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J. Eggenberger.

Beiträge zur Darstellung des Bernoulli'schen Theorems,

der Gammafunktion und des Laplace'schen Integrals.

Eingereicht im August 1893.

Vorbemerkungen.
Die vorliegende Arbeit wurde auf Anregung meines verehrten

Lehrers, des Herin Prof. Dr. J. H. Graf, unternommen.
Sie zerlegt sich in zwei Theile, von denen der erste (die

Abschnitte I—VI) historischer, der zweite (die Abschnitte VII und VIII)
analytischer Natur ist. Abschnitt I weist einleitend mit einigen Belegen
auf den fructificirenden Einfluss der Entwickelung der
Wahrscheinlichkeitsrechnung auf diejenige der Analysis hin und präcisirt den

Zweck der historischen Untersuchung des ersten Theils. In Abschnitt
II wird sodann die philosophische und analytische Begründung des Gesetzes

der grossen Zahlen nach Bernoulli's Ars conjeclandi gegeben. Die

Abschnitte III, IV und V sind den mit Erfolg gekrönten Bemühungen
Moivres, dem Bernoulli'schen Theorem einen bestimmten mathematischen

Ausdruck zu verleihen, gewidmet, stellen das Summations
verfahren jenes Mathematikers zur Bestimmung eines Näherungswerthes
für den Binomialcoefficienten dar, beleuchten die Verdienste Moivres
und Stirlings um die Darstellung eines Näherungswerthes für Log r (x)
und geben die Moivre'sche Darstellung des Laplace'schen Integrals.
Abschnitt VI zeigt die Auffindung einer Summationsformel durch Mac-

Laurin und Euler, die in hinreichend allgemeiner Weise gestattet,
dem Bernoulli'schen Theorem jenes analylische Gewand zu geben,
dessen Schöpfer Laplace ist, da mittelst jener Formel Näherungs-
werthe sowohl für Log r(\) wie auch für die Summe von Tennen einer
binomischen Entwickelung von sehr hoher Potenz innerhalb gewisser
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Grenzen gefunden werden können. Den Schluss dieses Abschnittes

bildet eine Zusammenstellung der gewonnenen historischen Resultate.

Der analytische Theil enthält zunächst (in Abschnitt VII) eine

Untersuchung des Verfassers über eine Verallgemeinerung der von
J. A. Serret gegebenen, eleganten Entwicklung eines Näherungswerthes
für r(\ -J- 1) aus der Formel von Wallis, zeigt dann durch eine weitere

Untersuchung (in Abschnitt YIII), dass der immer noch gebräuchliche
Laplace'sche Ausdruck für das Bernoulli'sche Theorem, nämlich

2 r-f e"r 2 r-f'— | e dl -4- —. gleich isl — f e dl.
™j \/2^«pq kJ

O 0

Diese Vereinfachung des Laplace'schen Ausdrucks dürfte für
die Wahrscheinlichkeitsrechnung und die Versicherungslechnik von
Werth sein.

In den Anhang wurden neben dem Quellenverzeichniss einige
Anmerkungen, die den Text sonst allzu störend unterbrochen hätten,
als Noten verwiesen.

I.
1. Seit Laplace und Gauss ist die Wahrscheinlichkeitsrechnung

für die exakte wissenschaftliche Forschung ein unentbehrliches
Hilfsmittel geworden und auch bei Fragen der Sozialpolitik und der Kultur
im weiteren Sinne ist sie berufen, immer werthvollere Dienste zu

leisten. Neben diesem ihrem Antheil an der Entwicklung der
beobachtenden Wissenschaften ist aber auch der Gewinn nicht unbedeutend,
den diese angewandte mathemalische Disciplin der reinen Mathematik

gebracht hat. Denn ähnlich wie andere angewandte mathematische

Wissenschaften, die Astronomie und die mathematische Physik, auf die

Erfindung und Entwicklung der Infinitesimalrechnung und auf die
Theorie der partiellen Differentialgleichungen im höchsten Grad

anregend gewirkt haben, so ist auch die Wahrscheinlichkeilsrechnung
nicht ohne Einfluss auf die Entwicklung der Analysis des

Endlichen und Unendlichen gewesen. Ein kurzer Blick in deren
Geschichte soll uns davon überzeugen.

Die Wahrscheinlichkeitsrechnung nahm ihren Ursprung im 17.
Jahrhundert, in der Zeit der mathematischen Entdeckungen. Einige
Würfelspielprobleme, die ihm vom Marquis de Mere im Jahre 1654

vorgelegt wurden, veranlassten den geistvollen französischen
Philosophen und Mathematiker Blaise Pascal (1623—1662) mit der Unter-
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Stützung seines Zeilgenossen Pierre Fermât (1608—1665) genauer
mit dem neuen Calcul sich zu beschäftigen, und die ersten Prinzipien
desselben feststellend, wurden Pascal und Fermât die Begründer der
Wahrscheinlichkeitsrechnung, von ihnen «géométrie du hasard» auch
«alese geometria» genannt. Weil aber die Hilfsmittel der Analysis damals

für die Lösung der Spielprobleme keine genügenden waren, erweiterte
Pascal die Combinationslehre*) und zeigte deren Zusammenhang mit
den figurirlen Zahlen**).

Der grosse Basler Mathematiker Jakob Bernoulli I. (1654—1705}
gab dann in seinem epochemachenden WTerke über Wahrscheinlichkeit,

Ars conjectandi***) (Muthmassungskunst) eine beinahe vollständige
Theorie der Combinatorik, der figurirten Zahlen i) und fand auch die
nach ihm benannten Zahlen f), die bekanntlich in der Reihen- und

Interpolationstheorie von Wichtigkeit sind.
Pierre Raimond de Montmort (1678—1719) lieferte im Dienste

der Wahrscheinlichkeilsrechnung ebenfalls Beiträge zur Analysis der
Reihen ff)> namentlich in Bezug auf die Summation von arithmetischen
Reihen höherer Ordnung.

Ein anderer, sehr bedeutender französischer Mathematiker, der
nach Aufhebung des Ediktes von Nantes in London ein Asyl
gefunden hatte, Abraham de Moivre, entdeckte bei seinen Studien über
die Wahrscheinlichkeitsrechnung die recnrrenten Reihen, deren Theorie
er in dem für die Analyste bedeutsamen Buche: Miscellanea analytica
de seriebus et quadraturis (London 1730) vorlrugfff)- Moivres weitere
sehr werthvolle Beiträge zur Analysis werden im Verlaufe meiner
historischen Untersuchung noch deutlicher hervortreten.

Den Forschungen der beiden grossen französischen Analysten,.
Joseph Louis Lagrange (1736—1813) und Pierre Simon Laplace (1749

*) Die Anfange der Combinatorik waren aus einer Schrift Guldins vom
Jahre 1622 bekannt.

**) In einem nachgelassenen Werke Pascals : Traité du triangle arithmétique.
Paris 1665.

***) Basel 1713. Herausgegeben und mit einem Vorwort versehen von
.\ikolaus Bernoulli, dem Neffen Jakob Bernoulli's,

•f) Ars conjectandi. Lib. II.

ft) Montmort, Essai d'analyse sur le jeu de hasard. Paris 1708.

tft) Lib. If. Cap. II. De nalura serierum recurrentium.
Lib. IV. Cap. II. De sumrais serierum recurrentium.
Auch Moivres Doctrine of chances enthält in der 2. Ausgabe (London 1738>

einen Abriss der Theorie von «the summation of the recurring series», p. 193 ff.
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bis 1827), auf dem Gebiete der Wahrscheinlichkeit verdankt die

höhere Analysis (die sich allerdings inzwischen durch die Arbeiten
von Newton, Leibnitz, Moivre, Stirling, Taylor, Mac-Laurin, der
Bernoulli, Euler u. a. schon bedeutend entwickelt hatte) ebenfalls neue
und wichtige Kapitel.

Schon 1759 veröffentlichte*) der 23jährige Professor an der
Artillerieschule in Turin, Lagrange, eine für die Differenzenrechnung
epochemachende Abhandlung über «L'intégration d'une équation différentielle

à difference finie qui contient la théorie des suites récurrentes»,
worin die Theorie der recurrenten Reihen verallgemeinert und deren

Bedeutung für die Wahrscheinlichkeitsrechnung hervorgehoben wird.
Derjenige, welcher die Bedeutung der Lagrange'schen Arbeit am

klarsten erkannte, war der ebenfalls noch junge Professor an der
Pariser Militärakademie, Laplace. Schon 1774 schrieb er sein
Mémoire sur les suites recurro-recurrentes et sur leurs usages dans la
théorie des hasards.**) In der Vorrede zu einem andern Mémoire***)
sur la probabilité konnte er schreiben: «J'ose me flatter que l'analyse

dont je me servis pour cet object pourra mériter l'attention des

géomètres». Aus den vielen und langjährigen Arbeiten von Laplace
über die Wahrscheinlichkeitsrechnung ging schliesslich sein grosses
Werk über diesen Gegenstand, die Theorie analytique des probabilités,-^)

hervor, welches nicht nur für die Wahrscheinlichkeitsrechnung grundlegend,

sondern auch für die Integralrechnung, die Funktionen- und

Interpolationstheorie sehr werthvoll ist.
Die vorstehenden Notizen mögen dargethan haben, wie der

Wahrscheinlichkeitsrechnung durch die Auffindung analytischer
Hilfsmittel nicht nur die Pfade ihrer eigenen Entwicklung geebnet wurden,

sondern wie sie dadurch ihrerseits auch einen wesentlichen
fördernden Einfluss auf die Analysis ausgeübt hat.

Als Frucht der Wahrscheinlichkeitsrechnung darf auch das La

place'sche Integral, welches in der mathematischen Physik eine grosse
Rolle spielt, /»oc

/ e-t8 dt \/:

*) in Miscellanea Taurinensia, tome I. pag. 33—42.

**) In den «Mémoires, présentés par divers savants, t. VI. p. 353—371.

***) Histoire de l'Académie des sciences pour l'année 1778. p. 227 ff. Auf
den Inhalt dieser Abhandlung soll später noch zurückgekommen werden.

f) Das klassische, Napoleon I. gewidmete Buch, erschien zum ersten
Mal anno 1812.

Bern. Mittheil. 1893. Nr. 1319.
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zeichnet werden. Man erhält dieses Integral aus dem Bernoulli'schen
Theorem.

Sind p und q die einfachen und konstanten Wahrscheinlichkeiten
zweier entgegengesetzter Ereignisse E und E', so ist die Wahrscheinlichkeit

dafür, dass in einer sehr grossen Anzahl von (i m -f- n

von Versuchen das Ereigniss E in einer Anzahl von m Malen, wobei

m zwischen /j. p + 1 liegt, eintreffe (vorausgesetzt, dass für ein

fi p-maliges Eintreffen des Ereignisses E das Maximum von
Wahrscheinlichkeit vorhanden), ausgedrückt durch

m fi p -J- 1

W XJ ^t! ™»^j m n p 1

m =;u p — I

und zwar kann diese Wahrscheinlichkeit mit wachsendem fx beliebig
nahe der Einheit gebracht werden.

Der Summenausdruck kann nun (vermittelst mehrmaliger
Näherungen) in folgenden Integralausdruck übergeführt*) werden :

w A f>_t. e-r
J edt+ \/2^qr7

Es ist dies ebenfalls die Wahrscheinlichkeit dafür, dass m innerhalb

der Grenzen /.t p + 1 oder hier nun innerhalb fi p + y v/ 2^<pq

liege, wo

I_
7 \/ 2fipq,

eine Funktion von 1, /.i und p ist.
Den Summenausdruck für W hat Jakob Bernoulli I. schon zu

Anfang des vorigen Jahrhunderts gegeben, der Integralausdruck aber in

obiger Form wurde erst beinahe ein Jahrhundert später von Laplace

aufgestellt.

Die Festlegung jener Summe durch Jakob Bernoulli, deren Ent-
wickelungsprocess bis zum Integralausdruck und die dabei aufgetretenen

analytischen Methoden und Resultate historisch klar zu legen, ist die

Aufgabe, die ich im. ersten Theil meiner Arbeit zu lösen versucht
habe. Dabei waren mir die vortrefflichen Notizen von Laplace**) und

*) Vrgl. Note 1 im Anhang.
**) Laplace. Essai philosophique sur les probabilités, veröffentlicht als

Einleitung in der Théorie analyt. des probabilités und in einer Separatausgabe.
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Todhunter*) über die Geschichte der analytischen Darstellung des

Bernoulli'schen Theorems wegleitend.
Im Essai philosophique sur les probabilités**) sagt Laplace im

Abschnitt: les lois de la probabilité qui résultent de la multiplication
indéfinie des événemens : «Ce théorème indiqué par le bon sens
«était difficile à démontrer par l'analyse. Aussi l'illustre géomètre
«Jacques Bernoulli qui s'en est occupé le premier, atlachait-il une

«grande importance à la démonstration qu'il en a donnée». Weiter
im Abschnitt: Notice historique sur le calcul de probabilité, wo La-

place von Bernoulli's Ars conjectandi spricht, finden wir:***)
«Cet ouvrage est encore remarquable par la justesse et la finesse

«des vues, par l'emploi de la formule du binôme dans ce genre de ques-
«tions, et par la démonstration de ce théorème, savoir, qu'en multipliant
«indéfiniment les observations et les expériences ; le rapport des événe-

«mens de diverses natures, approche de celui de leurs possibilités respec-
«tives, dans des limites dont l'intervalle se reserre de plus en plus, en

«mesure qu'ils se multiplient et devient moindre qu'aucune quantité assig-
«nable. Ce théorème est très utile pour reconnaître par les observations,
«les lois et les causes des phénomènes. Bernoulli attachait avec raison,
«une grande importance à sa démonstration qu'il dit avoir méditée pen-
«dant vingt années

«Moivre a repris dans son ouvrage le théorème de Jacques Bernoulli
«sur la probabilité des résultats déterminés par un grand nombre d'ob-
«servations. Il ne se contente pas de faire voir comme Bernoulli, que
«le rapport des événemens qui doivent arriver, approche sans cesse de

«celui de leurs possibilités respectives; il donne de plus une expression
«élégante et simple de la probabilité que la différence de ces deux rap-
«ports est contenue dans des limites données. Pour cela, il détermine
«le rapport du plus grand terme du développement d'une puissance très
«élevée du binôme, à la somme de tous ses termes; et le logarithme hy-
«perbolique de l'excès de ce terme, sur les termes qui en sont très voi-
«sins. Le plus grand terme étant alors le produit d'un nombre considé-
«rable de facteurs; son calcul numérique devient impraticable. Pour
«l'obtenir par une approximation convergente, Moivre fait usage d'un
¦^théorème de Stirling sur le terme moyen du binôme élevé à une haute

«puissance, théorème remarquable, surtout en ce qu'il introduit la racine

*) J. Todhunter, A history of the mathematical theory of probability from
the time of Pascal to that of Laplace. London 1865.

**) Separatausgabe (3. éd. Paris 1816) p. 74; Théorie analyt. des

probabilités, introduction p. XLVII.
***) L. c. p. 211 ; p. CXLVI.
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«carrée du rapport de la circonférence au rayon, dans une expression
«qui semble devoir être étrangère à cette transcendante. Aussi Moivre
«fut-il singulièrement frappé de ce résultat que Stirling avait déduit de

«l'expression de la circonférence en produits infinis, expression à laquelle
«Wallis était parvenu par une singulière analyse qui contient le germe
«de la théorie si curieuse et si utile des intégrales définies.»

Den Laplace'schen Bemerkungen zur Geschichte des Bernoulli'schen
Theorems lasse ich noch die Uebersicht folgen, die J. Todhunter*)
über die nämliche Materie gibt: «With respect to the history of the

«result obtained in art. 994 (Laplace'sche Darstellung des Bernoullf-
« seilen Theorems), we have to. remark that James Bernoulli began
«the investigation; then Stirling and De Moivre carried it on by the
«aid of the theorem known by Stirling's name; and lastly, the theo-

«rem known by Euler's name gave the mode of expressing the finite
«summation by means of an integral. But it will be seen that prac-
«tically we use only the first term of the series given in Euler's
«theorem, in fact no more than amounts to evaluating an integral by
«a rough approximate quadrature. Thus the result given by Laplace

«was wilhin the power of mathématiciens as soon as Stirling's Theo-

«rem had been published.»
Das vortreffliche Werk Todhunters über die Geschichte der

Wahrscheinlichkeitsrechnung gibt die Notizen über das Bernoulli'sche Theorein

zerstreut bei der Besprechung der Arbeiten von Bernoulli, Moivre
und Laplace über die Wahrscheinlichkeitsrechnung. Dagegen konnte
in seiner Geschichte der Wahrscheinlichkeitsrechnung auf die
Darstellung der analytischen Hilfsmittel desselben gar nicht eingegangen
werden. Eine zusammenhängende, eingehende Darlegung dieser
Verhältnisse, besonders wenn sie wesentlich neue Resultate zu Tage zu

fördern vermag, schien mir daher ebenso interessant wie werthvoll
zu sein.

II.
3. In einem Begleitschreiben zu seiner Schrift: De rationiis in

ludo aleae**), schrieb der gelehrte Huygens an seinen Lehrer der Mathematik

Franziskus von Schooten u. a. Folgendes :

*) J. Todhunter, History of the mathematical theory of probability, art. 995

pag. 553.

**) Diese Arbeit erschien als Anhang zu Schootens Exercitationes mathe-

maticae, 1657. Huygens hat darin zum ersten Mal die Prinzipien der
Wahrscheinlichkeitslehre systematisch und analytisch formulirt, so dass Jacob Bernoulli diese

Huygen'sche Schrift dann in sein erstes Buch der Ars conjectandi aufgenommen
und commentirt hat.
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«Quanquam, si quis penitus ea quae tradimus examinare caeperit,
«non dubito quin continuò reperturus sit, rem non, ut videtur, ludicram
«agi, sed pulchrae subtilissimaeque contemplationis fundamenta explicari.
«Et problemata quidem, quae in hoc genere proponuntur, nihilo minus

«profundae indaginis visum iri confido, quam quae Diophanti libris conti-
«nentur, voluptatis autem aliquanto plus habitura, cum non, sicut illa,
«in nuda numerorum consideratione terminentur.»

Bekundet damit Huygens eine hohe Meinung von der Wichtigkeit

des neuen Calculs und verheisst er demselben eine grosse
Zukunft, so gelang es ihm aber doch noch nicht, sich über das Niveau

der üblichen Anwendung der Wahrscheinlichkeitstheorie, die sich bis

zu jener Zeit auf das Gebiet der Spielprobleme beschränkt halte, zu

erheben.

Wenige Jahre später machte zwar der berühmte Grosspensionär

von Holland, Jean de Witt, der treffliche Kenner und Förderer der
Cartesianischen Geometrie, die ersten nützlichen Anwendungen auf die

Rentenrechnung*) ; aber es blieb dem genialen Kopfe Jakob Bernoulli's
I. vorbehalten, der neuen mathematischen Disciplin ihr weites Arbeitsfeld

zu eröffnen.
In einer Zeit grosser wissenschaftlicher Entdeckungen hatte sich

Bernoulli's schöpferische Kraft entfallet. Längst schon hatten Baco

von Verulam, Giordano Bruno u. a. m. der wissenschaftlichen Forschung

den Weg der Beobachtung gewiesen und eine Reihe von grossen
Forschern hatte bereits die neue Methode der Induction durch
glänzende Erfolge gerechtfertigt. Kopernikus halte die richtige Vorstellung
von unserem Planetensystem gegeben, Kepler seine Gesetze der

Planetenbewegung berechnet, Galilei die Fallgeselze erkannt und Newton
¦der letzteren Gültigkeit im Universum als Gravitationsgeselz nachgewiesen.

Vieles, was früher als zufällig erscheinen mochte, war durch

Causalgesetze erklärt und die Domäne des Zufalls und des Aberglaubens
hatte schon bedeutend an Terrain verloren. Und dennoch waren es

kühne Fragen, die Bernoulli's weiter Blick in den Thalsachen zu lesen
vermochte. Gibt es in den gesammlen Erscheinungen überhaupt einen
Zufall? Erscheint uns vielleicht das anscheinend Zufälligste nur desshalb

zufällig, weil wir seine Ursachen nicht zu ergründen vermögen?
Ist es möglich, durch fortgesetzte Beobachtungen auch das Zufälligste

*) Jean de Witt, De vardye van de lifrenten na proporlie van de losrenten,
ou la valeur des rentes viagères en raison des rentes libres et remboursables.
La Haye 1671.
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als von Gesetzen abhängig zu erkennen? 1st es überhaupt möglich,
durch Beobachtungen ein genügend sicheres Resultat zu erhalten1?

Und in welcher Beziehung steht die Zahl der Beobachtungen zur
Genauigkeit des Resultates?

4. Jakob Bernoulli I. hat seine diesbezüglichen Gedanken in dem
hochinteressanten vierten Buche seiner Ars conjectandi*), betitelt:
Ad Usum et applicationem praecedenlis Doctrinae in Civilibus, Muralibus
et Oeconomicis, niedergelegt. Das nach ihm benannte Theorem**)
findet sich dort im 4. und 5. Kapitel. Die Hauptgedanken sollen
ihrer grundlegenden Bedeutung wegen hier ihre Stelle finden. Cap.

IV. betitelt: De duplici Modo investigandi numéros casuum. Qui sen-
tiendum de ilio, qui instituitur per expérimenta. Problema singulare
earn in rem propositum, hat zusammengefasst folgenden Inhalt:

Es wurde im letzten Cap. (Ill) gezeigt, wie die Beweiskraft von
Argumenten für gewisse Dinge nach der Zahl von günstigen und ungünstigen
Fällen durch Rechnung zu schätzen ist. Hier aber liegt die Schwierigkeit;
denn nur für die wenigsten Erscheinungen ist die Zahl der günstigen oder
ungünstigen Fälle und das Gewicht jedes Einzelnen bekannt. Beim Würfelspiel

ist es allerdings nicht schwer, die Zahl der günstigen Fälle für das

Eintreffen eines bestimmten Ereignisses zu berechnen und ebenso leicht
ist es, die Fälle für das Ziehen eines weissen oder schwarzen Steinchens
aus einer Urne, wenn das Verhältniss der verschiedenartigen Steinchen
gegeben ist, zu bestimmen. Wer könnte aber jemals die Anzahl von
Krankheiten, die den menschlichen Körper an allen Theilen und zu jedem
Alter befallen und den Tod herbeiführen können, bestimmen und herausfinden,

um wie viel leichter diese oder jene Krankheit den Tod herbeiführen

können, so dass dann eine Vermuthung über das Leben eines
Menschen oder dasjenige zukünftiger Generationen ausgesprochen werden
könnte? Oder wer könnte die zahllosen Fälle von Veränderungen
ergründen, denen die Luft tagtäglich ausgesetzt ist, um heute schon Ver-
muthungen über deren Zustand nach einem Monat oder nach einem Jahr
aufzustellen? Oder wer kennt die Natur des menschlichen Geistes und
den wunderbaren Bau unseres Körpers so genau, dass er bei einem Spiele,
das grösstentheils von der Schnelligkeit und dem Verstände des Spielers
abhängt, die Fälle vorauszusagen sich unterstünde, in welchen dieser oder
jener Spieler gewinnt oder verliert?

*) Von der Liagre in seinem Calcul des probabilités sagt: «Cette ouvrage
contient en germe toute la philosophie de la probabilité».

**) «The memorable theorem in the fourth part, which justly bears its
authors name, will ensure him a permanent place in the history of the Theory of
Probability.» J. Todhunter, History of the Theory of Probability p. 77.
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Wegen der Beschränktheit unseres Geistes wäre es also ein eitles
Bemühen die verschiedenen Fälle a priori auffinden zu wollen ; doch steht

uns hier der Weg der Beobachtung offen: wir können die Wahrscheinlichkeit

auch a posteriori, durch Beobachtung finden. Voraussetzung ist

dabei, dass für bestimmte Ereignisse eine gewisse Konstanz der Ursachen

angenommen werde. Denn, wenn z. B. einmal 300 Menschen untersucht
worden sind vom Alter und der Konstitution des Titius und man
gefunden hätte, dass 200 davon vor Verfluss von 10 Jahren gestorben sind,
so kann man den Schluss ziehen, dass es 2 Mal mehr Fälle gibt dafür,
dass auch Titius innerhalb von 10 Jahren sterben, als dass er diesen

Zeitraum überleben werde. Ebenso wenn einer mehrere Jahre das Wetter
beobachtet, wenn er oft bei 2 Spielenden gestanden und deren Spiel
verfolgt hat, so kann er mit ziemlicher Sicherheit die Wahrscheinlichkeit
bestimmen dafür, dass ein diesbezügliches Ereigniss unter denselben
Umständen eintritt oder nicht eintritt.

Und diese empirische Art der Bestimmung der Zahl von Fällen durch

Beobachtungen ist weder neu noch ungewohnt und wird in der Praxis
von jedermann angewendet. Auch ist jedem klar, class um einen richtigen

Schluss ziehen zu können, nur wenige Beobachtungen nicht genügen,
sondern dass eine grosse Anzahl derselben noting sind. Obgleich diess

nun aber aus der Natur der Sache von jedermann eingesehen wird, so

liegt doch der auf wissenschaftlichen Prinzipien gegründete Beweis durchaus

nicht auf der Oberfläche. Es muss vielmehr untersucht werden, was
vielleicht noch niemand eingefallen ist, ob durch Vermehrung der Beobachtungen

auch die Wahrscheinlichkeit vermehrt werde dafür, dass die Zahl
der günstigen zu den ungünstigen Beobachtungen ein wahres Verhältniss
erreiche und dass diese Wahrscheinlichkeit zuletzt jeden beliebigen Grad
von Gewissheit erreichen könne, oder ob das Problem vielmehr, um so zu

sagen, seine Asymptoten hat, d. h. ob ein bestimmter Grad der Gewissheit

gegeben sei, der auch bei beliebiger Vermehrung der Beobachtungen
niemals überschritten werden könne, z. B. l/2 oder Vs oder s/i der Gewissheit.

Seien z. B. in einer Urne ohne dein Wissen 3000 weisse und 2000
schwarze Steinchen verborgen und du nehmest, um das Verhältniss
derselben zu bestimmen, ein Steinchen nach dem andern heraus (so jedoch,
dass du das gezogene, bevor du ein neues ziehst, wieder hineinlegst), und
du beobachtest nun, wie oft ein weisses, wie oft ein schwarzes herauskommt.

Die Frage ist nun, wie oft du dies thun könnest, damit es 10-,

100-, 1000-fach wahrscheinlicher (d. h. am Ende intellectuell gewiss)
werde, dass die Zahl der Male, in denen du ein weisses, zu denen, in
welchen du ein schwarzes bekommst, das Verhältniss Vh bilde, als dass

dieses Verhältniss ein anderes davon verschiedenes sei. Ist dies nicht
der Fall, so ist unser Unternehmen, die Zahl der Fälle durch Versuche

zu bestimmen, werthlos. Wenn es aber der Fall ist ("was wir im folgen-
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den Cap. [V] zeigen werden), so können wir die Zahl der Fälle a posteriori

erforschen, wie wenn sie uns a priori bekannt wären und das ist im
praktischen Leben, wo das der Vernunft Gewisse als absolut gewiss
angesehen wird, genügend, um unsere Vermuthungen in einem beliebigen
Zufallsgebiet nicht weniger wissenschaftlich zu leiten als bei den Würfelspielen.

Denn stellen wir uns vor, dass die Luft oder der menschliche

Körper den Herd vieler Veränderungen und Krankheiten in sich schliessen,
gerade so wie die Urne die Steinchen, so werden wir ebenfalls auf diesem

Gebiet bestimmen können, wie viel leichter dieses oder jenes Ereigniss
eintreten kann als ein anderes.

Es ist noch zu bemerken, dass ich das Verhältniss der durch die
Beobachtung zu bestimmenden Fälle nicht ganz genau angeben, sondern in
gewisse Grenzen einschliessen will. Im oben gegebenen Beispiel würden

wir vielleicht das Verhältniss Vh einschliessen zwischen ^-und--f-oder
zwischen und ' ' Es zeigt sich dann, dass es durch fortgesetzte
Beobachtungen immer wahrscheinlicher wird, dass das durch Beobachtung
gefundene Verhältniss der Fälle innerhalb, als dass es ausserhalb dieser
Grenzen liegt.

Jakob Bernoulli schliesst den Kommentar zu seinem Theorein
wörtlich so: «Hoc igilur est illud Problema, quod evulgandum hoc

«loco proposui, postquam jam per vicennium pressi, et cujus per novi-
«tas, tum summa utilitas cum pari conjuncla difflcullate omnibus reli-
«quis hujus doclrinae capitibus pondus el pretium superaddere potest.»

Schliesslich wendet sich Jakob Bernoulli noch polemisirend an

gewisse Gelehrte*), welche gegen seine Theorie Einwände zu machen

versucht hatten.

1) Werfen sie vor, das Verhältniss zwischen den Steinchen sei
anders beschaffen als dasjenige zwischen den Krankheiten oder den

Luftveränderungen; die Zahl jener sei bestimmt, die Zahl dieser dagegen
unsicher und unbestimmt. Antwort : Beides ist nach unserer Erkenntniss
gleich unsicher und gleich unbestimmt ; aber das was an sich oder von
Natur aus so ist, dass es von uns nicht allseitig erkannt werden kann,
dasselbe ist ebenfalls von Gott erschaffen, und was Gott erschaffen, das
bestimmte er auch, ehe er es schuf.

2) Bemerken sie: die Zahl der Steinchen sei endlich, die der Krankheiten

aber nicht. Antwort: Sie ist eher erstaunlich gross als unendlich;
aber zugegeben, sie sei unendlich, so ist bekannt, dass auch zwischen
zwei unendlichen Grössen ein bestimmtes Verhältniss bestehen kann und
dass dasselbe auch durch endliche Grössen genau oder wenigstens an-

*) Es ist damit wohl Leibnitz gemeint, der über diesen Gegenstand in
Briefen an Bernoulli polemisirte.
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Nähernd bestimmt werden kann. Ich erinnere z. B. an die Ludolf'sche
Zahl. Es hindert daher nichts, dass ein Verhältniss zwischen unendlichen
Grössen doch durch eine endliche Zahl annäherungsweise ausgedrückt und
durch eine endliche Zahl von Beobachtungen bestimmt werden kann.

3) Wenden sie ein: die Zahl der Krankheiten sei nicht constant,
sondern täglich entstünden neue. Antwort : Dass sich im Laufe der Zeit
die Krankheiten vermehren, kann man nicht läugnen, und sicherlich wird
der, welcher aus heutigen Beobachtungen auf antediluviale Zeiten schliessen

wollte, sehr irren. Aber hieraus folgt nur, dass bisweilen neue Beobachtungen

zu machen sind, wie sie bei den Steinchen zu machen wären,
wenn die Vermuthung nahe läge, dass sich ihre Zahl verändert hätte.

5. Im V. Kapitel: «Solutio Problematis praecedentis», gibt Jakob

Bernoulli I. die analytische Darstellung seines Theorems wie folgt*):
Lemma I.
Sei gegeben die Reihe

0, 1, 2, r — 1, r, r -f- 1, r -f- s — 1, r -f- s und

es werde dieselbe fortgesetzt bis ihr letztes Glied nr -f- ns heisst, so

entsteht die neue Reihe

0, 1, 2, nr — n nr nr -f- n nr -f- ns,
in'welcher die Zahl der Glieder zwischen nr -f- n und nr -f- ns die
Gliederzahl zwischen nr und nr -f- n nicht mehr (wie gross auch n

werde) als s — 1 mal übertrifft und die Zahl der Glieder links von

nr — n die Zahl der Glieder zwischen nr — n und nr nicht mehr als

r — 1 mal.

Lemma II. Wenn das Binom (r -f- s) in irgend eine Potenz
erhoben wird, so hat die Entwicklung immer ein Glied mehr als der

Exponent Einheiten.

Lemma III. In der Entwicklung von (r -j- s) ist ein Term M

dann der grösste, wenn die Zahl der vorausgehenden Glieder zur Zahl

der nachfolgenden, mit r und s, in indirekter, oder wenn die Dimensionen

von r und s in M mit r und s in direkter Proportion stehen.

Dieser Term M hat zum näheren einen kleineren Verhältnisswerth
als — bei gleichem Intervall — der nähere zum entfernteren.

Demonstr. 1. Setzt man nt nr -f- ns, so wird

,nt nt /nt\ nt-l / nl \ nt-1 ,nt

und der grösste Term

*) In gedrängter Uebersicht.

Bern. Mittheil. 1893. Nr. 1320
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nt (nt — 1) (nt — 2) (nt — ns + 1) „r nsM —-— ~-r. !—- r s oder
3 ns

nt (nt — 1) (nt — 2) (nt — nr 4- 1) nr ns
M —i ^-~——- !—- r s1.2.3 nr

Bezeichnet man ferner mit Ri, Ra, R3 die rechts von
M aus aufeinanderfolgenden Terme, und mit Li, L2, L3 die

entsprechenden links, so ist

nt (nt - 1) (nt — 2) (lis -f 2) ar-1 ns41

Li

R2

L2

1.2.3 (nr — 1)

nt (nt — 1) (nt — 2) (nr -f- 2) nr+i ns-1~" 1.2.3 (ns — 1)
r ' S

nt (nt — 1) (nt — 2) (ns -f 3) nr-2 ,ns+2

1.2.3 (nr — 2)
*" ' S

nt (nt — 1) (nt — 2) (nr -f- 3) nr+2 ,ns+2

1.2.3 (ns

woraus sich durch Division ergibt :

2)

17

iL

(nr -f 1) s

11 r s

(ns + 1) r
11 r s

Es leuchtet aber ein, dass

nrs -j- s > nrs
nrs -f- r > nrs

also ist auch

M > Ri, M > Li, Li > L2, Ri > R2.

Demonstr. 2. Weil

Li
L2

(nr --f 2i s

(ns -l)r
Ri
R2

-
(ns + 2)r
(nr — 1)8

nrs + 2 s> nrs — r
nrs -f-2 r> nrs — s;

nr 4- 1 nr -f 2 ns -f- 1

11 s

so folgt auch

(nr -f l)s
nrs <

<

(nr

ns nr < ns 4- 2

nr — 1

2's

(ns — l)r
(ns + l)r (ns -f 2)r

nrs (nr — l)s
oder

M Li M ^ Ri

T- < T~ ' TT < AT • 'I- e- d-
Li L2 ni n2

Lemma IV. In der Potenz eines Binoms, dessen Exponent nt
sei, kann n so gross genommen werden, dass der grösste Term M in

Bezug auf 2 Tenne L und B, welche um das Intervall von n Termen
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nach links und rechts von M abstehen, einen grösseren Verhältniss-
werth hat, als irgend ein gegebenes Verhältniss.

Demonslr. Es wurde gefunden

_ nt (nt - 1) (nt - 2) (nr + 1)
¦ — 1.2.3 ns

r ' S

_nt (nt — 1) (nt - 2) (ns -j- 1)

1.2.3 nr
" '

und weil

__
nt (nt — 1) (nt — 2) (nr -f- n -f- 1) nr+n ns-n -

n — 1.2.3 ns — n
r ¦

S

n _
nt (nt — 1) (nt — 2) (ns -4- n -f- 1) nr—n ns-fn

1.2.3 nr — n
so wird

jW__ (nr -f n) (nr + n — 1) (nr -f 1) s"

Ln
"

(ns — n -|- 1) (ns — n -j- 2) ns nr

nM
__

(ns -f- n) (ns -j~ n — 1) (ns + 1) r
Rn (nr — n -f- 1) (nr — n -f- 2) ns

Hieraus erhält man, wenn man die Potenzen r und s auf die
einzelnen Faktoren vertheilt,

M (nrs -j- ns) (nrs -4- ns — s) (nrs -4- s)

Ln "~ (nrs — nr -f- r) (nrs — nr -f- 2 r) nrs
M (nrs -4- nr) (nrs -4- nr — 2) (nrs -4- r)
Rn (nrs — ns -f- s) (nrs — ns -j- 2 s) nrs

Dividirl*) man durch n, so folgt für lim n oo

M (rs -4- s) (rs -4- s) (rs -4- s) rs
Ln (rs — r) (rs — r) (rs — s) rs
M (rs -4- r) (rs -j- r) (rs -4- r) rs
Rn (rs — s) (rs — s) (rs — s) rs

Der Werth dieser Quotienten ist aber wegen der unendlichen
Anzahl von Factoren, von denen jeder grösser als 1 ist, selber

unendlich gross. Wenn aber sowohl —-— wie auch -^— unendlich gross
Ln Rn

*) Bernoulli gebraucht hier bei der analytischen Erläuterung für das
Zeichen -|- das wohl bei keinem andern Mathematiker angewendete Zeichen $

Sein Gleichheitszeichen ist übrigens immer so.
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werden kann, so ist gezeigt, dass in der That der Werlh des

Verhältnisses vom grössten Term einer binomischen Entwicklung zu
einem andern Term grösser ist, als bei irgend einem gegebenen
Verhältniss.

Lemma V. Es kann die Zahl n so gross genommen werden, dass

die Summe aller Glieder in der binomischen Entwicklung, genommen
vom grössten M nach beiden Seiten bis und mit Ln und Bn, zur
Summe aller übrigen Glieder ein Verhältniss von grösserem Werth bildet
als irgend ein gegebenes.

Demonslr. Man bezeichne die Terme links von M wie früher
mit Li. Ls, L3 links von Ln mit Ln+i, Ln+2, Ln+3,

dann ist noch Lem. III.:
M Ln Li Ln+i L2 ~ L114-2

Li Ln+i L2 Lii-f-2 L3 Ln-j-3

ebenso

Ln Ln+i L114-2 L114-3

00.

Für lim n — ©o wird nach Lem. IV — 00, umsomehr
Ln

—-— 00 und -—— 00 Daher schliesslich :

Ln-f2 Ln-(-2

Li + L2 + Lg +
Ln+i -f- Ln+2 -f- Ln+3 -4-

d. h. die Summe aller Tenne zwischen M und Ln genommen, ist
unendlich mal grösser als die Summe von ebenso viel Termen ausserhalb

von Ln. Nach Lemma I isl aber die Anzahl der Glieder ausserhalb

von Ln s—1, also eine endliche Zahl mal grösser als die

Anzahl der Glieder zwischen Ln und M ; daher isl die Summe der
Glieder zwischen L und M (auch mit Ausschluss von M) unendlich
mal grösser als die Summe der Glieder ausserhalb Ln.

Das Nämliche kann gezeigt werden vom Verhältniss der Summe

der Glieder zwischen M und Rn zu der Summe derjenigen ausserhalb
Rn. Schliesslich wird somit die Summe aller Glieder zwischen Ln
und Rn (inclus. Ln, Rn und M) das Unendlichvielfache aller übrigen
Glieder.

Scoi. Es soll noch gezeigt werden, dass auch dann, wenn n
endlich bleibt, die Summe der Terme zwischen Ln und Bn zur Summe

der übrigen Terme ein Verhältniss ausmacht, das jedes gegebene

Verhältniss C an Werth übertrifft.
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r I 1 rs I s
Es werde das Verhältniss —¦— welches kleiner ist als —¦—?r rs — r

in die mte Potenz erhoben, so dass

r4-l\m
-^f-) > c (s - D-

Um m zu bestimmen, hat man

m Log (r -f- 1) — m Log r ^ Log c (s — 1), also

„ Log c (s — 1)
m -> Log (r -4- 1) — Log r

M
¦de das Verhältniss -— aus

Ln

nrs -f- ns nrs -4- ns •— s nrs -4- s

M
In Lemma IV wurde das Verhältniss -— aus dem Produkt

Ln
11 PC I o

gefunden.
nrs — ns -4- r nrs — nr -j~ 2 r nrs

Wird nun n richtig gewählt, so muss einmal einer dieser
r-f- 1

Brüche gleich —— sein. Bezeichnen wir die Ordnung dieses Bruches

in der Faktorenreihe mit m, so ist

r 4- 1 nrs -4- ns — ms -4- s—'— '
: '— und

r nrs — nr -f- mr
ms — s

n m -\-

nt mt-f-

r + 1

mst — st

r-}- 1

nt isl der Exponent, welcher dem Binom gegeben werden muss, damit
der grösste Term M der Entwicklung die Grenze Ln um mehr als

c (s—1) übertrifft. Der Beweis ergibt sich so: Der Bruch von der

Ordnung m wird durch obige Annahme von n gleich ——— Nun ist

/ r 4-1 \ m
aber nach Voraussetzung —!— 1 =jj c (s—1). Weil nun aber alle

Brüche, die in obigem Product dem Factor von der Ordnung m voraus-
r + 1

gehen, grösser sind als —-—, die nachfolgenden aber nach der Ein-

/r 4- IN m
heit convergiren, so muss das Product aller grösser sein als '

und also um so mehr grösser als c (s—1). Da nun aber jenes
M

Product gleich dem Verhältniss von — ist, so folgt

M > c (s — 1) L.
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Ferner ist
M Li L2 Ln
T" < ï < 1 < < —, '
Ln Ln+ 1 Ln+2 L211

also

LLl tLL2 ÌlL3 t > C (S - 1}-
Ln+i -f- L11+2 4" L,n+3 4~

Weil aber die Gliederzahl ausserhalb Ln (s—1) mal grösser ist
als diejenige zwischen L und M, so folgt, dass das Verhältniss der
Summe der Glieder innerhalb von M und Ln zur Summe aller Glieder
ausserhalb von Ln grösser als c ist.

Für die Terme rechts von M erhält man dasselbe Resultat. Aus-

s ¦-[— 1 rs I— r
gehend vom Verhältniss '— < —-— erhalte ich analog durch

dieselbe Betrachtung

Log c fr — 1)
m ^ — —j— und> Log (s -f- 1) — Log s

mrt — rt
nt mt 4- :—;

s 4- 1

Die gestellte Aufgabe ist somit gelöst; es kann eine bestimmte
Potenz berechnet werden, welche die verlangte Eigenschaft besitzt.

6. Propos. Princip. Es folgt endlich der Satz selbst, zu dessen

analytischer Darstellung die vorausgegangenen Lemmata gegeben werden
mussten.

Es seien einem Ereigniss r Fälle günstig, s Fälle
ungünstig, so dass das Verhältniss der günstigen zu
den ungünstigen Fällen genau oder annäherungsweise

rgleich — ist; dann isl das Verhältniss der günstigen
zu allen möglichen Fällen. — wenn r -j- s t — g e -

r r 4-1geben durch—, gelegen zwischen den Grenzen —¦—

A r — 1
und

t
Es ist nun zu zeigen, dass so viele Beobachtungen gemacht werden

können, dass es irgend eine beliebige Grösse (etwa c) mal
wahrscheinlicher wird, es sei das Verhältniss der günstigen zu allen Beob-

r4-1 r 1
achtungen innerhalb der Grenzen —-— und als ausserhalb

derselben gelegen.
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Demonstr. Angenommen nt sei die Zahl der gemachten
Beobachtungen. Dann ist, da nach Voraussetzung jeder Beobachtung r Fälle
günstig, s Fälle ungünstig sind, die Wahrscheinlichkeit dafür, dass

alle Beobachtungen, oder alle mit Ausnahme von einer, von zweien
von dreien etc. ein günstiges Resultat liefern, gegeben re»p. durch
(Part. I, Prop. XIII.)

nt-2 2
nt\ r s

nt
r U) •

nt-1
r s

tnt' tDt

/ntv
nt-3 3

r s

\v'
tnt

'

tnt

Es sind dies die Glieder der binomischen Entwicklung von
r 4- s\nt

Hierausist leicht zu schliessen, dass der Wahrscheinlich-
t

keitsgrad*) dafür, dass das Ereigniss bei nt Versuchen nr mal

eintreffe, ns mal nicht, gleich ist dem grössten Terme in der Entwicklung

von (r 4- s)1 ; ebenso wird die Zahl der günstigen Fälle für
(jas nr _|_ n resp. nr — n malige Eintreffen des Ereignisses bei

nt Versuchen gegeben durch die Glieder Ln resp. Rn jener
binomischen Entwicklung. Folglich wird der Wahrscheinlichkeitsgrad

dafür, dass das Ereigniss bei einer Zahl ron nt Versuchen höchstens

nr _|_ n und wenigstens nr — n mal eintreffe, ausgedrückt sein

durch die Summation aller Terme innerhalb Ln und Bn. Der

Wahrscheinlichkeitsgrad aber dafür, dass das Ereigniss mehr oder

weniger als nr ± n mal eintreffe, wird ausgedrückt sein durch die

Summe aller übrigen Terme, die ausserhalb von Ln und Rn liegen.
Da nun aber die Potenz des Binoms so gross genommen werden kann,
dass die Summe der Glieder zwischen den Grenzen Ln und Rn mehr
als c mal grösser ist als die Summe der übrigen Glieder, so folgt
auch, dass so viele Beobachtungen gemacht werden können, dass der

Wahrscheinlichkeitsgrad dafür, dass das Verhältniss der Zahl der

günstigen Beobachtungsresultate zur Zahl aller innerhalb der Grenzen

nr4-n nr—n, r 4- 1 r— 1
'— und oder und lieqe, mehr als c mal

ni nt t t

*) Unter dem Wahrscheinlichkeitsgrad eines Ereignisses versteht Bernoulli
immer die Zahl der dem betreffenden Ereigniss günstigen Fälle.
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den Wahrscheinlichkeitsgrad dafür übertrifft, dass jenes Verhältniss
ausserhalb der angegebenen Grenzen liege, mit andern Worten, dass

es mehr als c mal wahrscheinlicher wird, es liege die Zahl der
günstigen Beobachlungsresullate innerhalb der Grenzen nr + n als
ausserhalb.

Bei der speciellen Betrachtung erklärt es sich von selbst, dass

je grösser r, s und t genommen werden, desto enger die Grenzen
r4- 1 r — 1 r—!— und zusammenrücken, so dass das Verhältniss — um sot t ' t
bestimmter gegeben werden kann. Wenn daher das Verhältniss der

3
günstigen zu den ungünstigen Fällen etwa gleich —- ist, so setze man

für r und s nicht 3 und 2, sondern 30 und 20, also t 50, so dass
31 29

die Grenzen -r— und —- werden und wenn c 1000 gesetzt wird,
oo 50

so ergibt sich (nach Scoi.) als Versuchszahl

links von M

Log (c (s — 1)) 4 2787536
^ Log (r 4- 1) — Log r 142405 ^ '

mst — sl „.nt mt -\ -r—— < 24728;

rechts von M

Log c (r - 1) 4 4623980
^ Log (s 4- 1) — Log s

" 211898 ^ '

nt mt4- "irt ~ rt < 25500.
s -j- 1

Aus diesem Exempel geht hervor, dass es bei 25500 viel mehr
als 1000 Mal wahrscheinlicher ist, dass das Verhältniss der günstigen

31 29
Beobachtungen zu allen innerhalb die Grenzen —- und —- fallen werde

50 50
als ausserhalb. Und ebenso, wenn man c 10,000 setzt, dass dies

mehr als 10,000 mal wahrscheinlicher wird bei 31,258 Experimenten
und mehr als 100,000 mal bei 36,966 Experimenten; auf diese Weise
kann man in infinitum fortfahren, indem man fortwährend zu 25,500
ein Vielfaches von 5708 addirt. Dann sagt Bernoulli weiter: «Unde
« landein hoc singulare sequi videtur, quod si eventuum omnium obser-
«vationes per totam ieternitatem conlinuarelur, — probabilitate ultimo
«in perfeclam certitudinem abeunle — omnia in mundo certis rationibus
«et constanti vicissitudinis lege contingere deprehenderentur; adeo ut
« eliam in maxime casualibus atque fortuitis quandam quasi necessitatemi
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«et, ut sic dicam, fatalitalem agnoscere leneamur; quam nescio annon

«ipse jam Plato intendere voluerit, suo de universali rerum apocalastasi

«dogmale, secundum quod omnia innumerabilium seculorum decursum

«in pristinum reversura stalum praedixit.»

Mit dieser weilausschauenden philosophischen Betrachtung schliesst
Jakob Bernoulli I. seine Ars conjectandi, das Produkt zwanzigjähriger
Geislesarbeit, sein bleibendes Denkmal in der Geschichte der

Wahrscheinlichkeitsrechnung.

7. Die neuen genialen Ideen Bernoulli's konnten nicht verfehlen,
die Polemik der einen, die Bewunderung der andern Gelehrten

hervorzurufen, und es ist dafür nicht uninteressant, was Montmort schrieb:*)
«On ne nous a point appris quels sont les Jeux dont cet Auteur —
«Bernoulli — déterminoit les partis, ni quels sujets de politique et
«de morale il avoit entrepris d'éclaircir, mais quelque surprenant que
«soit ce projet, il y a lieu de croire que ce sçavant Auteur l'auroit
«parfaitement exécute. M. Bernoulli étoit trop supérieur aux autres

«pour vouloir en imposer, il étoit de ce petit nombre d'hommes qui
«sont propres à inventer et je me persuade qu'il auroit tenu tout ce

«que promeltoit le titre de son livre.»

Bernoulli hat nicht versucht, einen bestimmten mathematischen

Ausdruck für die Wahrscheinlichkeit, dass die Zahl der günstigen
Beobachtungen innerhalb gewisser Grenzen liege, aufzustellen. Sein

sehr allgemeiner aber klarer Beweis bezweckte nur, auf exaktem

analytischem Wege festzulegen, dass in der That mit der Vermehrung
der Beobachtungen auch die Wahrscheinlichkeit immer grösser und
schliesslich zur Gewissheit wird, dass die Zahl der günstigen zu den

ungünstigen Beobachtungen dem wahren Verhältniss der für das Ereigniss

günstigen zu den ungünstigen Fällen gleich kommt (Gesetz der

grossen Zahlen). Schon daraus geht hervor, was Bernoulli übrigens
auch ausspricht, wenn er sagt:**) «Nisi enim hoc fiat, lateor actum

fore de nostro conatu explorandi numéros casuum per expérimenta»,
dass er das bewiesene Theorem nur als Hülfssatz für die Erforschung
der Wahrscheinlichkeit a posteriori betrachtet. Und dies möchte ich

*) Montmort, Essai d'analyse sur les Jeux de hasard, 1. éd. (Paris 1708)
Vorrede p. 6. Montmort kannte die Ideen Bernoulli's, dessen Werk noch nicht
erschienen war, aus Fontenelle's Eloge de Mr. Bernoulli, Hist, de l'Académie de

Paris 1705.

**) Ars conjectandi Lib. IV. Cap. IV. pag. 226.

Bern. Miltheil. 1893. Nr. 1321.
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ganz besonders betonen. Denn es scheint nicht berechtigt zu sein,

wenn Laplace in seiner Notice historique sur le calcul des probabilités
bei der Erwähnung der Verdienste Daniel Bernoulli's sagt:*) «On doit
«surtout placer au nombre de ces idées originales la considération di-
«recte des possibilités des événemens tirées des événemens observés.

«Jacques Bernoulli et Moivre supposaient ces possibilités connues; et
«ils cherchaient la probabilité que le résultat des expériences à faire

«approchera de plus en plus de les représenter.»

Nicht Daniel, wie aus dem Citât hervorgeh en möchte,
sondern Jakob Bernoulli ist derBegründer der Theorie
von der Erfahrungswahrscheinlichkeil. Er hat auch den

ersten analytischen Ausdruck dafür gegeben.**) Wenn in einer Urne
sich weisse und schwarze Kugeln befinden, deren Zahlenverhältniss
aber unbekannt ist, so wird, wenn man in einer sehr grossen Anzahl

von Versuchen a weisse und b schwarze herausgezogen hat, die Wahr-

scheinlichkeit für das Ziehen einer weissen ausgedrückt durch —;——•
a -f- b

Auch über die Wahrscheinlichkeit der Ursachen hat

Jakob Bernoulli zuerslUntersuchungen angestell t.***)
Gewiss hatte er noch tiefere analytische Studien über die
Wahrscheinlichkeit a posteriori vorgesehen, wahrscheinlich auch

praktische Versuche auf socialem Gebiete, aber leider wurde Bernoulli!)
viel zu früh, schon mit 51 Jahren, der Wissenschaft durch den Tod

entrissen und ein halbes Jahrhundert ging dahin, bis er richtig
verstanden wurde, bis Daniel Bernoulli, sein Neffe, praktisch und Bayes

theoretisch seine Untersuchungen über die Erfahrungswahrscheinlichkeit
weiter führten.

*) Essai philosophique p. 214. Théorie analyt. des prob, introd. p.
CXLVIII.

**) Ars conj. Lib. IV. Gap. IV.

***) id. Lib. IV. Cap. III.

f) Jakob Bernoulli I., in Basel als Sohn des Rathsherrn Nikolaus
Bernoulli am 27. XII. 1654 geboren, studirte in seiner Vaterstadt Theologie und
daneben tleissig Mathematik. Nach seinem theologischen Examen (1676) bereiste

er die Schweiz, Holland, England und Frankreich, widmete sich dann nach seiner
Bückkehr als Privatmann ganz der Mathematik und wurde im Jahre 1687 zum
Professor der Mathematik an der Universität Basel ernannt, welche Stellung er bis

zu seinem Tode am 16. VIII. 1695 innehalte. Mit seinem Bruder Johannes I. und
seinem Neffen Daniel gehört Jakob Bernoulli 1. zu den berühmtesten der Bernoulli.
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III.
8. Abraham de Moivre*) war der erste, der dem Theorem

Bernoulli's gebührende Aufmerksamkeit schenkte und dasselbe in geschickter
Weise zu fördern verstand.

Indem aber Moivre dasselbe nicht wie Bernoulli vom Standpunkt
der Wahrscheinlichkeit a posteriori aus anfasste, sondern als Unler-
suchungsobjekl für sich, trachtete er darnach, für den Fall, in welchem
die einfache Wahrscheinlichkeit eines Ereignisses E als bekannt und
constant gleich p, diejenige des entgegengesetzten E' gleich q
vorausgesetzt wird, einen bestimmten Werth zu suchen für die
Wahrscheinlichkeit, dass in einer grossen Anzahl von pi Versuchen das

Ereigniss E in einer solchen Anzahl in von Malen eintreffe, die
zwischen den Grenzen /i p i- I liegt, d. h. einen bestimmten Werth zu

geben für den Bernoulli'schen Summenausdruck

m pi p 4- 1

V? El m n^j m! n! P q

m jtt p — 1

Zwei Schwierigkeilen mussten ihm dabei entgegentreten, die

Auffindung eines allgemeinen, numerisch leicht zu berechnenden
Ausdrucks für den Binomialcoefficienten resp. für die Facullät und die

Summation der Terme einer binomischen Entwicklung innerhalb
gewisser Grenzen. Unsere weitere historische Untersuchung wird daher
in der Folge eine Periode der Geschichte der Summationsformeln in
sich einbeziehen müssen.

Moivre hat die Hauplresullale seiner Untersuchungen über das

Bernoulli'sche Theorem niedergelegt in einem grössern Abschnitt seiner
Doctrine of chances**), betitelt : A Method of approximating the Sum

*) Abraham de Moivre (geb. 26. V. 1667 in Vilry, Champagne, gest. 27. XL
1754 in London), protestantischer Befugié, durch den Widerruf des Edikts von
Nantes durch Louis XIV. 1785 genöthigt, in London ein Asyl zu suchen, erwarb
sich dort lange Zeit durch Privatstunden kümmerlich sein Brot. Später genoss
er die Protektion Newtons und wurde 1697 Mitglied der Royal Society. Neben

seinen Hauptwerken, die in der Arbeit citirt sind, schrieb er: A new method for
valuing of annuities upon lives. Der nach ihm benannte Lehrsatz rindet sich

auf der ersten Seite seiner Misceli, anal. Der grosse Newton soll in den letzten
Jahren seines Lebens zu denjenigen, welche ihm mathematische Fragen vorlegten,
gesagt haben: «Go to Mr. Moivre, he knows these things better than I do.» Ein
ehrenderes Zeugniss konnte Moivre wohl nicht gegeben werden.

**) P. 235 ff. Uns lag die 2. Auflage (London 1738) vor; zum ersten

Male erschien das bedeutende Werk im Jahre 1718 unter dem Titel: De mensura
sortis.
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of the Terms of the Binomial (a 4- b)n expanded into a series from
whence are deduced some practical Rules to estimate the Degree of
Assent which is to be given to Experiments*). Die analytischen
Erläuterungen zu den Resultaten dieser Untersuchung gibt Moivre
zerstreut in seinem andern Buche Miscellanea analylica de serieb. et

quadrat., und es mag nicht ganz ohne Werlh sein, hier eine zusammenhängende

Darstellung derselben zu geben.
9. In die oben erwähnte Abhandlung einleitend, erwähnt Moivre

die Schwierigkeit der Summation von Gliedern einer binomischen

Entwicklung und er hat für seine Zeit vollkommen Recht. Selbst die

grossen Mathematiker Jakob und Nikolaus Bernoulli hätten eigentlich
nicht eine Summe von solchen Gliedern gegeben, sondern nur weile
Grenzen gezeigt, in welchen sich eine gewisse Summe derselben

bewegen könne. Moivre sagt dann weiter : Es sind mehr als 12 Jahre

verflossen**) seit ich gefunden habe, dass wenn man das Binom (1 4- 1)

entwickelt, der miniere Term zur Summe aller Terme — zu 2 —
ein Verhältniss hat, das gleich ist

n
n

Log A
1

12 »

1

560

Für n ; oo folgt

Log
(n -

]

-1)"
n

U

¦ —

setzt man

A (n - 1)"

V/n — 1

worin

4- -J L_ +~ 1260 1680 —

L°S * — Y) — 1 »nd

*) Die Abhandlung findet sich in lateinischer Uebersetzung auch als
Anhang in der Misceli, analyt. Sie war schon vor der Doctrine of chances im Druck
erschienen, jedoch nicht veröffentlicht worden. Es geht ,dies aus folgender
interessanten Bemerkung hervor, die Moivre im Zusatz von Problem 87, wo er über
die Schwierigkeiten des Problems sich ausspricht, macht: «I take the liberty to

«say, that this is the hardest Problem, that can be proposed on the subject of
«chance, for which reason I have reserved it for the last, but I hope to be for-
« given if my solution is not fitted to the capacity of all Readers ; howewer I shall
«derive from it some Conclusions that may be of use to everybody: in order
«thereto here translate a Paper of mine, which was printed Nov. 12. 1733, and
«communicated to some Friends, but never yet made public, reserving to myself
«the right of enlarging my own Thoughts, as occasion shall require.»

**) Es war also ums Jahr 1720.
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1 _j_ 1_ 1_°g "t" 12 360 "*" 1260 1680 —
2 B

so wird das obige Verhältniss für n co gleich -j=> oder wenn

man die Gleichung von Log B mit — 1 multiplizirt, wird es gleich
2

B \/ n

Ueber den Werth von B äussert sich Moivre auf folgende Weise:
«When I first began that inquiry, I contented myself to determine
«at large the Value of B, which was done by the addition of some
«Terms of the above-written Series; but as I perceiv'd that it con-
« verged but slowly*), and seeing at the same time that what I had

« done answered my purpose tolerably well, I desisted from proceeding
«farther, till my worthy and learned Friend Mr. James Stirling, who
«had applied himself after me to that inquiry, found that Ihe Quan-

«tity B did denote the square-root of the Circumference of a Circle
«whose Radius is Unily, so that if that Circumference be called c the
«Ratio of the middle Term to the sum of all the Terms will be ex-

«pressed by
\/ nc

10. Ueber diesen eleganten Ausdruck für sein gesuchtes Verhältniss

war Moivre hocherfreut. Wie er aber zum Ausdruck

2 A (n — l)n
n /n \J n —1

gekommen ist, darüber finden wir Auskunft in Miscellanea analytica
de serieb. et quadrat. Lib. VI. Cap. IL : De regressu et Serie data ad

Summam. Hier führt Moivre aus: Der Coefficient c des mittleren

Gliedes im Binom (1 4- l)n ist, wenn man -—- m setzt
ù

_ (m 4- 1) (m -j- 2) (m 4- 3) 2 m
C ~~

(m — 1) (m — 2) (m — 3) 2 1 m'

und es wird

*) Moivre war in dieser Convergenzfrage im Irrthum. Denn die Reihç

1 — -jo- + TjgA — jog?) 4 ist gleich der divergenten Reihe

B (1) B (2) B (3) i r> d j-
Bernoulli'schen Zahlen bedeuten.
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Log c 2 (— 4- 0 „ 4- - 5 4- - -j- in inf.
y m ' 3m3 ' 5m5 ' 7m7 '

i o/2 i
8

i
32 128 \+ 2(ln- + "85?- + -65F + "W- + ininfj

_ /8 27 243 2187
'

+ 2 ("nT + ~3n^ + "SÛT + "W + in "*
+ •

» /m-1 (in — l)3 (m-1)5 (m—l)7 \*>
t- * I L ——- 4- _ - -4-.. in inf.\ m ' 3m3 ' 5m5 ' 7m7 ' /+ Log 2.

Nimmt man aus diesen m — 1 Logarithmenreihen die Colonnen

zusammen, so wird

Log c -J- 1 + 24-34-44-. 4- m - l)m
2

3m3
(l 4- 2 8 4- 3 3 4- 4 3 4- 4- (in - l)s)

+ dn^ (l + 2*4- 35 +4*4- + (m-l)"
+ :

in inf 4- Log 2.

Bezeichne ich nun die Reihen nach einander mit I, II, III,
und setze m — 1 — s, so wird nach den Tafeln Jakob Bernoulli's:

I _ s2 + s

m
s 4 „2-V + s8 + -V-

II — —- -3m3

m — ^ —5 m5
s8 7s6 7s1 s2

IV
4

S
6 12 + 6

7m7
s10 3s8 7 s« 3 s2

v "X- + a'+-2 ä-+g -^cT
9m9

in inf.

*) Die Convergenz der letzten Reihen ist allerdings sehr gering.
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Die Colonnen dieser Summen wieder in Reihen zusammengefasst
s

ergibt als erste, wenn — x gesetzt wird :

(X3 X ^ X7
X + -2TF + X5-+T7r + in inf-

2 x 2 x3 2 x5 2 x7

slT^T +X4-+T4T+T4T+ minf-

l 4- x
Entwickle ich Log -—¦— v in die logarithmische Reihe und

multiplizire beiderseits mit x*), so kommt

2 x x i
2 x3 x 4-

2 x5 x j_ in inf. vx,
1 ^ 3 ^ 5 ^

und nimmt man auf beiden Seiten die Fluenten (d. h. integrirt man),

so hat man
2x2

|_
2x4

I 2JL! |_ in inf.
1.2 ^ 3.4 ~ 5.6 ~

1 4- x 1
x Log -—! Log - r-1 — X ° 1 — X2

s s
Auf beiden Seiten mit — multiphzirt, erhält, weil — x,

x v> i m
die Gleichung die Form

"IT + äTTE* + ^lln^ + in int

1 + x r
1

m x Log - J_ m Log - _x2'
oder weil s m — 1, und x — : so erhält man leicht

in m
für die Summe der

1. Colonne (2 m — 1) Log (2 m — 1) — 2 m Log m.

Die 2. Colonne besteht aus folgender Reihe

s s3 s5 1 m4-s
\- -—5- 4- -—r- 4- in inf. —- Logm'3m3l5m51 2 ° m — s

~ Log (2 m - 1).

Die Summe beider Colonnen wird daher gleich

(2 m —) Log (2 m — 1) — 2 m Log m.

*¦) Moivre bezeichnet, wie es bei den englischen Mathematikern im vorigen
Jahrhundert nach dem Vorgange Newtons üblich war, das Differential dx mit x.
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Nimmt man dazu noch den beiseile gesetzten Log 2, so wird
das Summenaggregat für Log c in erster Näherung

(2 m —) Log (2 m — 1) — 2 m Log m 4- Log 2.

Subtrahirt man hievon den Log 22m — 2 m Log 2, so bleibt

(2 m —) Log (2 m — 1) — 2 m Log 2 m 4- Log 2,

und dieser Ausdruck wird, weil 2 m n, wenn man zugleich zur
Exponentialfunktion übergeht, zu

2 (n — lfl
n"

und dies ist der angenäherte Wert des Verhältnisses des mittleren
Coeffizienlen des mittleren Gliedes in der Entwicklung von (1 4- 1)"

zur Summe aller Glieder.
Im gegebenen Ausdruck sind aber nur die beiden ersten Co-

lonnen des logarilhmischen Summenaggregales für Log c berücksichtigt,

während es deren unendlich viele gibt. Die 3. Colonne konsli-
tuirt die geometrische Progression:

s2 _s^ ¦ s6 1 (in — l)2
6mJ + 6ms + 6m'+ in

6 m
'

2 m —1
'

Die 4. Colonne gibt die récurrente Reihe :

s2 L 15 s2 28 s4 45 s 6 66 s8
ISÖln^i6 +^n^+^n^-+ ^n^-+-n^-+---mmf-
deren Beziehungsscala 3, — 3, 4- 1, ist und deren Summe gefunden

wird, als

(4 m4 4- 2 m3 -f 3 m2 — 4 m 4- 1) (m — l)2
~~

180 m8 (2 m —l)3
Indem ich bemerkte — fährt Moivre fort — dass diese Reihen

obwohl durchaus summirbar, doch sehr verwickelt werden, brachte
ich sie auf den Fall des Unendlichen. Wird m oo, so ist der Werth

der 3. Colonne gleich —, von der 4 gleich — -——-5 wie man aus

obigen Formeln leicht finden kann. Für die 5. und 6. Colonne habe

ich die Werthe 4- -j^eo' resp- — l680~ Sefunden-

Wird der Numerus der Logarilhmenreihe Moivre's
1

+ T^n — -T^K ± in inf-
12 360 ' 1260 1680
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mil A bezeichnet, so wird das Verhältniss des mittleren Gliedes im

entwickelten Binom (14-1) — wenn n sehr gross vorausgesetzt

wird — zur Summe aller Glieder ausgedrückt durch —

wie ihn Moivre in der Doctrine of chances gegeben hat.

11. Als Resultat eines Versuches, die Constante 2 A durch Addition
der 4 ersten Terme seiner logarithmischen Reihe zu bestimmen, fand

Moivre die Zahl 2,168. Dieser Versuch darf hier aber um so eher

übergangen werden, weil Moivre durch Bemerkungen*) von Seiten

Stirlings selber zur Einsicht von der Unzulänglichkeit seiner Methode

gelangte und in dem Miscellaneis Analylicis Supplementum die
Untersuchung neu begann. Er bemerkt dort einleitend :

«Attamen post receptam Slirlingii Epistolam, cum mihi aliquid'
«vacui temporis suppeteret, constilueram lotum illud denuo excutere,
«atque inilium sumere ab isto Problemate de inveniendis Summis Lo-

«garithmorum ab unitate incipienlium; ecce au tem gradus quibus ad

«meam solulionem adductus sum, quam ideo trado quod modus solutionis

«quo ulor sit longe diversus ab eo quem Stirlingius adhibuit, quo fiel
»ut suspicio a me aberit me voluisse actum agere».

Moivre sucht also hier direct wie Stirling — auf den wir noch

zurückkommen werden — die Summe der Logarithmen der natürlichen
Zahlen und nicht mehr wie früher das Verhältniss des Coeffizienten

vom mittleren Gliede zur Summe aller Glieder. Er geht aus vom Product:

m m m mmm — 1 m — 2 m — 3 m — m 4- 2 m — m 4- 1

und entwickelt die Logarithmen der einzelnen Facloren in folgender
Darstellung:
r m 1,1,1,Log — h —— 4- -—g 4- in inf.

m — 1 m 2m2' 3 ni3

m 2.4.8.Log f- ö—, 4- ——s- + m inf.
m — 2 m 2m21 3m31

m 3 9 27

m — 3 m 2m! 3 m:
Log — 1- ——- A—-—,r 4- in inf.

Lo«
1I) m - 1

4- (m - *>' 4- inizili3. in inf.
m — m 4-1 m ' 2 m2 ' 3m3

*) In einem Briefe an Moivre vom 17. Juni 1729. Vergi. Misc. analyt.
Lib. VII.

Bern. Mittheil. 1893. Nr. 1322.
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Analog wie beim Coeffizientenproblem stellt nun Moivre die Co-

lonnen als Zeilen zusammen, deren er unendlich viele erhält. Die
Zähler jeder dieser Zeilen stellen eine Reihe dar von der Form:

1n4-2n+3n4- 4-(m - l)n.
Moivre summirt diese Potenzreihen, dividirt jede Summe durch

den zugehörigen Nenner und erhält so, indem er m — 1 1 setzt,
folgende neue Reihen als Summen der obigen Colonnen :

112
2 +m '

11
2

m
11 3

3 4-2m2 ~
1 1 2

2 4-2m2 '

11
6

2 m 2

11 4 11 3 1 1 2

4 4- 2 4-3mîT
4

3 m 3

115
5 4-

4 ni 4 ^
U 4

2 4-4m,T
ll33

4 m 4

11
30

4 m 4

in inf.

Moivre nimmt wieder die Colonnen als Reihen zusammen, divi-

dirt die erste durch m, die dritte durch — 1 die vierte durch
2 m

die fünfte durch -— worin3.4m3 5.6m5

A-JL-J--JLA - 2 3 - 6

2 5 2
A — 30

r -JL 1 6
a 6-5-4 r_ 1

L _ 2 ~ 7 _ 2 A"~2.3.4 K_42
D=J__ 1 8 8 7 6 8.7.6.5.4 I

2 9 2 2.3.4 2.3.4.5.6 30

also die Bernoullischen Zahlen bedeuten, und erhält die folgenden
neuen Reihen :
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12 13 14 15-i I L ——; 4- ——5 4- in inf.
2m ~ 6mJ T 12m4 r 20m5 '

1 l2 l3 l4
— f- ——3 4- -i—s -j —j 4- in inf.
2m T 4 m2 r 6m31 8m41

1 l2 l3 l4
f" ^"2 + S + —4 + in inf-

m m2 m3 m4

3 1, 612 1013 15 I4
L — 4- s- 4- a r- in inf.

m m * m 3 m 4

5 1 15 l2 3513 701 *

\- — 4- s~ 4- 1 r in ln'-
m m 2 m 3 m 4

71 28 1 2 84 l3 210I4
L 4- «- 4- * h in inf.

m m * m * m 4

t
in inf.

Die ersten beiden dieser Reihen sind logarithmische. Die Summe

der ersten findet man auf folgende Weise:

Sei v Log so ist, wenn man entwickelt,

xdx 4- —- x2dx 4- — x3dx -|—— x4dx 4- in inf. vdx.
u O 4:

Integrirl man, so wird

-y x2 4- — x3 4- — x4 + 2Q
x5 4- in inf. v x 4- x — v

xLogl4-x + x-Logr^-
Oder für x — gesetzt, so erhält man weil 1 m — 1 als

m

Summe der ersten Reihe

J_ (m-1)2 i (m-1)3 1_ (m-1)4
2 m 2 ^6 m 3 ^12 m 4 ^

m — 1 — Log m

m

MultipliziO man noch mit m (wodurch man früher dividirt hat),
so wird der gesuchte Werth der Reihe

1 (m - l)2 1 (m — l)3
2 m 6 m 2

Die zweite Reihe hat folgende Summe, wie unmittelbar folgt :

1 m — 1 1 (m — l)2 1 (m — l)3 1

ö TT 2 ru r^ r-- .ininf.==-Logm.2 m '4 m2 '6 m3 ' 2
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Die beiden ersten Reihen konstituiren also die Summe

m — 1 — Log m.
di

Die Summen der übrigen Reihen lassen sich rational und zwar
auf folgende Weise ausdrücken (indem man zugleich wieder mit jenen
Factoren, mit welchen die Reihen multiplizirt wurden, dividirt) :

A 11Summe der 3. Reihe —--(«1-1) ^- - j—;-
* ' 4- ' 3-TT^(m3-1) - sW+86^-

Analog wird :

_ _1 1
°* " — 1260 1260 m5'

6 1_ _J 1_"
1680 ' 1680 m7

Es wird somit :

r m m m m ml 1

L0g Lni^l ¦ nT^2 •

nr=r-3
" ' -g--pj =m-1—5-Logm

1 _J 1__ 1_ _ —
12 m ^ 360 m3 1260 m 5 + 1680 m 7 "¦ '" '" '

_1 _1 1 1__ f"h 12 360 + 1260 1680 ± '" '

oder

Log 1 2 3 (m — 1) m — -i- Log m

_
1 1 1 1__ • • • fmi"l2m 360 m3+ 1260 m5 1680 m7 — m

+ 1- ^-+-3430 iiëcr+-î4r + ininf-

Dies ist die Moivre'sche Reihe für Log r(m). Fügl man
derselben noch Log m bei, bezeichnet man die Summe der Conslanlen

mit C und führt in der Reihe

_1 1__ 1 —
12 m 360 m 3 + 1260 m5 + in in '

*) Es ist 3 x + 6 x 2 + 15 x s + 21 x * 4- in inf. —r — 1
1 — Xs

also

3 ^^l + 6(J^r + 15 <Jzl=*f + in inf. m' - 1.
m m 2 m 3
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die Bernoulli'schen Zahlen ein, so gehl dieselbe über in die folgende
Summalionsformel :

m m

2 Log m C 4- I m -j—— I Log m — m '

2 / n ' 1 .2. m
m 1

B(«) BQO BÇQ

3.4 m3 ^ 5.6m5 7.8m7 — " ' ' '
welche sich auch leicht aus der allgemeinen Summalionsformel, die

Euler, wie später gezeigt werden soll, in den Inst. Cale. Diff. Part. II,
C. V. aufgestellt hat, ergibt, nämlich aus der Formel:

B(i) dz B(«) d8z2«=/'* + T' + 2 dx 4 dx3

B(s) d5z

+1

6 dx5

wenn man für z Log m setzt.
Es verdient daher hier hervorgehoben zu werden, dass Moivre

zuerst, wenn auch empirisch, diese Summationsformel angewendet hat.
12. Im Weitern gibt Moivre in den Supplementa auch eine besser

convergirende Reihe für die Constante, d. h. für die Reihe

1—k-+-m--ikö +i4cr + ininf-
welche nach seiner Ansicht «salis commode convergit in principio
«post terminos quinque primos convergentiam amitlit, quam tarnen

«postea récupérât». Indem er m — 1 9 setzt, erhält er nach seiner
Formel :

1 - -TT + -mr - W + î^f7+-ininf. Log5040.72

-9HoglO+10--^+^3-r^5±-ÌnÌnf-
Den cyklometrischen Charakter der Constanten hat aber Moivre

nicht von sich aus erkannt ; denn er war sehr erstaunt darüber, als

ihm Stirling in einem Schreiben*) vom 19. Juni 1729 mittheilte,
dass der Werth der Constanten \J 2n betrage. «Nemo est profecto
«qui post visam liane superioris problematis solutionem fateri recuset

«earn esse usquequaque mirabilem : sed nihil in ea fortasse mirabilius
«videbitur quam qua arte Quadratura Circuii potueril in earn induci»,
sagt Moivre über Slirlings Lösung. Er spricht dori auch die Ver-

mulhung aus. Stirling habe sein Resultat mit Hülfe der Formel von

*) Veröffentlicht in Miscellanea analyt. Gap. VII.
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Wallis gefunden. Er selbst habe die Sache desshalb nicht weiter
verfolgt, weil ihm die Lösung nur ein Mittel zur Berechnung von
Wahrscheinlichkeiten sei. «Adde quod cum non ideo susceptiim fuissel ul
«propter se solveretur, sed ut juvaret solulionem allerius cujusdam
«problematis quod pulcherrimum judicaveram, mihi videbar in iis
«quae feceram aliquo jure posse acquiescere.»*)

IV.
13. Es erscheint hier geboten, Moivre und seine Doctrine of

chances für einen Augenblick zu verlassen, um in S t i r 1 i n g s

mathematischem Werke : Methodus differential sive Tractates de

summatione et interpolatane serierum infinilarum**) nach der

Bestimmung der Conslanlen - - Log 2n zu sehen.
di

Stirling findet dieselbe zuerst bei der Berechnung des Verhältnisses,

welches der Coefficient des mittleren Gliedes einer binomischen

Entwicklung zur Summe alier Coeffizienlen hat. Die Priorität der
Lösung dieses Problems erkennt er aber ausdrücklich Moivre zu, wenn
er am Schlüsse der Vorrede zu seinem Buche sagt: «Problema de

«invenienda Uncia media in permagna dignitale binomii solutam erat
«a Moivraeo ante aliquot annos quam ego idem altingeram : Nee pro-
«babile est quod in hunc usque diem de eodem cogilassem, in sugges-
«sisset Spectalissimus Vir, D. Alex. Cuming***) se plurunum suspicari
«an idem solvi posset per Methodiim Differentialen! Newloni.»

Stirling gibt zwei verschiedene Methoden zur Lösung des Coeffi-

zientenproblems, wovon die eine, die auf Interpolation mit Hülfe der

Differenzenrechnung beruhtf), hier nicht berücksichtigt werden soll,
weil dort die Bestimmung der Constanten auf numerischer Berech-

nungfi) beruht.
Die andere Methodeff-j-) ist nach ihm folgende :

Sei gegeben die Reihe :

„ 8 16 128 256
*' 2' T 5

' ~35~' ~63~'
*) Miscellaneis analyticis Supplementum p. 3.

**) London 1730.

***) Alex. Cuming darf in der Geschichte der Wahrscheinlichkeitsrechnung
nicht unerwähnt bleiben. Aus Bemerkungen, die Moivre in Misceli, analyt. Cap. V
macht, geht hervor, dass derselbe auch ihm manche Anregungen gegeben hat.
Ueber das Loben Cumings habe ich nichts in Erfahrung gebracht.

f) Dargestellt im Propos. XXII, Ex. I p. 116 ff.

ff) Vergi. Note 2 im Anhang,

ftt) Method, diff. Propos. XXIII.
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deren Glieder das gesuchte Verhältniss für resp. die 0., 1., 2., 3.,
Potenz reciprok darstellen, so handelt es sich um die

Interpolation des allgemeinen Gliedes der Reihe :

2A 4B 6C 8D
*' ~T"' T"' ~5~' ~7~~ '

wenn mit A, B, C, D, allgemein unsere Reihe ausgedrückt wird.
Sei nun T irgend ein Glied dieser Reihe, so wird das folgende

Glied, wenn wir einer Variablen n die Werthe 0, 2, 4, 6,

geben, gleich sein

n 4- 2
T — T oder'" n 4- 1 *' °aer

™ » n24-4n4-4 „,„T' m o T i
T und

n 2 4- 2n -f- 1

2T,2 + (n + 2) (T2 - 1?) -^ ° • «)

Man setze nun

T2 |
bn cn dn

""an "^ n4-2"h(n4-2)(n4-4)+(n4-2)(n4-4)(n4-6)"i_'"'W
worin a, b, c, d, noch zu bestimmende Constante bedeuten ;

diese Reihe in andere Form gebracht, wird zu

rp2 i u c — 2b
i

d — 4c
T an + b + n + 2 + (n + 2)(n+4) +

Analog:

t.- - ,c,+a,+b + jl-^l- f _ +« -;°_ _+...,
hieraus

(n+2)! T2 - T/ j — 2a(n + 2) +
2C ~~ 4b

n 4- 4
4d — 16c

1 (n+-4)(n + 6) '

Substituirl man neben diesem Werthe noch diejenigen für 2T,2
m 2

und für 4-— in die Gleichung a, so kommt:
n 4- 2

2b— i
4c —9b 6d — 25c 8c — 49d

a_t"
n 4- 4 "ï"(n 4- 4) (n4-6) ' (n+-4) (n+6) (n-f-8) "" "

Aus dieser Gleichung ergeben sich für die Coeffizienlen die
folgenden Bedingungsgleichungen :
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2b — a 0

4c — 9b 0

6d — 25c 0

8e — 49d 0

also: b
a

__

9b

4

25c

9a

2.4
9.25a

e

6

49d
2.4.6
9. 25.49a

Werden diese Werthe in die Gleichung

2.4.6.8
' siibstituirt, so

ergibt sich:

T 2 a(n + 2(n -f 2)
9.25n

+
9n

2 4(n + 2)(n 4- 4)

+ ¦••)2.4.6 (n 4- 2)(n 4- 4)(n 4- 6)

1 9
an(l 4- -

2(n -+ 2)

9.25

+ 2.4(n + 2)(n4-4)

1

2 4 6 (n 4- 2)(n 4- 4)(n -+ 6) '

Den Coeffizienten a bestimmt nun Stirling durch folgende Ueber-

legung: Je grösser n, desio wahrer wird die Gleichung
T2 an.

Setzt man nun in dieser Gleichung für n der Reihe nach seine

Werlhe 0, 2, 4, und die entsprechenden für T2, so erhält
man eine Reihe von Näherungsgleichungen für a, nämlich :

24 JL 24 4J3
__25' ~"

9
'

25
' 49' ~" '

Daher ist der Werth von a gleich dem ins Unendliche
fortgesetzten Produkt

24 48 80 120

2-2 8 -2 8
2, - 2 —, _ 2 T

2.
9 25 49 81 121

dessen Werlh aber nach der Formel von Wallis gleich —— isl.

Es resultirt somit für T folgender Werth :

/ an r 1

'Y 2 |.1+2(n+2;
9.25

,+-]¦1+2) 2.4(n-(-2) (n+4) 2.4.6(n+2)(n+4Xn+6)
Oder es ist nach Annahme, wenn man mit M den Coeffizienten

des mittleren Termes der binomischen Entwicklung bezeichnet, mit S

die Summe aller Coeffizienten:
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M:S 1: i/—TU —, r r i h 1V 2 L T2(n +2)7 2.4(n+2)(n+4)T J-

Stirling gelangt daher zu folgendem Satze :

Der Exponent des Binoms, wenn gerade, sei n, wenn ungerade
n — 1 ; dann wird sich der mittlere Coeffizient zur Summe aller
Coeffizienten verhalten, wie die Einheit zur mittleren Proportionale
zwischen dem halben Kreisumfang und der einen oder anderen von

folgenden Reihen:
A 9B 25C

n ¦" 2(n 4- 2) + 4(n 4- 4) + 6(n 4- 6) ~*~ '

A 9B 25C
n 4- 1

2(n — 3) 4(n — 5) 6(n — 7) '

wenn man allgemein die Reihen nach Newton'scher Bezeichnung mit

A±B±C±D± darstellt.
Ueber den Gebrauch der Formel spricht sich Stirling dahin aus,

es genüge, wenn n =-- sehr gross werde, zu selzen

T2= Vrfn +4-)-oder

V?(n +
Es ist also

¦ 8-l:V/=(.+A.)
\/f(»+l)

— ,/-— (für lim n sehr gross),
y ìtvXì

Das Stirling'sehe Besultat beim Coeffizientenproblem ist somit
demjenigen Moivre's genau gleich; denn Moivre hat für das Verhältniss des

mittleren Gliedes zur Summe aller im enhvickelten Binom (1 4- l)n,
für n — gerade, den nämlichen Ausdruck, jedoch ohne cyklometrisch e

Darstellung der Constanten, gefunden.
14. Wie Moivre, so musste auch Stirling durch das Coeffizientenproblem

darauf kommen, einen numerisch leicht zu berechnenden
Stimmenausdruck für Log T(x) resp. für 7\x) zu suchen. Er behandelt
dazu folgende Aufgabe*) : Es sei die Summe beliebig vieler Logarithmen
zu finden, deren Numeri in arithmetischer Progression fortschreiten.

*) Loc. cit. Propos. XXVtlt. p. 135.

Bern. Mittheil. 1893. Nr. 1323.
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Es mögen x 4- n, x 4- 3n, x 4- 5n, x 4- 7n, z — 3n,
z — n, beliebig viele Zahlen in arithmetischer Progression bezeichnen,
die letzte sei z — n. Es seien ferner log z und log x die Tafellogarithmen
der Zahlen z und x, und a sei gleich dem Modul, d. h. gleich dem

reciproken Werth des Log. nat. von 10. Dann wird die Summe der

Logarithmen der vorliegenden Reihe gleich sein der Differenz zwischen
den beiden folgenden Reihen :

zlogz az an 7an3 31an5 127an7
I Qßfl-,2 10ßf»-#5 \

az an

2n 12z

ax an

2n 2n 12z ' 360z2 1260z5 ' 1680z7 ' ' '

in inf.

xlogx ax an 7ans 31an5 127an7

2rT 2n Ï2F *~ 360x2 126Óx5 + 1680z7

+ in inf.

Diese Reihen setzen sich so ins Unendliche fort:
Man setze

1

A, ±ë- A 4- 3B,
3.4 ' 5.8

1

7.12
1

9.16

A + ÎOB + 5C,

A 4- 21B 4- 35C 4- 7D,

Die Zahlen, die in den verschiedenen Werthen von A, B, C, D

multiplizirt werden, sind die ersten, dritten, fünften,
Coeffizienten der ungeraden Potenzen des Binoms. Dann wird der

1 7
Coeffizient des dritten Terms — A, der des vierten B

12 ' 360 '

31
der des fünften C — und so fort.

IäOU

Beweis. Es werde die Variable z um ihre Abnahme
(constante Differenz) 2n vermindert, d. h. man substituire z — 2n für z

in die Reihe

zlogz az an an3 31an5

2n 2ÏT 12zT + 360z3 1260z5 ± • • • • in in •

Man subtrahire die neue Reihe von der vorigen, so wird sich, nachdem

man durch Division die Terme auf die nämliche Form gebracht,
als Rest ergeben :
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an an2 an3 —,ogz ______ + m mf.

d. h. der Logarithmus der Zahl z — n.

So ist allgemein die Abnahme zweier successiven Werthe der
Reihe gleich dem Logarithmus von z — n, der allgemein jeden
beliebigen der Logarithmen bedeuten kann, welche zu summiren sind.
Die Reihe wird also die Summe der vorgegebenen Logarithmen sein,
wenn von ihr die andere Reihe subtrahirt wird. Denn die Summen

der Reihen sind wie diejenigen der Flächen zuweilen zu corrigiren.
damit sie richtig werden (Constante).

In Exemp. II, al. 2 geht Stirling alsdann so weiter: Will man
die Summen von beliebig vielen Logarithmen der natürlichen Zahlenreihe

1,2,3, z — n haben, so ist n —, und es werden
di

3 oder 4 Glieder der Reihe

zlogz - az - -±- 4- -ggjJLr +
zu denen man den halben Logarithmus des Kreisumfanges, dessen

Radius die Einheit ist, d. h. 0.39908 zu addiren hat, die gewünschte
Summe geben und zwar mit um so weniger Mühe, je mehr
Logarithmen zu summiren sind (Convergenz).

15. Dies die Stirling'sche Darstellung seiner nach ihm benannten

Reihe. Stirling findet also zunächst*), zwar ohne ein Verfahren
anzugeben, für

Log(x 4- n) 4- Log(x 4- 3n) 4- Log(x 4- 5n) 4-
4- Log(z — 3n) 4- Log(z — n)

die Differenz der beiden Reihen von natürlichen Logarithmen :

zLogz z n 7n3 31n5

~2n 2ÏT I2T + 360z3 1260z7 — in m "

xLogx x n 7n3 31n5

2rx 2n~ _ Î2x~ "+" 360x3 1260x7 — m m *

Um die Richtigkeit seines Salzes zu beweisen, erhärtet dann

Stirling denselben für den Spezialfall x z — 2n. Handelt es sich
aber um den Logarithmus des Produktes 1. 2. 3 sa

wird, da n —- und x —- ist,

*) Jedenfalls durch Entwicklung der einzelnen Logarithmen.
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Log (l 2 3

-1

• • (i - h)
7 _i

z Log z — z —
1

' 24z

i 2880 z3 ' " * '

1.1 1

2
L0g

2 2

1
+

7

12 ' 360
31

1

1260 — in in

Stirling gibt als Resultat nur die erste dieser Reihen mit der

Bemerkung, man habe dazu noch — Log27r zu addiren.

Wie oft in seinem Buche, gibt Stirling auch hier nur das Resultat,
ohne zugleich den Weg zu weisen, auf welchem er dazu gelangt ist,
was das Studium desselben sehr erschwert. Es entzieht sich daher
einer sicheren Beurtheilung, wie Stirling die Constante bestimmt hat.
Eine numerische Berechnung scheint mir ausgeschlossen zu sein,
gerechtfertigter aber erscheint die Vermulhung, dass er auch hier wie

beim Coeffizientenproblem die Formel von Wallis angewendet hat und

am meisten Wahrscheinlichkeit besitzt wohl die Annahme, derselbe habe

in diesem Falle die Constante durch Vergleichung mit dem Resultate
des Coeffizientenproblems gefunden.*)

16. Stirling gab**) schon, was hier Erwähnung verdient, das Euler-
sehe Integral 1. Art., nämlich :

B (r -+ z, p — r)= j xr+z_1 (1 — x)5"1-"1 dx

o

und benutzte dasselbe zur Interpolation z. B. der Reihe

ra (r-+l)b (r -f 2)c
a' ~~p~' P + l' P 4- 2 '••••'

indem er für das allgemeine Glied T der Reihe fand:

*) Wenn n gerade, so gilt nach Stirling und Moivre in der Entwicklung

von (1 + 1)"

(1)1(1-)! 2» yj**
woraus man, wenn für die Fakultäten der Stirling'sche Näherungswerth substituirt
wird, die Constante bestimmen kann.

**) L. c. Propos. XXIV, p. 126.
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fr-fz-1 (l-x^dx

p-1 (1- .p-r-1,xy dx

also T - ^ + ^ m
r(r) ITP + z)

Ebenso fand er als intermediäres Glied T zwischen dem ersten und
zweiten der folgenden Reihe

1 1.3 1.3.5
1,

2 2.4 2.4.6

/ >/T-
dx

A 1

J 7^dx0 »

und gewiss ist nicht daran zu zweifeln, Stirling war nahe daran, die

Näherungswerthe für den Binomialcoeffizienten und die Fakultät auf
analogem Wege zu suchen, wie es Laplace später gethan*), nämlich mit
Hülfe der sogenannten Euler'schen Integrale.

17. Es scheint, dass Stirling über sein Verfahren, die Constante

zu bestimmen, auch in keiner andern Publikation**) Auskunft gegeben

hat, denn Moivre schrieb noch 1738:

«But altho it be not necessary to know what relation the number
«B may have to the Circumference of the Circle, provided its value
«be attained, either by pursuing the Logarithmic Series before men-
«tioned, or any other way ; yet J own with pleasure that this discovery,
«besides that it has saved trouble, has spread a singular Elegancy on
«the Solution.»

Bezeichnet man in der Stirling'schen Reihe z — — mil m und
di

führt die Bernoullischen Zahlen ein, so ergibt sich folgende Summa-

tionsformel :

*) Vergi. Note 4 im Anhang.

**) Doctrine of chances, p. 236.
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Log (1.2 3 m) ~- Log27T + (m + |) Log (m 4- ~)

_ (m 4- i-)- Jg.-««« + <? - 1} B^ +
1.2.2(m +4 3. 4.23(m4--43

di di

welche eine von der Moivre'schen etwas abweichende Form hat. Aus
beiden Formeln aber ergibt sich für lim m oo, wenn man zur
Exponentialfunktion übergeht:

lim m mm e"m \J2nm
m oo

welche Formel auch die Stirling sehe genannt wird.
Es ist unstreitig das Verdienst des mit mathematischem Scharfsinn

ausserordentlich begabten Stirling*), die Constante \J2rc
bestimmt zu haben. Berücksichtigt man aber, dass Moivre zuerst das

Coeffizientenproblem gestellt und gelöst hat und dass derselbe auch
die andere Aufgabe, die sich aus jenem ergeben musste, die Summe
der Logarithmen der natürlichen Zahlen zu suchen, unabhängig und
fast gleichzeitig mit Stirling ebenfalls gelöst hat. vergisst man nicht,
dass Moivre diese Formel zuerst in der Wahrscheinlichkeitsrechnung,
für welche ihr grosse Bedeutung zukommt, praktisch verwendet hat,
so muss man sagen, dass dessen Name mit der Formel in ebenso

verdienstvollem Sinne verbunden ist, wie derjenige Stirlings.
Die Ursprungsgeschichte der Stirling'schen Formel aber ist ganz

besonders geeignet, zu zeigen, wie befruchtend eine angewandte
mathematische Disziplin auf die reine Mathematik wirken kann.

18. Nachdem hiemit die Untersuchungen Moivres und Stirlings
über das Coeffizientenproblem und über die Summe von Log r(x)
sowohl unter sich wie auch in ihrem gegenseitigen Verhältniss gewürdigt

sind, kehren wir wieder zu Moivres Abhandlung über das Ber-
noullische Theorem in dessen «Doctrine of chances» zurück.

*) James Stirling, geb. 1696 in St. Ninians, Grafschaft Stirling, Schottland,
gest. 5. Dez. 1770 in Leadhiks, studirte in Oxford Mathematik, bewarb sich als

Agent einer schottischen Bergbaugesellschaft erfolglos um eine Professur. Er wurde
schon 1729 Mitglied der Boyal Society. Sein Hauptwerk, Methodus differentialis,
erlebte 3 Auflagen (1730, 1753, 1764), war aber schon 1718 unvollständig in den
Philos. Transact, erschienen.
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Als zweiten analytischen Fundamentalsatz gibt Moivre folgenden*) :

Der Logarithmus des Verhältnisses, welches der Coeffizient des mittleren

Termes einer binomischen Entwicklung von sehr hoher Potenz n
in Bezug auf den Coeffizienten irgend eines um das Intervall l von
ihm entfernten Termes hat, wird in erster Näherung durch folgende
Grösse ausgedrückt:

(m + 1 - ^Log(m 4-1 -1) 4- (m - 1 -f -L^Log(m4-l-l)

— 2mLogm 4- Log —^— >

m

vorausgesetzt, dass m — gesetzt wird.

Sein Lösungsverfahren für dieses Resultat ist ein analoges wie
beim Coeffizientenproblem, geht also aus von logarithmischen Reihen

(v. Misceli, analyt. p. 128 ff.) und es braucht daher hier nicht wiederholt

zu werden.
Moivre zieht dann weiter aus dem angeführten Satze die

folgenden hier skizzirten Schlüsse in Form von Zusätzen.

Zusatz 1. Wenn m —- eine unendliche Grösse be-
di

deutet, so ist der Logarithmus des Verhältnisses, ivelches ein Term

(immer in der Entwicklung (1 4- 1)") der vom mittleren Term um
2I2

das Intervall l entfernt ist, zum letzteren hat, gleich —

212
Zusatz 2. Die Zahl, deren hyperbolischer Logarithmus >

ist gleich der Reihe

__ J?!! _i_
41*

_
816

i
1618 32110

~n~ ¦" ~W 6n3
~t~ 24n* 120n5 ± • • • • ininl-

woraus folgt**), dass die Summe der Terme vom grössten an bis und
mit jenem, der um l Glieder entfernt ist, gleich ist:

__2_f 213 415 817 1619 _ Ì

\/2n^} 1.3n+2.5n2 6 7ns + 24 9n* + - " " m
j

Setzt man nun I s yn, alsdann wird die Summe:

2 [ 2s3 4s5 8s7 16s9

72T S-X3- + T^--6?T + ^4T9-+----ininf'
*) Loc. cit. p. 236.

**) Moivre gibt keine weitere Begründung dieser Folgerung.
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und für s —-> entsteht die Reihe:
di

_[ 1 1 1 1 1

V/2rr| 2 3.4 '2.5.8 6 7 16 ^ 24. 9. 32 120.11.64"

Durch Addition von 7 oder 8 Gliedern dieser ziemlich gut con-
vergirenden Reihe erhält man nach einfacher logarithmischer Rechnung
als Verhältniss der Summe der 1 Terme zwischen dem mittleren und

dem um 1 enlfernten in der Entwicklung von (1 4- 1) zur Summe

aller Terme die Zahl 0,341344.

Zusatz 3. Hat ein Ereigniss dieselbe einfache und constante
Wahrscheinlichkeit auf Eintreffen wie auf Nichteinireffen, so wird, wie
aus den Prinzipien der Wahrscheinlichkeitsrechnung hervorgeht, die

Wahrscheinlichkeil, dass das Ereigniss bei n Versuchen höchstens

-g- 4- 1 und wenigstens — — 1 Mal eintreffe, ausgedrückt durch

—, wenn S die Summe aller Terme in der Entwicklung von (14-1)
2n

genommen zwischen den Gliedern, die um 1 Terme links und rechts

vom mittleren abstehen (die äussersten inbegriffen), bedeutet. Die
Wahrscheinlichkeit also, dass ein Ereigniss unter gleichen Verhältnissen in
einer solchen Zahl von Malen eintrifft, die zwischen
n _i_ 1

T — T
die im Zusatz 2 gefunden wurde, durch 0,682688 und die
Wahrscheinlichkeit des Gegentheils, dass die Eintreffenszahl ausserhalb diese

Grenzen fällt, isl somit 0,317312.

Zusatz 4. Weil es aber unausführbar ist, eine unendliche
Zahl von Experimenten anzustellen, so können wir den vorhergehenden

Schluss auch auf grosse endliche Zahlen anwenden (folgt ein

Beispiel für n 3600).

Zusatz 5. Wir können daher als fundamentale Maxime

hinstellen : Das Verhältniss, welches in der Entwicklung des Binoms von

hoher Potenz die Summe der Glieder, welche vom mittleren Term aus

nach beiden Seiten um ein Intervall von —\ n Gliedern liegen, zur
di

Summe der ganzen Entwicklung hat, wird ausgedrückt durch die Zahl
28

0,682688 oder nahezu -jj—; hiebei ist aber nicht nöthig, dass

>~ — \Jn liegt, ist daher gegeben durch das Doppelte der Zahl,
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n oo sei; sogar für n 100 liefert die Regel noch ein

erträgliches Resultat, wie ich durch Versuche bestätigt finde. Noch

ist zu bemerken, dass —yn, im Verhältniss bezogen auf n, um so
di

kleiner wird, je mehr n wächst; wächst also die Zahl der Beobachtungen,

so werden die Grenzen im Verhältniss zu n immer enger
während die Wahrscheinlichkeit dieselbe bleibt.

Zusatz 6. Wenn 1 \/n gesetzt wird, so konvergirt die

Reihe in Coli. 2 weniger gut als für 1 -^-\a, und für eine
dt

erträgliche Annäherung sind daher viel mehr Terme zu addiren. In
diesem Falle gebrauche ich die mechanische Quadratur, die von Sir
Isaac Newton erfunden, von Mr. Cotes*), Mr. James Stirling und mir,
vielleicht noch von anderen weiter ausgebildet worden ist. Sie besteht

in der Bestimmung der Fläche einer Curve, wenn man von ihr eine

gewisse Anzahl von Ordinalen A, B, C. D, kennt, die sich

in gleichen Intervallen folgen, wobei auch gilt, dass, je kürzer die

Intervalle genommen werden, desto genauer das Resultat wird. Im

vorliegenden Falle beschränke ich mich auf 4 Ordinalen, die mit A,

B, C, D bezeichnet sein mögen. Wenn nun der Abstand der ersten

von der letzten gleich 1 ist, so wird die Fläche gleich

———~--———— -1 sein**). Setzen wir nun die Distanzen
8

1 ,_ 2 ._ 3 ._ 4 ._ 5 ._
gleich 0, gVn> 6Vn> 6 Vn> 6vn» 6Vn> und Vn> verwenden für unsern

3 ._ 4 ._ 5 ._ 6 ._
Fall die 4 lelzlen: Q\n, ~Q\n, ~ßXa, 6 Vn> nenmen alsdann die

Quadrate dieser Ausdrücke, verdoppeln jeden, dividiren durch n und

geben jedem das Zeichen minus, so haben wir die Grössen :

—, —, t—-, —2, welche die hyperbolischen Logarithmen der
2 9 18

*) Cotes Boger (10. VII. 1682 — 5. VI. 1716), Professor der Astronomie
und Physik in Cambridge, war der Verfasser der Harmonia mensurarum
(Cambridge 1722), welche den bekannten Cotcsischen Lehrsatz enthält.

**) Moivre leitet diese Formel (Misceli, analyt. lib. VII c. II: «De Me-

thodo differentiarum») aus der Ncwton'schen Interpolationsformel ab, nämlich aus:

»n=-+GV»+0 ^» + CK-
worin un das allgemeine Glied, u das Anfangsglied und J u, zt* u, /1* u
die Anfangsglieder der ersten, zweiten, dritten Differenzreihen sind.

Bern. Mittheil. 1893. Nr. 1324.
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Zahlen 0,60653, 0,41111, 0,24935, 0,13534 sind, die unsere 4

Ordinalen darstellen. Weil nun 1 -^\Jn ist> so ergibt sich nach

der Formel für unsere Fläche 0,170203^. Das Doppelle hievon
2

multiplizirt mit ;-— ergibt die Zahl 0,27160, und diese zu
\ iï\7C

0,682688 (Zusatz 7) addirt gibt 0,95428, welches die Wahrscheinlichkeit

ist, dass bei n Versuchen das Ereigniss weder mehr als

-z—f- y n, noch weniger als — yn eintritt.
c 2

Zusatz 7. Auf demselben Wege kann man finden, wie gross
die Wahrscheinlichkeit sei, dass die Zahl des Eintreffens zwischen

andern Grenzen liege, z. B. zwischen -— + -^-yn. Hiefür würde

sich die Zahl 0,99874 finden lassen.

Bei allen Beispielen spielt \/n die Rolle eines Modulus für die

Schätzung der Grenzen und der Wahrscheinlichkeiten.
Zusatz 8. Ist die einfache und constante Wahrscheinlichkeit

eines Ereignisses nicht gleich der entgegengesetzten, bildet die Zahl

der günstigen zu den ungünstigen Fällen das Verhältniss - -, so lässt

sich die Wahrscheinlichkeit dafür, dass das Ereigniss in n Versuchen
(Zìi-

eine solche Zahl von Malen eintreffe, die zwischen
| h +- / liegt,

ausdrücken durch wo S die Summe aller Glieder in der

binomischen Entwicklung von (a 4- b) bedeutet, die links und rechts
im Intervall von I Gliedern (die äussersten inbegriffen) vom grössten
Gliede abstehen. Das Verhältniss, welches bei einer sehr hohen

Potenz des Binoms (a 4- b) das grösste Glied der Entwicklung zur
Summe aller übrigen Glieder hat, wird ausgedrückt durch den Bruch

_JL+JL_*).
yabn7F

Zusatz 9. Der Logarithmus des Verhältnisses, welches ein
Term in der binomischen Entwicklung, der um das Intervall von
1 Termen vom grössten absteht, zu diesem hat, ist gleich

a 4- b

2abn
l2.

*) Meines Wissens gibt Moivre nirgends eine analytische Herleitung weder
von dieser Formel, noch jener im Zusatz 9. Die Lösung ergibt sich jedoch
analog wie jene bei Voraussetzung gleicher entgegengesetzter Wahrscheinlichkeiten.
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Zusatz 10. Ist die Wahrscheinlichkeit eines Ereignisses auf
Eintreffen verschieden von derjenigen auf Nichleintreffen, so werden

die Probleme, die Summation der Terme in der Entwicklung von (a 4- b)n

betreffend, mit derselben Leichtigkeit und Methode aufgelöst wie
diejenigen, wo die entgegengesetzten Wahrscheinlichkeiten dieselben sind.

Aus dem Gesagten folgt, dass der Zufall die Ereignisse, die
natürlichen Institutionen gemäss eintreten, sehr wenig in ihrem Eintreffen
stört. Wird z. B. ein rundes Metallstück, dessen Seiten fein polirt
sind und verschiedene Farben, z. B. schwarz und weiss zeigen,
aufgeworfen, so wird mit der Vermehrung der Würfe das Verhältniss
der erhaltenen Schwarz und Weiss sich immer mehr der Gleichheit
nähern und es ist schon bei 3600 Versuchen die Wahrscheinlichkeit
dafür, dass die Erscheinungszahl der einen oder andern Farbe zwischen

2
1770 und 1830 liege annähernd — ; in diesem Falle macht also die

6 1
Abweichung von der perfekten Gleichheit nur —— der gesammten

Versuchszahl aus und mit derselben Wahrscheinlichkeit wäre die Abweichung

bei 10,000 Versuchen nur -zj^r aller Erscheinungen. Mit der Er-

Weiterung der Grenzen aber würde die Wahrscheinlichkeit für das

Eintreffen einer der Farben in einer Anzahl von Malen, die in diesen
Grenzen liegt, immer wachsen und schliesslich zur Gewissheit werden.
Diese Ausdehnung der Grenzen aber, und das ist nicht zu vergessen,
ist bei Vermehrung der Beobachtungen im Vergleich zum Wachsthum

der Versuchszahl nicht so beträchtlich, diese wächst direct, jene mit
der Quadratwurzel.

Schliesslich musste also bei unendlich vielen Versuchen mit
Gewissheit eine Gleichheit unter der Zahl der Erscheinungen von Schwarz

und Weiss eintreten.
Die nämliche Betrachtung liesse sich auch durchführen für den

Fall, in welchem die entgegengesetzten Wahrscheinlichkeiten
ungleiche sind.

Abraham de Moivre schliesst seine werthvolle Abhandlung mit einer
Ueberlegung, die an Jakob Bernoulli's kühne Schlusskonsequenzen
erinnert : «And thus in all cases it will be found, that allho Chance

«produces Irregularities, still the Odds will be infinitely great, that in

«process of Time, those Irregularities will bear no proportion to the

«recurrency of that Order which naturally results from original Design. »*)

*) Doctrine of chances, 2. ed. p. 243.
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19. J. Todhunter hält Moivre neben Laplace für den grössten
Analytiker in der Wahrscheinlichkeitsrechnung, wenn er sagt*): «It
will not be doubted that the théorie of Probability owns more to him
than to any other mathematician, with the sole exception of Laplace. »

Pflichtet man diesem Urtheil ohne Einschränkung bei, so muss
insbesondere noch hervorgehoben werden, dass kein Mathematiker um
die analytische Darstellung des Bernoulli'schen Theorems grössere
Verdienste hat als Moivre. Nicht von vorneherein von einer so hohen

philosophischen Warte ausschauend wie Jakob Bernoulli und sich demnach

nicht weiter über die Wahrscheinlichkeit a posteriori verbreitend,
schenkte Moivre der mathematischen Analyse des Problems sein
Hauptinteresse, und erfolgreich hat er die heutigen Methoden und Resultate

der analytischen Darstellung desselben im Prinzip gegeben.
Es gelang Moivre nicht nur, mit Stirlings Hülfe einen leicht

zu berechnenden Ausdruck für die Fakultät zu finden, sondern er hat
auch schon als Summe von Termen einer binomischen Entwicklung
innerhalb gewisser Grenzen den Laplace'schen Integralausdruck gegeben.

Denn :

Bezeichnet M das Mittelglied der Entwicklung von (1 4- l)n,
Mi das um ein Intervall von 1 Gliedern entfernte Glied, so wird nach

Moivre (v. Zusatz 2)**) :

M, Jl i
2I2 412 816

1) -vr =e n= 1 r--H-r + ^~5- + in inf.
M n ' 2n2 ' 6n3 —

Wie nun Moivre die Summe der Terme zwischen M und Mi

gefunden, sagt er nirgends ; es lässt sich aber annehmen, dass er die
Ausdrücke der linken Seite der folgenden Gleichung in Exponential-
reihen entwickelt und summirt hat :

Mi Mu M! M -2la _«k!E
-\ ——\- 4- - e n 4- e n

M ^ M ^ M r M ~
i 2<12)S

I 1 I 04- e ir"4- en 4- e,
woraus sich ergibt
Mi 4- Mi_i 4- 4- Mi -f- M M. [Summe der Exponential^]

Moivre erhält dann, indem er noch durch die Summe der ganzen
Entwicklung dividirt den Ausdruck :

2 j _
213 415 8fJ_ 1619

_
\/gn£rj 1 3n+ 2 5n2 6 7n8 + 24.9n* :+ ' * " '

*) Todhunter, History of the Prob. p. 193.

**) Bei den folgenden Hinweisen auf Zusätze sind immer diejenigen in
Moivre's Abhandlung gemeint.
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Man wird sich nun leicht überzeugen, dass der Ausdruck in
Parenthese weniger jene [Summe der Exponentialgrössen] darstellt,
sondern genau das unbestimmte Integral der Reihe in Gleichung 1), d. h.,
Moivre nimmt für das Verhältniss der Summe der Terme von M bis
Mi (inclus, die äussersten) zur Summe aller Terme das bestimmte

Integral, welches man gewöhnlich als Laplace'sches bezeichnet

\J2nn
o

/' n dx.

Um die Wahrscheinlichkeit zu erhalten, dass bei n Versuchen
die Zahl der günstigen Beobachlungen sich innerhalb der Grenzen

-— + 1 liege, verdoppelt Moivre den Werth jenes Integrals (Zusatz 3)
di

und erhält somit allgemein für die bezeichnete Wahrscheinlichkeit :
•»1 2x2

/i
üx»

e~dx,
\l2ürct

oder im besondern Fall, wenn 1 — \J n gesetzt wird

W 0,682688.
Für den Fall, in welchem die entgegengesetzten einfachen

Wahrscheinlichkeiten ungleich sind, würde Moivre nach Zusatz 9 für W

erhalten :

2(a4-b) f --j^W -AAlA je" aabu" dx.'
y/2abn

0

Dieser Deduction haften zwei Ungenauigkeiten an. Zunächst wird
das mittlere grösste Glied zweimal gezählt. Dieser Fehler compensirt
sich zwar bei gleichen einfachen und entgegengesetzten Wahrscheinlichkeilen,

wenn die Versuchszahl n als ungerade Zahl vorausgesetzt
wird, in welchem Falle dann 2 Mittelglieder vorhanden sind.

Im Weiteren benützt Moivre offenbar die Summationsformel :

x=l M
z <p CO <p 0) dx-

x=0 J
Wie aber im nächsten Abschnitt gezeigt werden soll, hat Mac-

laurin zuerst gefunden und Euler es auf andere Weise bestätigt, dass

für eine stetige, nach endlichen Incrementen fortschreitende Funktion
in erster Näherung die Formel gilt (wenn die Variable sehr gross wird) :
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x=l /»1+1 jf -îl+l
2 <p(x)= I ip (x) dx — -Ux)

0 0

Darnach würde, bei gleichen entgegengesetzten, constanten Wahr-

scheinlichkeiten, wenn man die Moivre'sche Funktion e n die

Stetigkeit besitzt und für x o ein Maximum liefert, stall <p (x)
setzt und unter der Voraussetzung, dass die Versuchszahl n eine
gerade ist,

2 r- .4+1 2x= 8(1+1)"-,
W ~r=\ 2 e" n dx — e" n

\/2n^L J J
o

und im andern Falle, wenn die Versuchszahl ungerade.

q p /,1+1 2x» 2(1+1)« T
W -r^ 2 I e"ndx-e" n 4-1.

0

Ungeachtet dieser Ungenauigkeiten, die sich wohl begreifen
lassen, bleibt Moivre der Schöpfer des Laplace'schen Integrals und bat

überhaupt das Verdienst, die Infinitesimalrechnung zuerst in der
Wahrscheinlichkeitstheorie fruchttragend verwerlhet zu haben (z. B. auch

beim Coeffizientenproblem). Ferner hat Moivre zum ersten Mal
eine Wahrscheinlichkeitscurve angenommen, einzelne Flächenlheile
derselben durch mechanische Quadratur bestimmt (Zusatz 6) und deren

Wendepunkte angegeben*). Interessant ist auch, dass Moivre im Falle

von gleichen entgegengesetzten einfachen Wahrscheinlichkeiten die

Wendepunktsordinate resp. den Term für 1 —- y7IT (Zusatz 2) als

Fehlergrenze wählt. Diese spielt heute bekanntlich in der
Fehlertheorie**) eine wichtige Rolle, weil sich aus ihr ein charakteristischer
Fehler, welcher der Wurzel aus dem mittleren Fehlerquadrat entspricht,
ergibt.

Was die Analysis aus den Moivre'schen Wahrscheinlichkeilsstudien
für sich gewonnen, braucht nach alledem nicht mehr weiter ausgeführt
zu werden ; dagegen möchten wir schliesslich noch der logischen
Klarheit und Uebersichtlichkeit in Moivres analytischen Entwicklungen,
die man bei Stirling oft vermisst und worin Moivre vielleicht der
Lehrer der Meister in dieser Hinsicht — Euler und Lagrange —
geworden ist, lobend gedenken.

*) Vergi. Note 3 im Anhang.
**) S. Hagen, Grundzüge der Wahrscheinlichkeitsrechnung, p. 73 ff.
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VI.
20. Zeigte sich im letzten Abschnitt die Unzulänglichkeit des

Moivre'schen Verfahrens für die Ueberführung einer nach endlichen
Incremenlen fortschreitenden Summe zum Integral, so geht hinwieder
aus den Abschnitten III und IV hervor, dass die Summationsformeln

von Moivre und Stirling zur angenäherten Bestimmung eines Werthes
für Log I\x 4- 1) mehr empirischer Natur waren und daher der

Allgemeingültigkeit ermangelten. Aber bis um die Mitte des vorigen
Jahrhunderts halte sich die Analysis schon bedeutend entwickelt, und

es musste sich in der Reihenlheorie selbst das Bedürfniss nach
allgemeinen Summationsformeln gellend machen.

Maclaurin*) war der erste, der auf Grund der von Newton begründeten

mechanischen Quadratur eine allgemeinere Summationsformel
für Reihen mit endlichen Differenzen aufstellte. Er betrachtet**) eine

parabolische Curve von der Gleichung:
y A 4- Bz 4- C;2 +- Dz3 +-

oder wenn a die Anfangsordinate bezeichnet,
zda z2d2a z3d3a

y ~ a "i dz ¦" 2 dz2 "+"
3 dz3 ""

Maclaurin setzt nun dz 1 und bezeichnet mit A, B, C, D,

die Flächen, deren gemeinsame Basis gleich dz und deren Ordinaten

respective y, dy, d2y, d3y sind und findet für

a i
da

i
d2

i
d8a

iA:=a + TT + -3T- + ~4T-+
dann wird

da d2a d3a
a —A ~~ Ti 3~i Fi

Werden nun auf analoge Weise da, d2a, d3a, d*a

bestimmt, wie z. B.
d2a d3a d4a

da B - "Ti Fi IT-
so ergibt sich schliesslich durch Substitution :

B_ _C_ _
E G _a ~~ 2 + 12 720

"*""
30240 +

oder allgemein :

*) Colin Maclaurin. geboren zu Killnodden in Schottland im Jahre 1698,
war Professor der Mathematik zu Aberdeen und Edinburgh. Er starb 1746.

**) Treatise of Fluxions (Edinburgh 1742) art. 830. a. fs.
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a A — KB 4- LC — MD 4- NE +
worin die Coeffizienten K, L, M, N wenn man k — 2! »

1

-q-j-j ni -7-7-> setzt, nach folgendem Gesetze

fortschreiten :

K k A
1 =kK - ' à
M kL — 1K 4- m =0
N kM — IL 4- mK — n

720

so dass also die Coeffizienten der Flächen D, F, H verschwinden.
Nun ist A gleich dem Integral von ydz, B dasjenige von dy dz, G

von d2y dz, alle Integrale innerhalb der Grenzen 0 und
dz 1 genommen. Daher ist B gleich der Differenz der
Ordinalen yt — y0 yx — a, und C ist gleich der Differenz der
ersten Ableitungen dieser Ordinaten nach z, E und G gleich der
Differenz der 3. resp. der 5, Ableitungen derselben Ordinaten,
Bezeichnet man diese Differenzen mit a, ß, y, ö, so wird a

oder:

Vn A - — 4- -L _ _JL -+ _J h" 2 ^ 12 720 r 30240 —
Setzt man nun eine Basis z0 zn in n aequidistante Theile zerlegt

voraus, von denen jeder Theil' gleich dz 1 sei, bezeichne S

die Summe der aequidistanten Ordinalen y04-yi 4-y2 4- yn-2 -f- y.i-1,
sei ferner nach gegebener Definition a yn — y0,

dyn dyo d3yn d3yo

ß==~iü dT'^=nï? sr-,...,«» ist

S A - 4 J? 1— 4- - 4-
2 T 12 720 ' 30240 —

Dies ist die Summationsformel von Maclaurin für den Fall eines
Incrementes gleich 1 ; für ein beliebiges Increment h erhält derselbe
analog die Formel:

_A_ a_ ßji_ _ y h3 ô h5 _— h 2 '~ 12 720 + 30240 +
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Erinnert man sich, dass A die Fläche der Curve von z0 bis zn

ist und denkt man an die Bedeutung von a, ß, y so ist leicht
die Identität der letztem Formel mit der folgenden, nämlich mit der
Euler'schen (für h 1)

±
worin B(i), B(2), B(s) die Bernoulli'schen Zahlen bedeuten,
festzustellen.

21. Euler gibt die Formel auf rein analytischem Wege in den

Inst. Calcul. Different, p. II c. V: «Investigatio summae serierum ex

Termino generali». Sei

y f(x), dann wird :

v f(x - 1) y - Al 4- -Az d_I_±
1 ; y dx r2!dx2 31 d y3

Nun ist, wenn man mil A den Werlh für x o bezeichnet,
2 y 2 Y — y •+ A, und subslituirt man diesen Werth in die

Gleichung:

v v - v v _ v d_y _1_ vdV _ JL_ v o-y ±" s " dx ~ 2! " dx2 3! ~ dx3

so kommt:
_di_ l vd_i 1 vi3y -dx 2! " dx2 ' 3! " dx3

v — A ^ -^- — ^Jj-4v^J -jr3 — Av O! " Av2 \ D -" rlv3 '

dy
Setzt man —f- z, so ergibt sich durch Subslilution :

dz

- z - fz d x 4- A vil _ _L ^ +-- z - j zdx r-2,-dx 3!-dx2 -

4- Constante.

Es ist aber ebenso :

vdJ 7. 1 vd2z_ J_ vd3z±
"dx ¦" 2! "dx2 3! "dx3
vd^z_dz J_ v(Pz 1_ ^dh -+
~dx2—dx"1- 2! "dx3 3! " dx4

"

Diese Werthe in die Gleichung für 2 z eingesetzt, ergibt die

neue Formel :

*. /.«.+„+,£+,£,+ •¦•¦.
Bern. Mittheil. 1893. Nr. 1325.
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und zur Bestimmung der Coeffizienten a, ß, y, ergeben sich

die Gleichungen :

« -\ °
" 1

a= 2

ß

7

-i+i-o
ß a 1

2^6 24
— 0

also:
y 0

è 7 ß «
2 ' 6 24 +

1

120
0.

1
d

Wo

Das Fortschreitungsgesetz der Coeffizienten findet Euler nach

einer längeren Untersuchung über die Bernoullischen Zahlen, die hier
1 "p> /¦ \

nicht ausgeführt werden soll, als folgendes : « —, ß —-4y=o,
R foi

d — ¦ e 0, und demnach wird seine Summenformel :

*-/z dx 4- gZ
I

Bfi)
1

2!
dz

dx
B(2) d3 z B(3)

4! dx3
'

6!
d5z
dxö

—
B(0 d 7 z _(_

8! dx7 + C

Aus dieser von Euler gegebenen Form erhält man sofort durch
Subtraktion von z und durch Annahme von Grenzen, wenn man z —
f(\) setzt, die folgende:

[B(.)A)|.+ +
22. Unter den zahlreichen Anwendungen, die Euler von dieser Formel

macht, findet sich (im nämlichen Kapitel. Art. 157) auch diejenige zur

Ermittlung eines Näherungswerthes für Log I\x-\-l)*). Ist z — Log x,
so wird :

xv I F
1

r Bd) B(2) +2 Log x x Log x — x 4- - Log x 4- - - '

3 4 x s
4-C.

und für x 1, folgt

C= 1 -
B(i)_ B(8)

1.2 ~^ 3.4
Bis)

5.6 +

*) DÌl' folgende Darstellung gibt übrigens schon Maclaurin mittelst seiner
Summationsformel, v. Treatise of fluxions, art. 842.
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Nun ist nach der Formel von Wallis :

rc __ 2.2.4.4.6.6 (2x— 2)2x

2 ~~
1 3 .3.5.5.7 (2x—l)(2x—1)

somit

Log n — Log 2 2 Log 2 4- 2 Log 4 4- 2 Log 6 4- 4- Log 2x

— 2 Log 1 — 2 Log 3 — 2 Log 5

Weil aber für lim x oo :

2Logx C + (x4-|)Logx-x

*f Log x C 4- (2x +1) Log 2 x - 2 x
X l ^

2* Log2x C 4- (x 4-|) Log x 4- x Log 2 — x,

so folgt aus den beiden letzten Gleichungen :

Log 1 -fLog 3+ Log 5 4-... Log(2x-1)= x Log x 4- (x + i)Log2—x,

also für lim x oo :

Log ^ 2 C 4- (2x4-1) Log x 4- 2 x Log 2 — Log2 — Log x — 2 x
di

— 2 x Log x - (2 x 4~ 1) Log 2 4- 2 x

Log ^ 2 C — 2 Log 2, C \ Log 2 n.
di dt

Es ergibt sich somit für
x=x

x^ooS LügX
2

Lüg 27t + (X + k Lüg X _X' üder

x=l

lim x =oo x! \2tv + x%+~2e'%.

23. Die Summalionsformel von Euler und Maclaurin ist aber nicht

nur geeignet für die Darstellung eines Näherungswerthes für Log T(x 4-1),
sondern auch zweckmässig zur Summation der binomischen Tenne in
derjenigen Form, in der sie nach Anwendung der sog. Slirling'schen
Formel bei der Darstellung des Bernoulli'schen Theorems erscheinen,
und in der That ist seil Laplace, der jene Formel von Euler und

Maclaurin zuerst für den bezeichneten Zweck verwendete*), kein
anderes Summationsverfahren gefunden worden. Jene Formel ersetzt
somit in hinreichender Weise die mühsamen empirischen Methoden

Moivres zur Ermittlung eines Näherungswerthes für den Bernoulli-
schen Summenausrtruck.

*) S. Note 1 im Anhang.
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Der geniale Laplace hat zum ersten Male mittelst seiner
fonctions génératrices» eine noch allgemeinere Methode angegeben,
um einen Näherungswerth für Log 27x 4-1) zu erhalten, nach welcher
auch die Constante ohne Benutzung der Wallisischen Formel direct
aus der Entwicklung hervorgehl*); er hat auch, nach dem Yorgange-

von Lagrange, die Euler-Maclaurin'sche Summalionsformel auf anderem

Wege gefunden. Aber Laplace räumt seinen «fonctions génératrices»
gewiss einen zu grossen Einfluss auf die Darstellung des Bernoulli-
schen Theorems ein, wenn er schreibt**): «Le calcul des fondions
génératrices, appliqué à cet objet, non seulement démontre avec facilité
ce théorème, mais de plus il donne la probabilité que le rapport des

événemens observés ne s'écarte que dans certaines limites du vrai
rapport de leurs possibilités respectives» ; denn alle diese Consequenzen
sind in genügend allgemeiner Weise schon mit Hülfe der Formel
von Euler und Maclaurin zu ziehen. Schon vor Laplace, um die Mitte
des vorigen Jahrhunderts, wäre es möglich gewesen, dem Bernoulli-
schen Theorem diejenige analytische Form zu geben, die es heute
besitzt. Der Grund, warum es nicht geschehen, liegt darin, dass sich

von Moivre bis auf Laplace kein Mathematiker in productiver Weise
auf diesem Gebiete bethäligte.

* **
24. Die Ergebnisse des historischen Theiles dieser Arbeit, der

die Entwicklungsgeschichte des Bernoulli'schen Summenausdruckes zum
Laplace'schen Integralausdruck geben sollte, fassen wir folgendermassen
zusammen :

1. Jakob Bernoulli I. hat nicht versucht, einen Näherungswerth

für
m ;<p 4-1

2« m n
— P q
ml n!

m ftp — 1

zu geben. Weil er das nach ihm benannte Theorem nur als Hülfs-
satz seiner Theorie der Wahrscheinlichkeit a posteriori betrachtete,
genügte ihm der ganz allgemein gegebene Nachweis, dass mit der

Vermehrung der Beobachtungen auch die Wahrscheinlichkeit immer grösser
wird, dass die Erfahrungswahrscheinlichkeit eines Ereignisses gleich
seiner absoluten wird.

*) Vgl. iNote 4 im Anhang.
**) Essai philosophique sur les probabilités p. 74. Theorie anal, des probab..

introduction p. XLVIII.
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2. Abraham de Moivre gab im Prinzip die Laplace'sehe Analyse
des Bernoulli'schen Theorems. Er fand nicht nur Näherungswerthe für
den Binomialcoeffizienten und für r(x), sondern gab auch das Laplace-
sche Integral als Summe des Bernoulli'schen Ausdrucks in der Form von

2(P fq) f ' J±lx,.I e 2pq," dx.
\/2pq,«7rt/

o

3. James Stirling hat, auf Anregung Moirre's, den cyklometri-
schen Charakter der den Näherungswerth für F(x) und das Laplace-
sche Integral begleitenden Constanten erkannt.

4. Aber erst der Summationsformel, welche von Maclaurin, dann

von Euler gefunden worden ist, verdankt das Bernoulli'sehe Theorem

<lie allgemeine Entwicklung jener exakten analytischen Form, die ihm von

Laplace gegeben wurde.

VII.
25. Der jetzt folgende Abschnitt gibl eine Verallgemeinerung der

Serret'schen Ableitung der Stirling'sehen Formel.
Die ersten Darsteller dieser Formel benutzten zur Bestimmung

•der Conslanten die Formel von Wallis. Nun hat J. A. Serret in einem
Mémoire sur l'évaluation approchée du produit 1.2.3 x, lorsque

x est un très grand nombre, et sur la formule de Stirling*) auf

elegante Weise gezeigt, dass die Formel von Wallis zur Ableitung
derjenigen von Stirling vollkommen hinreichend ist. Er sagt darüber
«inleitend: « Or, cette simple formule de Wallis suffit, à elle

«seule, pour établir complètement celle de Stirling et la déduction est
•«si facile que la deuxième formule peut être regardée avec raison comme

«une transformée de la première.» Serret's Darstellung ist die folgende :

Die Formel von Wallis ist:
n 2.2.4.4.6.6 (2 x - 2) (2 x - 2) 2x
2 1.3.3.5.5.7 2 (x - 3) (2 x - 1) (2 x - 1)

und sie nimmt die sehr einfache Form**) an :

(fürx=oo)

*) Comptes rendus hebdomadaires des séances de l'Académie des sciences,
année 1860, t. I. p. 1662.

**) Die Transformation ergibt zunächst :

_
2 [(x—l)!]4^*'). 2x _ J. (x !)4 24x

S(x)- n [(2x—1) !]3
'"-

7TX L(2x) !J2
'

dann nach einfacher Umformung
[f(x)]>SM r x! T r (ax!) T

' - l x* ]/2Üi J l (2x)2*V44x J f(2x)
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wenn man mit <p(\) entweder den Ausdruck :

1.2.3 x

V'TTxx+Y
oder das Produkt dieses Quotienten mit einer Exponentialfunktion von
der Form a* bezeichnet, wobei a eine beliebige positive Constante
bedeutet. Die Gleichung 1) gilt also auch, wenn man setzt:

12.3 x
2. <p{\) — —'-—-— \ ¦ (e Basis der nalür. Logarilh.)

\Jt7c e'x xx+"2

Aus dieser Gleichung folgt:
<f(\) 1 / l\x+4_ -l+(x+4)Log(l+i).

3- ç^+iy-TV1+v ~
Da x>l, wird, wenn 0' und 0" zwei Grössen bezeichnen, die

sich zwischen 0 und 1 bewegen,

T / l\ 1 0' 1 1 0"
Log (1 4--J 7 - —, - _ -2 4- —,

folglich

(,+i)L„8(1+i)=H-(î-^-+^
wo 0 zwischen — 1 und 4- 1 gelegen ist, daher

^X) ex~

^(x4-l)
Aenderl man nun successive x in x 4- 1, x 4- 2, 2 x — 1,

und bezeichnet man mit 0„ Q,, 08, 0X., Grössen, die zwischen

— 1 und 4- 1 liegen, so wird

yfr+D e(^ y(-v+2? _ ^ y(2x-l) __ fe
^(x+2) ' ^(x+3) ' <p(2x)

'¦ - *

MultipliziO man alle diese Gleichungen und beobachtet, dass

00 0, 0X-, 1

x2 "^ (X+-1)2 4- • • • •

(2x—l)2 ^ x
so kann man schreiben :

c ^ 0

f(2x)
wo 0 eine Grösse ist, die zwischen — 1 und 4- 1 liegt, und wird
x oo, so hat man

4. -§L 1. (für x oo).
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Dividirt man nun Gleichung 1) durch 4) so kommt:
<py\) 1 (für X — OO)

d. h. nach Formel 2) :

1 2 3 x sji'jc e"x xx+ 2" (1 4- £X),

wo £x eine Grösse ist, die für x oo zu 0 wird.
26. Ist nun diese von Serrel gegebene Darstellung eines Näherungswertlies

für r\x 4- 1) auch die einfachste und eleganteste, die je
gegeben wurde, so erscheint sie doch einer Verallgemeinerung fähig zu

sein. Wenn man die von Serret gefundene Funktion mit S(x)
bezeichnet, so ergibt sich aus der Formel von Wallis für

i™ _,, _ r il T r (2x)! T 1

x=oo ^) - \ vY^rJ ' L(2x)2V4^x"J h
oder wenn man den Ausdruck

x!
xx \J2ttx

mit tpix) bezeichnet, so wird

D lim
S(.x) ^ - 1.

X oo <p(2x)
Serret selzt aber die Funktion

x \J2tix e

Diese Erweiterung von S(x) mil e4x ist in der That beim
Gedanken an den Stirling'schen Näherungswerth für x! sehr naheliegend.

Aber im allgemeineren Falle muss jene Exponentialgrösse erst
im Verlaufe der Entwicklung als gewisse Bedingung sich darstellen,
wie im Folgenden gezeigt werden soll.

Es sei also

xy27rx
1Ìra S« -^ !¦
x oo v(2x)

Wie linden wir hieraus einen Werth für x Offenbar, wenn
es gelingt, nachzuweisen, unter welcher Bedingung

hm J^OO _ x isL Denn alsdann wird
x oo (f(2\)

^!«
lim f(2x) _ x^ L
x=oo y(x) ' xx\/27rx

f(2x)
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Es soll nun untersucht werden, unter welchen Bedingungen

lim Ç>0)

X=oo <p(2x)

Dazu ist

1 ist.

f(x+4) "V W
und Log / |

^ 1 •+ —-=
9?(x-+l) 12x2

1 (n—1 )(—!)»
4 in inf.

12x3 ' ' 2n(n44)xn
Die Beihe ist, da x > 1, convergent und die Glieder nehmen,

selbst für x 1, schon vom Gliede — in 3 an, ab.

Es wird daher

2)

(Log

Log

Log

ç)(x4-2)-

9?(2x-l)

1 +
1 +

a
0.

<p(2x)
1 +

(x+1)2

0X-1

12x3

wo 0 < 0, <
wo 0 < 0, <

J_
T2

J_
12

(2x)2
wo 0 < 0x.i < 12

Werden die Gleichungen 2) addirl, so findet man

3) Log
yfr)

x + 0
wo 0 < 0 <y(2x) ' x ^ ^12

woraus, wenn man zur Exponentialfunktion übergeht, folgt

7+4 e_x ex, oder
f(2x)

4)lim ^0e.x==1.
X=oo Ç5(2x)

Z)/e Multiplikation mit der Exponentialgrösse c~" ist somit die

gesuchte Bedingung für die Existenz der Gleichung :

lim <p(x)

X—oo <p(2x)
1.

Durch Division der Gleichungen 1) und 4) geht hervor:
x!lim

_ <p(x) ex 1, oder da <p(x)
x oo ' - - ' - ' xx\/27rx

resultirt schliesslich

lim
X= oo

oder x! xx ex \J2nx (l+cox)
worin iox für lim x oo verschwindet.

i e~ yfi.nx
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Bei der Bestimmung der Grenzen findet man*)

xx e-x \/2ttx< x! < xx e-x+^ \J~2nx und

weil die Quantität -rjr- schon in der Gleichung 3) als Grenze aufge-

treten, hegte ich die Vermulhung, dass sie sich ebenfalls durch die

obige Entwicklung als Grenze finden Hesse. Der Nachweis ist mir
aber bis jetzt nicht gelungen.

VIII.
27. Dieser Abschnilt gibt einen neuen vereinfachten Ausdruck

für das Bernoullische Theorem.

Es wurde im historischen Theil dieser Arbeit gezeigt, wie
Moivre zuerst für den Bernoullischen Summenausdruck

in /i p + 1

W "V /<! "V^j m! n! p q '

m fi p — 1

worin m 4- n /.t, p 4- q — 1 und 1 y \/2pqrn ist, einen

Integralausdruck gegeben hat, welchen alsdann Laplace wie in Note 1 im

Anhang ersichtlich, mit vollkommeneren Methoden genauer gab durch

"-£/ Y-l* e'f
e

l dt 4- ~r=y 27r,«pq
o

Dieser Ausdruck ist seit Laplace unverändert geblieben, man

findet ihn heute noch in den besten Handbüchern für
Wahrscheinlichkeitsrechnung, so in denen von Meyer und Czuber, von Bertrand
u. a. m.

Bei Operationen mit demselben erweist sich jedoch die Bestfunktion

e '
i - als sehr unbequem. Um so mehr muss es auffallen, dass

V27T^pq
seit Laplace noch niemand es versucht hat, dieselbe durch Vereinigung
mit dem Integral ihrer isolirten Stellung zu entheben.

Dass dies möglich ist, soll im Folgenden gezeigt werden.
r.S sei u ju u

p q das allgemeine Glied des
mini

Binoms (p 4- q)", worin p und q die bekannte Bedeutung haben.
Alsdann wird, wie es schon Laplace gezeigt hat, mit Hülfe der Formel

*) Serret gibt diese Grenzenbestiinmung auf hübsche Weise in seinen

Cours d'algèbre supérieure (5. éd., Paris 1885) tome II, art. 393, p. 218.

Bern. Mittheil. 1893. Nr. 1326.



— 170 —

von Stirling und unter Berücksichtigung des Salzes, dass diejenige
Combination der Zahlen des Eintreffens und Nichleinlreffens des

Ereignisses ein Maximum von Wahrscheinlichkeit besitzt, die unler
der Relation steht p : q — m : n, die Wahrscheinlichkeil, dass bei

f.i Versuchen das Ereigniss (dessen einfache und konstante
Wahrscheinlichkeit gleich p, dessen entgegengesetzte gleich q ist) eine
Anzahl Male eintreffe, die zwischen /<p +7 I liegt, ausgedrückt durch

m ,«p 4-1

w =Za m! n!
i» ci =-y« + ywu + • • •

m=/.ip —1

+ ym +- yv + yc+i + • • ¦ • y^+i-i 4- yv+l,
worin also in allen Gliedern m durch ^p und n durch f<q ersetzt
ist und y» das Maximalglied bedeutet.

Dann kann man setzen :

;.= l
W ^ [yr-i + y,,+/\] — yv, oder

;.—1

— >c(A) — -Q ç(Q). wenn
2

A=0

_ ü_
a(X) =_- ;

2
-e 27m, also <p(0) - ist.

V 2^<pq V 27T/(p(i

28. So viel mir bekannt isl, wurde der Uebergang von der zuletzt
gegebenen Summe zum Integral seit Laplace immer mit Hülfe der
Summalionsformel von Maclaurin und Euler gemacht. Eine eigene
Methode für diesen Uebergang, auf mechanischer Quadratur beruhend,
gab mein verehrter Lehrer, Herr Privaldozenl Dr. Ch. Moser in Bern,
der sich bei versicherungstechnischen Arbeiten oft mit dieser Materie

beschäftigte, in seiner Vorlesung über das Bernoullische Theorem (im
Sommer-S. 1802) und zwar in folgender Weise :

2 *'
Sei f(x) ._ -e 2/<p<i und

V 2?ff<pq

x 0, 1, 2, 1.

Die Funktion f(x) liefert, weil ^<pq positiv ist, für x 0 ein
Maximum und nimmt mit wachsendem x stelig ab. Die rechte Seite



— 171 —

der Gleichung für W kann, da x nur die ganzzahligen Werthe 0, 1,
2, 1 betritt, geschrieben werden:

W Af(0) 4- 1 f (1) 4- 1 f (2) 4- 1 f(x).

Die einzelnen Summanden seien als Rechtecke dargestellt und

zwar f (0) mit der Basis — und die übrigen Werthe je mit der Basis 1.

Werden diese Rechtecke über einer gemeinsamen Grundlinie
aneinandergereiht und wird über dieser Grundlinie als Axe der x die
Curve f(x) conslruirt, so schneidet diese die der Basis gegenüberliegenden

Seiten der für f(l), f(2) f(l) erstellten Rechtecke
je in der Mitte. Die Fläche, welche von der Grundlinie, den

Ordinaten f(0) und il 1 -j I und der Curve f(x) eingeschlossen ist,

hat zum Ausdrucke: I f(x) dx. Substituirt man diese Fläche für
*J

o

die Summe der Rechlecke, so kommt bei einem einzelnen Rechleck

ungefähr ein so grosses Dreieck hinzu, wie die Curve von dem Rechteck

abschneidet, — absolut genau, sobald die Curve für ihren über
der Basis eines Rechtecks gelegenen Theil als geradlinig betrachtet

werden kann. Nur beim ersten Rechleck. — f (0), hebt sich das
di

kleine Fehlerdreieck nicht auf. Dieses wird jedoch, da f(x) für

x 0 ein Maximum aufweist, sehr klein. In Näherung muss daher

gelten :

=2f(x) - ìf(o)=J
**T

w 2^ f00 - 2 f(0) J f(x) dx-

x 0, 1, 2, l.o
Das Resultai, das diese geometrische Ueberlegung liefert, leuchtete

mir ein und regte mich an, eine Untersuchung auf analytischem

Wege vorzunehmen.

29. Sei also
x l

1) W ^S <p(x) — — <p(Q) oder auch

x 0

x 1 — 1

2) w==2^x) + ^)-^(0),
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2 _^!_
worm tp(x) e 2,upq ist.

\/27r1upq

Nach Euler's Summationsformel*) :

x x

__ rB(2)y"'(x)1xt/

wird

und

x — ' /-»l+iI 1 1

3) 2 ^x) J ^Wdx-2 ^(1) + 2^(0)
x 0 l°

x l—1

4) 2 tf*) f ?(x)dx - i PO) + ^ ^(°).
x 0 V

bei Vernachlässigung der mit <p'(x), <p'"(\) behafteten

4 1
Glieder, weil q>' (x) • — e 2,upn also von

V/27TJwpq 2jupq

der Ordnung — ist (wo ft sehr gross vorausgesetzt wird).

Die Werlhe 3) und 4) in die Gleichungen 1) und 2) substituirt,
ergibt :

/»l+i
5) W I ç>(x) dx — - <p(14-1) oder

*o

6) W J%(x) dx 4- | p(l).
o

Also liegl

/i
/»i+i

ç> (x) dx und I
ç? (x) dx, und es sei daher

o o

*) Dr. Bruno Borchardt benutzt in seiner «Einführung in die
Wahrscheinlichkeitslehre» (Berlin 1889, Jul. Springer) diese Summationsformel unrichtig,
indem er die Grenzen auf beiden Seiten der Gleichung gleich nimmt, während
die obere Grenze rechts um eine Einheit höher genommen werden muss.
Borchardt erhält auch ein unrichtiges Resultat (p. 31 und 32 seines Buches). Auch
in Meyer und Czuber «Vorlesungen über Wahrscheinlichkeit» (Leipzig 1879,
Teubner) finden sich Unrichtigkeiten (oder sind es bloss unkorrigirte Druckfehler
im Gebrauche der Grenzen (p. 101 und 102).



— 173 —

/»i+f
W J if (x) dx, wo e eine kleine Grösse, zwischen 0

o

und 1 gelegen, ist, die bestimmt werden soll. Zu diesem Zwecke suche

ich zu entwickeln
»i+f

<p (x) dx./•
i

7) Man setze | <p(l) f(l), dann wirdJVw

/l+£<p(x) dx f(l+e) — f(l) oder nach Taylor

i
D2f///

f(i) + m + ^P- + 4t5- + • • ¦in ""¦ - t(l)

Es ist aber nach 7):

f'(I) 9(l), f'(I) f'Q), f'"(0 <p"(\),

somit folgt durch Substitution dieser Werthe in 8) :

9) ß^ - «,(,) + M + i» + m i«,.

l
Weil e< 1 ist, so ist die Reihe q) convergent und man

erhält unter Vernachlässigung der Glieder von der Ordnung — in

erster Näherung:
-,1+e

ip(x) dx e <p(l).fi
Es war aber nach 6):

»I+e

^(1) also
/.it- j
I <P(*) dx y

s y(l) — tp(1) oder

1

Daher wird:

I ^j(x) dx 4- I <p(x) dx I y?(x) dx.

0 1 0

W
~0
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Analog folgt aus Gleichung 5) :

,1+1-0
1

I <p(x) dx =— -—^(14-1) und durch Ent-

*i+i
Wicklung des Integrals links, nach Taylor, wie oben, ergibt sich
wieder:

- 0 tfl-fl) - -1 çKI+1) oder

'-A
und

/»i+i /"i+i p+l
W I p(x) dx — I cp(x) dx I <p(x) dx.

o 1+1-} o

2 x2
30. Es war aber <p (x) erj^ a]s0 wird

\27ri.ipq

^\ A<2 f1'
W ; i-z I e 2upq dx.

o

Oder setzt man $' — ç x2, wo p —
2f<pq

so wird
d££=x\/p d$=dx \/p und dx

Für die Grenzen gilt dann :

x 0 ,1=0
x » +1 i - (i +1) v/r

und nach einfacher Substitution seht hervor :

*-£/' d|.

0

Die dem Laplace'schen Integralausdrucke anhaftende, bei

Anwendungen desselben lästig werdende Restfunktion ist hier mit dem

Integral vereinigt. Dabei hat eine Veränderung der oberen Grenze

stattgefunden: im Laplace'schen Integral war y li / hier
V 2«pq

lsl '-(' + i) \tèr
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Dieser neue Ausdruck erleichtert nicht nur die sehr zahlreichen
theoretischen und praktischen Anwendungen des Bernoulli'schen Theorems,

sondern ermöglicht auch genauere Resultate, und ich behalte mir
vor, gelegentlich einige dieser Consequenzen zu ziehen.

Anhang.

Note 1. Laplace gibt folgende Darstellung des Bernoulli'schen
Theorems*) : Seien p und q resp. die einfachen Wahrscheinlichkeiten der

Ereignisse E und E', dann ist die Wahrscheinlichkeit, dass in m + n

u Versuchen das Ereigniss E m mal, E, n mal eintreffe, gleich dem

(m + l)ten Terme in der Entwicklung von (p 4- q>", nämlich gleich
1.2.3....« m n

p q •
• 1.2.3 m 1 2 3 n

Bezeichnen wir den grössten Term in dieser Entwicklung mit M,

so wird sein ihm vorangehender gleich • r—r-,sein nachfolgender
q m + 1 '

Mq m
gleich • :—7- sein. Damit aber M der grösste Term ist, muss& p n -+ 1 '

gelten
m < 2 < in4i

n+l -*
q

und hieraus folgt, dass

C"+l) P — 1 < m < (,«+l) p
oder m (u+1) p — ff. wo ff < 1, ist.
Nun wird

m+ff n+l —or p m+ff
p — - > q 1—p '———) — ——'¦ 1

,u+l ,u+l (j n+l—ff
und sind 111 und n sehr grosse Zahlen, so gilt die Relation

p _ m

q~ n
'

d. li. das Eintreffen derjenigen Combination \der Ereignisse E und E' hat
ein Maximum von Wahrscheinlichkeit, die unter der Relation p : q m : n
steht.

*) Théorie analytique des probabilités (3. éd. Paris 1820) Liv. II, Chap. Il,
p. 280 e. 1. s.
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Der Ve Term nach dem grössten M ist gleich
a m-1 n+l

p q
(m-1)! (n+l)!

Nun ist

1 2 3 n nn+T l^äF jl + j^ H

und es wird
1 (m-l)i-TÜl U 1

(m-1)! ^äTl 12(m-l) }

__J„ („ -tj'-l J^ (i l
(n—1)1 \/57r t 12(n-l) I

Durch logarithmische Entwicklung und unter Vernachlässigung der Glieder

von der Ordnung — wird
P

1 1S „ « L 1 l3
(m_l)l-m-¥ el-^ nil-m-T ji + _
(n+l)-1"1-! e-1^ n"1"11-} {l H

2m 6m*

- -'—T <- ¦ _L_JL
2n 6n

in + s m — C

Weil p \—r ist (s < 1), so kann man setzen: p — wena
,« + 1 iu

C sich in den Grenzen —,—r und — —r—^ bewegt, also ein ächter
,« + 1 ,« + 1 ° '

n + tvird q und man hat
i"

m-1 n+l
m-1 n+l m n (1+Jj£Ü,

u t mn

n + tBruch ist. Dann wird q und man hat

woraus sich ergibt
,«i2

m-1 n+l VV « 2mn(
1

,«£1 l(n-m) l3 Is

i! t/2nWÏ I tmnt 2mn 6m2_r6n2(m-1)! (n+l)! * » ^-^
Nimmt man in der letzten Gleichung 1 negativ, so erhält man einen
Ausdruck für den Term, der dem grössten um 1 Glieder vorausgeht, und
die Summe der beiden ist gleich

2 \/p _ £i!
e 2mn

\J2n mn

Nun wird die Summe derjenigen Terme in der Entwicklung von (p + q>",
welche gelegen sind zwischen 2 Termen, die nach links und rechts aequi-
distant um 1 Terme vom grössten M abstehen (inclus, die äussersten),.
ausgedrückt durch das endliche Integral :

1=1

^ 2V47 -f. V«
/s e ?m« — 1

j™* V2wmn V2/fmn
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wobei berücksichtigt ist, dass man das grösste Glied, welches man für
1 0 bekommt, nur einmal zu zählen hat.

Wenn nun Vj eine Funktion von 1 bezeichnet, so gilt die Formel
(nach Maclaurin und Euler):

2^=^.-1 ^+2^+^-. + Const,

2\jfi _JÜL
welche sich in unserm Falle, wo Vj —-, e 2mn ist. und die

y2?rmn

erste Derivirte nach 1 von der Ordnung — wird und vernachlässigt

werden kann, in erster Näherung reduzirt auf:

^yi JYidl—gYi + Const.

Und nimmt man rechts die bestimmten Integrale (deren obere Grenze

um eine Einheit höher ist als bei der Summe links) so wird, wenn man
das Maximalglied für 1 0 mit Y bezeichnet:

^>, i'x I 5'd;- — "g yi +~2 Y oder auch

;.=o %

*=1 /»1

ydA+ -lyi + i Y.

A=0 o

Substituirt man nun für yt und für Y die gegebenen Werthe in den

i v/^~
Ausdruck 1), so wird derselbe, wenn man t —. setzt, gleich

y 2mn

2 r'%'«dt+^;ffrj -^V7:2?rmn

Weil nun m u p + £ (£ < 1), so hat man

m++ _ __ I+£ _ t ^2mn J_
P-

P~
P

~~
p\lpZ r1'

also drückt die Formel 2) die Wahrscheinlichkeit aus dafür, dass die
Differenz zwischen dem Verhältniss der Zahl des Eintreffens des Ereignisses

E zu p, der Gesammtzahl aller Versuche und der einfachen
Wahrscheinlichkeit dieses Ereignisses E innerhalb der Grenzen

t\/2mii J_± p^p P

gelegen ist.
Bern. Miltheil. 1893. Nr. 1327.
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N o t e 2. In Propos. XXI interpolirt Stirling die Fakultätenreihe

1, 1, 1.2, 1.2.3, 1.2.3.4,
und zwar speciell das zwischen 1 und 1 liegende Glied.

Wegen der stark vorhandenen Divergenz der Differenzen der Reihe

interpolirt er deren Logarithmenreihe, sucht zunächst den Logarithmenterm
zwischen 10! und 11! und findet*) dafür 7.0 755259569 dem als Numerus
11899423.08 entspricht. In Propos. XVI hat Stirling aber zugleich
gezeigt, dass, wenn die intermediären Glieder der obigen Fakultätenreihe

mit a, b, c, d bezeichnet werden, die Relationen bestehen:
3 5 7

b -5- a, c -5- b, d -5- c Indem er nun das
a a L.

19 19 17 3
Glied zwischen 10! und 11! successive durch -=—, -^-, -r—, —-

dividirt, erhält er für das gesuchte intermediäre Glied die Zahl
0.8862269251. Das Quadrat dieses Werthes ist gleich der Fläche des

Kreises vom Durchmesser 1, also wird das Glied selber gleich -jj- y n

sein. Ebenso folgt hieraus, dass dasjenige intermediäre Glied, das dem

ersten vorausgeht, gleich y n sein wird.
Stirling findet also durch äusserst mühsame numerische Berechnung

folgende Reultate:

W=VT"\\\\±l tf) =11899423-08

r(j) 0.8862269251 ~ \Jn

Dieses letzte Resultat benutzt Stirling bei der ersten Lösungsmethode
des Coeffizientenproblems in Propos. XXII, die im wesentlichen darin be-

*) Mit Hülfe der Interpolationsformel (T allgemeines Glied) :

A + az 3B + bz za—1 5C + cz (za—l)(za—9)
2 ' 2 4.6' 2 4 6 8 10

' "*"

Die Formel gilt allgemein (auch für die intermediären Glieder) einer Reihe
mit 2 Mittelgliedern, von der Form

sA iA Ai As

wenn die 1. Differenzen aa a a,
die 2. » ,B B,
die 3. » b

• • • * >

wenn man ferner A ,A + A,, B ,B + B,, C iC + Ci setzt
und mit z das Verhältniss bezeichnet, welches die Entfernung des zu interpoliren-
den Gliedes T von der Mitte zum constanten Intervall der Variabelen hat. Stirling

gibt diese Formel in Propos, XX. deutet aber nur an, er sei mit Hülfe der
Differenzenrechnung auf dieselbe gekommen.
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steht, mit Hülfe der unten gegebenen Interpolationsformel das mt6 Glied
der Beihe

i,|-a,|b,|-c,|-d
zu bestimmen.

Note 3. Die Inflexionspunkte der Wahrscheinlichkeitscurve
bestimmt Moivre*) wie folgt: Wenn aUe Glieder einer binomischen

Entwicklung (a + b) in gleichen Abständen auf eine gemeinsame Basis
aufgetragen werden und man durch die Endpunkte derselben eine Curve
legt, so hat diese 2 Inflexionspunkte, die auf verschiedenen Seiten des

Maximalgliedes gelegen sind. Um nun den Inflexionspunkt zu bestimmen,
sei H die zugehörige Ordinate, deren Stelle vom Anfang der Beihe aus
mit I bezeichnet werde, dann wird das nächste Glied gegen den Anfang
der Beihe hin gleich

1-1 H ^
n-1+2

' ' b'
iind das nächste gegen das Ende der Beihe gleich

n-1+1 H.l.
1

Werden nun die Differenzen dieser Glieder in Bezug auf H gleichgesetzt,
so ergibt sich aus

n—1+1 b 1—1 ^l a n—1+2 b

als Werth für 1

^ a + 3b + 2bn + \/a8 + 6ab + 4nab + b»
— 2a + 2b

Wird im letzten Ausdruck die Wurzel mit r bezeichnet, so wird das

Intervall, um welches der Inflexionspunkt links resp. rechts vom grössten

Gliede absteht, gleich 2 ,1 resp. —x—.1. sein, und wenn a =• b

(wenn also die Wahrscheinlichkeitscurve symmetrisch zum grössten Terms

verläuft), ist jeder der beiden Inflexionspunkte vom grössten und mittleren

Gliede um das Intervall y \/n + 2 oder -j \/~n~ (für n sehr gross)

abstehend.

Note 4. Laplace findet auf folgende Weise einen Näherungswert

für die Fakultät**): Sei

*) Misceli, analytica lib. V, c. IV.

**) V. Mémoires de l'Académie royale des sciences pour l'année 1778:

Mémoires sur les probabilités par P. S. Laplace art. XXIII. Dort gibt Laplace mittelst
i

des Euler'schen Integrals J xp (l-x)q dx auch einen Näherungswert für den

Binomialcoefflzienten. °
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y xpe"x, so wird
"»oo

e dx p!

r Xr

/coxPe

y liefert sein Maximum, wenn x p ist. Setzt man nun p — und

x 1- ®, so wird

Log y — Logppe"p — Log (14«©) — Ö und

/oo
/»

ydx pp e"p I e
- Log (1+«©) — ©
" d@.

o

Substituiren wir noch

Log (1 + a@) — tt@ — ut', so wird
«©» «»©» ««©< —

Nun kann man finden :

© -L (ht + h' «t t8 + h" « t8 +
I— 2 v 2

worin h y 2, h' g-, h" ^g-,

und

d© ^L (h + 2h'«Tt -f 3h"«t2+ ¦

Dann wird

/oo
/too

y dx pp+~2 e"p I (h + 2h'«Tt + 3h"«t2 + • • • Oe"1'

0 —ob
Nun ist

At.

o

und mit Hülfe von

d?; -g findet man, dass/OO
-/lOO
I e^-Hl) dl

o "o

foo
_

e"'2dt iv t. Somit ergibt sich

o
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r>
co

Und wenn darnach die letzte Formel für I ydx integrirt wird, erhält
man schliesslich*): "0

/^*0
i /— cch" «%""

ydx =pp+-2e-pV^(h + 1.3-a- + 1 • 3 ¦ 5 —-^- -\ ¦>

2

o

oder

p! pP+|e-py/2«(l+^«+ •••)

Nach dem Vorgange von Lagrange gibt Laplace**) die Eulersche
Summationsformel durch den Beweis, dass

2 y [eh3-x_l]'
'
+ Const.

wenn man in der Entwicklung der rechten Seite die Exponenten zugleich
dyauf die Ordnung der Derivation -r— bezieht und wenn h < 1 das Increment

der unabhängigen Variabein x bedeutet. Es wird dann, wie man
zeigen kann:

2-iJW 1 hB(i) h'B(2) m
"2y H

1! y 4! y i +

*) Die Integrale von der Form f t2"-*-1 e"t2 dt sind 0.
••' -oo

**) V. Lacroix, Grand Traité, 2. édit. t. Ill, p. 98.

Berichtigungen.

XÄUj X\J. i
s "^ rs — s

128, 14. -
» v. 0. » 42787536.

» 17. » V. 0. » 44623980.
» 13. » V. u. » 25500 Versuchen.
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