach gegebener Definition a yn — y0,

dyn dyo d3yn d3yo

ß==~iü dT'^=nï? sr-,...,«» ist

S A - 4 J? 1— 4- - 4-
2 T 12 720 ' 30240 —

Dies ist die Summationsformel von Maclaurin für den Fall eines
Incrementes gleich 1 ; für ein beliebiges Increment h erhält derselbe
analog die Formel:

_A_ a_ ßji_ _ y h3 ô h5 _— h 2 '~ 12 720 + 30240 +
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Erinnert man sich, dass A die Fläche der Curve von z0 bis zn

ist und denkt man an die Bedeutung von a, ß, y so ist leicht
die Identität der letztem Formel mit der folgenden, nämlich mit der
Euler'schen (für h 1)

±
worin B(i), B(2), B(s) die Bernoulli'schen Zahlen bedeuten,
festzustellen.

21. Euler gibt die Formel auf rein analytischem Wege in den

Inst. Calcul. Different, p. II c. V: «Investigatio summae serierum ex

Termino generali». Sei

y f(x), dann wird :

v f(x - 1) y - Al 4- -Az d_I_±
1 ; y dx r2!dx2 31 d y3

Nun ist, wenn man mil A den Werlh für x o bezeichnet,
2 y 2 Y — y •+ A, und subslituirt man diesen Werth in die

Gleichung:

v v - v v _ v d_y _1_ vdV _ JL_ v o-y ±" s " dx ~ 2! " dx2 3! ~ dx3

so kommt:
_di_ l vd_i 1 vi3y -dx 2! " dx2 ' 3! " dx3

v — A ^ -^- — ^Jj-4v^J -jr3 — Av O! " Av2 \ D -" rlv3 '

dy
Setzt man —f- z, so ergibt sich durch Subslilution :

dz

- z - fz d x 4- A vil _ _L ^ +-- z - j zdx r-2,-dx 3!-dx2 -

4- Constante.

Es ist aber ebenso :

vdJ 7. 1 vd2z_ J_ vd3z±
"dx ¦" 2! "dx2 3! "dx3
vd^z_dz J_ v(Pz 1_ ^dh -+
~dx2—dx"1- 2! "dx3 3! " dx4

"

Diese Werthe in die Gleichung für 2 z eingesetzt, ergibt die

neue Formel :

*. /.«.+„+,£+,£,+ •¦•¦.
Bern. Mittheil. 1893. Nr. 1325.
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und zur Bestimmung der Coeffizienten a, ß, y, ergeben sich

die Gleichungen :

« -\ °
" 1

a= 2

ß

7

-i+i-o
ß a 1

2^6 24
— 0

also:
y 0

è 7 ß «
2 ' 6 24 +

1

120
0.

1
d

Wo

Das Fortschreitungsgesetz der Coeffizienten findet Euler nach

einer längeren Untersuchung über die Bernoullischen Zahlen, die hier
1 "p> /¦ \

nicht ausgeführt werden soll, als folgendes : « —, ß —-4y=o,
R foi

d — ¦ e 0, und demnach wird seine Summenformel :

*-/z dx 4- gZ
I

Bfi)
1

2!
dz

dx
B(2) d3 z B(3)

4! dx3
'

6!
d5z
dxö

—
B(0 d 7 z _(_

8! dx7 + C

Aus dieser von Euler gegebenen Form erhält man sofort durch
Subtraktion von z und durch Annahme von Grenzen, wenn man z —
f(\) setzt, die folgende:

[B(.)A)|.+ +
22. Unter den zahlreichen Anwendungen, die Euler von dieser Formel

macht, findet sich (im nämlichen Kapitel. Art. 157) auch diejenige zur

Ermittlung eines Näherungswerthes für Log I\x-\-l)*). Ist z — Log x,
so wird :

xv I F
1

r Bd) B(2) +2 Log x x Log x — x 4- - Log x 4- - - '

3 4 x s
4-C.

und für x 1, folgt

C= 1 -
B(i)_ B(8)

1.2 ~^ 3.4
Bis)

5.6 +

*) DÌl' folgende Darstellung gibt übrigens schon Maclaurin mittelst seiner
Summationsformel, v. Treatise of fluxions, art. 842.
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Nun ist nach der Formel von Wallis :

rc __ 2.2.4.4.6.6 (2x— 2)2x

2 ~~
1 3 .3.5.5.7 (2x—l)(2x—1)

somit

Log n — Log 2 2 Log 2 4- 2 Log 4 4- 2 Log 6 4- 4- Log 2x

— 2 Log 1 — 2 Log 3 — 2 Log 5

Weil aber für lim x oo :

2Logx C + (x4-|)Logx-x

*f Log x C 4- (2x +1) Log 2 x - 2 x
X l ^

2* Log2x C 4- (x 4-|) Log x 4- x Log 2 — x,

so folgt aus den beiden letzten Gleichungen :

Log 1 -fLog 3+ Log 5 4-... Log(2x-1)= x Log x 4- (x + i)Log2—x,

also für lim x oo :

Log ^ 2 C 4- (2x4-1) Log x 4- 2 x Log 2 — Log2 — Log x — 2 x
di

— 2 x Log x - (2 x 4~ 1) Log 2 4- 2 x

Log ^ 2 C — 2 Log 2, C \ Log 2 n.
di dt

Es ergibt sich somit für
x=x

x^ooS LügX
2

Lüg 27t + (X + k Lüg X _X' üder

x=l

lim x =oo x! \2tv + x%+~2e'%.

23. Die Summalionsformel von Euler und Maclaurin ist aber nicht

nur geeignet für die Darstellung eines Näherungswerthes für Log T(x 4-1),
sondern auch zweckmässig zur Summation der binomischen Tenne in
derjenigen Form, in der sie nach Anwendung der sog. Slirling'schen
Formel bei der Darstellung des Bernoulli'schen Theorems erscheinen,
und in der That ist seil Laplace, der jene Formel von Euler und

Maclaurin zuerst für den bezeichneten Zweck verwendete*), kein
anderes Summationsverfahren gefunden worden. Jene Formel ersetzt
somit in hinreichender Weise die mühsamen empirischen Methoden

Moivres zur Ermittlung eines Näherungswerthes für den Bernoulli-
schen Summenausrtruck.

*) S. Note 1 im Anhang.
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Der geniale Laplace hat zum ersten Male mittelst seiner
fonctions génératrices» eine noch allgemeinere Methode angegeben,
um einen Näherungswerth für Log 27x 4-1) zu erhalten, nach welcher
auch die Constante ohne Benutzung der Wallisischen Formel direct
aus der Entwicklung hervorgehl*); er hat auch, nach dem Yorgange-

von Lagrange, die Euler-Maclaurin'sche Summalionsformel auf anderem

Wege gefunden. Aber Laplace räumt seinen «fonctions génératrices»
gewiss einen zu grossen Einfluss auf die Darstellung des Bernoulli-
schen Theorems ein, wenn er schreibt**): «Le calcul des fondions
génératrices, appliqué à cet objet, non seulement démontre avec facilité
ce théorème, mais de plus il donne la probabilité que le rapport des

événemens observés ne s'écarte que dans certaines limites du vrai
rapport de leurs possibilités respectives» ; denn alle diese Consequenzen
sind in genügend allgemeiner Weise schon mit Hülfe der Formel
von Euler und Maclaurin zu ziehen. Schon vor Laplace, um die Mitte
des vorigen Jahrhunderts, wäre es möglich gewesen, dem Bernoulli-
schen Theorem diejenige analytische Form zu geben, die es heute
besitzt. Der Grund, warum es nicht geschehen, liegt darin, dass sich

von Moivre bis auf Laplace kein Mathematiker in productiver Weise
auf diesem Gebiete bethäligte.

* **
24. Die Ergebnisse des historischen Theiles dieser Arbeit, der

die Entwicklungsgeschichte des Bernoulli'schen Summenausdruckes zum
Laplace'schen Integralausdruck geben sollte, fassen wir folgendermassen
zusammen :

1. Jakob Bernoulli I. hat nicht versucht, einen Näherungswerth

für
m ;<p 4-1

2« m n
— P q
ml n!

m ftp — 1

zu geben. Weil er das nach ihm benannte Theorem nur als Hülfs-
satz seiner Theorie der Wahrscheinlichkeit a posteriori betrachtete,
genügte ihm der ganz allgemein gegebene Nachweis, dass mit der

Vermehrung der Beobachtungen auch die Wahrscheinlichkeit immer grösser
wird, dass die Erfahrungswahrscheinlichkeit eines Ereignisses gleich
seiner absoluten wird.

*) Vgl. iNote 4 im Anhang.
**) Essai philosophique sur les probabilités p. 74. Theorie anal, des probab..

introduction p. XLVIII.
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2. Abraham de Moivre gab im Prinzip die Laplace'sehe Analyse
des Bernoulli'schen Theorems. Er fand nicht nur Näherungswerthe für
den Binomialcoeffizienten und für r(x), sondern gab auch das Laplace-
sche Integral als Summe des Bernoulli'schen Ausdrucks in der Form von

2(P fq) f ' J±lx,.I e 2pq," dx.
\/2pq,«7rt/

o

3. James Stirling hat, auf Anregung Moirre's, den cyklometri-
schen Charakter der den Näherungswerth für F(x) und das Laplace-
sche Integral begleitenden Constanten erkannt.

4. Aber erst der Summationsformel, welche von Maclaurin, dann

von Euler gefunden worden ist, verdankt das Bernoulli'sehe Theorem

<lie allgemeine Entwicklung jener exakten analytischen Form, die ihm von

Laplace gegeben wurde.

VII.
25. Der jetzt folgende Abschnitt gibl eine Verallgemeinerung der

Serret'schen Ableitung der Stirling'sehen Formel.
Die ersten Darsteller dieser Formel benutzten zur Bestimmung

•der Conslanten die Formel von Wallis. Nun hat J. A. Serret in einem
Mémoire sur l'évaluation approchée du produit 1.2.3 x, lorsque

x est un très grand nombre, et sur la formule de Stirling*) auf

elegante Weise gezeigt, dass die Formel von Wallis zur Ableitung
derjenigen von Stirling vollkommen hinreichend ist. Er sagt darüber
«inleitend: « Or, cette simple formule de Wallis suffit, à elle

«seule, pour établir complètement celle de Stirling et la déduction est
•«si facile que la deuxième formule peut être regardée avec raison comme

«une transformée de la première.» Serret's Darstellung ist die folgende :

Die Formel von Wallis ist:
n 2.2.4.4.6.6 (2 x - 2) (2 x - 2) 2x
2 1.3.3.5.5.7 2 (x - 3) (2 x - 1) (2 x - 1)

und sie nimmt die sehr einfache Form**) an :

(fürx=oo)

*) Comptes rendus hebdomadaires des séances de l'Académie des sciences,
année 1860, t. I. p. 1662.

**) Die Transformation ergibt zunächst :

_
2 [(x—l)!]4^*'). 2x _ J. (x !)4 24x

S(x)- n [(2x—1) !]3
'"-

7TX L(2x) !J2
'

dann nach einfacher Umformung
[f(x)]>SM r x! T r (ax!) T

' - l x* ]/2Üi J l (2x)2*V44x J f(2x)


	

