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J. Eggenberger.

Beitriige zur Darstellung des Bernoulli’schen Theorems,
der Gammafunktion und des Laplace’schen Integrals.

Eingereicht im August 1893.

Yorbemerkungen.

Die vorliegende Arbeit wurde aufl Anregung meines verehrien
Lehrers, des Herrn Prof. Dr. J. H. Graf, unternommen.

Sie zerlegt sich in zwei Theile, von denen der erste (die Ab-
schnitte I—VI) historischer, der zweite (die Abschnitte VII und VIII)
analytischer Natur ist. Abschnill I weist einleilend mil einigen Belegen
auf den fructificirenden Einfluss der Entwickelung der Wahrschein-
lichkeitsrechnung auf diejenige der Analysis hin und précisirt den
Zweck der historischen Untersuchung des ersten Theils. In Abschnitt
I wird sodann die philosophische und analytische Begriindung des Gesetzes
der grossen Zahlen nach Bernoulli's Ars conjeclandi gegeben. Die
Abschnitte III, IV und YV sind den mit Erfolg gekronten Bemiihungen
Moivres, dem Bernoulli’schen Theorem einen besltimmten mathema-
tischen Ausdruck zu verleihen, gewidmet, stellen das Summationsver-
fahren jenes Mathematikers zur Bestimmung eines Niherungswerthes
fiir den Binomialcoefficienien dar, beleuchten die Verdienste Moivres
und Stirlings um die Darstellung eines Niherungswerthes fir Log I" ()
und geben die Moivre’sche Darstellung des Laplace’schen Integrals.
Abschnitt VI zeigt die Auffindung einer Summationsformel durch Mac-
Laurin und Euler, die in hinreichend allgemeiner Weise gestaltet,
dem Bernoulli'schen Theorem jenes analylische Gewand zu geben,
dessen Schopfer Laplace ist, da mittelst jener Formel Niherungs-
werthe sowohl fir Log I"(x) wie auch fiir die Summe von Termen einer
binomischen Entwickelung von sehr hoher Potenz innerhalb gewisser
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Grenzen gefunden werden konnen. Den Schluss dieses Abschnittes
bildet eine Zusammenstellung der gewonnenen historischen Resullate.
Der analytische Theil enthilt zuniachst (in Abschnitt VII) eine
Untersuchung des Verfassers iiber eine Verallgemeinerung der von
J. A. Serret gegebenen, eleganten Entwicklung eines Naherungswerthes
fir I"(x -} 1) aus der Formel von Wallis, zeigt dann durch eine weitere
Untersuchung (in Abschnitt VIII), dass der immer noch gebriuchliche
Laplace’sche Ausdruck fir das Bernoulli’sche 'l‘heorem namlich

edt gleich ist — | e dL
f —I_\/ 2rtupq f

Diese Vereinfachung des Laplace’schen Ausdrucks diirfle fir
die Wahrscheinlichkeitsrechnung und die Versicherungstechnik von
Werth sein.

In den Anhang wurden neben dem Quellenverzeichniss einige
Anmerkungen, die den Text sonst allzu storend unterbrochen hétten,
als Noten verwiesen.

I.

1. Seit Laplace und Gauss ist die Wahrscheinlichkeitsrechnung
fiir die exakte wissenschaftliche Forschung ein unenthehrliches Hilfs-
mittel geworden und auch bei Fragen der Sozialpolitik und der Kultur
1n  weileren Sinne ist sie berufen, immer werthvollere Dienste zu
leisten. Neben diesem ihrem Antheil an der Entwicklung der beob-
achtenden Wissenschaften ist aber auch der Gewinn nicht unbedeutend,
den diese angewandle mathemalische Disciplin der reinen Mathematik
gebracht hat. Denn 4hnlich wie andere angewandle mathematische
Wissenschaflen, die Astronomie und die mathematische Physik, auf die
Erfindung und Entwicklung der Infinitesimalrechnung und auf die
Theorie der partiellen Differentialgleichungen im hoichsten Grad an-
regend gewirkt haben, so ist auch die Wahrscheinlichkeitsrechnung
nicht ohne Einfluss auf die Entwicklung der Analysis des End-
lichen und Unendlichen gewesen. Ein Kkurzer Blick in deren Ge-
schichte soll uns davon iiberzeugen. :

Die Wahrscheinlichkeitsrechnung nahm ihren Ursprung im 17.
Jahrhundert, in der Zeit der mathematischen Entdeckungen. Einige
Wiirfelspielprobleme, die ihm vom Marquis de Méré im Jahre 1654
vorgelegl wurden, veranlassten den geistvollen franzisischen Philo-
sophen und Mathematiker Blaise Pascal (1623—1662) mit der Unter-
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stiitzung seines Zeilgenossen Pierre Fermat (1608—1665) genauer
mit dem neuen Calcul sich zu beschiftigen, und die ersten Prinzipien
desselben feststellend, wurden Pascal und Fermat die Begriinder der
Wahrscheinlichkeitsrechnung, von ihnen «<géometrie du hasard» auch
«alee geomelria» genannt. Weil aber die Hilfsmittel der Analysis damals.
fiir die Losung der Spielprobleme keine geniigenden waren, erweiterte
Pascal die Combinationslehre*) und zeigle deren Zusammenhang mit
den figurirten Zahlen**).

Der grosse Basler Mathematiker Jakob Bernoulli 1. (1654—1705)
gab dann in seinem epochemachenden Werke tiber Wahrscheinlich-
keit, Ars conjectandi***) (Muthmassungskunst) eine beinahe vollstindige
Theorie der Combinatorik, der figurirten Zahlen+) und fand auch die
nach ihm benannten Zahlent), die bhekanntlich in der Reihen- und
Interpolationstheorie von Wichtigkeit sind.

Pierre Raimond de Montmort (1678 —1719) lieferte im Dienste
der Wahrscheinlichkeitsrechnung ebenfalls Beitrige zur Analysis der
Reihentt), namentlich in Bezug auf die Summation von arithmetischen
Reihen hoherer Ordnung.

Ein anderer, sehr bedeutender franzosischer Mathematiker, der
nach Aufhebung des Ediktes von Nanies in London ein Asyl ge-
funden hatte, Abraham de Moivre, entdeckte bei seinen Studien iiber
die Wahrscheinlichkeitsrechnung die recurrenten Reihen, deren Theorie
er in dem fiir die Analysis bedeutsamen Buche: Miscellanea analytica
de seriebus et quadraturis (London 1730) vortrugttt). Moivres weitere
sehr werthvolle Beitrige zur Analysis werden im Verlaufe meiner
historischen Untersuchung noch deutlicher hervortreten.

Den Forschungen der beiden grossen franzisischen Analystien,
Joseph Louis Lagrange (1736—1813) und Pierre Simon Laplace (1749

*) Die Anfinge der Combinatorik waren aus einer Schrift Guldins vom
Jahre 1622 bekannt.
##) In einem nachgelassenen Werke Pascals: Traité du triangle arithmétique.
Paris 1665.
*%%) Basel 1713. Herausgegeben und mit einem Vorwort versehen von
Nikolaus Bernoulli, dem Neffen Jakob Bernoulli’s.
+) Ars conjectandi, Lib. IL
+1) Montmort, Essai d’analyse sur le jeu de hasard. Paris 1708,
+11) Lib. Il. Cap. 1. De nalura serierum recurrentium.
Lib. IV. Cap. II. De summis serierum rccurrentium.
Auch Moivres Doctrine of chances enthilt in der 2. Ausgabe (London 1738)
cinen Abriss der Theorie von «the summation of the recurring series», p. 193 ff.
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bis 1827), auf dem Gebiete der Wahrscheinlichkeit verdankt die
héhere Analysis (die sich allerdings inzwischen durch die Arbeiten
von Newton, Leibnitz, Moivre, Stirling, Taylor, Mac-Laurin, der Ber-
noulli, Euler u. a. schon bedeutend entwickelt hatte) ebenfalls neue
und wichtige Kapitel.

Schon 1759 veriffentlichte*) der 23jihrige Professor an der
Artillerieschule in Turin, Lagrange, eine fiir die Differenzenrechnung
epochemachende Abhandlung iiber «L’intégration d’une équation differen-
tielle a4 difference finie qui contient la théorie des suites recurrentes»,
worin die Theorie der recurrenten Reihen verallgemeinert und deren
Bedeutung fiir die Wahrscheinlichkeitsrechnung hervorgehoben wird.

Derjenige, welcher die Bedeutung der Lagrange’schen Arbeil am
klarsten erkannte, war der ebenfalls noch junge Professor an der
Pariser Militirakademie, Laplace. Schon 1774 schrieb er sein Mé-
moire sur les suites recurro-recurrentes et sur leurs usages dans la
théorie des hasards.®**) In der Yorrede zu einem andern Mémoire*¥¥)
sur la probabilité konnte er schreiben: «J'ose me flatter que l'ana-
lyse dont je me servis pour cet object pourra mériter ['altention des
géométres». Aus den vielen und langjihrigen Arbeiten von Laplace
iiber die Wahrscheinlichkeitsrechnung ging schliesslich sein grosses
Werk iber diesen Gegenstand, die Théorie analytique des probabilités,t)
hervor, welches nicht nur fir die Wahrscheinlichkeitsrechnung grund-
legend, sondern auch fir die Integralrechnung, die Funktionen- und
Interpolationstheorie sehr werthvoll ist.

Die vorstehenden Notizen mogen dargelthan haben, wie der
Wahrscheinlichkeitsrechnung durch die Auffindung analytischer Hilfs-
mittel nicht nur die Pfade ihrer eigenen Eniwicklung geebnet wur-
den, sondern wie sie dadurch ihrerseils auch einen wesentlichen for-
dernden Einfluss auf die Analysis ausgeiibt hat.

Als Frucht der Wahrscheinlichkeitsrechnung darf auch das La
place’sche Integral, welches in der mathematischen Physik eine grosse

Rolle spielt, aoc
J e dt = /7
— 00
*) In Miscellanea Taurinensia, tome I. pag. 33—42.
*#) In den «Mémoires, présentés par divers savants. t. VL. p. 353—371.
##x) Histoire de I’Académie des sciences pour l'année 1778. p. 227 ff. Auf
den Inhalt dieser Abhandlung soll spiter noch zuriickgekommen werden.
+) Das klassische, Napoleon I. gewidmete Buch, erschien zum ersten
Mal anno 1812,
Bern. Mittheil. 1893. Nr. 1319.
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zeichnel werden. Man erhill dieses Integral aus dem Bernoulli’'schen
Theorem.

Sind p und ¢ die einfachen und konstanten Wahrscheinlichkeiten
zweier entgegengeselzler Ereignisse E und E’, so ist die Wahrschein-
lichkeit dafiir, dass in einer sehr grossen Anzahl von x4 = m -} n
von Versuchen das Ereigniss E in einer Anzahl von m Malen, wobei
m zwischen u p -+ 1 liegt, eintreffe (vorausgesetzt, dass fir ein
g p-maliges Eintreffen des Ereignisses E das Maximum von Wahr-
scheinlichkeit vorhanden), ausgedriickt durch

m=pup-1
A w! m o
W__z m!an! P4
m=—up—1

und zwar kann diese Wahrscheinlichkeit mit wachsendem g beliebig
nahe der Einheit gebracht werden.

Der Summenausdruck kann nun (vermiltelst mehrmaliger Nihe-
rungen) in folgenden Integralausdruck iibergefiihrt*) werden:

W — “‘f_tz x
L e

0
Es ist dies ebenfalls die Wahrscheinlichkeit dafiir, dass m inner-

halb der Grenzen u p + 1 oder hier nun innerhalb u p + 7 \/ 2upq

liege, wo
1
’ 2upq,
eine Funktion von I; g« und p ist.
Den Summenausdruck fiir W hat Jakob Bernoulli I. schon zu An-
fang des vorigen Jahrhunderts gegeben, der Integralausdruck aber in
obiger Form wurde erst beinahe ein Jahrhundert spiter von Laplace

aufgestellt.

Die Festlequny jener Summe durch Jakob Bernoulli. deren Ent-
wickelungsprocess his zum Integralausdruck und die dabei aufgetretenen
analytischen Methoden und Resultate historisch klar zu legen. ist die
Aufgabe, die ich im ersten Theil meiner Arbeit zw losen versucht
habe. Dabei waren mir die vortrefflichen Notizen von Laplace**) und

*) Vrgl. Note 1 im Anbang.
#*) Laplace, Essai philosophique sur les probabilités, verdffentlicht als Ein-
leitung in der Théorie analyt. des probahilités und in einer Separatausgabe.
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Todhunter*) iiber die Geschichte der analylischen Darstellung des
Bernoulli’schen Theorems wegleitend. :

Im Essai philosophique sur les probabilités**) sagt Laplace im
Abschnitt: les lois de la probabilité qui résultent de la multiplication
indéfinie des événemens: «Ce théoréme indiqué par le bon sens
«elait difficile 4 démontrer par l'analyse. Aussi lillusire géomeétre
«Jacques Bernoulli qui s'en est occupé le premier, atltachait-il une
«grande importance 4 la démonstration qu'il en a donnée». Weiter
im Abschnitt: Notice historique sur le calcul de probabilité, wo La-
place von Bernoulli’s Ars conjectandi spricht, finden wir :**¥)

«Cet ouvrage est encore remarqua'l')le par la justesse et la finesse
«des vues, par 'emploi de la formule du binome dans ce genre de ques-
«tions, et par la démonstration de ce théoréme, savoir, qu'en multipliant
«indéfiniment les observations et les expériences; le rapport des événe-
«mens de diverses natures, approche de celui de leurs possibilités respec-
«tives, dans des limites dont l'intervalle se reserre de plus en plus, en
«mesure qu’ils se multiplient et devient moindre qu’aucune quantité assig-
«nable. Ce théoréme est trés utile pour reconnaitre par les observations,
«les lois et les causes des phénoménes. Bernoulli attachait avec raison,
«une grande importance & sa démonstration qu’il dit avoir méditée pen-
«dant vingt années. . ... .

«Moivre a repris dans son ouvrage le théoréme de Jacques Bernoulli
«sur la probabilité des résultats déterminés par un grand nombre d’ob-
«servations. Il ne se contente pas de faire voir comme Bernoulli, que
«le rapport des événemens qui doivent arriver, approche sans cesse de
«celui de leurs possibilités respectives; il donne de plus une expression
«élégante et simple de la probabilité que la différence de ces deux rap-
«ports est contenue dans des limites données. Pour cela, il détermine
«le rapport du plus grand terme du développement d’une puissance tres
«élevée du binome, & la somme de tous ses termes; et le logarithme hy-
«perbolique de l'excés de ce terme, sur les termes qui en sont trés voi-
«sins. Le plus grand terme étant alors le produit d’un nombre considé-
«rable de facteurs; son calcul numérique devient impraticable. Pour
«l'obtenir par une approximation convergente, Moivre fait usage d’un
«théoréme de Stirling sur le terme moyen du binome élevé 4 une haute
«pnissance, théoréme remarquable, surtout en ce qu’il introduit la racine

¥) J. Todhunter, A history of the mathematical theory of probability from
the time of Pascal to that of Laplace. London 1865.

**) Separatausgabe (3. éd. Paris 1816) p. 74; Théorie analyt. des proba-
bilités, introduction p. XLVIIL.

*%¥) L. e. p. 211; p. CXLVL



— 116 —

«carrée du rapport de la circonférence au rayon, dans une expression
«qui semble devoir étre étrangére & cette transcendante. Aussi Moivre
«fut-il singuliérement frappé de ce résultat que Stirling avait déduit de
«’expression de la circonférence en produits infinis, expression a laquelle
«Wallis était parvenu par une singuliére analyse qui contient le germe.
«de la théorie si curieuse et si utile des intégrales définies.»

Den Laplace’schen Bemerkungen zur Geschichte des Bernoulli’schen
Theorems lasse ich noch die Uebersicht folgen, die J. Todhunter¥*)
iiber die nimliche Materie gibt: «With respect to the history of the
«result obtained in art. 994 (Laplace’sche Darstellung des Bernoulli’-
«schen Theorems), we have to, remark that James Bernoulli began
«the investigation; then Stirling and De Moivre carried it on by the
«aid of the theorem known by Stirling’s name; and lastly, the theo-
«rem known by Euler’s name gave the mode of expressing the finite
«summation by means of an integral. But it will be seen that prac-
«tically we use only the first lerm of the series given in Euler’s
«theorem, in fact no more than amounts to evaluating an integral by
«a rough approximate quadrature. Thus the result given by Laplace
«was within the power of mathematiciens as soon as Stirling’s Theo-
«rem had been published.»

Das vortreffliche Werk Todhunters iiber die Geschichte der Wahr-
scheinlichkeitsrechnung gibt die Notizen iiber das Bernoulli’sche Theo-
rem zerstreut bei der Besprechung der Arbeiten von Bernoulli, Moivre
und Laplace iiber die Wahrscheinlichkeitsrechnung. Dagegen konnte
in seiner Geschichte der Wahrscheinlichkeitsrechnung auf die Dar-
stellung der analytischen Hilfsmitlel desselben gar nicht eingegangen
werden. Eine zusammenhingende, eingehende Darlegung dieser Yer-
hiltnisse, besonders wenn sie wesentlich neue Resultate zu Tage zu
fordern vermag, schien mir daher ebenso interessant wie werthvoll
Zu sein.

IT.
3. In einem Begleitschreiben zu seiner Schrift: De rationiis in
ludo aleae™*), schrieb der gelehrle Huygens an seinen Lehrer der Mathe-
matik Franziskus von Schooten u. a. Folgendes :

#) J. Todhunter, History of the mathematical theory of probability, art. 995
pag. 553.

*#) Diese Arbeit erschien als Anhang zu Schootens Exercitationes mathe-
maticae, 1667. Huygens hat darin zum ersten Mal die Prinzipien der Wahrschein-
lichkeitslehre systematisch und analytisch formulirt, so dass Jacob Bernoulli diese
Huygen’sche Schrift dann in sein erstes Buch der Ars conjectandi aufgenommen
und commentirt hat.
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«Quanquam, si quis penitus ea quae tradimus examinare caeperit,
«non dubito quin continud reperturus sit, rem non, ut videtur, ludicram
«agi, sed pulchrae subtilissimaeque contemplationis fundamenta explicari.
«Et problemata quidem, quae in hoc genere proponuntur, nihilo minus
«profundae indaginis visum iri confido, quam qua Diophanti libris conti-
«nentur, voluptatis autem aliquanto plus habitura, cum non, sicut illa,
«in nuda numerorum consideratione terminentur.»

Bekundet damit Huygens eine hohe Meinung von der Wichlig-
keit des neuen Calciils und verheisst er demselben eine grosse Zu-
kunft, so gelang es ihm aber doch noch nicht, sich iiber das Niveau
der tblichen Anwendung der Wahrscheinlichkeitstheorie, die sich bis
zu jener Zeit auf das Gebiet der Spielprobleme beschrinkt halte, zu
erheben.

Wenige Jahre spiter machle zwar der beriihmte Grosspensionir
von Holland, Jean de Witt, der treffliche Kenner und Férderer der
Cartesianischen Geometrie, die ersten niitzlichen Anwendungen auf die
Rentenrechnung*); aber es blieb dem genialen Kopfe Jakob Bernoulli’s
1. vorbehalten, der neuen mathematischen Disciplin ihr weites Arbeits-
feld zu erdffnen. ‘

In einer Zeit grosser wissenschaftlicher Entdeckungen hatle sich
Bernoulli’s schopferische Kraft entfaltet. Lingst schon hatten Baco
von Verulam, Giordano Bruno u. a. m. der wissenschaftlichen Forsch-
ung den Weg der Beobachtung gewiesen und eine Reihe von grossen
Forschern hatte bereils die neue Methode der Induction durch glin-
zende Erfolge gerechtfertigt. Kopernikus hatte die richtige Vorstellung
von unserem Planetensystem gegeben, Kepler seine Gesetze der Pla-
netenbewegung berechnet, Galilei die Fallgesetze erkannt und Newton
der letzleren Giiltigkeit im Universum als Gravitationsgeselz nachge-
wiesen. Vieles, was friiher als zufillig erscheinen mochte, war durch
Causalgesetze erklirt und die Domine des Zufalls und des Aberglaubens
hatte schon bedeutend an Terrain verloren. Und dennoch waren es
kiihne Fragen, die Bernoulli’s weiter Blick in den Thatsachen zu lesen
vermochte. Gibt es in den gesammien Erscheinungen iiberhaupt einen
Zufall? Erscheint uns vielleicht das anscheinend Zufilligste nur dess-
halb zufillig, weil wir seine Ursachen nicht zu ergriinden vermigen?
Ist es moglich, durch fortgesetzte Beobachtungen auch das Zufilligste

*) Jean de Witt, De vardye van de lifrenten na proporlie van de losrenten,
ou la valeur des rentes viagéres en raison des rentes libres et remboursables.
La Haye 1671.
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als von Geselzen abhingig zu erkennen? Ist es iiberhaupt moglich,
durch Beobachtungen ein geniigend sicheres Resullat zu erhalten?
Und in welcher Beziehung steht die Zahl der Beobachtungen zur Ge-
nauigkeit des Resultates?

4. Jakob Bernoulli I. hat seine diesbeziiglichen Gedanken in dem
hochinteressanten vierten Buche seiner Ars conjectandi*), betitelt:
Ad Usum et applicationem praecedentis Doctrinae in Civilibus, Moralibus
et Oeconomicis, niedergelegt. Das nach ihm benannle Theorem**)
findet sich dort im 4. und 5. Kapitel. Die Hauptgedanken sollen
ihrer grundlegenden Bedeutung wegen hier ihre Stelle finden. Cap,
IV. betitelt: De duplici Modo investigandi numeros casuum. (Qui sen-
tiendum de illo, qui instituilur per experimenia. Problema singulare
eam in rem propositum, hat zusammengefasst folgenden Inhalt:

Es wurde im letzten Cap. (III) gezeigt, wie die Beweiskraft von Argu-
menten fiir gewisse Dinge nach der Zahl von giinstigen und ungiinstigen
Fillen durch Rechnung zu schitzen ist. Hier aber liegt die Schwierigkeit;
denn nur fiir die wenigsten Erscheinungen ist die Zahl der giinstigen oder
ungiinstigen Fille und das Gewicht jedes Einzelnen bekannt. Beim Wiirfel-
spiel ist es allerdings nicht schwer, die Zahl der giinstigen Fille fiir das
Eintreffen eines bestimmten Ereignisses zu berechnen und ebenso leicht
ist es, die Fille fiir das Ziehen eines weissen oder schwarzen Steinchens
aus einer Urne, wenn das Verhéltniss der verschiedenartigen Steinchen
gegeben ist, zu bestimmen. Wer konnte aber jemals die Anzahl von
Krankheiten, die den menschlichen Kérper an allen Theilen und zu jedem
Alter befallen und den Tod herbeifiilhren konnen, bestimmen und heraus-
finden, um wie viel leichter diese oder jene Krankheit den Tod herbei-
fihren konnen, so dass dann ecine Vermuthung iiber das Leben eines
Menschen oder dasjenige zukiinftiger Generationen ausgesprochen werden
konnte? Oder wer konnte die zahllosen Fille von Verdnderungen er-
griinden, denen die Luft tagtéiglich ausgesetzt ist, um heute schon Ver-
muthungen iiber deren Zustand nach einem Monat oder nach einem Jahr
aufzustellen? Oder wer kennt die Natur des menschlichen Geistes und
den wunderbaren Bau unseres Korpers so genau, dass er bei einem Spiele,
das grisstentheils von der Schnelligkeit und dem Verstande des Spielers
abhéngt, die Fille vorauszusagen sich unterstiinde, in welchen dieser oder
jener Spieler gewinnt oder verliert?

*) Von der Liagre in seinem Calcul des probabilités sagt: «Cette ouvrage
contient en germe toute la philosophie de la probabilité».
' %%) «The memorable theorem in the fourth part, which justly bears its
authors name, will ensure him a permanent place in the history of the Theory of
Probability.» J. Todhunter, History of the Theory of Probability p. 77.
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Wegen der Beschrinktheit unseres Geistes wire es also ein eitles
Bemiihen die verschiedenen Fiille a priori auffinden zu wollen ; doch steht
uns hier der Wey der Beobachtung offen: wir kinnen die Wahrschein-
lichkeit auch a posteriori, durch Beobachtung finden. Voraussetzung ist
dabei, dass fiir bestimmte Ereignisse eine gewisse Konstanz der Ursachen
angenommen werde. Denn, wenn z. B. einmal 300 Menschen untersucht
worden sind vom Alter und der Konstitution des Titins und man ge-
funden hétte, dass 200 davon vor Verfluss von 10 Jahren gestorben sind,
so kann man den Schluss ziehen, dass es 2 Mal mehr Fille gibt dafiir,
dass auch Titius innerhalb von 10 Jahren sterben, als dass er diesen
Zeitraum iiberleben werde. Ebenso wenu einer mehrere Jahre das Wetter
beobachtet, wenn er oft bei 2 Spielenden gestanden und deren Spiel ver-
folgt hat, so kann er mit ziemlicher Sicherheit die Wahrscheinlichkeit
bestimmen dafiir, dass ein diesbeziigliches Ereigniss unter denselben Um-
stinden eintritt oder nicht eintritt.

Und diese empirische Art der Bestimmung der Zahl von Féllen durch
Beobachtungen ist weder neu noch ungewohnt und wird in der Praxis
von jedermann angewendet. Auch ist jedem Kklar, dass wm einen rich-
tigeir Schluss ziehen zn kinnen, nur wenige Beobachtungen nicht geniigen,
sondern duss eine grosse Anzall derselben nithig sind. Obgleich diess
nun aber aus der Natur der Sache von jedermann eingesehen wird, so
liegt doch der auf wissenschaftlichen Prinzipien gegriindete Beweis durchaus
nicht auf der Oberfliche. Es muss vielmehr wuntersucht wevden, was viel-
leicht noch wiemand eingefallen ist, ob durch Vermehrung der Beobach-
tungen auch die Wahrscheinlichkeit vermelrt iwerde dafiiv, dass die Zahl
der giinstigen 2 den ungiinstigen Beobachtungen ein wahres Verhdiltniss
erreiche und dass diese Wahrscheinlichlkeit zuletzt jeden beliebigen Grad
voi. Gewissheit erreichen kinne, oder ob das Problem cielimehr, wum so zu
sagen, seine Asynptoten hat, d. h. ob ein bestimmter Grad der Gewiss-
heit gegeben sei, der auch bei beliebiger Vermehrung der Beobachtungen
niemals iiberschritten werden kinne, z. B. /2 oder */s oder 3+ der Gewiss-
heit.  Seien z. B. in einer Urne ohne dein Wissen 3000 weisse und 2000
schwarze Steinchen verborgen und du nehmest, um das Verhiltniss der-
selben zu bestimmen, ein Steinchen nach dem andern heraus (so jedoch,
dass du das gezogene, bevor du ein neues ziehst, wieder hineinlegst), und
du beobachtest nun, wie oft ein weisses, wie oft ein schwarzes heraus-
kommt. Die Frage ist nun, wie oft du dies thun konnest, damit es 10-,
100-, 1000-fach wahrscheinlicher (d. h. am Ende intellectuell gewiss)
werde, dass die Zahl der Male, in denen du e¢in weisses, zu denen, in
welchen du ein schwarzes bekommst, das Verhiiltniss 1'/2 bilde, als dass
dieses Verhiltniss ein anderes davon verschiedenes sei. Ist dies nicht
der Fall, so ist unser Unternchmen, die Zahl der Fille durch Versuche
zu bestimmen, werthlos. Wenn es aber der Fall ist (was wir im folgen-
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den Cap. | V] zeigen werden), so kionnen wir die Zahl der Fille a posteri-
ori erforschen, wie wenn sie uns a priori bekanunt wiren und das ist im
praktischen Leben, wo das der Vernunft Gewisse als absolut gewiss ange-
sehen wird, geniigend, um unsere Vermuthungen in einem beliebigen Zu-
fallsgebiet nicht weniger wissenschaftlich zu leiten als bei den Wiirfel-
spielen. Denn stellen wir uns vor, dass die Luft oder der menschliche
Korper den Herd vieler Verdnderungen und Krankheiten in sich schliessen,
gerade so wie die Urne die Steinchen, so werden wir ebenfalls auf diesem
Gebiet bestimmen kinnen, wie viel leichter dieses oder jenes Ereigniss
eintreten kann als ein anderes.

Es ist noch zu bemerken, dass ich das Verhiltniss der durch die Be-
obachtung zu bestimmenden Félle nicht ganz genau angeben, sondern in
gewisse Grenzen einschliessen will. Im oben gegebenen Beispiel wiirden
wir vielleicht das Verhéltniss 1'/2 cinschliessen zwischen %und ?(,(:3 oder
zwischen rf;:{l) und 3833 . Es zeigt sich dann, dass es durch fortgesetzte
Beobachtu;lgen immer wahrscheinlicher wird, dass das durch Beobachtung
gefundene Verhiltniss der Fille innerhalb, als dass es ausserhalb dieser
Grenzen liegt.

Jakob Bernoulli schliesst den Kommentar zu seinem Theorem
wortlich so: «Hoc igitur est illud Problema, quod evulgandum hoc
«loco proposui, posiquam jam per vicennium pressi, el cujus per novi-
«tas, tum summa utilitas cum pari conjuncta difficultate omnibus reli-
«(uis hujus doctrinae capitibus pondus et pretium superaddere polest.»

Schliesslich wendet sich Jakob Bernoulli noch polemisirend an
gewisse Gelehrte*), welche gegen seine Theorie Einwiinde zu machen
versucht hatlen.

1) Werfen sie vor, das Verhidltniss zwischen den Steinchen sei an-
ders beschaffen als dasjenige zwischen den Krankheiten oder den Luft-
verdnderungen; die Zahl jener sei bestimmt, die Zahl dieser dagegen un-
sicher und unbestimmt. Antwort: Beides ist nach unserer Erkenntniss
gleich unsicher und gleich unbestimmt; aber das was an sich oder von
Natur aus so ist, dass es von uns nicht allseitig erkannt werden kann,
dasselbe ist ebenfalls von Gott erschaffen, und was Gott erschaffen, das
bestimmte er auch, ehc er c¢s schuf.

2) Bemerken sie: die Zahl der Steinchen sei endlich, die der Krank-
heiten aber nicht. Antwort: Sie ist eher erstaunlich gross als unendlich
aber zugegeben, sie sei unendlich, so ist bekannt, dass auch zwischen
zwei unendlichen Grossen ein bestimmtes Verhiltniss bestehen kann und
dass dasselbe auch durch endliche Grissen genau oder wenigstens an-

*) Es ist damit wohl Leibnitz gemeint, der iiber dicsen Gegenstand in
Briefen an Bernoulli polemisirte.
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#®ihernd bestimmt werden kann., Ich erinnere z. B. an die Ludolf’sche
Zahl. KEs hindert daher nichts, dass ein Verhdltniss zwischen unendlichen
Grissen doch dwrch eine endliche Zahl anndherungsweise ausgedriickt und
durch eine endliche Zahl von Beobachtungen bestimmt werden kann.

3) Wenden sie ein: die Zakl der Krankheiten sei nichi constant,
sondern tiglich entstiinden neue. Antwort: Dass sich im Laufe der Zeit
die Krankheiten vermehren, kann man nicht liugnen, wund sicherlich wird
der, welcher aus heutigen Beobachtungen auf antediluviale Zeiten schliessen
awollte, sehr irren. Aber hieraus folgt nur, dass bisweilen neue Beobach-
tungen zu machen sind, wie sie bel den Steinchen zu machen wiren,
wenn die Vermuthung nahe lige, dass sich ihre Zahl verindert hitte.

5. Im V. Kapitel: «Solutio Problematis praecedentis», gibt Jakob
Bernoulli I. die analytische Darstellung seines Theorems wie folgl¥):

Lemma I.
Sei gegeben die Reihe ,
| P . r— 1, r,r4+1 ...... r+s—1, r-4s und

es werde dieselbe forigeselzt bis ihr letztes Glied nr -} ns heisst, so
entsteht die neue Reihe
i P I - B e Bomws ma s 1} R nr-n...... nr - ns,
in*welcher die Zahl der Glieder zwischen nr -~ n und nr -} ns die
Gliederzahl zwischen nr und nr 4 n nicht mehr (wie gross auch n
werde) als s — 1 mal ibertrifft und die Zahl der Glieder links von
nr — n die Zahl der Glieder zwischen nr — n und nr nicht mehr als
r — 1 mal.

Lemma II. Wenn das Binom (r -} s) in irgend eine Potenz er-
hoben wird, so hat die Entwicklung immer ein Glied mehr als der
Exponent Einheiten.

Lemma IIl. In der Entwicklung von (r - s)" ist ein Term M
dann der grisste, wenn die Zahl der vorausgehenden Glieder zur Zahl
der nachfolgenden, mit r und s, in indirekter, oder wenn die Dimen-
sionen von r und s in M mit r und s in direkter Proportion stehen.

Dieser Term M hat zum niheren einen kleineren Verhiltnisswerth
als — bei gleichem Intervall — der nihere zum entfernteren.

Demonstr. 1. Setzt man nt = nr -} ns, so wird

nt X nt g
r - S)nt: r11t+(1> I.nt.l T N (m-l) - Sni: 1 1 Snt

und der grisste Term

*) In gedringter Uebersicht.
Bern. Mittheil. 1893. Nr. 1320
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P — e ‘-
M — nt (nt — 1) (nF 2).....nt —ns 4 1) IS
1.2 .8059ccsma. ns
nt(nt—1) (nt — 2)..... ", (nt — nr 4+1) ur ns
M= - r . s
Ll i 223 snemusmas nr
Bezeichnet man ferner mit Ri, Re, Rs . ... ... die rechts von
M aus aufeinanderfolgenden Terme, und mit Li, Le, Ls,...... die
entsprechenden links, so ist
R _____ nt (nt - 1) (nt.-— 2) ....(ns 4 2) RIDENS
1.2.3..... (nr — 1)
L — nt int — 1) (nt —2)..... (nr -+ 2) I_mf'+]. Sns-l
e 1.2.8........ (ns — 1)
Ry — nt (nt — 1) (nt — 2)..... (ns -} 3) Hr-2 o nst+2
P 1.2.38....... (nr — 2) ‘
nt (nt — 1) (nt — 2)..... (nr - 3)  nr+2  ns+42
L: = r-. s y
1.2.3...... (ns — 2)

woraus sich durch Division ergibt :
M (ar41)s Ly  (nr-2vs

Li  n.r.s Le: = (ns—1)r
M (ns 4+ 1Dr Re  (ns—+42)r
Bt~ n.r.s R: ~ (ar—1)s

Es leuchtet aber ein, dass
nrs -+ s > nrs nrs 4+ 2s>nrs —r
nrs -~ r > nrs nrs -~ 2r > nrs —s;
also ist auch
M >R, M > L1, i > Lz, Rt > Ra.

Demonstr. 2. Weil

nr - 1 nr 2 ns 1 ns —- 2
ns < ns —1 7 nr nr— 1’
so folgt auch
(nr -} 1)s (nr -}- 2 (ns - i (ns 4+ 2r
nrs (ns — Lyr ’ nrs < (nr — 1)s
oder
M L1 M Ri1

e. d.

La < Lz ° R < R T

Lemma IV. [In der Potens eines Binoms. dessen Exponent nt
sei, kann n so gross genommen werden, dass der grisste Term M in
Bezug auf 2 Terme L und R, welche um das Intervall von n Termen
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nach links und rechts von M abstehen, einen grisseren Verhiltniss-
werth hat, als irgend ein gegebenes Verhiliniss.

Demonstr. Es wurde gefunden

u =" (nt — 1) (nt — - S (nr - l)r‘“‘. {1
_ 1.2.83....... ns
_nt (@ —1)@mt —2)..... (ns 4 1)1"“' LIS
1.2.3....... nr .
und weil
L. — nt (nt — 1) (nt — 2)...... (mr 4+ n 1) o ns—n -
" 1.2.8....... ns —n S ’
nt (nt —1) (nt —2) ..... (ns+n-41) nar—n ns4n
Bn — P ro. S s
1:8s8ciauswnis nr — n :
so wird
M (r+n(mr-+n—1)...... (nr 1)  s"
L, (s —n-1) (s —n 4 2)..... nson
M (s nMm-fFn—1)....... (ns 4+ 1) r’
B, (r —n @mr —n 2 ......ns  gn

3 » 5 1 n .
Hieraus erhilt man, wenn man die Potenzen r” und s auf die
einzelnen Faktoren vertheilt,

M  (nrs 4 mns) (nrs +ns —s) ...... (nrs -} s)
L, (urs —nr 4+ 1) (ars —nr + 2r1)....0rs
M  (ors 4 nr) (urs - nr — 2) ..., (nrs -+ 1)
R,~ (urs — ns - s) (urs — ns |- 2 s)....008
Dividirt*) man durch n, so folgt fir lim n = oo

M s s)y@s 49 ..... (rs -+ s) rs

Ln (rs—r1)(s —r)....(@s — s)rs

M (rs-Fn@s-fr1)..... (rs +r)rs

Re  (rs — s) (rs — s)..... (rs — s) rs

Der Werth dieser Quotienten ist aber wegen der unendlichen
Anzahl von Factoren, von denen jeder grosser als 1 ist, selber un-

unendlich gross

s wie auch L
Ln Rn

endlich gross. Wenn aber sowohl

¥) Bernoulli gebraucht hier bei der analytischen Erlduterung fiir das
Zeichen -~ das wohl bei keinem andern Mathematiker angewendete Zeichen § .
Sein Gleichheitszeichen ist {ibrigens immer so,
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werden kann, so ist gezeigt, dass in der That der Werlh des Ver-
hiltnisses vom grossten Term einer binomischen Entwicklung zu
einem andern Term grosser ist, als bei irgend einem gegebenen
Verhiltniss.

Lemma V. Es kann die Zahl n so gross genommen werden, dass
die Summe aller Glieder in der binomischen Entwicklung, genommen
vom grossten M nach beiden Seiten bis und mit Ln und Rn, sur
Summe aller iibrigen Glieder ein Verhiltniss von grisserem Werth bildet
als irgend ein gegebenes.

Demonstr. Man bezeichne die Terme links von M wie friiher

mit L1, L‘..’.7 Ltiw s swmsmmm s 5 links von Lp mit L11+1, Ln+2, Ln+3,
........ , dann ist noch Lem. IIIL:
M ]Jll L]_ I.J]l.}_l lJ2 L11+2
L1 < IJD+1 ’ LQ < Ln._l_g ! L3 < L1]+3 -----
ebenso
L]] < IJII+1 Ll]+2 < LIL’-:—; < -----
M
Fir lim n = oo wird nach Lem. IV — = oo, umsomehr
n
L. _ —
Ly =— oo und 2 = < T Daher schliesslich :
Ln+2 Ln+~_)
L. + L. + Lg 4..... e
Lot + Lnpe + Logs ... ’

d. h. die Summe aller Terme zwischen M und Ln genommen, ist un-
endlich mal grosser als die Summe von ebenso viel Termen ausser-
halb von Ln. Nach Lemma I ist aber die Anzahl der Glieder ausser-
halb von Ln s—1, also eine endliche Zahl mal griosser als die
Anzahl der Glieder zwischen Ln und M; daher ist die Summe der
Glieder zwischen L und M (auch mit Ausschluss von M) unendlich
mal grosser als die Summe der Glieder ausserhalb Ln.

Das Nimliche kann gezeigt werden vom Verhiltniss der Summe
der Glieder zwischen M und Rn zu der Summe derjenigen ausserhalb
Ry.  Schliesslich wird somit die Summe aller Glieder zwischen Ln
und Rn (inclus. Ln, Bn und M) das Unendlichvielfache aller tibrigen
Glieder.

Scol. Es soll noch gezeigt werden, dass auch dann, wenn n
endlich bleibt, die Summe der Terme zwischen Ln und Rn zur Summe
der iibrigen Terme ein Verhiltniss ausmacht, das jedes gegebene Ver-
hiltniss C an Werth iibertrifft.
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rs--s

r's—r

Es werde das Verhiltniss

, welches kleiner ist als

b

r-+|1
r
in die m'® Potenz erhoben, so dass

(r : 1)m§ ¢c (s — 1)

Um m zu bestimmen, hat man
m Log (r -} 1) — m Log r < Log ¢ (s — 1), also
n—_— Log ¢ (s — 1) _
= Log (r }-1) — Logr

In Lemma IV wurde das Verhiltniss l aus dem Produkt

Ln
nrs - ns nrs -+ ns — s nrs - s
T e e —————— gefunden,
nrs — ns +~r nrs—nr-2r nrs
Wird nun n richtig gewihll, so muss einmal einer dieser

r--1
r

in der Faktorenreihe mit m, so ist

r i1 nrs ns — ms $

| 4; __ ors - g Al g

Briiche gleich sein. Bezeichnen wir die Ordnung dieses Bruches

nrs — nr -+ mr
ms — s

—= 1 — ’
1 + r 41

nt = mt - mst — st
_' r-F 1

nt ist der Exponent, welcher dem Binom gegeben werden muss, damit
der grisste Term M der Entwicklung die Grenze Ln um mehr als
¢ (s—1) ibertrifft. Der Beweis ergibt sich so: Der Bruch von der
r-|1
r

Nun ist

Ordnung m wird durch obige Annahme von n gleich

. r-+1\m .
aber nach Voraussetzung — < ¢ (s—1). Weil nun aber alle

Briiche, die in obigem Product dem Factor von der Ordnung m voraus-
gehen, grosser sind als r j- 1, die nachfolgenden aber nach der Ein-

. . ) . r 1\m
heit convergiren, so muss das Product aller griosser sein als ( ; )

und also um so mehr grisser als ¢ (s—1). Da nun aber jenes

: e M
Product gleich dem Verhaltniss von T ist, so folgt

M>c¢c( — 1)L



Ferner ist
]“ Ll L2 .[.AIl
L_n< s 1 < To s < ... < Lgu’
also

L1 + Lz —l—- L3 + .....

Lny1 + Loge 4+ Logs 4+ ... ..

Weil aber die Gliederzahl ausserhalb Ln (s—1) mal grosser ist

als diejenige zwischen L. und M, so folgt, dass das Verhiltniss der

Summe der Glieder innerhalb von M und Ln zur Summe aller Glieder
ausserhalb von Ln grisser als ¢ ist.

Fiir die Terme rechts von M erhidlt man dasselbe Resu]tat. Aus-

s+1 rs—r
s ST

gehend vom Verhiltniss

erhalte ich analog durch die-

selbe Betrachiung
_ Log ¢ (r — 1)
"> Tog s + 1) —Log s
mrt — rt

nt=n1t+ —‘*g""_“':—"i"“

und

Die gestellte Aufgabe ist somit geldst; es kann eine bestimmte
- Potenz berechnet werden, welche die verlangle Eigenschaft besitzt.

6. Propos. Princip. Es folgt endlich der Satz selbst, zu dessen
analytischer Darstellung die vorausgegangenen .emmata gegeben werden
mussten.

Es seien einem Ereigniss r Fille giinstig, s Fille
unginstig, so dass das Verhéltniss der giinstigen zu
den ungiinstigen Fillen genau oder anndherungsweise

gleich ~ ist; dann ist das Verhiltniss der giinstigen

zu allen moglichen Fillen, — wenn r 4+ s = { — ge-
r+41
t

r :
geben durch 0 gelegen zwischen den Grenzen

und r———1_

Es ist nun zu zeigen, dass so viele Beobachtungen gemacht werden
kinnen , dass es irgend cine beliebige Grisse (etwa c) mal wahr-
scheinlicher wird, es sei das Verhdiltniss der giinstigen zu allen Beob-

achtungen innerhalb der Grenzen FT 1 und r—-_t-lm, als ausserhalb der-

selben gelegen.
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Demonsir. Angenommen nt sei die Zahl der gemachien Beob-
achtungen. Dann ist, da nach Voraussetzung jeder Beobachtung r Fille
ginstig, s Fille ungiinstig sind, die Wahrscheinlichkeit dafiir, dass
alle Beobachtungen, oder alle mit Ausnahme von einer. von zweien
von dreien etc. ein giinstiges Resultat liefern, gegeben resp. durch
(Part. I, Prop. XIII.)

nt nt-2 2
r s

r (1> Ml (nt)

B b - Ty ? 2 ——_,

tn!’. nt tnt t’nt
nt-3 3

nt\rr . S

()25

Es sind dies die Glieder der binomischen Entwicklung von
r s\ nt

t
keitsgrad*) dafiir, dass das Ereigniss bei nt Versuchen nr mal ein-
treffe, ns mal nicht, gleich ist dem grissten Terme in der Entwick-

Hieraus ist leicht zu schliessen, dass der Wahrscheinlich-

lung von (r -} s)nt; ebenso wird die Zahl der giinstigen Fille fiir
das nr -} n resp. nr — n malige Eintreffen des Ereignisses bei
nt Versuchen gegeben durch die Glieder Ln resp. Rn jener bino-
mischen Entwicklung. Folglich wird der Wahrscheinlichkeitsgrad
dafiir, dass das Ereigniss bei einer Zahl von nt Versuchen hochstens
nr - n und wenigstens nr — n mal eintreffe. ausgedriickt sein
durch die Swmmation aller Terme innerhalb Ln wund Rn. Der
Wahrscheinlichkeitsgrad aber dafiir, dass das Ereigniss mehr oder
weniger als nr 4 n mal einireffe, wird ausgedriickt sein durch die
Summe aller ibrigen Terme, die ausserhalb von Ln und Rn liegen.
Da nun aber die Potenz des Binoms so gross genommen werden kann,
dass die Summe der Glieder zwischen den Grenzen Ln und Rn mehr
als ¢ mal grisser ist als die Summe der tubrigen Glieder, so folgt
auch, dass so wviele Beobachtungen gemacht werden kinnen, dass der
Wahrscheinlichkeitsgrad dafiir, dass das Verhiltniss der Zahl der
giinstigen Beobachtungsresultate zur Zahl aller innerhalb der Grenzen

— r—1 .
nr —It—n —— L_n_ oder =1~ _|l_ 1 und —— liege, mehr als ¢ mal
n n

*) Unter dem Wahrscheinlichkeitsgrad eines Ereignisses versteht Bernoulli
immer die Zahl der dem betreffenden Ereigniss giinstigen Fille.
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den Wahrscheinlichkeitsgrad dafiir ibertrifft, dass jenes Verhiltniss
ausserhalb der angegebenen Grenzen liege, mit andern Worten, dass
es mehr als ¢ mal wahrscheinlicher wird, es liege die Zahl der
giinstigen Beobachtungsresultate innerhalb der Grenzen nr - n als
ausserhalb.

Bei der speciellen Betrachtung erklirt es sich von selbst, dass

je grosser r, s und t genommen werden, desto enger die Grenzen

1 —1
r 7 undr

" ST r
zusammenriicken, so dass das Verhiltniss T um So
bestimmter gegeben werden kann. Wenn daher das Verhiltniss der
giinstigen zu den ungiinstigen Fillen etwa gleich o5 1st, $o0 selze man

fiir r und s nicht 3 und 2, sondern 30 und 20, also t = 50, so dass

3

3 9
die Grenzen D—(l) und ?57) werden und wenn ¢ = 1000 gesetzt wird,

so ergibt sich (nach Scol.) als Versuchszahl
links von M
Log (¢ s — 1)) 4 . 2787536

M g kD) —Logr 142405 < 301,
nt = mt - —mﬁg——;—l— < 24728;

rechis von M

ST -
nt = mt '{*%__TN < 25500.

Aus diesem Exempel geht hervor, dass es hei 25500 viel mehr
als 1000 Mal wahrscheinlicher ist, dass das Verhiltniss der giinstigen

. 3
Beobachtungen zu allen innerhalb die Grenzen 5—t und —2—%— fallen werde

als ausserhalb. Und ebenso, wenn man ¢ = 10,000 setzt, dass dies
mehr als 10,000 mal wahrscheinlicher wird bei 31,258 Experimenten
und mehr als 100,000 mal bei 36,966 Experimenten; auf diese Weise
kann man in infinitum fortfahren, indem man fortwihrend zu 25,500
ein Vielfaches von 5708 addirt. Dann sagt Bernoulli weiter: «Unde
«tandem hoc singulare sequi videtur, quod si eventuum omnium obser-
«vationes per totam :lernitatem continuaretur, — probabilitate ultimo
«in perfectam certitudinem abeunte — omnia in.mundo certis rationibus
«et constanti vicissitudinis lege contingere deprehenderentur; adeo ut
«etiam in maxime casualibus atque fortuitis quandam quasi necessitatem,
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«et, ut sic dicam, fatalilalem agnoscere leneamur; (uam nescio annon
«ipse jam Plato intendere voluerit, suo de universali rerum apocalastasi
«dogmate, secundum quod omnia innumerabilium seculorum decursum
«in pristinum reversura stalum praedixit.»

Mit dieser weilausschauenden philosophischen Betrachtung schliesst
Jakob Bernoulli I. seine Ars conjectandi, das Produkt zwanzigjihriger
Geistesarbeit, sein bleibendes Denkmal in der Geschichie der Wahr-
scheinlichkeitsrechnung.

7. Die neuen genialen Ideen Bernoulli’'s konnten nicht verfehlen,
die Polemik der einen, die Bewunderung der andern Gelehrten her-
vorzurafen, und es ist dafiir nicht uninteressant, was Montmort schrieb:*)
«On ne nous a point appris quels sont les Jeux dont cet Auteur —
«Bernoulli — déterminoit les partis, ni quels sujets de polilique et
«de morale il avoit entrepris d’éclaircir, mais quelque surprenant gue
«soit ce projet, il y a lieu de croire que ce scavant Aufeur auroit
«parfaitement exécuté. M. Bernoulli éfoit trop supériear aux aulres
«pour vouloir en imposer, il étoit de ce petit nombre d’hommes qui
«sont propres i inventer el je me persuade qu’il auroit tenu tout ce
«que promettoit le titre de son livre.»

Bernoulli hat nicht versucht, einen bestimmiten mathematischen
Ausdruck fir die Wahrscheinlichkeit, dass die Zahl der giinstigen
Beobachtungen innerhalb gewisser Grenzen liege, aufzustellen. Sein
sehr allgemeiner aber klarer Beweis bezweckte nur, auf exaktem ana-
lytischem Wege festzulegen, dass in der That mit der Vermehrung
der Beobachtungen auch die Wahrscheinlichkeit immer grisser wund
schliesslich zur Gewissheit wird, dass die Zahl der giinstigen zu den
ungiinstigen Beobachtungen dem wahren Verhiltniss der fiir das Ereig-
niss giinstigen zu den wungiinstigen Fillen gleich kommt (Gesetz der
grossen Zahlen). Schon daraus geht hervor, was Bernoulli iibrigens
auch ausspricht, wenn er sagt:**) «Nisi enim hoc fiat, fateor aclum
fore de nostro conatu explorandi numeros casuum per experimentar,
dass er das bewiesene Theorem nur als Hiilfssatz fir die Erforschung
der Wahrscheinlichkeit a posteriori betrachtet. Und dies mochte ich

¥) Montmort, Essai d’analyse sur les Jeux de hasard, 1. éd. (Paris 1708)
Vorrede p. 6. Montmort kannle die Ideen Bernoulli’s, dessen Werk noch nicht
erschienen war, aus Fontenelle’s Eloge de Mr. Bernoulli, Hist. de I’Académie de
Paris 1705. _

*%) Ars conjectandi Lib. IV. Cap. IV. pag. 226.

Bern. Mittheil. 1893. Nr. 1321.
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ganz besonders betonen. Denn es scheint nicht berechtigt zu sein,
wenn Laplace in seiner Notice historique sur le calcul des probabilités
bei der Erwihnung der Verdienste Daniel Bernoulli’s sagt:¥) «On doit
«surtout placer au nombre de ces idées originales la comsidération di-
«recte des possibilités des événemens lirées des événemens observeés.
«Jacques Bernoulli et Moivre supposaient ces possibilités connues; el
«ils cherchaient la probabilité que le résultat des expériences i faire
«approchera de plus en plus de les représenter.»

Nicht Daniel, wieausdem Citat hervergehen mochlte,
sondern Jakob Bernoulli ist der Begriinder der Theorie
von der Erfahrungswahrscheinlichkeil. Er hat auch den
ersten analytischen Ausdruck dafiir gegeben.**) Wenn in einer Urne
sich weisse und schwarze Kugeln befinden, deren Zahlenverhaltniss
aber unbekannt ist, so wird, wenn man in einer sehr grossen Anzahl
von Versuchen a weisse und b schwarze herausgezogen hat, die Wahr-

scheinlichkeit fir das Ziehen einer weissen ausgedriickt durch Py j_ b
Auch iiber die Wahrscheinlichkeit der Ursachen hat
Jakob BernoullizuerstUntersuchungenangestellf.*%¥)
Gewiss hatte er noch L(iefere analytische Studien iiber die Wahr-
scheinlichkeit a postleriori vorgesehen, wahrscheinlich auch prak-
tische Versuche auf socialemn Gebiete, aber leider wurde Bernoullit)
viel zu friith, schon mit 51 Jahren, der Wissenschaft durch den Tod
entrissen und ein halbes Jahrhundert ging dahin, bis er richtig ver-
standen wurde, bis Daniel Bernoulli, sein Neffe, praktisch und Bayes
theorelisch seine Untersuchungen tber die Erfahrungswahrscheinlich-
keit weiter fiihrten.

‘ *) Essai philosophique p 214. Théorie 'analyt, des prob. introd. p.
CXLVIIL '

**) Ars conj. Lib. IV. Cap. IV.
w#)  jd.  Lib. TV. Cap. III.

+) Jakob Bernoulli I, in Basel als Sohn des Rathsherrn Nikolaus Ber-
noulli am 27. XII. 1654 geboren, studirte in seiner Vaterstadt Theologie und da-
neben fleissig Mathematik. Nach seinem theologischen Examen (1676) bereiste
er die Schweiz, Holland, England und Frankreich, widmete sich dann nach seiner
Riickkehr als Privatmann ganz der Mathematik und wurde im Jahre 1687 zum
Professor der Mathematik an der Universitit Basel ernannt, welche Stellung er bhis
zu seinem Tode am 16. VILL 1695 innehalte. Mit seinem Bruder Johannes I. und
seinem Neffen Daniel gehort Jakob Bernoulli 1. zu den beriihmtesten der Bernoulli.



— 181 —

III,

8. Abraham de Moivre*) war der erste, der dem Theorem Ber-
noulli’s gebiihrende Aufmerksamkeit schenkte und dasselbe in geschickter
Weise zu fordern versland.

Indem aber Moivre dasselbe nicht wie Bernoulli vom Standpunki
der Wahrscheinlichkeit a posteriori aus anfasste, sondern als Unter-
suchungsobjekt fiir sich, trachtete er darnach, fiir den Fall, in welchem
die einfache Wahrscheinlichkeit eines Ereignisses E als bekannt und
constant gleich p, diejenige des enigegengesetzten E’ gleich q vor-
ausgeselzt wird, einen bestimmten Werth zu suchen fiir die Wahr-
scheinlichkeil, dass in einer grossen Anzahl von g Versuchen das
Ereigniss E in einer solchen Anzahl m von Malen eintreffe, die zwi-
schen den Grenzen u p +- 1 liegt, d. h. einen bestimmten Werth zu
geben fiir den Bernoulli’schen Summenausdruck

m=pup |
--—--s..m“'t! m n
m! n! P 4
m=up — I

Zwei Schwierigkeilen musslen ihm dabei enigegentreten, die
Auffindung eines allgemeinen, numerisch leicht zu berechnenden Aus-
drucks fiir den Binomialcoefficienten resp. fiir die Facultit und die
Summation der Terme einer binomischen Entwicklung innerhalb ge-
wisser Grenzen. Unsere weilere historische Untersuchung wird daher
in der Folge eine Periode der Geschichte der Summationsformeln in
sich einbeziehen miissen.

Moivre hat die Hauptresultate seiner Untersuchungen iiber das
Bernoulli’sche Theorem niedergélegt in einem grissern Abschnitt seiner
Doctrine of chances*¥), beltilell: A Method of approximating the Sum

*) Abraham de Moivre (geb. 26. V. 1667 in Vitry, Champagne, gest. 27. XI.
17564 in London), protestantischer Refugié, durch den Widerruf des Edikts von
Nantes durch Louis XIV. 1785 gendthigt, in London ein Asyl zu suchen, erwarb
sich dort lange Zeit durch Privatstunden kiimmerlich sein Brot, Spiler genoss
er die Protektion Newtons und wurde 1697 Mitglied der Royal Society. Neben
seinen Hauptwerken, die in der Arbeit citirt sind, schrieb er: A new method for
valuing of annuities upon lives. Der nach ihm benannte Lehrsatz findet sich
auf der ersten Scite seiner Miscell. anal. Der grosse Newton soll in den leizten
Jahren scines Lebens zu denjenigen, welche ihm mathematische Fragen vorlegten,
gesagt haben: «Go to Mr. Moivre, he knows these things better than 1 do.» Ein
ehrenderes Zeugniss konnte Moivre wohl nicht gegeben werden.

%) P, 235 ff. Uns lag die 2. Auflage (London 1738) vor; zum ersten
Male erschien das bedeutende Werk im Jahre 1718 unter dem Titel: De mensura
sortis. ’ ’
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of the Terms of the Binomial (a -|- b)® expanded into a series from
whence are deduced some practical Rules to eslimale the Degree of
Assent which is to be given to Experiments*). Die analytischen Er-
liuterungen zu den Resultaten dieser Untersuchung gibt Moivre zer-
sireut in seinem - andern Buche Miscellanea analylica de serieb. et
quadrat., und es mag nicht ganz ohne Werlh sein, hier eine zusammen-
hingende Darstellung derselben zu geben.

9. In die oben erwihnte Abhandlung einleilend, erwihnt Moivre
die Schwierigkeit der Summation von Gliedern einer binomischen Ent-
wicklung und er hat fiir seine Zeit vollkommen Recht. Selbst die
grossen Mathematiker Jakob und Nikolaus Bernoulli hitten eigentlich
nicht eine Summe von solchen Gliedern gegeben, sondern nur weite
Grenzen gezeigl, in welchen sich eine gewisse Summe derselben be-
wegen konne. Moivre sagt dann weiler: Es sind mehr als 12 Jahre

verflossen**) seit ich gefunden habe, dass wenn man das Binom (1 -} 1)n

entwickelt, der mitllere Term zur Summe aller Terme — zu 2" —
ein Yerhiltniss hat, das gleich ist

11

2AM—1) , worin
n" Va1

1 1 1 1

log A= 5~ — 360 T 1260 — Teso L
Fir n = oo, folgt
m — 1" 1\n
Log-—_n—fl—_— === L()g 1—? = — 1 und

selzt man

*) Die Abhandlung findet sich in lateinischer Uebersetzung auch als An-
hang in der Miscell. analyt. Sie war schon vor der Doctrine of chances im Druck
erschiencen, jedoch nicht verdoffentlicht worden. Es geht dies aus folgender inte-
ressanten Bemerkung hervor, die Moivre im Zusatz von Problem 87, wo er iiber
die Schwierigkeiten des Problems sich ausspricht, macht: «I take the liberty to
«say, that this is the hardest Problem, that can be proposed on the subject of
«chance, for which reason I have reserved it for the last, but I hope to be for-
«given if my solution is not fitted to the capacity of all Readers; howewer I shall
«derive from it some Conclusions that may be of use to everybody: in order
«thereto here translate a Paper of mine, which was printed Nov. 12. 1733, and
«communicated to some Friends, but never yet made public, reserving to myself
«the right of enlarging my own Thoughts, as occasion shall require.»

%) Es war also ums Jahr 1720. -
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1 1 1 1
LogB=—1+—5- — 35 T Te60 ~ T80 = "
B
so wird das obige Verhiltniss fir n == oo gleich 27n——-a oder wenn
man die Gleichung von Log B mit — 1 mulliplizirt, wird es gleich
2
B \/ n

Ueber den Werth von B dussert sich Moivre auf folgende Weise:
«When I first began that inquiry, I contented myself t{o determine
«at large the Value of B, which was done by the addition of some
«Terms of the above-written Series; but as I perceiv’d that il con-
«verged but slowly*), and seeing at the same time that what [ had
«done answered my purpose tolerably well, I desisted from proceeding
«farther, till my worthy and learned Friend Mr. James Stirling, who
«had applied himself after me to that inquiry, found that the Quan-
«lity B did denote the square-root of the Circumference of a Circle
«whose Radius is Unity, so that if that Circumference be called ¢ the
«Ratio of the middle Term to the sum of all the Terms will he ex-

2

«pressed by ————»
p Y \/ =

10. Ueber diesen eleganten Ausdruck fiir sein gesuchtes Verhillniss
war Moivre hocherfreul. Wie er aber zum Ausdruck
2 A (@m— 1)
V=1
gekommen ist, dariber finden wir Auskunft in Miscellanea analytica

de serieb. et quadrat. Lib. VI. Cap. II.: De regressu el Serie data ad
Summam. Hier fiihrt Moivre aus: Der Coefficient ¢ des mittleren

Gliedes im Binom (1 -} 1)" ist, wenn man % == m setzt
c__“(m—l—l)(m—]—2)(111—{—8) ........ 21117
m—1)m—2 (m — 3)..... 2.1.m

und es wird

*) Moivre war in dieser Convergenzfrage im Irrthum. Denn die Reihe

1 — % -+ % — ﬁ s T ist gleich der divergenten Reihe
B (1) B (2 B @3 .
il — e 5 ; — = .(6) L e e , wenn By, B, .. ... die

Bernoulli’schen Zahlen hedeuten.
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1 1 1 1
== e —_— ——— —— .. ... in inf.
Log ¢ =2 ( - + T + B -+ T -+ in in )
2 8 32 128 e
—!— 2 (E "I— ?H—l-a-"" + “"g—rn—b + —,_I—HIT + ..... m lnf.)
3 27 243 2187 .
+ 2 (—nT + —'ér—n'g— “I- —E)—['HT + _711'—17_ "I— ..... n ]ﬂf.)
R
Lo (m—1, (m—1P®  (@—1® m—17 . ..\
+ 2 ( — -+ 53 -+ = -+ et ..in inf.
- Log 2.

Nimmt man aus diesen m — 1 Logarithmenreihen die Colonnen
zusammen, so wird

Logc:u—r—?—l—-(1+2-{—3+4—|— ....... ~{—m—1>
+3i30—kﬁ+ﬂa+4“#~-u+%m—nﬂ
et (1+25+8'5+45+ ..... +<m—1>5)
4-— ................................
iliinf. -+ Log 2.

Bezeichne ich nun die Reihen nach einander mit I, II, III, . ..
und setze m — 1 === s, so wird nach den Tafeln Jakob Bernoulli’s:

[ — s? -} s
m
S4 5 SZ
o 3m?
s 8 Hhst § =
TEPL R LA
M — 3 §] 6
_ 5m?
g8 . 788 Tst s2
v 4 L S Al
T Tm?
g 10 3s8 Ts6t 352
st o st —
. 3} 2 2 10
¥ = 9m?
in inf.

*) Die Convergenz der letzten Reihen ist allerdings sehr gering,
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Die Colonnen dieser Summen wieder in Reihen zusammengefasst

: S i
ergibt als erste, wenn w = X geselzt wird:

Xs | X5 X"z . .
Bty 2.3 + 3 5 + 17 J s s in inf.
2 x 2 x? 21° 2 x7 o
=8 (1.2 + 3.4 + 5.6 + T8 s e mow lnlnf.).
Entwickle ich Log 1 —__—E = v in die logarithmische Reihe und

multiplizire beiderseits mit x*), so kommt

2 X X 2 x® x 2 x®x | o
— -+ = -+ : I in inf. = v,
und nimmt man auf beiden Seiten die Fluenten (d. h. integrirt man),
so hat man '

2x? 2x* 2x© i
T B - W -+ E g 4 in inf.
1 4 x 1
=y T T

Auf beiden Seiten mit % multiplizirt, erhilt, weil - X,

die Gleichung die Form

s st s® ¢
- +23m3+3.5m5+ ........ in in
14 x 1
= m X Log 1—_—X-———mLog 1 55
> m__lsso erhilt man leicht

oder weil s =m — 1, und x = — =
m mn

fir die Summe der
1. Colonne = (2 m — 1) Log (2m — 1) -— 2 m Log m.

Die 2. Colonne besteht aus folgender Reihe
s s3 s® . 1 m-}s
#+3m3+5m5 e I mmf.—-? Log e

— %Log (2m — 1).

Die Summe beider Colonnen wird daher gleich

(2m———-~12~—)L0g(2m—1)—2mLogm.

*) Moivre bezeichnet, wie es bei den englischen Mathematikern im vorigep
Jahrhundert nach dem Vorgange Newtons iiblich war, das Differential dx mit x.
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Nimmt man dazu noch den beiseile gesetzlen Log 2, so wird
das Summenaggregat fir Log ¢ in erster Niaherung

(2 m ———;—) Log(2m — 1) — 2 m Log m -} Log 2.
Subtrahirt man hievon den Log 22® = 2 m Log 2, so bleibt
(2 m — —}2—) Log (2 m — 1) — 2m Log 2m -} Log 2,

und dieser Ausdruck wird, weil 2 m = n, wenn man zugleich zur
Exponentialfunktion iibergeht, zu

3 (m— 107
nll
und dies ist der angeniherte Werl des Verhiltnisses des miltleren
Coeffizienten des mittleren Gliedes in der Entwicklung von (1 - 1)*
zur Summe aller Glieder.

Im gegebenen Ausdruck sind aber nur die beiden ersten Co-
lonnen des logarithmischen Summenaggregales fir Log ¢ beriicksich-
tigt, wihrend es deren unendlich viele gibt. Die 3. Colonne konsli-
tuirt die geometrische Progression:

8?2 st s o 1 (m—1)2
_6m3+6m5+6m'7‘ e in mf.—6IIl o1 "
Die 4. Colonne gibt die recurrente Reihe :

s? 15 s? 28 st 45 s ® 66 s 8 .
moms |° Ty + m * + m® + m ® +- . ininfy-
deren Beziehungsscala 3, — 3, 4 1, ist und deren Summe gefunden
wird, als

4m*42m?* 4+ 3m?—4m-+4 1) (m — 1)
180 m® (2 m—1)®
Indem ich bemerkte — fihrt Moivre fort — dass diese Reihen
obwohl durchaus summirbar, doch sehr verwickelt werden, brachte
ich sie auf den Fall des Unendlichen. Wird m = oo, so ist der Werth

i 1 : :
der 3. Colonne gleich — von der 4 gleich — ; Wie man aus

12 360
obigen Formeln leicht finden kann. Fir die 5. und 6. Colonne habe

ich die Werthe - 1—216_0’ resp. — %0—

Wird der Numerus der Logarithmenreihe Moivre’s
i1, 1
12 360 1260 1680 —

gefunden.




— 137 —

mil A bezeichnet, so wird das Verhiltniss des mittleren Gliedes im
entwickelten Binom (1 - 1)n — wenn n == sehr gross vorausgesetzt

n-+
wird — zur Suinme aller Glieder ausgedriickt durch 24 (nn_n L ,
wie ihn Moivre in der Doctrine of chances gegeben hal.

11. Als Resultat eines Yersuches, die Constante 2A durch Addition
der 4 ersten Terme seiner logarithmischen Reihe zu bestimmen, fand
Moivre die Zahl 2 168. Dieser Versuch darf hier aber um so eher
iibergangen werden, weil Moivre durch Bemerkungen*) von Seilen
Stirlings selber zur Einsicht von der Unzulinglichkeit seiner Methode
gelanglte und in dem Miscellaneis Analylicis Supplementum die Unter-
suchung neu begann. Er bemerkt dort einleilend :

« Altamen post receptam Stirlingii Epistolam, cum mihi aliquid
«vacui temporis suppeteret, constilueram tolum illud denuo excutere,
<alque initium sumere ab isto Problemate de inveniendis Summis Lo-
«garithmorum ab unitate incipientium; ecce autem gradus quibus ad
«meam solutionem adductus sum, quam ideo trado quod modus solutionis
«(uo utor sit longe diversus ab eo quem Stirlingius adhibuit, quo fiet
«ul suspicio a me aberil me voluisse aclum agere».

Moivre sucht also hier direct wie Stirling — auf den wir noch
zuriickkommen werden — die Suinme der Logarithmen der natiirlichen
Zahlen und nicht mehr wie friher das Verhiltniss des Coeffizienten
vom mittleren Gliede zur Summe aller Glieder. Er geht aus vom Product:

m m . m m m
m—1 m—2 m—3 m—m-42 m—m-1
und entwickelt die Logarithmen der einzelnen Facloren in folgender

Darstellung:
m 1 n 1 1

Logm_1 g e o 2m2+ T 4+ in inf
m 2 4 8 i
Log m — 2 = m + D me + W + .......... in inf.
m 3 9 217
L()g 3T " m + 2 m? + *é‘a‘;; —I— R in inf
n m — 1 (m — 1)? (m—1) :
L == in inf.
Ogm——m—l—l m + 2 m? + 3m?

%) In einem Briefe an Moivre vom 17. Juni 1729. Vergl. Misc. analyt.
Lib. VIL

Bern. Mittheil. 1893. Nr. 1322.
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Analog wie beim Coeffizientenproblem stellt nun Moivre die Co-
lonnen als Zeilen zusammen, deren er unendlich viele erhilt. Die
Zihler jeder dieser Zeilen stellen eine Reihe dar von der Form:

R LB I 4 (m — 1)",
Moivre summirt diese Potenzreihen, dividirt jede Summe durch

den zugehorigen Nenner und erhilt so, indem er m — 1 =1 selzt,
folgende neue Reihen als Summen der obigen Colonnen :

112 1]

2 2

m 1 m

113 112 1]

3 2 6

9m 2 + 2m3+ 2 m ?

14 1 s 132

4 2 4

3m5+ 3ma+ Sm?3

1]5 1] 1] 1]
5 2 3 30

4{11“+4m*+4;:114 4 m*
in inf.

Moivre nimmt wieder die Colonnen als Reihen zusammen, divi-

dirt die erste durch m, die dritte durch » die vierte durch

2 m
B die fiinfte durch .o ori
3.4 me 0 Ie 5.6m° »worin
1 1 1
A=5 —35=%
1 1 4 1
B=g —5—3954= "3
1 1 6 6.5.4 1
b=y 79t 337188
1 1 8 8.7.6 8.7.6.5.4 1
D—?“’?"?A_z.&«i B—2.3.4.5.60 30

also die Bernoullischen Zahlen bedeuten, und erhilt die folgenden
neuen Reihen :



12 15 o
9 1m + 0o ‘i" 21’114 ]L W+ .......... n inf.
1 1# 0 ing
W 4m3"|— ES*DT;‘ W—l— .......... n inl.
1 12 .
—+ m2+ m—3—l— i IUIRIRINIIRINI in inf.
612 1013 15 |14 ..
+ -+ 3 }- . Fawm i mmw s in inf.
5] 1{')12 3513 7014 .
E_l_ - -+ e~ -+ — R in inf
71 28 12 84 13 2101
H_I_ 3 - == -} = 4 in inf
e

Die ersten beiden dieser Reihen sind logarithmische. Die Summe
der ersten findet man auf folgende Weise:

; 1 , :
Sei v = Log 7 5 s0 ist, wenn man entwickelt,

—X
xdx —é— x%dx —Jr—fl,)— x3dx -+ % Xfdx ... in inf. = vdx.
Integrirl man, so wird
——1~x2+ix3+ix4+ix5—{— ..... ininf. =vx4x—v
2 6 12 20

1 1
== X L()g ii§+X—L0g1—x
1 :
Oder fir x = ™y geselzt, so erhilt man weil l=—=m — 1 als

Summe der ersten Reihe

1 (m— 1) 1 (m— 1)

1 (m—1)*
7_——_4‘— m 8 12 m*

—[—12 3 —+ .. in inf.

m — 1 — Log m
m

Multiplizirt man noch mit m (wodurch man friher dividirt hat),
so wird der gesuchte Werth der Reihe
1 (m — 1) 1 (m—1)°
n T 6 T omr
Die zweile Reihe hat folgende Summe, wie unmittelbar folgt :
m—1 1 (m— 1) 1 (m—1)°
m 1 m ? +§ m 3

2 m

-+ ...ininf. =m —1 — Log m.

1
-|-...ininf.== Log m.

L
2 2
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Die beiden ersten Reihen konstituiren also die Summe
1
m — 1 — —2—— L()g m.

Die Summen der tbrigen Reihen lassen sich rational und zwar
auf folgende Weise ausdriicken (indem man zugleich wieder mil jenen
Factoren, mit welchen die Reihen multiplizirt wurden, dividirt):

. A 1 1
Summe der 3. Reihe == ?ff(m_l)_ T S
B . B 1 1
o b = e @ = D= — e T Seom S
Analog wird:
3 11
S 1960 1260 m®
» » 6, » = 1 1

1680 1680m7

Es wird somil:
Log[ m m m . _%,E]:m_l_iLogm

m—1m—2m-—38 1 )
1 1 1 1 o '
- 12 m _I— 360 m3 - 1260 m5+ 1680[1]7 I~ « e s ¢ 8 e e m ][]f
1. 1 1 {
_I— 12 _— 360 + 1260 - 1680 :l': ....... m IIlf,
oder
Log[1.2.3 ...... (m—-i)}:(m_%>Logm
1 1 1 1 . ,
_.Hl+ 12m—360m3+1260m5—1680m7i ..... in inf
L 1 1 1 o
+1— 95—t 55— 10 T 1egg T+ - - - - iniof

Dies ist die Moivre’sche Rethe fiir Log I'(m). Fiigt man der-
selben noch Log m bei, bezeichnet man die Summe der Constanten
mit C und filhrt in der Reihe

1 1 1 -

Tom  3eom® T iZeoms T n nf
*) Esist3x~f—6x2+15xs+21X“I‘---'iﬂmfzl_lxs —1
also
—— o 2 _ 8
3 2oty s DT in inf —m* — 1.
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die Bernoulli’schen Zahlen ein, so geht dieselbe iiber in die folgende
Summationsformel:
m— m

_ 1 m g . B@W
2 ll,ognl_C—I—(m+2) Log m m - R

B(z2) B(s) B(s)

5am® U 5. 6m°  7.8m7 Lo

welche sich auch leicht aus der allgemeinen Summationsformel, die
Euler, wie spiter gezeigl werden soll, in den Inst. Calc. Diff. Part. II,
C. V. aufgestellt hat, ergibt, nimlich aus der Formel:

zz :fzdx + —21—~z Ba) dz Bl —L%?

2! dx 41 dx®
B @
51 d T ,

wenn man fir z — Log m setzl.
Es verdient daher hier hervorgehoben zu werden, dass Moivre
zuerst, wenn auch empirisch, diese Summationsformel angewendet hat.
12. Im Weitern gibt Moivre in den Supplementa auch eine bhesser

convergirende Reihe fiir die Constante, d. h. fiir die Reihe
" 1 1 1 1T e

15 T30 — 1260 T 1680 Tt
welche nach seiner Ansicht «salis commode convergit in principio

«post terminos quinque primos convergentiam amitlit, quam tamen
«postea recuperat». Indem er m — 1 = 9 setzl, erhilt er nach seiner
Formel:

1 1 1 1
1 — 15 -+ 360 — 1280 + 1680—|—..1n1nf._L0g5040.72
ot 1 1 1 -+ . ..ininf.
95 Log 10 +10 — 5o+ 3655 70* — 1260 10

Den cyklometrischen Charakter der Constanten hal aber Moivre
nicht von sich aus erkannt; denn er war sehr erstaunt dariiber, als
thm Stirling in  einem Schreiben®) vom 19. Juni 1729 mittheilte,
dass der Werth der Constanten \/_QE”betmge. «Nemo est profecto
«qui post visam hanc superioris problematis solutionem fateri recuset
«eam esse usquequaque mirabilem: sed nihil in ea fortasse mirabilius
«videbitur quam qua arte Quadratura Circuli potuerit in eam induci»,
sagl Moivre iiber Stirlings Lisung. Er spricht dort auch die Ver-
muthung aus, Stirling habe sein Resultat mit Hiilfe der Formel von

*) Veroffentlicht in Miscellanea analyt. Cap. VIL
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Wallis gefunden. Er selbst habe die Sache desshalb nicht weiler ver-
folgl. weil ihm die Liosung nur ein Mittel zur Berechnung von Wahr-
scheinlichkeiten sei. «Adde quod cum non ideo susceptum fuissel ut
«propter se solveretur, sed ut juvarel solutionem alterius cujusdam
«problematis quod pulcherrimum judicaveram, mihi videbar in iis
«quae feceram aliquo jure posse acquiescere.»¥*)

IV.

13. Es erscheint hier geboten, Moivre und seine Doctrine of
chances fiir einen Augenblick zu verlassen, um 1in Stirlings
mathematischem Werke: Methodus differentialis sive Tractatus de
summatione et inlerpolatione serierum infinilarum**) nach der Be-

stimmung der Conslanten -;— Log 2sx zu sehen.

Stirling findet dieselbe zuerst bei der Berechnung des Verhilt-
pisses, welches der Coeffizient des miltleren Gliedes einer binomischen
Entwicklung zur Summe aller Coeffizienlen hat. Die Prioritit der
Losung dieses Problems erkennt er aber ausdriicklich Moivre zu, wenn
er am Schlusse der Vorrede zu seinem Buche sagl: «Problema de
«invenienda Uncia media in permagna dignilate binomii solulam erat
«a Moivraeo ante aliquot annos quam ego idem attingeram: Nec pro-
«babile est quod in hunc usque diem de eodem cogilassem, in sugges-
«sisset Spectatissimus Vir, D, Alex. Cuming®**) se plurunum suspicari
«an idem solvi posset per Methodum Differentialem Newloni.»

Stirling gibt zwei verschiedene Methoden zur Losung des Coeffi-
zientenproblems, wovon die eine, die auf Interpolation mit Hiilfe der
Differenzenrechnung beruhty), hier nicht bertcksichtigl werden soll,
weil dorl die Bestimmung der Conslanten auf numerischer Berech-
nungtt) beruht.

Die andere Methode}+t) ist nach ihm folgende :

Sei gegeben die Reihe:
8 16 128 2506
1, 2, =3 == b P o Rw e 0
3 b 35 63
¥) Miscellaneis analyticis Supplementum p. 3.

**) London 1730.

*#%) Alex. Cuming darf in der Geschichte der Wahrscheinlichkeitsrechnung
nicht unerwiithnt bleiben. Aus Bemerkungen, die Moivre in Miscell. analyt. Cap. V
macht, geht hervor, dass derselbe auch ihm manche Anregungen gegeben hat.
Ueber das Leben Cumings habe ich nichts in Erfahrung gebracht.

1) Dargestellt im Propos. XXII, Ex. I p. 116 ff.

11) Vergl. Note 2 im Anhang.

++1) Method. diff. Propos. XXIIL
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deren Glieder das gesuchle Verhéliniss fir resp. die 0., 1., 2., 3.,
...... PPotenz reciprok darstellen, so handelt es sich um die Inter-
polation des allgemeinen Gliedes der Reihe :

1 2A 4B 6C sb
S T R T '
wenn mit A, B, G, D, . . . . allgemein unsere Reihe ausgedriickl wird.
Sei nun T irgend ein Glied dieser Reihe, so wird das folgende
. Glied, wenn wir einer Variablen n die Werthe 0, 2, 4, 6, . . . . .

geben, gleich sein

n 4 2
T,--— -I-l———i— 1 T, oder
s N%:--dn 44
Tl-—n2+2n+l T% und
rrz
2 T2 _ M2y __ LI
2T2 + (n 4 2) (T T.?) nfo 0 . o)
Man seize nun
bn cn dn
T2 = an : %
T et aroats Tatoatsare P
worin a, b, ¢, d, ... .. ., noch zu bestimmende Constanie bedeulen;
diese Reihe in andere Form gebracht, wird zu
c — 2b d — 4c
T=oan 4+ b |- - " = =7 ..., ‘
tr e Targara
Analog:
c — 2b d — 4c

= bt ey Fa e re T
hieraus

| 9¢c — 4b
(n+2)§T2-_T3}:—2a(n+2)+——f’n—+ ;

4d — 16¢
tatoare b

Substituirt man neben diesem Werthe noch diejenigen fiir 2T,2

h 2
und fir — " 2 in die Gleichung e, so kommt:
4c—9b 6d — 25c 8c — 49d
2b — a 1 -+ .- =0.
TF -+ 4+(n+4) (n-}6) " (n44)(m}-6) (n-48) '

Aus dieser Gleichung ergeben sich fiir die Coeffizienten die fol-
genden Bedingungsgleichungen : |
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a
% — a =0 also:b=_2__
(‘_% _ 9%
Rl e 2
25¢ 9.2ba
6d — 2bc = 0 d = o 2.2
8 2.4.6.8

Werden diese Werthe in die Gleichung B substitoirt, so er-
gibt sich:

o . 9n
T?=—a(n 4 5(n I 2) + 2.4(n + 2)n |- 4)
9.2b6n
T T satonroete )
1 9

=al+ 5wt e Fon 9
9.25
+ 2.4.6(n - 2)(n - 4)n + 6) +---)
Den Coeffizienlen a bestimmt nun Stirling durch folgende Ueber-
legung: Je grosser n, desto wahrer wird die Gleichung

T% — 4n,

Setzt man nun in dieser Gleichung fiir n der Reihe nach seine
Werthe 0, 2, 4, . ... .. und die entsprechenden fir T? so erhill
man eine Reihe von Niherungsgleichungen fir a, ndmlich :

8 8 24 8 24 48
3_2, ___2?,_2 .Kﬁ. 25,___,. 2 T%.E’_

Daher ist der Werth von a gleich dem ins Unendliche fortge-
selzlen Produkt

g 8 & L5480 180 |
9 25 49 B1 121

dessen Werth aber nach der Formel von Wallis gleich _7;_ ist.

Es resultirt somit fir T folgender Werth:

7n 1 9 9.25
L :\/"ﬁ?’ [1 T MR IO =T E Ry B ibnte ]
Oder es ist nach Annahme, wenn man mit M den Coeflfizienlen
des mittleren Termes der binomischen Enlwicklung bezeichnet, mit S
die Summe aller Coeffizienten:
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R nw 1 2
Mis=1: \/’2 [1+2(n +-2) o (n42) (n-}4) T ]

Stirling gelangt daher zu folgendem Satze :

Der Exponent des Binoms, wenn gerade, sei m, wenn ungerade
n — 1; dann wird sich der mittlere Coeffizient zur Summe aller
Coeffizienten verhalten, wie die Einheit zur mittleren Proportionale
zwischen dem halben Kreisumfang wund der einen oder anderen von
folgenden Reihen :

A 9B 25C
"tonx TmErn Thaxe T

A 9B 250G
Nl T I =5 tm—7 ’
wenn man allgemein die Reihen nach Newton’scher Bezeichnung mit

AEBshg=EpEE.. ... .. darstellt.

Ueber den Gebrauch der Formel spricht sich Stirling dahin aus,

es geniige, wenn n == sehr gross werde, zu selzen

7r

1
2 -
IZ = 2<n -+ o ),oder

Vil )
emVik )= el

n+~%)

Es ist also

== \-/“‘2—‘—7—; (fir lim n = sehr gross).

Das Stirling’sche Resultat beim Coeffizientenproblem ist somit dem-
jenigen Moivre’s genau gleich ; denn Moivre hat fiir das Verhiltniss des
mittleren Gliedes zur Summe aller im entwickelten Binom (1 4 1)",
fir n = gerade, den nidmlichen Ausdruck, jedoch ohne cyklometrische
Darstellung der Constanten, gefunden.

14. Wie Moivre, so musste auch Stirling durch das Coeffizienten-
problem darauf kommen, einen numerisch leicht zu berechnenden
Summenausdruck fir Log I(x) resp. fiir I1x) zu suchen. Er behandelt
dazu folgende Aufgabe*): Es sei die Summe beliebig vieler Logarithmen
zu finden, deren Numeri in arithmetischer Progression fortschreiten.

*) Loc. cit. Propos. XXVIIL p. 135.
Bern. Mittheil. 1893. Nr. 1323.
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Es mogen x +n, x |+ 38n,x 4+ 6n, x4+ Tn, . . . . .. z — 3n,
z — n, beliebig viele Zahlen in arithmetischer Progression bezeichnen,
die letzte sei z—n. Es seien ferner log z und log x die Tafellogarithmen
der Zahlen z und x, und a sei gleich dem Modul, d. h. gleich dem
reciproken Werth des Log. nat. von 10. Dann wird die Summe der
Logarithmen der vorliegenden Reihe gleich sein der Differenz zwischen
den beiden folgenden Reihen:

zlogz az an 7an3 31an® 127an’
2n  2n 12z + 360z 126025 + 1680z7 -
e v w e e in inf.
xlogx ~ ax  an + 7an*  3lan® 4 127an”
2n 2n 19% 360x2 1260x° 1680z"
. in inf.
Diese Reihen setzen sich so ins Unendliche fort:
Man selze
1 1
— g = A, — - A + 3B,
1
~—m—_A+10B+BC,
=917=.—:A -+ 21B -} 385C + 17D,

Die Zahlen, die in den verschiedenen Werthen von A, B, C, D
....... multiplizirt werden, sind die ersten, dritten, fiinften, .
Coeffizienten der ungeraden Polenzen des Binoms. Dann wird der

Coeffizient des dritten Terms — 1 == A, der des vierten B = TG%’

12
31
1260

Beweis. Es werde die Variable z um ihre Abnahme (con-
stante Differenz) 2n vermindert, d. h. man substituire z — 2n fiir z
in die Reihe

zlogz az an an® 31an°®

2n 2n 12z + 36025  1260z° — © °°

Man subtrahire die neue Reihe von der vorigen, so wird sich, nach-
dem moan durch Division die Terme auf die nimliche Form gebracht,
als Rest ergeben:

der des fiinften € = — und sb fort.

. in inf.
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an an? an® __ .
logz — Y BT B R A in inf.

d. h. der Logarithmus der Zahl z — n,

So ist allgemein die Abnahme zweier successiven Werthe der
Reihe gleich dem Logarithmus von z — n, der allgemein jeden be-
liebigen der Logarithmen bedeuten kann, welche zu summiren sind.
Die Reihe wird also die Summe der vorgegebenen Logarithmen sein,
wenn von ihr die andere Reihe subtrahirt wird. Denn die Summen
der Reihen sind wie diejenigen der Flichen zuweilen zu corrigiren,
damit sie richtig werden (Constante).

In Exemp. II, al. 2 geht Stirling alsdann so weiter: Will man
die Summen von beliebig vielen Logarithmen der natiirlichen Zahlen-

vethe 1, 2, 3, . . . .. z — n haben, so ist n = %, und es werden
3 oder 4 Glieder der Reihe
a Ta -
Z]()gz—al——g‘l}‘——l——m—*— ............ ’

zu denen man den halben Logarithmus des. Kreisumfanges, dessen
Radius die Einheit ist, d. h. 0.39908 zu addiren hat, die gewiinschte
Summe geben und zwar mit um so weniger Mihe, je mehr Loga-
rithmen zu summiren sind (Convergenz).

15. Dies die Stirling’sche Darstellung seiner nach ihm benannten
Reihe. Stirling findet also zunichst*), zwar ohne ein Verfahren anzu-
geben, fir
Log(x -} n) -} Log(x 4+ 8n) -} Log(x }-6n) 4+ .. ... ....

' -+ Log(z — 3n) + Log(z — n) =
die Differenz der beiden Reihen von natiirlichen Logarithmen:

zLogz z n Tn3 31n® . i
rogr __ *__ B L, f.
on " on 12 T 3607° 2607 + o
xLogx X n Tn? 31n°® ..
== —— = = b _ T e m ]l s e s . . f-
2n 56 12x T 360x° 13607 o

Um die Richtigkeit seines Salzes zu beweisen, erhéirtet dann
Stirling denselben fiir den Spezialfall x — z — 2n. Handelt es sich

aber um den Logarithmus des Produktes (. 2. 3 . ... ... .. , SO

; 1 L s
wird, da n = 5 und x = 5 ist,

#) Jedenfalls durch Entwicklung der einzelnen Logarithmen.



1 1
Log (1.2 3 (z—g))_zLogz z o4z
7
S sy I
1 1 1 1 7 31 .
“{"2_ Log 5 —%5— 13 T30 — 1260 T - 12 1l

Stirling gibt als Resultat nur die erste dieser Reihen mit der Be-

merkung, man habe dazu noch w; Log27z zu addiren.

Wie oft in seinem Buche, gibt Stirling auch hier nur das Resultat,
ohne zugleich den Wey zu weisen, auf welchem er dazw gelangt ist,
was das Studium desselben sehr erschwert. Es entzieht sich daher
einer sicheren Beurtheilung, wie Stirling die Constante bestimmt hat.
Eine numerische Berechnung scheint mir ausgeschlossen zu sein,
gerechtfertigter aber erscheint die Yermuthung, dass er auch hier wie
beim Coeffizientenproblem die Formel von Wallis angewendet hat und
am meisten Wahrscheinlichkeit besitzt woll die Annahme, derselbe habe
in diesem Falle die Constante durch Vergleichung mit dem Resultate
des Coeffizientenproblems gefunden.*)

16. Stirling gab**) schon, was hier Erwihnung verdient, das Euler-
sche Integral 1. Art., ndmlich :
1

B +2zp—r= fxprz'l 1 ——x)p'r—1 dx

0
und benutzte dasselbe zur Interpolation z. B. der Reihe

ra (r-+1)b ° (r-} 2)
p p+1  p- 2
indem er fiir das allgemeine Glied T der Reihe fand:

a, % E R §y

*) Wenn n = gerade, so gilt nach Stirling und Moivre in der Ent\-vicklung

von (1 4+ )"

n!

()7
2J \2J)°
woraus man, wenn fiir die Fakultiten der Stirling’sche Niherungswerth substituirt

wird, die Constante bestimmen kann.
##) L. c¢. Propos. XXIV, p. 126.

2
2nx
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1

fXH—Z-I (1— X)p~r-ldx
T ‘o

a
fxr-l (l—x)p—r'ldx

0
alr 4~ z) I{p)
also T =
Iy Ip + 2z)
Ebenso fand er als intermediires Glied T zwischen dem ersten und
zweiten der folgenden Reihe

, 1 1.3 1.3.5
"2 T2.4 2.4.6 ’
! 1 d
X
T= A \/1—-——){ :2
1 1 7T
J Ve &

und gewiss ist nicht daran zw zweifeln, Stirling war nahe daran, die
Niiherungswerthe fiir den Binomialcoeffizienten und die Fokultit auf
analogem Wege zu suchen. wie es Laplace spiter gethan®), nimlich mit
Hiilfe der sogenannten Euler’schen Integrale.

17. Es scheint, dass Stirling iber sein Verfahren, die Conslante
zu bestimmen, auch in keiner andern Publikation®*) Auskunft gegeben
hat, denn Moivre schrieb noch 1738:

«But altho it be not necessary to know what relation the number
«B may have to the Circumference of the Circle, provided its value
«be attained, either by pursuing the Logarithmic Series before men-
«tioned, or any other way; yet J own with pleasure that this discovery,

«besides that it has saved trouble, has spread a singular Elegancy on
«the Solution. »

Bezeichnet man in der Stirling'schen Reihe z — »z—mltmund

fiihrt die Bernoullischen Zahlen ein, so ergibt sich folgende Summa-
tionsformel :

*) Vergl. Note 4 im Anhang.
**) Doclrine of chances, p. 236.
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Log(1.2.3......m)=—1—L0g27t—l—(m+%)L0g(m+%)

2
S - _—
_;_)_ @—1BO | (2 —1 B(zl) =B .

1.2.2(m~|—_—;) 3.4.23(m+—2-')3
welche eine von der Moivre’schen elwas abweichende Form hat. Aus

beiden Formeln aber ergibt sich fiir limm — oo, wenn man zur
Exponentialfunktion iibergeht:

— (m -+

limm! = m™ ™ \/2zm
m=-co
welche Formel auch die Stirling’sche genannt wird.

Es 1ist unstreitig das Verdienst des mit mathematischem Scharf-
sinn  ausserordentlich begabten Stirling*) , die Constante \/2—71: be-
stimmt zw haben. Beriicksichtigt man aber, dass Moivre zuerst das
Coeffizientenproblem gestellt und gelist hat und dass derselbe auch
die andere Aufgabe, die sich aus jenem ergeben musste, die Summe
der Logarithmen der natiirlichen Zahlen zu suchen, unabhingig und
fast gleichzeitig mit Stirling ebenfalls gelist hat, vergisst man nicht,
dass Moivre diese Formel zuerst in der Wahrscheinlichkeitsrechnung,
fiir welche ihr grosse Bedeutung zukommt, praktisch verwendet hat,
80 muss man sagen, dass dessen Name mit der Formel in ebenso ver-
dienstvollem Sinne verbunden ist, wie derjenige Stirlings.

Die Ursprungsgeschichte der Stirling’schen Formel aber ist ganz
besonders geeignet, zu zeigen, wie befruchtend eine angewandte mathe-
matische Disziplin auf die reine Mathematik wirken kann.

V.

18. Nachdem hiemit die Untersuchungen Meivres und Stirlings
uber das Coeffizientenproblem und iber die Summe von Log I(x) so-
wohl unter sich wie auch in ihrem gegenseitigen Verhiliniss gewiir-
digt sind, kehren wir wieder zu Moivres Abhandlung iiber das Ber-
noullische Theorem in dessen «Doctrine of chances» zuriick.

*) James Stirling, geb. 1696 in St. Ninians, Grafschaft Stirling, Schottland,
gest. 5. Dez. 1770 in Leadhiks, studirte in Oxford Mathematik, bewarb sich als
Agent einer schottischen Bergbaugesellschaft erfolglos um eine Professur. Er wurde
schon 1729 Mitglied der Royal Society. Sein Hauptwerk, Methodus differentialis,
erlebte 3 Auflagen (1730, 1753, 1764), war aber schon 1718 unvollstindig in den
Philos. Transact. erschienen.
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Als zweilen analytischen Fundamentalsatz gibt Moivre folgenden*):
Der Logarithmus des Verhdltnisses, welches der Coeffizient des mitt-
leren Termes einer binomischen Entwicklung von sehr hoher Potenz n
i Bezug auf den Coeffizienten irgend eines wm das Intervall 1 von
thm entfernten Termes hat, wird in erster Niherung durch folgende
Grosse ausgedriickt :

(m 41— %)Log(m +1—-1)4 (m — 14 —;—)Log(m—}—l-—l)

— 2mLogm -} Log n

]
e
n :
vorausgesetzt, dass m = o geselzt wird.

Sein Losungsverfahren fiir dieses Resunltat ist ein analoges wie
beim Coeffizientenproblem, geht also aus von logarithmischen Reihen
(v. Miscell. analyt. p. 128 ff.) und es braucht daher hier nicht wieder-
holt zu werden. -

Moivre zieht dann weiter aus dem angefiihrten Satze die fol-
genden hier skizzirten Schlisse in Form von Zusitzen.

Zusatz 1. Wenn m == % eine unendliche Grosse be-

deutet, so ist der Logarithmus des Verhdiltnisses. welches ein Term

(immer in der Entwicklung (1 - 1)“) der vom mittleren Term wum
2107

das Intervall | entfernt ist, zum letzteren hat, gleich —
2

Zusatz 2. Die Zahl, deren hyperbolischer Logarithmus —

ist gleich der Reihe

212 414 81¢ 1618 32110
=4t & T omt — T2 £
woraus folgl**), dass die Summe der Terme vom grossten an bis und
mit jenem, der um | Glieder entfernt ist, gleich ist:

. .. ininf,

2 21 41° 817 161 .
=== 1 — ...ininf.
\/211:71:{1 T80 8.50° 6.7 | od.gnt T oo
Setzt man nun 1 = s \/H,_ alsdann wird die Summe:
2 28 4s° 8s7 16s° -
== 8 — — — .. .. ininf
N {“ 13 T 25 6.9 " a8 T I

*) Loe. cit. p. 236.
*¥) Moivre gibt keine weitere Begriindung dieser Folgerung.



— 152 —

und fiir s = “é#, entsteht die Reihe:

201 1 11 1 1
Va2 5.4 13.5.8 6.7.16  24.9.32 120.11.64 [

Durch Addition von 7 oder 8 Gliedern dieser ziemlich gut con-
vergirenden Reihe erhélt man nach einfacher logarithmischer Rechnung
als Verhiltniss der Summe der 1 Terme zwischen dem mittleren und

dem um 1 entfernten in der Entwicklung von (1 - 1)n zur Summe
aller Terme die Zahl 0,341844.

Zusatz 3. Hat ein Ereigniss dieselbe einfache und constante
Wahrscheinlichkeit auf Eintreffen wie auf Nichteintreffen, so wird, wie
aus den Prinzipien der Wahrscheinlichkeitsrechnung hervorgeht, die
Wahrscheinlichkeil, dass das Ereigniss bei n Versuchen hdochstens

n . n ; 5
o ~ 1 und wenigstens 5 = 1 Mal eintreffe, ausgedriickt durch

—Sﬁ, wenn S die Summe aller Terme in der Entwicklung von (1 4 l)n,

2
genommen zwischen den Gliedern, die um | Terme links und rechls

vom mittleren abstehen (die dussersten inbegriffen), bedeutet. Die Wahr-
scheinlichkeit also, dass ein Ereigniss unter gleichen Verhdiltnissen in
einer solchen Zahl von Malen eintrifft, die zwischen

1
% + 5 \/n liegt. ist daher gegeben durch das Doppelte der Zahl,

die im Zusatz 2 gefunden wurde, durch 0,682688 und die Wahr-
scheinlichkeit des Gegentheils, dass die Eintreffenszahl ausserhalb diese
Grenzen {fillt, ist somit 0,317312.

Zusatz 4. Weil es aber unausfiihrbar ist, eine unendliche
Zahl von Experimenien anzustellen, so konnen wir den vorhergehen-
den Schluss auch auf grosse endliche Zahlen anwenden (folgt ein
Beispiel fir n = 3600).

Zusatz 5. Wir konnen daher als fundamentale Maxime hin-
stellen: Das Verhdiltniss, welches in der Entwicklung des Binoms von
hoher Potenz die Summe der Glieder, welche vom mittleren Term aus

nach beiden Seiten wm ein Intervall von %\/Tz Gliedern liegen, zur
Summe der ganzen Entwickluny hat, wird ausgedriickt durch die Zahl

0,682688 oder nahezu : hiebei ist aber nicht nothig, dass

28
41’
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n — oo sei; sogar fir n = 100 liefert die Regel noch ein er-
trigliches Resultat, wie ich durch Versuche bestiligt finde. Noch

. 1. —. I
1st zu bemerken, dass —2—\/n, im Verhiltniss bezogen auf n, um so

kleiner wird, je mehr n wichst; wichst also die Zahl der Beobach-
tungen, so werden die Grenzen im Verhiltniss zu n immer enger
wihrend die Wahrscheinlichkeit dieselbe bleibt.

Zusatz 6. Wenn | = \/n_gesetzt wird, so konvergirt die

Reihe in Coll. 2 lweniger gut als fiir 1 = %\/HT und fir eine

ertrigliche Anniberung sind daher viel mehr Terme zu addiren. In
diesem Falle gebrauche ich die mechanische Quadratur, die von Sir
Isaac Newlon erfunden, von Mr. Cotes*), Mr. James Stirling und mir,
vielleicht noch von anderen weiter ausgebildet worden ist. Sie besteht
in der Beslimmung der Fliche einer Curve, wenn man von ihr eine
gewisse Anzahl von Ordinaten A, B, C, D, ...... kennt, die sich
in gleichen Intervallen folgen, wobei auch gilt, dass, je kiirzer die
Intervalle genommen werden, desto genauner das Resultat wird. Im
vorliegenden Falle beschrinke ich mich auf 4 Ordinaten, die mit A,
B, C, D bezeic}\net sein mogen. Wenn nun der Abstand der erslen
von der letzten gleich 1 ist, so wird die Fliche gleich

(A + D) + 3@ + )

8

1, 2,3 4,5 _ —
gleich 0, g\/n, g\/n, g\/n, g\/n, ‘6\/n, und \/n, verwenden fiir unsern

-1 sein**), Setzen wir nun die Distanzen

3 4,5 ,_6 _
Fall die 4 lelzten: g\/n, E\/n, g\/n, g\/n, nehmen alsdann die

Quadrate dieser Ausdriicke, verdoppeln jeden, dividiren durch n und
geben jedem das Zeichen minus, so haben wir die Grissen:
1 8 25
— T 9 T 18
*) Cotes Roger (10. VIL 1682 — 5. VL. 1716), Professor der Astronomie
und Physik in Cambridge, war der Verfasser der Harmonia mensurarum (Cam-
bridge 1722), welche den bekannten Cotesischen Lehrsatz enthiilt.

*#¥) Moivre leitet diese Formel (Miscell. analyt. lib. VIL ¢. II: «De Me-
thodo differentiarum») aus der Newton’schen Interpolationsformel ab, ndmlich aus:

— 2, welche die hyperbolischen Logarithmen der

u n 2 u
U =u-} A 4 A u . A" v,
’ 1 2 n
worin u, das allgemeine Glied, u das Anfangsglied und A u, #u, S u.....
die Anfangsglieder der ersten, zweiten, dritten . . . .. Differenzreihen sind.

Bern. Mittheil. 1893. Nr. 1324.
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Zahlen 0,60653, 041111, 0,24935, 0,13534 sind, die unsere 4 Ordi-

5 s 1 - . ; ;
naten darslellen. Weil nun | = ?\/n ist, so ergibt sich nach

der Formel fiir unsere Fliche 0,170203\/11_. Das Doppelte hievon

2
multiplizirt mit \/211—75 ergibt die Zahl 0,27160, und diese zu

0,682688 (Zusatz 7) addirt gibt 0,95428, welches die Wahrscheinlich-
keit ist, dass bei n Versuchen das Ereigniss weder mehr als
% + V/n, noch weniger als % — \/n eintritt.

Zusatz 7. Auf demselben Wege kann man finden, wie gross
die Wahrscheinlichkeit sei, dass die Zahl des Eintreffens zwischen

: : 3 /= e
andern Grenzen liege, z. B. zwischen L += -2—\/n. Hiefir wiirde

2
sich die Zahl 0,99874 finden lassen.
Bei allen Beispielen spielt \/‘ﬁ die Rolle eines Modulus fiir die
Schitzung der Grenzen und der Wahrscheinlichkeiten.
Zusatz 8. Ist die einfache wund constante Wahrscheinlichkeit
eines Kreignisses nicht gleich der entgegengesetzten, bildet die Zahl

der giinstigen zu den ungiinstigen Fillen das Verhiltniss —Z——, so lisst
sich die Wahrscheinlichkeit dafiir, dass das Ereigniss in n Versuchen
W 41 liegt
5 "
wo S die Summe aller Glieder in der

eine solche Zahl von Malen eintreffe, die zwischen p
ausdriicken durch

. (a+0)" n .
binomischen Entwicklung von (a - b)  bedeutet, die links und rechts
im Intervall von ] Gliedern (die &dussersten inbegriffen) vom grossten
Gliede abstehen. Das Verhiltniss, welches bei einer sehr hohen

?

Potenz des Binoms (a | b)" das grosste Glied der Entwicklung zur
Summe aller tibrigen Glieder hat, wird ausgedriickt durch den Bruch
: a-b %),
\/abnnr
Zusatz 9. Der Logarithmus des Verhillnisses, welches ein
Term in der binomischen Entwicklung, der um das Intervall von
1 Termen vom griossten absteht, zu diesem hat, ist gleich
Bl g
2abn

*) Meines Wissens gibt Moivre nirgends eine analytische Herleitung weder
von dieser Formel, noch jener im Zusatz 9. Die Losung ergibt sich jedoch
analog wie jene bei Voraussetzung gleicher entgegengesetzter Wahrscheinlich-
keiten.



Zusatz 10. Ist die Wahrscheinlichkeit eines Ereignisses auf
Eintreffen verschieden von derjenigen auf Nichteintreffen, so werden

die Probleme, die Summation der Terme in der Entwicklung von (a -} b)"
betreffend, mit derselben Leichtigkeit und Methode aufgelost wie die-
jenigen, wo die entgegengeselzten Wahrscheinlichkeiten dieselben sind.

Aus dem Gesagten folgt, dass der Zufall die Ereignisse, die na-
tiirlichen Institutionen gemdss eintreten, sehr wenig in threm Eintreffen
stort. Wird z. B. ein ruondes Metallstiick, dessen Seilen fein polirt
sind und verschiedene Farben, z. B. schwarz und weiss zeigen, auf-
geworfen, so wird mit der Vermehrung der Wiirfe das Verhiltniss
der erhaltenen Schwarz und Weiss sich immer mehr der Gleichheit
nihern und es ist schon bei 3600 Versuchen die Wahrscheinlichkeit
dafiir, dass die Erscheinungszahl der einen oder andern Farbe zwischen

1770 und 1830 liege annidhernd —2—; in diesem Falle macht also die

Abweichung von der perfekten Gleichheit nur T%U der gesammten Ver-

suchszahl aus und mit derselben Wahrscheinlichkeit wire die Abweichung
1
; —
bei 10,000 Versuchen nur 5000

weilerung der Grenzen aber wiirde die Wahrscheinlichkeit fiir das
Eintreffen einer der Farben in einer Anzahl von Malen, die in diesen
Grenzen liegl, immer wachsen und schliesslich zur Gewissheil werden.
Diese Ausdehnung der Grenzen aber, und das ist nicht zu vergessen,
ist bei Yermehrung der Beobachtungen im Vergleich zom Wachsthum
der Versuchszahl nicht so betrichtlich, diese wichst direct, jene mit
der Quadratwurzel.

Schliesslich miisste also bei wunendlich vielen Versuchen mit Ge-
wissheit eine Gleichheit unter der Zahl der Erscheinungen von Schwarz
und Weiss eintreten.

~ Die nimliche Betrachtung liesse sich auch durchfiihren fiir den
Fall, in welchem die entgegengesetzten Wahrscheinlichkeiten un-
gleiche sind.

Abraham de Moivre schliesst seine werthvolle Abhandlung mit einer
Ueberlegung, die an Jakob Bernoulli’s kiihne Schlusskonsequenzen er-
innert: «And thus in all cases it will be found, that altho Chance
«produces Irregularities, still the Odds will be infinitely great, that in
«process of Time, those Irregularities will bear no proportion to the
«recurrency of that Order which naturally results from original Design.»*)

aller Erscheinungen. Mit der Er-

*) Doctrine of chances, 2. ed. p. 243.
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19. J. Todhunter hilt Moivre neben Laplace fiir den grossten
Analytiker in der Wahrscheinlichkeitsrechnung, wenn er sagt¥*): «[t
will not be doubted that the theorie of Probability owns more to him
than to any other mathematician, with the sole exception of Laplace.»

Pflichtet man diesem Urtheil ohne Einschrinkung bei, so muss
insbesondere mnoch hervorgehoben werden, dass kein Mathematiker um
die analytische Darstelluug des Bernoulli'schen Theorems grissere Ver-
dienste hat als Moivre. Nicht von vorneherein von einer so hohen
philosophischen Warte ausschauend wie Jakob Bernoulli und sich dem-
nach nicht weiter liber die Wahrscheinlichkeit a posteriori verbreitend,
schenkte Moivre der mathematischen Analyse des Problems sein Haupt-
interesse, und erfolgreich hat er die heutigen Methoden und Resul-
late der analytischen Darstellung desselben im Prinzip gegeben.

Es gelang Moivre nicht nur, mit Stirlings Hiilfe einen leicht
zu berechnenden Ausdruck fiir die Fakultit zu finden, sondern er hat
auch schon als Summe von Termen einer binomischen Entwicklung
innerhalb gewisser Grenzen den Laplace’schen Integralausdruck gegeben.

Denn :

Bezeichnet M das Mittelglied der Entwicklung von (1 - 1)"
M; das um ein Intervall von 1 Gliedern entfernte Glied, so wird nach
Moivre (v. Zusatz 2)**):

| 212 912 2 6
1) =1 — o) 241112 + ;‘15 R in inf.

Wie nun Moivre die Summe der Terme zwischen M und M,
gefunden, sagt er nirgends; es lisst sich aber annehmen, dass er die
Ausdriicke der linken Seite der folgenden Gleichung in Exponential-
reihen entwickelt und summirt hat :

M, M. M, Mo 2 Bl
M +T+' “ﬁ_+ N = © + e =
1.2) 2
+e‘2(n—)+....ez -+ e°,
woraus sich ergibt
M+ M +....4+ M + M= M [Summe der Exponentialr.]

Moivre erhilt dann, indem er noch durch die Summe der ganzen
Entwicklung dividirt den Ausdruck :

2 213 41> 817 161°

\/2nn{1 “1.em T T 6. T oz.om

—_— e

*) Todhunter, History of the Prob. p. 193.
**) Bei den folgenden Hinweisen auf Zusiitze sind immer diejenigen in
Moivre’s Abhandlung gemeint.

ey ininf.;.



— 157 —

Man wird sich nun leicht uberzeugen, dass der Ausdruck in Pa-
renthese weniger jene [Summe der Exponentialgrossen] darstellt, son-
dern genau das unbestimmte Integral der Reihe in Gleichung 1), d. h.,
Moivre nimmt fiir das Verhdltniss der Summe der Terme von M bis
M, (inclus. die &ussersten) zur Summe aller Terme das bestimmie
Integral, welches man gewohnlich als Laplace’sches bezeichnet

1
2 __g_xd
\/2[]76 € n AdX.
0

Um die Wahrscheinlichkeit zu erhalten, dass bei n Versuchen
die Zahl der giinstigen Beobachtungen sich innerhalb der Grenzen

~g— -+ 1 liege, verdoppelt Moivre den Werlth jenes Integrals (Zusaiz 3)

und erhilt somit allgemein fiir die bezeichnele Wahrscheinlichkeit :

1 oxz
W= 4_ e "dx,
\/2[171:
]
oder im hesondern Fall, wenn 1 — % \/ ‘n geselzt wird
W = 0,682688.

Fir den Fall, in welchem die entgegengesetzien einfachen Wahr-
scheinlichkeiten ungleich sind, wiirde Moivre nach Zusatz 9 fir W
erhalten:

1 atbh
W — 2 (a+h) e 2abn dx.
\/Eabnn
0

Dieser Deduction haften zwei Ungenauigkeiten an. Zunichst wird
das mittlere grasste Glied zweimal gezdhlt. Dieser Fehler compensirt
sich zwar bei gleichen einfachen und entgegengesetzten Wahrschein-
lichkeiten, wenn die Versuchszahl n als ungerade Zahl vorausgesetzt
wird, in welchem Falle dann 2 Miltelglieder vorhanden sind.

Im Weiteren beniitzt Mowre offenbar die Summationsformel :

x=l 1
_3099 (x) =f9° (x) dx.

X—
0

Wie aber im néchsten Abschnitt gezeigt werden soll, hat Mac-
laurin zuerst gefunden und Euler es anf andere Weise bestitigt, dass
fir eine stetige, nach endlichen Incrementen fortschreitende Funktion
in erster Niherung die Formel gilt (wenn die Variable sehr gross wird):
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x=0

S om=[9¢® dx—g[?’(x):l .
0 [1]

Darnach wiirde, bei gleichen entgegengesetzlen, constanien Wahr-
2x2

scheinlichkeiten, wenn man die Moivre’sche Funktion e =» , die
Stetigkeit besitzt und fir x = o ein Maximum liefert, slatl ¢ (x)
setzt und unter der Yoraussetzung, dass die Versuchszahl n eine ge-

rade 1ist,
9 1 2y _241e
W=—-——|]2 e " dx — e g
\/2nn
0

und im andern Falle, wenn die Versuchszahl ungerade.

9 1 2x _ 20412
W: gyl 2 [‘ e L dx — e - + 1]-
\/Zrm .
0

Ungeachtet dieser Ungenauigkeiten, die sich wohl begreifen
lassen, bleibt Moivre der Schipfer des Laplace’schen Integrals und hat
iiberhaupt das Verdienst, die Infinitesimalrechnung zuerst in der Wahr-
scheinlichkeitstheorie fruchtiragend verwerlhet zu haben (z. B. auch
beiin Coeffizientenproblem). Ferner hat Moivre zum ersten Mal
eine Wahrscheinlichkeitscurve angenommen , einzelne Flichentheile
derselben durch mechanische Quadratur bestimmt (Zusalz 6) und deren
Wendepunkle angegeben®). Interessant ist auch, dass Moivre im Falle
von gleichen entgegengesetzien einfachen Wahrscheinlichkeiten die

Wendepunktsordinate resp. den Term fiir 1 = é— \/T (Zusatz 2) als

Fehlergrenze wihlt. Diese spielt heute bekanntlich in der Fehler-
theorie**) eine wichtige Rolle, weil sich aus ihr ein charakteristischer
Fehler, welcher der Wurzel aus dem mittleren Fehlerquadrat entspricht,
ergibt. .

Was die Analysis aus den Moivre’schen Wahrscheinlichkeitsstudien
fir sich gewonnen, braucht nach alledem nicht mehr weiler ausgefiihrt
zu werden; dagegen mochten wir schliesslich noch der logischen
Klarheit und Uebersichtlichkeit in Moivres analylischen Entwicklungen,
die man bei Stirling oft vermisst und worin Moivre vielleicht der
Lehrer der Meister in dieser Hinsicht — Euler und Lagrange — ge-
worden ist, lobend gedenken.

*) Vergl. Note 3 im Anhang.
**) S. Hagen, Grundziige der Wahrscheinlichkeitsrechnung, p. 73 ff.
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VI.

20. Zeigte sich im letzten Abschnitt die Unzulinglichkeit des
Moivre’schen Verfahrens fiir die Ueberfilhrung einer nach endlichen
Incrementen forlschreitenden Summe zum Integral, so geht hinwieder
aus den Abschnitten III und IV hervor, dass die Summationsformeln
von Moivre und Stirling zur angendherten Bestimmung eines Werthes
fir Log I'x + 1) mehr empirischer Natur waren und daher der
Allgemeingiiltigkeit ermangelten. Aber bis um die Mitte des vorigen
Jahrhunderts hatte sich die Analysis schon bedeutend entwickelt, und
es musste sich in der Reihentheorie selbst das Bediirfniss nach allge-
meinen Summationsformeln geltend machen.

Maclaurin*) war der erste, der auf Grund der von Newton begriin-
deten mechanischen Quadratur eine allgemeinere Summationsformel
fir Reihen mit endlichen Differenzen aufstellte. Er betrachtet®*) eine
parabolische Curve von der Gleichung :

y=A-+4+Bz 4 C® 4 Dz® 4 ......... ;
oder wenn a die Anfangsordinate bezeichnet,
zda z%d%a z3d3a

y=a+ — Tt g tara T

Maclaurin setzt nun dz = 1 und bezeichnet mit A, B, C, D, .. ..
die Flidchen, deren gemeinsame Basis gleich dz und deren Ordinaten
respeclive y, dy, d%y, d® .. ... sind und findet fir

. da d? d3a
A:"""W“f“ 31 + 'y + ........

dann  wird

da d%a d3a
21 81 T 4!
Werden nun auf analoge Weise da, d%a, d3a, d*a
bestimmt, wie z. B.

da  d%a  da
2! 3! 4
so ergibt sich schliesslich durch Substitution:
B G E & e
1=A— 5 T3 ~ 7 " 30000
oder allgemein :

--------

*) Colin Maclaurin, geboren zu Killnodden in Schottland im Jahre 1698,
war Professor der Mathematik zu Aberdeen und Edinburgh. Er starb 1746.
%%) Treatise of Fluxions (Edinburgh 1742) art. 830. a. fs.
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2a=—=A— KB4 LC—MD}-NEZF .........

worin die Coeffizienten K, L, M, N ....... , wenn man k = —21—!—,
1 1

123—1’ m == yoee e e setzt, nach folgendem Gesetze fort-

schreiten :

=
|
-~
|

=
|
|
>
of
B
I

so dass also die Coeffizienten der Flichen D, F, H. ... verschwinden.
Nun ist A gleich dem Integral von ydz, B dasjenige von dy dz, C
von d% dz, ...., alle Inlegrale innerhalb der Grenzen o und
dz = 1 genommen. Daher ist B gleich der Differenz der Ordi-
naten y, — y, =y, — a, und G ist gleich der Differenz der
ersten Ableitungen dieser Ordinaten nach z, E und G gleich der Dif-
ferenz der 3. resp. der 5, Ableitungen derselben Ordinaten, . ... ..
Bezeichnet man diese Differenzen mit e, 8, , d, .. ... , so wird a

oder:
A« By 4,0
Yo = A 5 t 13 — 790 T 30200 &£ -

Selzt man nun eine Basis z, z, in n aequidistante Theile zer-

legt voraus, von denen jeder Theil' gleich dz — 1 sei, bezeichne S
die Summe der aequidistanten Ordinaten yo—}-yi-}y2— . - - Yoz + ¥na,
sei ferner nach gegebener Definition ¢ = y, — Yo,
dy dy d?y d3y
n 0 “n 0 .
= — — — PR Y tl
g dz az 7 dz? dz® » 5018
0
S—A—% 4 B v 4 9 L ..
2 + 12 720 + 30240 +

Dies ist die Summationsformel von Maclaurin fiir den Fall eines
Incrementes gleich 1; fiir ein beliebiges Increment h erhilt derselbe
analog die Formel:

A o g h 7 h® dh®
h - 2 12 720 + 30240

........
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Erinnert man sich, dass A die Fliche der Curve von z, bis z,
ist und denkt man an die Bedeutung von «, 8, ¥ ... ., so ist leicht
die Identitit der ]etztern Formel mit der f()lgenden, nimlich mit der
Euler’schen (fir h =

Z:n-1 B() dy n B(z.) d3y
wﬁdz—-—[ﬁ]-k[zf w5 ]

worin B(1), B(z), B(s) . ... die Ber noulh schen Lahlen bedeuten, fest-
zustellen.

21. Euler gibt die Formel auf rein analylischem Wege in den
Inst. Calcul. Different. p. Il ¢. V: «Investigalio summae serierum ex
Termino generali». Sei
= [(x), dann wird :

B dy d?y ddy
=M =D =y =3¢ Tgra ~3rag

Nun ist, wenn man mil A den Werlh fir x = o bezeichnet,

Sv=ZXy —y -+ A, und subslituirt man. diesen Werth in die
Gleichung:

dy 1 _d% 1 i
x = N —_— 5 Y B A ’
=V ¥ o Tor Tae TR ae
so kommt:

dx 2! Ta T3 Tt
Selzt man —%3;— = 2, so ergibt sich durch Substitution:
1 _dz 1 d* 4 '
Nz = T RN 1 LR N il o
= f‘d"Fm dx — 3!~ ax

Es ist aber ebenso:
dz 1 d3z 1 d%z
e L~ Gk B .t WA IR
=t Tae T 3T
N L U S W
“dx? dx ' 2! dx 3! T dxt

-----------------------------

Diese Werthe in die Gleichung fir = z eingesetzt, ergibt die
neue Formel:

Bern. Mittheil. 1893. Nr. 1325.



und zur Bestimmung der Coeifizienten o, 3, , . . . . . ergeben sich
die Gleichungen :
a — % =0 ) o = %
{3#%4“%:01 }also:ﬁ:: 112
Vv % -+ % o3 & y = 0
i
R
........................ ) « 5 BAEHELS

Das Fortschreitungsgeselz der Coeffizienlen findet Euler nach
einer lingeren Untersuchung tber die Bernoullischen Zahlen, die hier

nicht ausgefiihrt werden soll, als folgendes: « = %, B = %(1—) y=0,
B( ): ¢ = 0, .. und demnach wird seine Summenformel :

B(1 dz B(z) d®z B(s) d5z

-Z"de\+ T T 'ux3+ 6v'dx5
Bls) d'z 4 Const
— S 7 " T —+ i

Aus dieser von Kuler gegebenen Form erhilt man sofort durch
Subtraktion von z und durch Annahme von Grenzen, wenn man z ==
¢(x) selzl, die folgende:

xxl X B B\2 PULECRY b
S o M_fw)dx_ —[90\)] T [ (:)P(x)] |_>z_!_@]
0 i 0

B(s) ') |F—
+|: 8 25&! ]0+ ......

22. Unter den zahlreichen Anwendungen. die Euler von dieser Formel
macht, findet sich (im néimlichen Kapitel, Art. 157) auch diejenige zur
Ermittlung eines Niherungswerthes fiir Log Ix-}-1)*). Ist z = Log X,
so wird :

XX B(1) B(2) 4 C
' . = .
= Log X =x Logx —x -}~ - L{)g - T8 x5 i< o
und fir x =1, folglt

[ ==

#) Die folgende Darstellung gibt iibrigens sechon Maclaurin mittelst seiner
Summationsformel, v. Treatise of fluxions, art. 842.
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Nun ist nach der Formel von Wallis :
7 2.2.4.4.6.6....... (2x—22x

271.3.3.5.5.7..... @x—1)(2x—1) YU oot

somnit

log w —Log2—=21lLog2 4+ 2Log4 -+ 2Log6-+4....4Log2x
—2Logl —2Log3 —2Logb.......

Weil aber fiir lim X = oo :

X=X

YLogx=C+4+Nx -+ %) Log x—x

X=

¥ Log\ = C—( 2x———) Log2x — 2x

.}3 Log2x = C—-(x —f—é} Log x -} x Log2 —x,

=0 folgt aus den beiden letzten Gleichungen :
Log 14 Log8-4-Logb-...Log@x—1=x Logx 4 (x + —)Log2

also fir lim X = oo :
L()g%:::QC—}— (2x-41) Logx+ 2x Log 2—Log2 —Logx —2x
— 2 xLogx— (2x-41)Log2 | 2x
Log%:2c-—2l,og2, C=%L0g2ry.

Es ergibt sich somit far

lim \ _ . 1 —
x—oo‘.i Liogx = Lug 27r —}—(\—{— ) Log x —x, oder

lim x =co X! =\/2x e

23. Die Summationsformel von Euler und Maclaurin ist aber nicht
nur geeignet fiir die Darstellung eines Niherungswerthes fiir Log I“(,\H— 1),
sondern auch zweckmissig zur Summation der binomischen Terme in
derjenigen Form, in der sie nach Anwendung der sog. Stirling’schen
Formel bei der Darstellung des Bernoulli’schen Theorems erscheinen,
und in der That ist seit Laplace, der jene Formel von Euler und
Maclaurin zuerst fir den bezeichneten Zweck verwendete*), kein an-
deres Summationsverfahren gefunden worden. Jene Formel ersetzt
somit in linreichender Weise die miihsamen empirischen Methoden
Moivre’'s zur Ermittlung eines Niherungswerthes fiir den Bernoulli-
schen Summenausdruck.

*) 5. Note 1 im Anhang.
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Der geniale Laplace hat zum ersten Male mittelst seiner
«fonctions génératrices» eine noch allgemeinere Methode angegeben,
um einen Niherungswerth fiir Log I'(x 4+ 1) zu erhalten, nach welcher
auch die Constante ohnc Benutzung der Wallisischen Formel direct
aus der Entwicklung hervorgeht*); er hat auch, nach dem Vorgange
von Lagrange, die Euler-Maclaurin’sche Summationsformel auf anderem
Wege gefunden., Aber Laplace riumt seinen «fonctions génératrices»
gewiss einen zu grossen Einfluss auf die Darstellung des Bernoulli-
schen Theorems ein, wenn er schreibt**): «Le calcul des fonclions
génératrices, appliqué a cet objet, non seulement démontre avec facilité
ce théoréme, mais de plus il donne la probabilité que le rapport des
événemens observés ne s'écarte que dans ceriaines limites du vrai
rapport de leurs possibilités respectives»; denn alle diese Consequenzen
sind in geniigend allgemeiner Weise schon mit Hiilfe der Formel
von Euler und Maclaurin zu ziehen. Schon vor Laplace, um die Mitte
des vorigen Jahrhunderts, wire es moglich gewesen, dem Bernoulli-
schen Theorem diejenige analylische Form zu geben, die es heute
besitzt. Der Grund, warum es nicht geschehen, liegt darin, dass sich
von Moivre bis auf Laplace kein Mathemsatiker in productiver Weise
auf diesem Gebiete bethiligte.

* . *

24. Die Ergebnisse des historischen Theiles dieser Arbeit, der
die Entwicklungsgeschichte des Bernoulli’schen Summenausdruckes zum
Laplace’schen Integralausdruck geben sollte, fassen wir folgendermassen
zusammen : '

1. Jakob Bernouwlli I. hat nicht versucht, einen Niherungs-
werth [iir

m = up -1
Ny 4! _mn
2 m! n!p q
m == up —1

zu geben. Weil er das nach ihm benannte Theorem nur als Hiilfs-
satz seiner Theorie der Wahrscheinlichkeit a posterior: betrachtete, ge-
niigte thm der ganz allgemein gegebene Nachweis, dass mit der Ver-
mehrung der Beobachlungen auch die Wahrscheinlichkeit immer grisser
wird, dass die Erfahrungswahrscheinlichkeit eines Ereignisses gleich
seiner absoluten wird.

*) Vgl. Note 4 im Anhang.

*%) Essai philosophique sur les probabhilités p. 74. Théorte anal. des probab.,
introduction p. XLVIIIL
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2. Abraham de Moivre gab im Prinzip die Laplace’sche Analyse
des Bernoulli'schen Theorems. Er fand nicht nur Niherungswerthe fiir
den Binomialcoeffizienten und fiir I'(x), sondern gab auch das Laplace-
sche Integral als Swumme des Bernoulli’schen Ausdrucks in der Form von

1

\/2pqgm: .
0

3. James Stirling hat, auf Anreqgung Moivre’s. den cyklometri-
schen Charakter der den Niherungswerth fir I'(x) und das Laplace-
sche Integral begleitenden Constanten erkannt.

4. Aber erst der Summationsformel, welche von Maclaurin, dann
von Euler gefunden worden ist, verdankt das Bernoulli'sche Theorem
die allgemeine Entwickliung jener exakten analytischen Form, die ihm von
Laplace gegeben wurde,

VII.

25. Der jetzt folgende Abschnitt gibl eine Verallgemeinerung der
Serret’schen Ableitung der Stirlingschen Formel.

Die ersten Darsteller dieser Formel benutzten zur Bestimmung
der Constanten die Formel von Wallis. Nun hat J. A. Serret in einem
- Mémoire sur I’évaluation approchée du produit 1.2 .3 ..... X, lors-
que X est un trés grand nombre, et sur la formule de Stirling*) auf
elegante Weise gezeigt, dass die Formel von Wallis zur Ableitung
derjenigen von Stirling vollkommen hinreichend ist. Er sagt dariber
einleitend: « ..... Or, cetite simple formule de Wallis suffit, a elle
«seule, pour établir completement celle de Stirling et la déduction est
«si facile que la denxieme formule peut étre regardée avec raison comme
«une transformée de la premiére.» Serret’s Darstellung ist die folgende :

Die Formel von Wallis ist:
7w  2.2.4.4.6.6....2x—2)(2x—2)2x
2 1.3.3.5.5.7....2(x—38)(2x—1)2x—
und sie nimmt die sehr einfache Form**) an:

1)$ (fll[‘ X :OO)

*) Comptes rendus hebdomadaires des séances de I’Académie des sciences,
année 1860, t. 1. p. 1662.
*¥) Die Transformation ergibt zunéchst:
2 [(x—D1*2&Y 2x 1 (x)f2x
S= L T x—D 1 ax (@)
dann nach einfacher Umformung

. oxt ey P e
S = [xx V2nx ] ' [ (2x)2 Vanx ] T e(29)
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[g O] )
1. > =1 fiir x = oo
| ¢(20) ( }
wenn man mit ¢(x) entweder den Ausdruck :
IeBil : s rume X
e 1
V 27 >t

oder das Produkt dieses Quolienten mit einer Exponentialfunktion von
der Form a* bezeichnet, wobei a eine beliebige positive Constante be-

deutet. Die Gleichung 1) gilt also auch, wenn man setzt:

1.2:8 .. .%

2. ¢(X) = ;- (e = Basis der natiir. Logarith.)

V2o e x*t2
Aus dieser Gleichung folgl:
3 px) 1(1 _I_})er.—;: g (x-i-v})Log(l—{--}g).
oix-J-1) I X,
Da x> 1, wird, wenn @’ und @ zwei Grissen bezeichnen, die
sich zwischen 0 und 1 bewegen,

1 1 (04 1 1 (Ol
Log(l‘f—f{):__ﬁ:Q_g(z‘l*gj@

X
folglich
1 1 O &'\ 1 G

(X—I—E) Log(l —|—§)_ 14| ( s — 1 )F_l—% &

wo @ zwischen — 1 und -} 1 gelegen ist, daher
2]
@(x) — o<
¢(x+1) '

Aenderl man nun successive X in x -} 1, x 2, ...2x— 1,
und bezeichnet man mit @,, @, @, ... @O, Grissen, die zwischen
— 1 und + 1 liegen, so wird

), o, Ox-r
eOAD _ agar 92 mm L ACh St Gy
¢(x+-2) To(x-3) ’ ¢(@x) )

Multiplizirt man alle diese Gleichungen und heobachtet, dass

e, e, Ox., 1
FTE= A e VY
so kann man schreiben:
@
g(x) __ %,
: ¢(2x)
wo @ eine Grosse ist, die zwischen — 1 und -} 1 liegt, und wird
X == oo, $0 hat man
4, () (fiir x = oo).

=1
@(2%)
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Dividirt man nun Gleichung 1) durch 4) so kommt:
px) = 1 (fiir x = o0)
d. h. nach Formel 2):
1.2.3... x:\/é}ie'xx”%(l#-ex),
W0 & eine Grisse ist, die fir x = oo zn 0 wird.

26. Ist nun diese von Serrel gegebene Darstellung eines Niherungs-
werthes fiir Ix - 1) auch die einfachste und elegantéste, die je ge-
geben wurde, so erscheint sie doch einer Verallgemeinerung fihig zu
sein. Wenn man die von Serret gefundene Funktion mit S(x) be-
zeichnet, so ergibt sich aus der Formel von Wallis fir

hm SRS W LY
oo S = [ x*\/z“n?c‘] ' [(2@2"\/475?] —

oder wenn man den Ausdruck
x!

X* \/27x

mit ¢(x) bezeichnet, so wird
lim P’ (x)
1) i BX) == o2n) 1
Serrel setzt aber die Funktion
x!
Ve o T
Diese Erweiterung von S(x) mit e** ist in der That beim Ge-
danken an den Stirling’schen Niherungswerth fiir x! sehr naheliegend.
Aber im allgemeineren Falle muss jene Exponentialgrisse erst
im Verlaufe der Entwicklung als gewisse Bedingung sich darstellen,
wie im Folgenden gezeigt werden soll.

Es sei also
(x) -
X) — )
i x*\/27ex
lim oY)
cEs s DOA e(2x)

es gelingt, nachzuweisen, unter welcher Bedingung

lim —?Q — 1 ist. Denn alsdann wird
X = o0 ¢(2x) |
9
lim ¢(2x) x!
— 2 (] X) = o——— 1_
X=00 ¢(x) #l X* \/27ex

¢(2x)
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Es soll nun untersucht werden, unter welchen Bedingungen
lim R0 Y

X=o00 ¢(2X)
Dazu ist
_g(x) +5
1) = (1)
e(x) 1 1 (=1
und Log D) =14 {552 12x3+ F o 15 - ininf.
Die Reihe ist, da x > 1, convergent und die Glieder nehmen,
selbst fiir x = 1, schon vom Gliede — bi%)?g an, ab.
Es wird daher
( 99(7‘) — G')o , L
Log (1) 1| 2 w00<(9<12
o(x4-1) O, 1
2){lo o2 1+A(x+1)°’“0 0 << 6, < 12
@(2X—'1) @X-—l i.
o(2%) T agr V00 <0< 35

Werden die Gleichungen 2) addirl, so findet man
o(x) & 1
]_J b, b T
3) Log (20 — x+x W00<@<12
woraus, wenn man zur Exponentialfunktion iibergeht, folgt
6

e — e¥X, oder

¢(x)
¢(2x)
) lim 5’(\) s 1.
St (,9(27()
Die Multiplikation mit der Exponentialgrisse e* ist somil die
gesuchte Bedingung fiir die Existenz der Gleichung :
lim ¢(x) 1
x=0co  ¢(2x) '
Durch Division der Gleichungen 1) und 4) geht hervor:

'
i o(x) e = 1, oder da ¢(x) = o T
X =0 ’ XX \/an
resullirt schliesslich
i
}:lnzoo X! = x* ex \/275)&,

oder x! — x* e* \/27rx (14-wx),
worin wy fiir lim X = oo verschwindet.
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Bei der Bestimmung der Grenzen findet man*)

XX e \/2mx < x! < x* e‘xﬂ% \/272x und
weil die Quantitit —1}2-; schon in der Gleichung 3) als Grenze aufge-

treten, hegte ich die Vermuthung, dass sie sich ebenfalls durch die
obige Entwicklung als Grenze finden liesse. Der Nachweis ist mir
aber bis jetzt nicht gelungen.

VIII.
27. Dieser Abschnilt gibt einen newen vereinfachten Ausdruck
fiir das Bernoullische Theorem.
Es wurde im historischen Theil dieser Arbeit gezeigt, wie
Moivre zuerst fir den Bernoullischen Summenausdruck

m=up-|1
. ! m n
W= m!n! P9,

m=up—1

worin m-Fn=u, p+q=1und l =y \/2pqm ist, einen Inte-
gralausdruck gegeben hat, welchen alsdann Laplace wie in Note 1 im

Anhang ersichtlich, mit vollkommeneren Methoden genauer gab durch
2

¥ s
W= 2 [eVa4%—
\/rc‘ \/2yvlupq

0
Dieser Ausdruck ist seit Laplace unverdndert geblieben, man

findet ihn heute noch in den besten Handhiichern fiir Wahrschein-
lichkeilsrechnung, so in denen von Meyer und Czuber, von Bertrand
u. a. m.

Bei Operationen mit demselben erweist sich jedoch die Restfunktion
2

e’

V2mupg
seit Laplace noch niemand es versucht hat, dieselbe durch Vereinigung
mit dem. Integral ihrer isolirten Stellung zu entheben.

Dass dies maoglich ist, soll im Folgenden gezeigt werden.

Es sei I

Y= m! n!

Binoms (p 4 q)“, worin p und ¢ die bekannte Bedeutung haben. Als-
dann wird, wie es schon Laplace gezeigt hat, mit Hiilfe der Formel

als sehr wunbequem. Um so mehr muss es auffallen, dass

pmq“ das allgemeine Glied des

*) Serret gibt diese Grenzenbestinnmnung auf hiibsche Weise in seinen
©Cours d’algébre supérieure (5. éd., Paris 1885) tome II, art. 393, p. 218.

Bern. Mittheil. 1893. Nr. 1326.



— 170 —

von Stirling und unter Beriicksichligung des Satzes, dass diejenige
Combination der Zahlen des Eintreffens und Nichteintreffens des Er-
eignisses ein Maximum von Wahrscheinlichkeit besitzt, die unter
der Relation steht p:q = m:n, die Wahrscheinlichkeit, dass bei
g Yersuchen das Ereigniss (dessen einfache und konstante Wahr-
scheinlichkeit gleich p, dessen entgegengesetlzte gleich g ist) eine
Anzahl Male eintreffe, die zwischen up -{- | liegt, ausgedriickt durch

m :‘llp —I—l
. R ‘u! n
m=up —I

+ Yt Yo o Yo o0 - Yopa + Yrir,
worin also in allen Gliedern m durch up und n durch pq erselzt
ist und y, das Maximalglied bedeutet. '

Dann kann man setzen:
A=1

j
W ::2 [yr-2 -} Yrqa] — y», oder

— Ny — ; (0). wenn

&
.2 e 2upq also {0) = ___;_ ist.

74 \/ 271Dy , o \/ 27rupy

28. So viel mir bekannt ist, wurde der Uebergang von der zulelzt
gegebenen Summe zum Integral seit Laplace immer mil Hiilfe der
Summationsformel von Maclaurin und Kuler gemacht. Eine eigene
Methode fiir diesen Uebergang, auf mechanischer Quadratur beruhend,
gab mein verehrter Lehrer, Herr Privatdozent Dr. Ch. Moser in Bern,
der sich bei versicherungstechnischen Arbeiten oft mit dieser Materie
beschiiftigte, in seiner Vorlesung iiber das Bernoullische Theorem (im

Sommer-S. 1892) und zwar in folgender Weise:
X2
e 2upq und

Sel { X) e
( \/ 27eppq

,j 1
\V:Z f(x) — 3(0)
x—0,1,2 ...1

Die Funktion f(x) liefert. weil ppq positiv ist, fir x = 0 ein
Maximum und nimmt mit wachsendem x stetig ab. Die rechte Seite
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der Gleichung fir W kann, da x nur die ganzzahligen Werthe 0, 1,
. 1 betritt, geschrieben werden :

1
W=§f(0)—|—l.f(1)+1.f(2)—|— ....... 1. 1(x).
Die einzelnen Summanden seien als Rechtecke dargestellt und
. .1 :
zwar f(0) mit der Basis B und die iibrigen Werthe je mit der Basis 1.

Werden diese Rechtecke iiber einer gemeinsamen Grundlinie anein-
andergereiht und wird iiber dieser Grundlinie als Axe der x die
Curve f(x) construirt, so schneidet diese die der Basis gegeniiber-
“liegenden Seiten der fir f(1), f(2) . . . . f(1) erstellten Rechtecke
je in der Mitte. Die Fliche, welche von der Grundlinie, den Ordi-

naten f(0) und f(l + _%) und der Curve f{(x) eingeschlossen ist,_

1
I-{—?
hat zum Ausdrucke: ff(x) dx. Substituirt man diese Fliche fir

L &

0 i
die Summe der Rechtecke, so kommt bei einem einzelnen Rechteck
ungefihr ein so grosses Dreieck hinzu, wie die Curve von dem Recht-
eck abschneidet, — absolut genau, sobald die Curve fiir ihren iiber

der Basis eines Rechtecks gelegenen Theil als geradlinig betrachtet
; 1 :
werden kann. Nur beim ersten Rechteck, o f (0), hebt sich das

kleine Fehlerdreieck nicht auf. Dieses wird jedoch, da f(x) fiir
X = 0 ein Maximum aufweist, sehr klein. In Niherung muss daher
gelten:
1
W-—
N 1 N
W :2 f(x) — = f(0) = | fx) dx.
x=0 1,2 ....1z*
Das Resultat, das diese geometrische Ueberlegung liefert, leuch-
tete mir ein und regte mich an, eine Unlersuchung auf analytischem
Wege vorzunehmen.

29. Sei also

DO

X ==1

1) W = 2 o(x) — % ¢(0) oder auch
x =10
x=1—1

2) W = () +¢) — 5 ¢(0),

X == 0
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. o X
worin ¢(x) = ————€ 2 1st.
O = Vo
Nach Euler’s Summationsformel*) :
X ==X
x{1 .
+1 B
2900&)— ey ax — 5 oo [ [RER )
X =
_ [E(ﬂ)ﬁﬂ_“’(x) - S :
4| 0
wird
x=I A1 N
2 o(x) = ] (x)d\—~ o) + 5¢(0)
X= 0 ¢
und
x=l]—1
=) 2 o(x) = f ey — 5 90(1) gk S ¢0)
X =0
bei Vernachlissigung der mit ¢'(x), ¢“(x) . ...... behafteten
x2
Glieder, weil ¢ (x) = — L e 2upq, also von
\/ 2mupq 2upq

1 . .
der Ordnung — ist (wo g sehr gross vorausgesetzt wird).
.28

Die Werthe 3) und 4) in die Gleichungen 1) und 2) substituirt,
ergibt :

141 1
5) W = fgp(x) dx — ) ¢(14-1) oder

0

1
1
6) W ..-.—.-fga(x) dx + 5 ¢().
0
Also liegt

1 141
W zwischen f ¢ (x) dx und f ¢ (x)dx, und es sei daher

*) Dr. Bruno Borchardt benatzt in seiner «Einfithrung in die Wahrschein-
lichkeitslehre» (Berlin 1889, Jul. Springer) diese Summationsformel unrichtig,
indem er die Grenzen auf beiden Seiten der Gleichung gleich nimmt, wihrend
die obere Grenze rechts um cine Einheit héher genommen werden muss. Bor-
chardt erhilt auch ein unrichtiges Resultat (p. 31 und 32 seines Buches). Auch
in Meyer und Czuber «Vorlesungen iiber Wahrscheinlichkeit» (Leipzig 1879,
Teubner) finden sich Unrichtigkeiten (oder sind es bloss unkorrigirte Druckfehler ?)
im Gebrauche der Grenzen (p. 101 und 102).
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14¢
W = f ¢ (x) dx, wo ¢ eine kleine Grisse, zwischen 0
e

0
und 1 gelegen, ist, die bestimmt werden soll. Zu diesem Zwecke suche

ich zu entwickeln
14-¢
{v ¢ (x) dx.

1
7) Man selze fcp(l) = {(1), dann wird
14-&
8) | «(x) dx = f(I4-¢) — I(1) oder nach Taylor

21‘4:([) 63{';11(])

f(l) + &f(l) 4 4 i 4 ... in inf. — f(I)
8‘f”(l) Esfu;(l)

==¢f(1) 4~ 57 - ] -+ in inf.

Es ist aber nach 7):

/() = (), 1) = '), (O =¢"(M), . . . .. .. §
somit folgt durch Substitution dieser Werthe in 8):

e “
9) f e(0dx = eo(l) |- W (D gk ‘P M 4 ..o

Weil ¢ < 1 ist, so ist die Reihe () convergent und man er-
hilt unter Vernachlissigung der Glieder von der Ordnung iin
erster Naherung: ¢

I-}&
fgp(x) dx == € ¢(l).

1
Es war aber nach 6):

1+&
f(p(x) dx = gp(l) , also

1

e @(l) = oD oder

lewr-w|

E ==

Daher wird:

1+—- 1+-§-
— f ¢(x) dx + f o(x) dx = f ¢(x) dx.
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Analog folgt aus Gleichung 5):

141-@
f‘,ﬁx‘i) dx =— — ¢ (1 4 1) , und durch Ent-
‘1
wicklung des Integrals links, nach Taylor, wie oben, ergibt sich
wieder:

1
— O ¢(+41) = — 5 ¢(1-4-1) oder
1
“=3
und
141 141 1{51
W =] ¢ox)dx — (,(x)dx = | ¢(x) dx.
e 0
2 x®
30. Es war aber ) — ———e5,, S U
SD( ) \/271"#[](] 2upg also wird
1
2 [’* 7 _xt
W I\/mepq . € 2upq dx.
0
: 1
Oder selzt man §&* = p x% wo =
, i ¢ 4 2upq
so wird
. o — - — dé
‘:,‘E:\\/Q 5 t,:dX\/Q und dx = ——
Ve
Fir die Grenzen gill dann:
x =0 é = 0
] 1 e — (] 1 —
=1+ o g = + o \/Q =

und nach einfacher Substitution geht hervor :

7/
W 2 f o dE
\V 7=

0
Die dem Laplace’schen Integralausdrucke anhaftende, bei An-
wendungen desselben listiq werdende Restfunktion ist hier mit dem
Integral vereinigt. Dabei hat eine Verinderung der oberen Grenze

statigefunden : im Laplace’schen Integral war y = I\/ 1 hier

qupq

" 1 1

18t v = |1 — ;
’ ( t 2) 2upq
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Dieser neue Ausdruck erleichtert nicht nur die sehr zahlreichen
theoretischen und praktischen Anwendungen des Bernoulli’schen Theo-
rems, sondern ermdoglicht auch genauere Resultate, und ich behalte mir
vor, gelegenllich einige dieser Consequenzen zu ziehen.

Anhang.

Note 1. Laplace gibt folgende Darstellung des Bernoulli’schen
Theorems*): Seien p und q resp. die einfachen Wahrscheinlichkeiten der
Ereignisse E und E’; dann ist die Wahrscheinlichkeit, dass in m - n
= u Versuchen das Ereigniss E m mal; E, n mal eintreffe, gleich dem
(m 4+ 1) Terme in der Entwicklung von (p 4+ q)*, nimlich gleich

1:2:8 : 04 u
* 1.2.3....m1.2.3...1

Bezeichnen wir den grossten Term in dieser Entwicklung mit M,

Mp n
T 1

m
gleich l;)l—g S sein. Damit aber M der grisste Term ist, muss

m n
p q.
1

gso wird sein ihm vorangehender gleich sein nachfolgender

gelten
I e B xd m-}1

41 q n
und hieraus folgt, dass
(u+1) p—1<<m<<(utl)p
oder m= (u+4+1) p— 6, wo o < 1, ist.
Nun wird

B o= T q=1—p=n+1_0v p_ mto

-1 w1 g ﬂlvo"
und sind m und n sehr grosse Zahlen, so gilt die Relation
P . m
q o’

d. h. das Eintreffen derjenigen Combination .der Ereignisse E und E’ hat
ein Maximum von Wahrscheinlichkeit, die wunter der Relation p: q=m:n
steht.

*} Théorie analytique des probabilités (3. éd. Paris 1820) Liv. 1I, Chap. II,
p- 280 e. L. s.
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Der 1t Term nach dem grossten M ist gleich
w! m-l n-tl

m—tmdny P

Nun ist
L oo 1
1.2.8....0n=n"t3 17/ox {1 +12n + }
und es wird
1 _m-l
N 7 T R
(m—I1)! Ver 12(m—I)
1 n-l
R (n-v—l)l'"'E _e_L__ {1 oy }
(n_]‘) ! \/271 12(11—])

Durch logarithmische Entwicklung und unter Vernachldssigung der Glieder

1
von der Ordnung = wird
1 Bt 1 I3
(m—i)l-mh‘f = eom m™g {1 + 9m b_'iii*}
1 | 1 1 13
4D = oo 0y {1 o P G—,ﬁ}~

m -} s m— ¢
Weil p = .uil ist (s << 1), so kann man setzen: p = —u——{’—, wenn
; ; 1 #—n
¢ sich in den Grenzen W F1 und — %1 bewegt, also ein H&chter
. . n 4 ¢
Bruch ist. Dann wird ¢ = — und man hat
mﬁ:-l LH "
m-1 nfl__ et }
P u {1 + mn |’
u
woraus sich ergibt
v wl?
w! m-l a1 Vu e‘énTn{ ool loem) 1 __13_}
(m—DOingnr P 4 = V22mn 1+ ma ™t 2m 6n12+ 6n?

Nimmt man in der letzten Gleichung 1 negativ, so erhilt man einen
Ausdruck fiir den Term, der dem grissten um 1 Glieder vorausgeht, und
die Summe der beiden ist gleich

2 Ve st

€ 2mn
V2amn

Nun wird die Summe derjenigen Terme in der Entwicklung von (p 4+ @),
welche gelegen sind zwischen 2 Termen, die nach links und rechts aequi-
distant um 1 Terme vom grossten M abstehen (inclus. die Hussersten),
ausgedriickt durch das endliche Integral :
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viobei beriicksichtigt ist, dass man das grosste Glied, welches man fiir
1 = 0 bekommt, nur einmal zu zdhlen hat.

Wenn nun y, eine Funktion von 1 bezeichnet, so gilt die Formel
(nach Maclaurin und Euler):

1d
2 Vi —fﬁdl e s > dly . . - + Const.,

2 e
i—- e 2mn jst. und die
\/2 amn

1
erste Derivirte nach 1 von der Ordnung — wird und vernachlissigt

welche sich in unserm Falle, wo y;, =

1
werden kann, in erster N#dherung reduzirt auf:

2: 1

Und nimmt man rechts die bestimmten Integrale (deren obere Grenze
um eine Einheit hoher ist als bei der Summe links) so wird, wenn man
das Maximalglied fiir 1 = 0 mit Y bezeichnet:

A=I-1

El ¥, = f&’d) — 50 Y oder auch

A=0
k==l

A=0 ‘%
Substituirt man nun fiir y, und fiir Y die gegebenen Werthe in den
. 1V e
Ausdruck 1), so wird derselbe, wenn man t = ———
\/ mn
1 i
\/2’;11 ("tz\/u,
- ——
\/7{ \/2mnn
0

Weil nun m = u p 4 & ({ < 1), so hat man
m41 14-¢ ty/2mn
——‘u———p== u - u\/‘u

also driickt die Formel 2) die Wahrscheinlichkeit aus dafiir, dass die

Differenz zwischen dem Verhiiltniss der Zahl des Eintreffens des Ereig-

nisses E zu u«, der Gesammtzahl aller Versuche und der einfachen Wahr-
scheinlichkeit dieses Ereignisses E innerhalb der Grenzen

t\/?m n

- e
gelegen ist.
Bern. Mittheil. 1893. Nr, 1327.

setzt, gleich

+5
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Note 2. In Propos. XXI enterpolirt Stirling die Fakultdten-
reihe 1, 1, 1.2, 1.2.3, 1.2.3.4, .
und zwar speciell das zwischen 1 und 1 liegende Glied,

Wegen der stark vorhandenen Divergenz der Differenzen der Reihe
interpolirt er deren Logarithmenreihe, sucht zunichst den Logarithmenterm
zwischen 10! und 11! und findet*) dafiir 7.0 755259569 dem als Numerus
11899423. 08 entspricht. In Propos. XVI hat Stirling aber zugleich
gezeigt, dass, wenn die intermediiren Glieder der obigen Fakultéiten-

reihe mit a, b, ¢, d, . . . ... bezeichnet werden, die Relationen bestehen:
3 5 1

b = 5 8 = 5 b, d = IR Indem er nun das

17 3

Glied zwischen 10! und 11! successive durch 129 3 %9—, T 0}

dividirt, erh#lt er fiir das gesuchte intermediire Glied die Zahl
0.8862269251. Das Quadrat dieses Werthes ist gleich der Fliche des

1 g
Kreises vom Durchmesser 1, also wird das Glied selber gleich 5 \/ n

scin, Ebenso folgt hieraus, dass dasjenige intermediire Glied, das dem

ersten vorausgeht, gleich \/“7}_ sein wird.

Stirling findet also durch &usserst mithsame numerische Berechnung
folgende Reultate:

1—.(23) 21 19 17 ..... 22 1(3) 11899423.08

I(3) = 0.8862269251 = = \/
I(?) =/

Dieses letzte Resultat benutzt Stirling bei der ersten Losungsmethode
des Coeffizientenproblems in Propos. XXII, die im wesentlichen darin be-

*) Mit Hiilfe der Interpolationsformel (T = allgemeines Glied):
A+t az, 3B+4bz 22—1 5G4 ez (22—1)(2*—9)
T=—m =15 T 16.8.10 ©

Die Formel gilt allgemein (auch fiir die intermediiren Glieder) einer Reihe
mit 2 Mittelgliedern, von der Form

oooooo

....................... s A Ap Ay susimesms snrsmu sks sEb 5 a
wenn die 1. Differenzen . ....... Y SO W - VO
die 2. B mssswmmiews B Bisemmssinvisusininninsins snEsq
die 3. P it | | et
------ I'U.OA-."I‘DO!ODI'Oc‘ll-..lbvvillitlluiln-l"o.'oll',
wenn man ferner A = A+ A, B= B+ B, C=,04+0C ........ setzt

und mit z das Verhéltniss bezeichnet, welches die Entfernung des zu interpoliren-
den Gliedes T von der Mitte zum constanten Intervall der Variabelen hat. Stir-
ling gibt diese Formel in Propos, XX. deutet aber nur an, er sei mit Hiilfe der
Differenzenrechnung auf dieselbe gekommen.
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steht, mit Hiilfe der unten gegebenen Interpolationsformel das mte Glied
der Reihe

6

2 4
17 TAy ? B1_5"

8
C, - | ) I
zZu bestimmen.

Note 3. Die Inflexionspunkte der Wahrscheinlichkeitscurve be-
stimmt Moivre*) wie folgt: Wenn alle Glieder einer binomischen Ent-
wicklung (a + b)" in gleichen Abstinden auf eine gemeinsame Basis
aufgetragen werden und man durch die Endpunkte derselben eine Curve
legt, so hat diese 2 Inflexionspunkte, die auf verschiedenen Seiten des
Maximalgliedes gelegen sind. Um nun den Inflexionspunkt zu bestimmen,
sei H die zugehorige Ordinate, deren Stelle vom Anfang der Reihe aus

mit 1 bezeichnet werde, dann wird das niichste Glied gegen den Anfang
der Reihe hin gleich

e "0

n—I142 b
und das ndchste gegen das Ende der Reihe gleich
n—41 H. b
l a

‘Werden nun die Differenzen dieser Glieder in Bezug auf H gleichgesetzt,
8o ergibt sich aus

n—41 b 1 e

1 " a - n—I142 b
als Werth fiir 1
| — 2+8b-2bn v \/a’ + 6ab - 4nab | b*
2a + 2b

‘Wird im letzten Ausdruck die Wurzel mit r bezeichnet, so wird das
Intervall, um welches der Inflexionspunkt links resp. rechts vom grissten

—b b— 4
Gliede absteht, gleich -—a-%_{_———_g—;— resp. —%i-—_lz—g—'— sein, und wenn a = b

{wenn also die Wahrscheinlichkeitscurve symmetrisch zum grossten Terme
verliuft), ist jeder der beiden Inflexionspunkte vom gréssten und mittleren

Gliede um das Intervall —;—\/n—f—.? oder % V n (fir n = sehr gross)
abstehend.

Note 4. Laplace findet auf folgende Weise einen Ndherungs-
werth fir die Fakultdt**): Sei

*) Miscell. analytica lib. V, c. IV.

*%) V. Mémoires de 1'Académie royale des sciences pour l'année 1778: Mé-
moires sur les probabilités par P. S. Laplace art. XXIII. Dort gibt Laplace mittelst

1
des Euler’schen Integrals ‘fxp (1-x)2dx auch einen Niaherungswerth fiir den
Binomialcoeffizienten. o



— 180 —
¥ = éz e, so wird

P X
x e dx = p!
0

Ql'—‘

y liefert sein Maximum, wenn x = p ist. Setzt man nun p =

X = ~(1~;~—|— 6, so wird
Logy — LogpPe®? = % Log (1 4-«®) — © und

1
e o Log 1+e®) — 6
ydx = pPe® | ¢ d6.

0

Substituiren wir noch
Log (1 +} «¢9) — «¢® = — «t?, so wird

@ 3Q3 w39t __ Ty

2 3 T4

2 3
Nun kann man finden:

— L (ht 4 WoaF B b et ),

«©

2_, h“:——— LY

. = 2
worin h = \/2, h! = 3 3’

und
46 = U h 4 ohtett - Shretr ... )
o

Dann wird

>0 ) _— 1
fy dx = pp-l—g e? f(h + 2h'ezt 4 3h'ct? - .. - ) e-tdt.

G e OO

Nun ist
o0 o0
1.8:5:muss 2n—1
f 20 e gt = on ¢ ) f etdt.
[ §

und mit Hiilfe von

OO 0O
f fe;‘(l—kn) dé dn = 7—; findet man, dass
o o
o0

f eVdt = %\/; Somit ergibt sich

0

o0
ftgne-tzdtzl.?)..’).....(211—-—1) _;_ -

211
(]

und
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o0
und wenn darnach die letzte Formel fiir f ydx integrirt wird, erhélt

man schliesslich®): .

o 1 . fﬂh“ (‘shl“i
pl= [yix =prtge®n+1.8%5 +1.83.65— + )

2
0

oder
1 -
p! =Ptz ?Ven (e )

Nach dem Vorgange von Lagrange gibt Laplace**) die Eulersche
Summationsformel durch den Beweis, dass

_ | a¥ -
y=|]edx—1 -+ Const.

wenn man in der Entwicklung der rechten Seite die Exponenten zugleich

auf die Ordnung der Derivation % bezieht und wenn h = 1 das Incre-

ment der unabhéngigen Variabeln x bedeutet. Es wird dann, wie man
zeigen kann:

E: 1 1 hB(1) h’B) ,,
.__h_fydx_gy_!_ 21 y_Ty i-.--—-’—COﬂSt-

%) Die Integrale von der Form fo?Q“"'l e¥ dt sind = 0.
Y oo
*#) V. Lacroix, Grand Traité, 2. édit. t. ILI, p. 98.

Berichtigungen.

Seite 126, 10. Zeile v. o. lies: S H 1 < I8 + 8
» 128, 14.° » v. 0. » 42787536.
» » 17 » v.o. »  44623980.

» » 13. » v.u » 25500 Versuchen.
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