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beriihrenden Curvenzweige vereinigt sind, so repriiseniirt derselbe
zwei vereinigte Knotenpunkte. Ebenso ist E ein imaginirer Beriihrungs-
knoten mit reeller Tangente.
Die gemeinsamen Punkte der Ellipse und der Cs sind A, Az,
Es, E; die Cs beriihrt die Ellipse in A; und A2 zweipunktig, in Es
und E vierpunktig.
Die Cs hat die folgenden Plicker’schen Charaktere :
= 6, d= T, w=s &
pe= {ll, =15, ===81.

Wenn die Hyperbel xs* 4 xaXe = 0 den festen Kegelschnitl
p vorstellt, dann ergibt sich die Cs:

X3%(X1? — X28)? 4 AxaXa(Xe? — X3%) (Xs? — x1%) = 0.

Die Hyperbel geht durch Ai, A2, Ei, E2 und beriihrt in Ai, A
die respectiven Fundamentallinien A1As, A2As. Die Ce hat zwei Spitzen
in A:x und A, fir welche wieder x3 = 0 die Riickkehrtangente ist;
ferner besitzt sie drei Knotenpunkte, den doppelten Inflexionsknoten
As und die Knotenpunkte ¥ und Es. Die Punkte E; und E:2 sind
isolirte Punkte der Cs und zwar imaginire Beriihrungsknoten, die
Tangenten in denselben sind reell und zwar die zu E: und Ez gehirigen
Hyperbeltangenten, also die den Punkt (X3 = 0, X1 — Xz = 0) mit
E: resp. Ez verbindenden Geraden. (Fig. 2, Tafel V.)

IV. Es sei p ein dem Fundamentaldreieck umschriebener Kegelschnitt,

Ein Kegelschnitt, welcher durch die Fundamentalpunkie geht,
hat allgemein die Gleichung:

1. p) . . . aixeXs -+ a:xuXs | asxaxe = 0;
ihm entsprieht alsdann die gerade Linie
2. p) . . . . axi - asxe - asxs = 0.

Fiir die Coordinaten eines beliebigen Punktes P, von p ist
X1 @ Xz @ X3 = A(au 4 Aaz) @ (an 4 Aas) @ — Aas.
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Bezeichnet F — 0 die Gleichung von p, so haben die ersten
Differentialquotienten von*F nach Xi, X2, Xs die Werthe
Fi = asXs + asxz, F: = aixs 4 asx1, Fs = aixe 4 aa2x1;
dieselben gehen, wenn man die Coordinaten von Pp substituirt, abge-
sehen von einem constanten Faktor, iiber in
(Fi)a = a1as, (F2)i = a2asAd?, (F3)i == (a1 -} a=21)2

Demnach lautet die Gleichung der Tangente ti von p im Punkte P :
3. ) . . arasxi 4 azasd*xz 4 (a1 4 a:1)*xs =0
und diejenige des der Geraden t) entsprechenden Kegelschnittes 13 :
b, 1)) . aidsXeXs -} a2a3Ax1Xs - (a1 4 a24)%xX1x2 = 0.

Betrachlet man 4 als variablen Parameter, so représentirt Gleichung
(4) simmiliche dem Fundamentaldreieck umschriebene Kegelschnitte,
welche die feste Gerade p’ beriihren. Duarch Elimination von 4 zwischen
(3) und (4) folgt:

IV)  a®xi2(Xe? — X32)% 4~ a2?x2%(Xs® — x1%)% - as?xs?(x1? — X2?%)2
— 2a122X1X2(Xe? — X3%) (X3% — X1?) — 2a1a5X1Xs(X2® — X3?) (X1 — X2%)
— 2azasXzXs(Xs® — x1?) (xu? — x2%) = 0. '

Die erhaltene Gleichung (IV), welche im Allgemeinen eine Curve
sechster Ordnung reprisentirt, ist die Gleichung des Ortes der Schnitt-
punkte aller Tangenten ti mit ihren entsprechenden Kegelschnitten.
Diese C¢ hat drei Spitzen in Ai, A2, As; .die zugehorigen Riickkehr-
tangenten sind die resp. Inversen der Tangenten von p in Ai, As, As,
also bhezw. die Geraden A1Bi, A2B2, AsBs, ‘wobei Bi, Bz, Bs die Schnitt-
punkte der Geraden p’ mit den Fundamentallinien Az24s, AjAs, AiA:
bezeichnen. Bedeutet u — 0 die Gleichung (IV), so ergibt sich fiir A; :

=490, =10, is =10
U1 =0, 2= 0, Ur3==0, uze = 2a2%X1*, uzs=2a2asX1*, uss =2as?x1%; %)
das Tangentenpaar im Doppelpunkt A: wird daher ausgedriickt darch
die Gleichung :

az®x2? 4 2asasXaXs 4 as®xs® = 0 oder
(azxz -+ asxs)* = 0,
d. h. die Tangenten im betrachleten Doppelpunkt fallen zusammen,
A: ist eine Spitze der (s und die zugehorige Riickkehrtangente ist
AsX2 ~ asXs =— 0, also A:Bi. Letztere hat mit der Cs in A: drei
vereinigle Punkte gemein. Analog findet man, dass
axi - asxs = 0, axt 4 ax2 = 0

die Tangenten in den resp. Riickkehrpunkten Az, As vorstellen. (Tafel YI.)

#) Unter xi ist hier die erste Coordinate von Ai zu verstehen.
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Die Punkte E, E;, E2, Es sind Doppelpunkle mit je zwei von
einander verschiedenen reellen oder imaginiren Tangenten, also
Knotenpunkte oder isolirte Punkte, je nachdem sie ausserhalb oder
innerhalb des Kegelschnittes p liegen; die Tangenten in denselben
werden namlich angegeben durch die resp. von E, Ei, E2, Es aus-

gehenden Kegelschnitlstangenten. Das Tangentenpaar im Doppelpunkt
Es; z. B. hat die Gleichung:

(a2 — a13)®x1? - (a2 — Qe23)’Xe? | (a1s 4 a23)%xs?
+ 2[&12(&23 — 2) | as(azs a.m)] . X1X2
2[&13(313 — a12) - azs(us + 312)]. X1Xs

-+ 2[323(&23 — iz2) + as(aes - Ehz)] . XaXs = 0.

Enthillt der Kegelschnitt p einen der Punkte E, E;, Ez, Es (mehr
als einen kann p nicht enthalten, wenn er nicht in ein Linienpaar
zerfallen soll), dann wird derselbe zu einem Beriihrungsknoten der Ce
und die gemeinschaftliche Tangente der beiden sich in ihm beriihren-
den Aesle ist die Tangente von p in diesem Punkte.*) Die Cs mit
drei Spitzen kann hochstens einen Berihrungsknoten besitzen.

Fiir die Schnittpunkte der Ce¢ mit X =— 0 hat man
a2*Xa?Xs* - as®Xs®Xe* |- 28283X2°Xs® = 0 oder
x2®xs%(a2xs 4 asx2)? = 0,
d. h. x1 = 0 schneidet die Cs in den Spitzen A2, As und beriihrt

sie in Qi(x1 = 0, asXz -} a2xs == 0), dem Schnittpunkte der p-
Tangente in A; mit X3 = 0.

X1 X2 ds
5 e SO, S IR ... 1 [ S -
Da fiir O (Xa = aa) uz 0 und us 0,

wihrend u; von O verschieden ist, so ergibt sich, in Uebereinstimmung
mit dem Vorigen, als Gleichung der Tangente der Cs¢ im Punkte Qi :

X = O
Analog findet man, dass X2 = 0 und X3 = 0 die resp. Tan-
genten der Ce¢ in den Punkten
Xi a1
X2=—=0, — = — —
Q2( : S ¢ &3)
Qa(Xs i f, b= a") sind.
X2 az

#) Geht z. B. p durch Es, dann ist p’ die Tangente von p in Es, also
gleichzeitig die Tangente im Beriihrungsknoten der Ce.
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Die Cs und der Kegelschnitlt p haben zwolf gemeinsame Punkte,
unter denen sich die doppelten Fundamentalpunkte befinden; sehen
wir von den letztern ab, so bleiben noch sechs gemeinsame Punkte,
welche die Inversen der sechs gemeinsamen Punkte von Ce und der
Geraden p’ sein miissen. Ist S ein von Ai, A2, As verschiedener
gemeinsamer Punkt von p und Ce, so miissen sich in diesem Punkte
die beiden Curven beriihren; S reprisentirt also zwei gemeinsame
Punkte. Im entsprechenden Punkte S beriihren sich alsdann Ce und
die Gerade p’. Die Cs beriihrt daher in drei Punkten den Kegel-
schnitt p und in ihren Inversen die Gerade p’. Der Geraden SS',
welche p in S beriihrt, entspricht ein Kegelschnitt C2*, welcher durch
S und §" geht und sowohl p’ als Cs in 8 beriihrt. Es gibt drei
Tangenten von p, deren entsprechende Kegelschnitte (C2*) sie in ihren
Beriihrungspunkten schneiden; diese Punkte sind gleichzeitig die
Beriihrungspunkte der heiden Curven Cs und p, und in ihren Inversen
beriihren sich Cs, p° und die beziiglichen Kegelschnitte Cs*. Die
Gerade p  ist somil eine dreifache Tangente der Cs, ihre Beriihrungs-
punkte sind entweder reell und (im Allgemeinen) von einander ver-
schieden oder es isl nur einer derselben reell. Um die Coordinaten
der Berihrungspunkte der dreifachen Tangente p° zu erhalten,
hat man die Gleichungen (2) und (IV) in Bezug auf f—; und 3\%
aufzulosen.

Die Cs hat scchs unendlich ferne Punkte, welche paarweise
iunaginar sein konnen. In dem in Tafel VI skizzirten Falle, in welchem
E und Ei isolirte Punkte sind, liegen gar keine Punkte der Ce¢ im
Unendlichen und nur ein Berihrungspunkt der dreifachen Tangente
p’ ist reell.

Die Pliicker’schen Charaktere der Curve IV sind im allgemeinsten
Falle (bei der allgemeinsten Lage des dem Dreieck AiAzAs umschrie-
benen Kegelschnittes p):
: u
v

1l

6, d = &, =
= 24, &

Il

39.
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