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Log (1.2 3 m) ~- Log27T + (m + |) Log (m 4- ~)

_ (m 4- i-)- Jg.-««« + <? - 1} B^ +
1.2.2(m +4 3. 4.23(m4--43

di di

welche eine von der Moivre'schen etwas abweichende Form hat. Aus
beiden Formeln aber ergibt sich für lim m oo, wenn man zur
Exponentialfunktion übergeht:

lim m mm e"m \J2nm
m oo

welche Formel auch die Stirling sehe genannt wird.
Es ist unstreitig das Verdienst des mit mathematischem Scharfsinn

ausserordentlich begabten Stirling*), die Constante \J2rc
bestimmt zu haben. Berücksichtigt man aber, dass Moivre zuerst das

Coeffizientenproblem gestellt und gelöst hat und dass derselbe auch
die andere Aufgabe, die sich aus jenem ergeben musste, die Summe
der Logarithmen der natürlichen Zahlen zu suchen, unabhängig und
fast gleichzeitig mit Stirling ebenfalls gelöst hat. vergisst man nicht,
dass Moivre diese Formel zuerst in der Wahrscheinlichkeitsrechnung,
für welche ihr grosse Bedeutung zukommt, praktisch verwendet hat,
so muss man sagen, dass dessen Name mit der Formel in ebenso

verdienstvollem Sinne verbunden ist, wie derjenige Stirlings.
Die Ursprungsgeschichte der Stirling'schen Formel aber ist ganz

besonders geeignet, zu zeigen, wie befruchtend eine angewandte
mathematische Disziplin auf die reine Mathematik wirken kann.

18. Nachdem hiemit die Untersuchungen Moivres und Stirlings
über das Coeffizientenproblem und über die Summe von Log r(x)
sowohl unter sich wie auch in ihrem gegenseitigen Verhältniss gewürdigt

sind, kehren wir wieder zu Moivres Abhandlung über das Ber-
noullische Theorem in dessen «Doctrine of chances» zurück.

*) James Stirling, geb. 1696 in St. Ninians, Grafschaft Stirling, Schottland,
gest. 5. Dez. 1770 in Leadhiks, studirte in Oxford Mathematik, bewarb sich als

Agent einer schottischen Bergbaugesellschaft erfolglos um eine Professur. Er wurde
schon 1729 Mitglied der Boyal Society. Sein Hauptwerk, Methodus differentialis,
erlebte 3 Auflagen (1730, 1753, 1764), war aber schon 1718 unvollständig in den
Philos. Transact, erschienen.
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Als zweiten analytischen Fundamentalsatz gibt Moivre folgenden*) :

Der Logarithmus des Verhältnisses, welches der Coeffizient des mittleren

Termes einer binomischen Entwicklung von sehr hoher Potenz n
in Bezug auf den Coeffizienten irgend eines um das Intervall l von
ihm entfernten Termes hat, wird in erster Näherung durch folgende
Grösse ausgedrückt:

(m + 1 - ^Log(m 4-1 -1) 4- (m - 1 -f -L^Log(m4-l-l)

— 2mLogm 4- Log —^— >

m

vorausgesetzt, dass m — gesetzt wird.

Sein Lösungsverfahren für dieses Resultat ist ein analoges wie
beim Coeffizientenproblem, geht also aus von logarithmischen Reihen

(v. Misceli, analyt. p. 128 ff.) und es braucht daher hier nicht wiederholt

zu werden.
Moivre zieht dann weiter aus dem angeführten Satze die

folgenden hier skizzirten Schlüsse in Form von Zusätzen.

Zusatz 1. Wenn m —- eine unendliche Grösse be-
di

deutet, so ist der Logarithmus des Verhältnisses, ivelches ein Term

(immer in der Entwicklung (1 4- 1)") der vom mittleren Term um
2I2

das Intervall l entfernt ist, zum letzteren hat, gleich —

212
Zusatz 2. Die Zahl, deren hyperbolischer Logarithmus >

ist gleich der Reihe

__ J?!! _i_
41*

_
816

i
1618 32110

~n~ ¦" ~W 6n3
~t~ 24n* 120n5 ± • • • • ininl-

woraus folgt**), dass die Summe der Terme vom grössten an bis und
mit jenem, der um l Glieder entfernt ist, gleich ist:

__2_f 213 415 817 1619 _ Ì

\/2n^} 1.3n+2.5n2 6 7ns + 24 9n* + - " " m
j

Setzt man nun I s yn, alsdann wird die Summe:

2 [ 2s3 4s5 8s7 16s9

72T S-X3- + T^--6?T + ^4T9-+----ininf'
*) Loc. cit. p. 236.

**) Moivre gibt keine weitere Begründung dieser Folgerung.
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und für s —-> entsteht die Reihe:
di

_[ 1 1 1 1 1

V/2rr| 2 3.4 '2.5.8 6 7 16 ^ 24. 9. 32 120.11.64"

Durch Addition von 7 oder 8 Gliedern dieser ziemlich gut con-
vergirenden Reihe erhält man nach einfacher logarithmischer Rechnung
als Verhältniss der Summe der 1 Terme zwischen dem mittleren und

dem um 1 enlfernten in der Entwicklung von (1 4- 1) zur Summe

aller Terme die Zahl 0,341344.

Zusatz 3. Hat ein Ereigniss dieselbe einfache und constante
Wahrscheinlichkeit auf Eintreffen wie auf Nichteinireffen, so wird, wie
aus den Prinzipien der Wahrscheinlichkeitsrechnung hervorgeht, die

Wahrscheinlichkeil, dass das Ereigniss bei n Versuchen höchstens

-g- 4- 1 und wenigstens — — 1 Mal eintreffe, ausgedrückt durch

—, wenn S die Summe aller Terme in der Entwicklung von (14-1)
2n

genommen zwischen den Gliedern, die um 1 Terme links und rechts

vom mittleren abstehen (die äussersten inbegriffen), bedeutet. Die
Wahrscheinlichkeit also, dass ein Ereigniss unter gleichen Verhältnissen in
einer solchen Zahl von Malen eintrifft, die zwischen
n _i_ 1

T — T
die im Zusatz 2 gefunden wurde, durch 0,682688 und die
Wahrscheinlichkeit des Gegentheils, dass die Eintreffenszahl ausserhalb diese

Grenzen fällt, isl somit 0,317312.

Zusatz 4. Weil es aber unausführbar ist, eine unendliche
Zahl von Experimenten anzustellen, so können wir den vorhergehenden

Schluss auch auf grosse endliche Zahlen anwenden (folgt ein

Beispiel für n 3600).

Zusatz 5. Wir können daher als fundamentale Maxime

hinstellen : Das Verhältniss, welches in der Entwicklung des Binoms von

hoher Potenz die Summe der Glieder, welche vom mittleren Term aus

nach beiden Seiten um ein Intervall von —\ n Gliedern liegen, zur
di

Summe der ganzen Entwicklung hat, wird ausgedrückt durch die Zahl
28

0,682688 oder nahezu -jj—; hiebei ist aber nicht nöthig, dass

>~ — \Jn liegt, ist daher gegeben durch das Doppelte der Zahl,
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n oo sei; sogar für n 100 liefert die Regel noch ein

erträgliches Resultat, wie ich durch Versuche bestätigt finde. Noch

ist zu bemerken, dass —yn, im Verhältniss bezogen auf n, um so
di

kleiner wird, je mehr n wächst; wächst also die Zahl der Beobachtungen,

so werden die Grenzen im Verhältniss zu n immer enger
während die Wahrscheinlichkeit dieselbe bleibt.

Zusatz 6. Wenn 1 \/n gesetzt wird, so konvergirt die

Reihe in Coli. 2 weniger gut als für 1 -^-\a, und für eine
dt

erträgliche Annäherung sind daher viel mehr Terme zu addiren. In
diesem Falle gebrauche ich die mechanische Quadratur, die von Sir
Isaac Newton erfunden, von Mr. Cotes*), Mr. James Stirling und mir,
vielleicht noch von anderen weiter ausgebildet worden ist. Sie besteht

in der Bestimmung der Fläche einer Curve, wenn man von ihr eine

gewisse Anzahl von Ordinalen A, B, C. D, kennt, die sich

in gleichen Intervallen folgen, wobei auch gilt, dass, je kürzer die

Intervalle genommen werden, desto genauer das Resultat wird. Im

vorliegenden Falle beschränke ich mich auf 4 Ordinalen, die mit A,

B, C, D bezeichnet sein mögen. Wenn nun der Abstand der ersten

von der letzten gleich 1 ist, so wird die Fläche gleich

———~--———— -1 sein**). Setzen wir nun die Distanzen
8

1 ,_ 2 ._ 3 ._ 4 ._ 5 ._
gleich 0, gVn> 6Vn> 6 Vn> 6vn» 6Vn> und Vn> verwenden für unsern

3 ._ 4 ._ 5 ._ 6 ._
Fall die 4 lelzlen: Q\n, ~Q\n, ~ßXa, 6 Vn> nenmen alsdann die

Quadrate dieser Ausdrücke, verdoppeln jeden, dividiren durch n und

geben jedem das Zeichen minus, so haben wir die Grössen :

—, —, t—-, —2, welche die hyperbolischen Logarithmen der
2 9 18

*) Cotes Boger (10. VII. 1682 — 5. VI. 1716), Professor der Astronomie
und Physik in Cambridge, war der Verfasser der Harmonia mensurarum
(Cambridge 1722), welche den bekannten Cotcsischen Lehrsatz enthält.

**) Moivre leitet diese Formel (Misceli, analyt. lib. VII c. II: «De Me-

thodo differentiarum») aus der Ncwton'schen Interpolationsformel ab, nämlich aus:

»n=-+GV»+0 ^» + CK-
worin un das allgemeine Glied, u das Anfangsglied und J u, zt* u, /1* u
die Anfangsglieder der ersten, zweiten, dritten Differenzreihen sind.

Bern. Mittheil. 1893. Nr. 1324.
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Zahlen 0,60653, 0,41111, 0,24935, 0,13534 sind, die unsere 4

Ordinalen darstellen. Weil nun 1 -^\Jn ist> so ergibt sich nach

der Formel für unsere Fläche 0,170203^. Das Doppelle hievon
2

multiplizirt mit ;-— ergibt die Zahl 0,27160, und diese zu
\ iï\7C

0,682688 (Zusatz 7) addirt gibt 0,95428, welches die Wahrscheinlichkeit

ist, dass bei n Versuchen das Ereigniss weder mehr als

-z—f- y n, noch weniger als — yn eintritt.
c 2

Zusatz 7. Auf demselben Wege kann man finden, wie gross
die Wahrscheinlichkeit sei, dass die Zahl des Eintreffens zwischen

andern Grenzen liege, z. B. zwischen -— + -^-yn. Hiefür würde

sich die Zahl 0,99874 finden lassen.

Bei allen Beispielen spielt \/n die Rolle eines Modulus für die

Schätzung der Grenzen und der Wahrscheinlichkeiten.
Zusatz 8. Ist die einfache und constante Wahrscheinlichkeit

eines Ereignisses nicht gleich der entgegengesetzten, bildet die Zahl

der günstigen zu den ungünstigen Fällen das Verhältniss - -, so lässt

sich die Wahrscheinlichkeit dafür, dass das Ereigniss in n Versuchen
(Zìi-

eine solche Zahl von Malen eintreffe, die zwischen
| h +- / liegt,

ausdrücken durch wo S die Summe aller Glieder in der

binomischen Entwicklung von (a 4- b) bedeutet, die links und rechts
im Intervall von I Gliedern (die äussersten inbegriffen) vom grössten
Gliede abstehen. Das Verhältniss, welches bei einer sehr hohen

Potenz des Binoms (a 4- b) das grösste Glied der Entwicklung zur
Summe aller übrigen Glieder hat, wird ausgedrückt durch den Bruch

_JL+JL_*).
yabn7F

Zusatz 9. Der Logarithmus des Verhältnisses, welches ein
Term in der binomischen Entwicklung, der um das Intervall von
1 Termen vom grössten absteht, zu diesem hat, ist gleich

a 4- b

2abn
l2.

*) Meines Wissens gibt Moivre nirgends eine analytische Herleitung weder
von dieser Formel, noch jener im Zusatz 9. Die Lösung ergibt sich jedoch
analog wie jene bei Voraussetzung gleicher entgegengesetzter Wahrscheinlichkeiten.
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Zusatz 10. Ist die Wahrscheinlichkeit eines Ereignisses auf
Eintreffen verschieden von derjenigen auf Nichleintreffen, so werden

die Probleme, die Summation der Terme in der Entwicklung von (a 4- b)n

betreffend, mit derselben Leichtigkeit und Methode aufgelöst wie
diejenigen, wo die entgegengesetzten Wahrscheinlichkeiten dieselben sind.

Aus dem Gesagten folgt, dass der Zufall die Ereignisse, die
natürlichen Institutionen gemäss eintreten, sehr wenig in ihrem Eintreffen
stört. Wird z. B. ein rundes Metallstück, dessen Seiten fein polirt
sind und verschiedene Farben, z. B. schwarz und weiss zeigen,
aufgeworfen, so wird mit der Vermehrung der Würfe das Verhältniss
der erhaltenen Schwarz und Weiss sich immer mehr der Gleichheit
nähern und es ist schon bei 3600 Versuchen die Wahrscheinlichkeit
dafür, dass die Erscheinungszahl der einen oder andern Farbe zwischen

2
1770 und 1830 liege annähernd — ; in diesem Falle macht also die

6 1
Abweichung von der perfekten Gleichheit nur —— der gesammten

Versuchszahl aus und mit derselben Wahrscheinlichkeit wäre die Abweichung

bei 10,000 Versuchen nur -zj^r aller Erscheinungen. Mit der Er-

Weiterung der Grenzen aber würde die Wahrscheinlichkeit für das

Eintreffen einer der Farben in einer Anzahl von Malen, die in diesen
Grenzen liegt, immer wachsen und schliesslich zur Gewissheit werden.
Diese Ausdehnung der Grenzen aber, und das ist nicht zu vergessen,
ist bei Vermehrung der Beobachtungen im Vergleich zum Wachsthum

der Versuchszahl nicht so beträchtlich, diese wächst direct, jene mit
der Quadratwurzel.

Schliesslich musste also bei unendlich vielen Versuchen mit
Gewissheit eine Gleichheit unter der Zahl der Erscheinungen von Schwarz

und Weiss eintreten.
Die nämliche Betrachtung liesse sich auch durchführen für den

Fall, in welchem die entgegengesetzten Wahrscheinlichkeiten
ungleiche sind.

Abraham de Moivre schliesst seine werthvolle Abhandlung mit einer
Ueberlegung, die an Jakob Bernoulli's kühne Schlusskonsequenzen
erinnert : «And thus in all cases it will be found, that allho Chance

«produces Irregularities, still the Odds will be infinitely great, that in

«process of Time, those Irregularities will bear no proportion to the

«recurrency of that Order which naturally results from original Design. »*)

*) Doctrine of chances, 2. ed. p. 243.
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19. J. Todhunter hält Moivre neben Laplace für den grössten
Analytiker in der Wahrscheinlichkeitsrechnung, wenn er sagt*): «It
will not be doubted that the théorie of Probability owns more to him
than to any other mathematician, with the sole exception of Laplace. »

Pflichtet man diesem Urtheil ohne Einschränkung bei, so muss
insbesondere noch hervorgehoben werden, dass kein Mathematiker um
die analytische Darstellung des Bernoulli'schen Theorems grössere
Verdienste hat als Moivre. Nicht von vorneherein von einer so hohen

philosophischen Warte ausschauend wie Jakob Bernoulli und sich demnach

nicht weiter über die Wahrscheinlichkeit a posteriori verbreitend,
schenkte Moivre der mathematischen Analyse des Problems sein
Hauptinteresse, und erfolgreich hat er die heutigen Methoden und Resultate

der analytischen Darstellung desselben im Prinzip gegeben.
Es gelang Moivre nicht nur, mit Stirlings Hülfe einen leicht

zu berechnenden Ausdruck für die Fakultät zu finden, sondern er hat
auch schon als Summe von Termen einer binomischen Entwicklung
innerhalb gewisser Grenzen den Laplace'schen Integralausdruck gegeben.

Denn :

Bezeichnet M das Mittelglied der Entwicklung von (1 4- l)n,
Mi das um ein Intervall von 1 Gliedern entfernte Glied, so wird nach

Moivre (v. Zusatz 2)**) :

M, Jl i
2I2 412 816

1) -vr =e n= 1 r--H-r + ^~5- + in inf.
M n ' 2n2 ' 6n3 —

Wie nun Moivre die Summe der Terme zwischen M und Mi

gefunden, sagt er nirgends ; es lässt sich aber annehmen, dass er die
Ausdrücke der linken Seite der folgenden Gleichung in Exponential-
reihen entwickelt und summirt hat :

Mi Mu M! M -2la _«k!E
-\ ——\- 4- - e n 4- e n

M ^ M ^ M r M ~
i 2<12)S

I 1 I 04- e ir"4- en 4- e,
woraus sich ergibt
Mi 4- Mi_i 4- 4- Mi -f- M M. [Summe der Exponential^]

Moivre erhält dann, indem er noch durch die Summe der ganzen
Entwicklung dividirt den Ausdruck :

2 j _
213 415 8fJ_ 1619

_
\/gn£rj 1 3n+ 2 5n2 6 7n8 + 24.9n* :+ ' * " '

*) Todhunter, History of the Prob. p. 193.

**) Bei den folgenden Hinweisen auf Zusätze sind immer diejenigen in
Moivre's Abhandlung gemeint.
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Man wird sich nun leicht überzeugen, dass der Ausdruck in
Parenthese weniger jene [Summe der Exponentialgrössen] darstellt,
sondern genau das unbestimmte Integral der Reihe in Gleichung 1), d. h.,
Moivre nimmt für das Verhältniss der Summe der Terme von M bis
Mi (inclus, die äussersten) zur Summe aller Terme das bestimmte

Integral, welches man gewöhnlich als Laplace'sches bezeichnet

\J2nn
o

/' n dx.

Um die Wahrscheinlichkeit zu erhalten, dass bei n Versuchen
die Zahl der günstigen Beobachlungen sich innerhalb der Grenzen

-— + 1 liege, verdoppelt Moivre den Werth jenes Integrals (Zusatz 3)
di

und erhält somit allgemein für die bezeichnete Wahrscheinlichkeit :
•»1 2x2

/i
üx»

e~dx,
\l2ürct

oder im besondern Fall, wenn 1 — \J n gesetzt wird

W 0,682688.
Für den Fall, in welchem die entgegengesetzten einfachen

Wahrscheinlichkeiten ungleich sind, würde Moivre nach Zusatz 9 für W

erhalten :

2(a4-b) f --j^W -AAlA je" aabu" dx.'
y/2abn

0

Dieser Deduction haften zwei Ungenauigkeiten an. Zunächst wird
das mittlere grösste Glied zweimal gezählt. Dieser Fehler compensirt
sich zwar bei gleichen einfachen und entgegengesetzten Wahrscheinlichkeilen,

wenn die Versuchszahl n als ungerade Zahl vorausgesetzt
wird, in welchem Falle dann 2 Mittelglieder vorhanden sind.

Im Weiteren benützt Moivre offenbar die Summationsformel :

x=l M
z <p CO <p 0) dx-

x=0 J
Wie aber im nächsten Abschnitt gezeigt werden soll, hat Mac-

laurin zuerst gefunden und Euler es auf andere Weise bestätigt, dass

für eine stetige, nach endlichen Incrementen fortschreitende Funktion
in erster Näherung die Formel gilt (wenn die Variable sehr gross wird) :
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x=l /»1+1 jf -îl+l
2 <p(x)= I ip (x) dx — -Ux)

0 0

Darnach würde, bei gleichen entgegengesetzten, constanten Wahr-

scheinlichkeiten, wenn man die Moivre'sche Funktion e n die

Stetigkeit besitzt und für x o ein Maximum liefert, stall <p (x)
setzt und unter der Voraussetzung, dass die Versuchszahl n eine
gerade ist,

2 r- .4+1 2x= 8(1+1)"-,
W ~r=\ 2 e" n dx — e" n

\/2n^L J J
o

und im andern Falle, wenn die Versuchszahl ungerade.

q p /,1+1 2x» 2(1+1)« T
W -r^ 2 I e"ndx-e" n 4-1.

0

Ungeachtet dieser Ungenauigkeiten, die sich wohl begreifen
lassen, bleibt Moivre der Schöpfer des Laplace'schen Integrals und bat

überhaupt das Verdienst, die Infinitesimalrechnung zuerst in der
Wahrscheinlichkeitstheorie fruchttragend verwerlhet zu haben (z. B. auch

beim Coeffizientenproblem). Ferner hat Moivre zum ersten Mal
eine Wahrscheinlichkeitscurve angenommen, einzelne Flächenlheile
derselben durch mechanische Quadratur bestimmt (Zusatz 6) und deren

Wendepunkte angegeben*). Interessant ist auch, dass Moivre im Falle

von gleichen entgegengesetzten einfachen Wahrscheinlichkeiten die

Wendepunktsordinate resp. den Term für 1 —- y7IT (Zusatz 2) als

Fehlergrenze wählt. Diese spielt heute bekanntlich in der
Fehlertheorie**) eine wichtige Rolle, weil sich aus ihr ein charakteristischer
Fehler, welcher der Wurzel aus dem mittleren Fehlerquadrat entspricht,
ergibt.

Was die Analysis aus den Moivre'schen Wahrscheinlichkeilsstudien
für sich gewonnen, braucht nach alledem nicht mehr weiter ausgeführt
zu werden ; dagegen möchten wir schliesslich noch der logischen
Klarheit und Uebersichtlichkeit in Moivres analytischen Entwicklungen,
die man bei Stirling oft vermisst und worin Moivre vielleicht der
Lehrer der Meister in dieser Hinsicht — Euler und Lagrange —
geworden ist, lobend gedenken.

*) Vergi. Note 3 im Anhang.
**) S. Hagen, Grundzüge der Wahrscheinlichkeitsrechnung, p. 73 ff.


	

