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VI.

20. Zeigte sich im letzten Abschnitt die Unzulinglichkeit des
Moivre’schen Verfahrens fiir die Ueberfilhrung einer nach endlichen
Incrementen forlschreitenden Summe zum Integral, so geht hinwieder
aus den Abschnitten III und IV hervor, dass die Summationsformeln
von Moivre und Stirling zur angendherten Bestimmung eines Werthes
fir Log I'x + 1) mehr empirischer Natur waren und daher der
Allgemeingiiltigkeit ermangelten. Aber bis um die Mitte des vorigen
Jahrhunderts hatte sich die Analysis schon bedeutend entwickelt, und
es musste sich in der Reihentheorie selbst das Bediirfniss nach allge-
meinen Summationsformeln geltend machen.

Maclaurin*) war der erste, der auf Grund der von Newton begriin-
deten mechanischen Quadratur eine allgemeinere Summationsformel
fir Reihen mit endlichen Differenzen aufstellte. Er betrachtet®*) eine
parabolische Curve von der Gleichung :

y=A-+4+Bz 4 C® 4 Dz® 4 ......... ;
oder wenn a die Anfangsordinate bezeichnet,
zda z%d%a z3d3a

y=a+ — Tt g tara T

Maclaurin setzt nun dz = 1 und bezeichnet mit A, B, C, D, .. ..
die Flidchen, deren gemeinsame Basis gleich dz und deren Ordinaten
respeclive y, dy, d%y, d® .. ... sind und findet fir

. da d? d3a
A:"""W“f“ 31 + 'y + ........

dann  wird

da d%a d3a
21 81 T 4!
Werden nun auf analoge Weise da, d%a, d3a, d*a
bestimmt, wie z. B.

da  d%a  da
2! 3! 4
so ergibt sich schliesslich durch Substitution:
B G E & e
1=A— 5 T3 ~ 7 " 30000
oder allgemein :

--------

*) Colin Maclaurin, geboren zu Killnodden in Schottland im Jahre 1698,
war Professor der Mathematik zu Aberdeen und Edinburgh. Er starb 1746.
%%) Treatise of Fluxions (Edinburgh 1742) art. 830. a. fs.
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2a=—=A— KB4 LC—MD}-NEZF .........

worin die Coeffizienten K, L, M, N ....... , wenn man k = —21—!—,
1 1

123—1’ m == yoee e e setzt, nach folgendem Gesetze fort-

schreiten :

=
|
-~
|

=
|
|
>
of
B
I

so dass also die Coeffizienten der Flichen D, F, H. ... verschwinden.
Nun ist A gleich dem Integral von ydz, B dasjenige von dy dz, C
von d% dz, ...., alle Inlegrale innerhalb der Grenzen o und
dz = 1 genommen. Daher ist B gleich der Differenz der Ordi-
naten y, — y, =y, — a, und G ist gleich der Differenz der
ersten Ableitungen dieser Ordinaten nach z, E und G gleich der Dif-
ferenz der 3. resp. der 5, Ableitungen derselben Ordinaten, . ... ..
Bezeichnet man diese Differenzen mit e, 8, , d, .. ... , so wird a

oder:
A« By 4,0
Yo = A 5 t 13 — 790 T 30200 &£ -

Selzt man nun eine Basis z, z, in n aequidistante Theile zer-

legt voraus, von denen jeder Theil' gleich dz — 1 sei, bezeichne S
die Summe der aequidistanten Ordinaten yo—}-yi-}y2— . - - Yoz + ¥na,
sei ferner nach gegebener Definition ¢ = y, — Yo,
dy dy d?y d3y
n 0 “n 0 .
= — — — PR Y tl
g dz az 7 dz? dz® » 5018
0
S—A—% 4 B v 4 9 L ..
2 + 12 720 + 30240 +

Dies ist die Summationsformel von Maclaurin fiir den Fall eines
Incrementes gleich 1; fiir ein beliebiges Increment h erhilt derselbe
analog die Formel:

A o g h 7 h® dh®
h - 2 12 720 + 30240

........
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Erinnert man sich, dass A die Fliche der Curve von z, bis z,
ist und denkt man an die Bedeutung von «, 8, ¥ ... ., so ist leicht
die Identitit der ]etztern Formel mit der f()lgenden, nimlich mit der
Euler’schen (fir h =

Z:n-1 B() dy n B(z.) d3y
wﬁdz—-—[ﬁ]-k[zf w5 ]

worin B(1), B(z), B(s) . ... die Ber noulh schen Lahlen bedeuten, fest-
zustellen.

21. Euler gibt die Formel auf rein analylischem Wege in den
Inst. Calcul. Different. p. Il ¢. V: «Investigalio summae serierum ex
Termino generali». Sei
= [(x), dann wird :

B dy d?y ddy
=M =D =y =3¢ Tgra ~3rag

Nun ist, wenn man mil A den Werlh fir x = o bezeichnet,

Sv=ZXy —y -+ A, und subslituirt man. diesen Werth in die
Gleichung:

dy 1 _d% 1 i
x = N —_— 5 Y B A ’
=V ¥ o Tor Tae TR ae
so kommt:

dx 2! Ta T3 Tt
Selzt man —%3;— = 2, so ergibt sich durch Substitution:
1 _dz 1 d* 4 '
Nz = T RN 1 LR N il o
= f‘d"Fm dx — 3!~ ax

Es ist aber ebenso:
dz 1 d3z 1 d%z
e L~ Gk B .t WA IR
=t Tae T 3T
N L U S W
“dx? dx ' 2! dx 3! T dxt

-----------------------------

Diese Werthe in die Gleichung fir = z eingesetzt, ergibt die
neue Formel:

Bern. Mittheil. 1893. Nr. 1325.



und zur Bestimmung der Coeifizienten o, 3, , . . . . . ergeben sich
die Gleichungen :
a — % =0 ) o = %
{3#%4“%:01 }also:ﬁ:: 112
Vv % -+ % o3 & y = 0
i
R
........................ ) « 5 BAEHELS

Das Fortschreitungsgeselz der Coeffizienlen findet Euler nach
einer lingeren Untersuchung tber die Bernoullischen Zahlen, die hier

nicht ausgefiihrt werden soll, als folgendes: « = %, B = %(1—) y=0,
B( ): ¢ = 0, .. und demnach wird seine Summenformel :

B(1 dz B(z) d®z B(s) d5z

-Z"de\+ T T 'ux3+ 6v'dx5
Bls) d'z 4 Const
— S 7 " T —+ i

Aus dieser von Kuler gegebenen Form erhilt man sofort durch
Subtraktion von z und durch Annahme von Grenzen, wenn man z ==
¢(x) selzl, die folgende:

xxl X B B\2 PULECRY b
S o M_fw)dx_ —[90\)] T [ (:)P(x)] |_>z_!_@]
0 i 0

B(s) ') |F—
+|: 8 25&! ]0+ ......

22. Unter den zahlreichen Anwendungen. die Euler von dieser Formel
macht, findet sich (im néimlichen Kapitel, Art. 157) auch diejenige zur
Ermittlung eines Niherungswerthes fiir Log Ix-}-1)*). Ist z = Log X,
so wird :

XX B(1) B(2) 4 C
' . = .
= Log X =x Logx —x -}~ - L{)g - T8 x5 i< o
und fir x =1, folglt

[ ==

#) Die folgende Darstellung gibt iibrigens sechon Maclaurin mittelst seiner
Summationsformel, v. Treatise of fluxions, art. 842.
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Nun ist nach der Formel von Wallis :
7 2.2.4.4.6.6....... (2x—22x

271.3.3.5.5.7..... @x—1)(2x—1) YU oot

somnit

log w —Log2—=21lLog2 4+ 2Log4 -+ 2Log6-+4....4Log2x
—2Logl —2Log3 —2Logb.......

Weil aber fiir lim X = oo :

X=X

YLogx=C+4+Nx -+ %) Log x—x

X=

¥ Log\ = C—( 2x———) Log2x — 2x

.}3 Log2x = C—-(x —f—é} Log x -} x Log2 —x,

=0 folgt aus den beiden letzten Gleichungen :
Log 14 Log8-4-Logb-...Log@x—1=x Logx 4 (x + —)Log2

also fir lim X = oo :
L()g%:::QC—}— (2x-41) Logx+ 2x Log 2—Log2 —Logx —2x
— 2 xLogx— (2x-41)Log2 | 2x
Log%:2c-—2l,og2, C=%L0g2ry.

Es ergibt sich somit far

lim \ _ . 1 —
x—oo‘.i Liogx = Lug 27r —}—(\—{— ) Log x —x, oder

lim x =co X! =\/2x e

23. Die Summationsformel von Euler und Maclaurin ist aber nicht
nur geeignet fiir die Darstellung eines Niherungswerthes fiir Log I“(,\H— 1),
sondern auch zweckmissig zur Summation der binomischen Terme in
derjenigen Form, in der sie nach Anwendung der sog. Stirling’schen
Formel bei der Darstellung des Bernoulli’schen Theorems erscheinen,
und in der That ist seit Laplace, der jene Formel von Euler und
Maclaurin zuerst fir den bezeichneten Zweck verwendete*), kein an-
deres Summationsverfahren gefunden worden. Jene Formel ersetzt
somit in linreichender Weise die miihsamen empirischen Methoden
Moivre’'s zur Ermittlung eines Niherungswerthes fiir den Bernoulli-
schen Summenausdruck.

*) 5. Note 1 im Anhang.
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Der geniale Laplace hat zum ersten Male mittelst seiner
«fonctions génératrices» eine noch allgemeinere Methode angegeben,
um einen Niherungswerth fiir Log I'(x 4+ 1) zu erhalten, nach welcher
auch die Constante ohnc Benutzung der Wallisischen Formel direct
aus der Entwicklung hervorgeht*); er hat auch, nach dem Vorgange
von Lagrange, die Euler-Maclaurin’sche Summationsformel auf anderem
Wege gefunden., Aber Laplace riumt seinen «fonctions génératrices»
gewiss einen zu grossen Einfluss auf die Darstellung des Bernoulli-
schen Theorems ein, wenn er schreibt**): «Le calcul des fonclions
génératrices, appliqué a cet objet, non seulement démontre avec facilité
ce théoréme, mais de plus il donne la probabilité que le rapport des
événemens observés ne s'écarte que dans ceriaines limites du vrai
rapport de leurs possibilités respectives»; denn alle diese Consequenzen
sind in geniigend allgemeiner Weise schon mit Hiilfe der Formel
von Euler und Maclaurin zu ziehen. Schon vor Laplace, um die Mitte
des vorigen Jahrhunderts, wire es moglich gewesen, dem Bernoulli-
schen Theorem diejenige analylische Form zu geben, die es heute
besitzt. Der Grund, warum es nicht geschehen, liegt darin, dass sich
von Moivre bis auf Laplace kein Mathemsatiker in productiver Weise
auf diesem Gebiete bethiligte.

* . *

24. Die Ergebnisse des historischen Theiles dieser Arbeit, der
die Entwicklungsgeschichte des Bernoulli’schen Summenausdruckes zum
Laplace’schen Integralausdruck geben sollte, fassen wir folgendermassen
zusammen : '

1. Jakob Bernouwlli I. hat nicht versucht, einen Niherungs-
werth [iir

m = up -1
Ny 4! _mn
2 m! n!p q
m == up —1

zu geben. Weil er das nach ihm benannte Theorem nur als Hiilfs-
satz seiner Theorie der Wahrscheinlichkeit a posterior: betrachtete, ge-
niigte thm der ganz allgemein gegebene Nachweis, dass mit der Ver-
mehrung der Beobachlungen auch die Wahrscheinlichkeit immer grisser
wird, dass die Erfahrungswahrscheinlichkeit eines Ereignisses gleich
seiner absoluten wird.

*) Vgl. Note 4 im Anhang.

*%) Essai philosophique sur les probabhilités p. 74. Théorte anal. des probab.,
introduction p. XLVIIIL
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2. Abraham de Moivre gab im Prinzip die Laplace’sche Analyse
des Bernoulli'schen Theorems. Er fand nicht nur Niherungswerthe fiir
den Binomialcoeffizienten und fiir I'(x), sondern gab auch das Laplace-
sche Integral als Swumme des Bernoulli’schen Ausdrucks in der Form von

1

\/2pqgm: .
0

3. James Stirling hat, auf Anreqgung Moivre’s. den cyklometri-
schen Charakter der den Niherungswerth fir I'(x) und das Laplace-
sche Integral begleitenden Constanten erkannt.

4. Aber erst der Summationsformel, welche von Maclaurin, dann
von Euler gefunden worden ist, verdankt das Bernoulli'sche Theorem
die allgemeine Entwickliung jener exakten analytischen Form, die ihm von
Laplace gegeben wurde,

VII.

25. Der jetzt folgende Abschnitt gibl eine Verallgemeinerung der
Serret’schen Ableitung der Stirlingschen Formel.

Die ersten Darsteller dieser Formel benutzten zur Bestimmung
der Constanten die Formel von Wallis. Nun hat J. A. Serret in einem
- Mémoire sur I’évaluation approchée du produit 1.2 .3 ..... X, lors-
que X est un trés grand nombre, et sur la formule de Stirling*) auf
elegante Weise gezeigt, dass die Formel von Wallis zur Ableitung
derjenigen von Stirling vollkommen hinreichend ist. Er sagt dariber
einleitend: « ..... Or, cetite simple formule de Wallis suffit, a elle
«seule, pour établir completement celle de Stirling et la déduction est
«si facile que la denxieme formule peut étre regardée avec raison comme
«une transformée de la premiére.» Serret’s Darstellung ist die folgende :

Die Formel von Wallis ist:
7w  2.2.4.4.6.6....2x—2)(2x—2)2x
2 1.3.3.5.5.7....2(x—38)(2x—1)2x—
und sie nimmt die sehr einfache Form**) an:

1)$ (fll[‘ X :OO)

*) Comptes rendus hebdomadaires des séances de I’Académie des sciences,
année 1860, t. 1. p. 1662.
*¥) Die Transformation ergibt zunéchst:
2 [(x—D1*2&Y 2x 1 (x)f2x
S= L T x—D 1 ax (@)
dann nach einfacher Umformung

. oxt ey P e
S = [xx V2nx ] ' [ (2x)2 Vanx ] T e(29)




	

