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eines variablen Parameters 4 sein. Alsdann stellt man die Gleichung
der p-Tangente t, im Punkte P, auf und ersetzt hierin die Variablen
X1, Xz, X3 durch ihre reciproken Werthe, um die Gleichung des Kegel-
schnittes 1)’ zu erhalten, welcher der Tangente 1, entspricht. Eliminirt
man nun zwischen den beiden Gleichungen fiir t4 und t2" den in den
Coéfficienten derselben auftretenden Parameter A, so ergibt sich eine
Gleichung, welcher die Coordinaten der Schnittpunkte sidmmtlicher
p-Tangenten mit ihren entsprechenden Kegelschnitten geniigen, also
die Gleichung unserer Cs. *)

Nach diesen allgemeinen Betrachtungen gehen wir nun iiber zur
Untersuchung einiger Curven sechster Ordnung, die sich ergeben, wenn
der Kegelschnitl p spezielle Lagen gegeniiber dem Fundamentaldreieck
annimmt.

. Der feste Kegelschnitt p sei ein Kegelschnitt, fiir welchen das
Fundamentaldreieck ein Tripel harmonischer Pole ist,

- Ein Kegelschnitt, bezogen auf ein Tripel harmonischer Pole, hat
die Gleichung
p . . . . . axi® o axe? —axs?=0.

Bezeichnen ai, a2, a3 positive Zahlen, dann liegt der Fundamental-
punkt As innerhalb, A1 und A2 dagegen liegen ausserhalb des Kegel-
schnittes p. Die Fundamentallinien sind die Polaren der Gegenecken
in Bezug auf p. .

Die Inverse p’ von p hat die Gleichung
P) . . . arxe?xs® - axi®as? —asxuZne?=0;
sie ist eine Curve vierter Ordnung und sechster Klasse, welche in Ai
und Az doppelte Inflexionsknoten besitzt und fir welche As ein isolirter
Punkt ist. Da die von A: aus an den Kegelschnitt p gehenden Tan-

*) Da zwei zu einander inverse Punkte der Ebene die Brennpunkte eines
Kegelschnittes sind, welcher die Fundamentallinien beriihrt, so kann die nach-
gewiesene Curve sechster Ordnung auch betrachtet werden als Ort der Brennpunkte
derjenigen die Fundamentallinien beriihrenden Kegelschnitte, deren Axen eine feste
Curve zweiten Grades umbhiillen,



— 10 —

genten denselben in seinen Schnittpunkten mit x1 = 0 beriihren, so
sind die Inversen dieser Tangenten, d. h. die Tangenten der C: (p")
im Doppelpunkt A: zugleich Inflexionstangenten und somit A: ein
doppelter Inflexionsknoten. Diess wird duorch Rechnung bestitigt,
indem man zeigt, dass jede dieser Tangenien mit der Cs in A1 vier
zusammenfallende Punkte (drei mit dem einen Aste, einen mit dem
andern) gemein hat. Analoges findet fiir Az statt. p’ hal zwei reelle,
unendlich ferne Punkte, dieselben entsprechen den zwei Schnittpunkten
von p mit dem Kreise K. Die Asymptoten der C« lassen sich, wie
iiberhaupt simmiliche Tangenten derselben, leicht konstruiren; be-
zeichnet X einen gemeinsamen Punkt von p und K, so hat man nur
zu bericksichtigen, dass der Tangente im Punkte ;S’ oder einer

Asymptote der Cs derjenige Kegelschnitt entspricht, welcher durch Ai,
Az, As, X geht und den Kegelschnitt p in X beriihrt.

Um nun die Gleichung der Cs, welche im vorliegenden Falle
entsteht, abzuleiten, suchen wir zunéchst die Coordinaten eines be-
liebigen Punktes von p und bestimmen die Gleichung der Tangente
von p in diesem Punkt. Wir legen zu diesem Zwecke durch.A: einen

heliebigen Strahl
X2

— i

X3
derselbe schneidet p in zwei Punkten, fiir welche man hat:

. 2 4 2 ;
X1 X2 \~ X2

al—) -} az. — as = 0 und = 4.
X3 X3. X3

Daraus folgt :
X i\/as—azl2 )
X3 a

Beriicksichtigen wir nur das pos. Zeichen der Wurzel, so- haben
wir fiir die Coordinaten eines Punktes Pz auf p:
Py . . . X12X2:X3=\/as—azl2:l:1.

a1

Bezeichnet F die linke Seite der Gleichung von p, so haben die
ersten partiellen Differentialquotienten von F in Bezug auf x1, x2, Xs
die Werthe:

Fi = 2aix1 ; F2 == 2aex2 ; F3 = — 2asxs ;
demnach lautet die Gleichung der Tangenle von p in Pa:
(Fuor . xa 4+ (F2)2 . x2 4 (Fs)a . xs = 0 oder

W . . Voa (a8 — a2 A%) . x1 | asdxa — asxs = 0 .




Der Tangente ti entspricht der Kegelschnitt

) \/ ar (a3 — az A%) . XeXs - azdxaxs — asXixz = 0.

Betrachtet man A als einen variablen Parameter, so reprisentirt
die Gleichung fiir t, simmtliche geraden Linien, welche p umbhiillen
und die Gleichung von t:° simmtliche Kegelschnitte, welche dem
Fundamentaldreieck umschrieben sind und die Curve p° beriihren.
Eliminirt man endlich zwischen diesen beiden Gleichungen den Para-
meter A, so erhilt man die Gleichung des Ortes der Schnittpunkte
aller Geraden ti mit ihren inversen Kegelschnitien. Durch Elimination
der Anfangsglieder folgt zunéchst :

' Aaz (x1? — x2%) . Xs = asx2 (x1%® — xs?)

aaXz(_X12 — X32)

}u=

agxs(X1? — Xa?)

Setzt man diesen Werth von A4 in die quadrirte Gleichung von t,.
a1(as — azd?) . x1® = (asxs — a24x2)® ein, so ergibt sich:
a [33 . as?xe¥(x1? — X32)2] W — [33}(3 B asxz?(x1? — xs? ]2

' azxs(x12 — x2%)? | Xs(X1% — X2%)

oder nach gehoriger Reduktion ,
Ce) L) azasx1? . (x22 — x3%)% J-asa1x2?(x3%— x1%)?— a12e Xa? (X1 27— x2%)2= (),
welche Gleichung unsere (e reprisentirt.

Zur Untersuchung der Ce iibergehend, bestimmen wir zuerst ihre
Schnittpunkte mit den Coordinatenaxen. Substituiren wir in (I) x1 = 0,
s0 kommt

x2%x5% (as X3 — a2 Xe%) = 0, woraus folgt
Xe? = 0,X32=0,\/;X2 —{—\/;;—.Xaz(),\/; X2 —\/g i ==,
d. h. die Schnittpunkte der Fundamentallinie x1 =— 0 mit der Cs sind
die Doppelpunkte A2 und As und die Punkte, in denen x: — 0 den
Kegelschnitt p schneidet; die lefztern fallen zusammen mit den Punkten
Q1 und Q1*, in welchen die von A: aus an den Kegelschnilt p gehenden
Tangenten die Fundamentallinie x1 = 0 schneiden. Die zwei letztien
Gleichungen stellen die p-Tangenten Ai1Q: und AiQ:* vor. (Tafel I.)

X2 —
X

~ Analog ergiebt sich, dass A1< g — g) ein Doppelpunkt und

xe — 0 X2 =0

Qz(\/; x1 4 \/53—. X3 0) , Qz*(\/g—. X1 — \/E X = 0)
xs =0 xs =0

03(\/; x1 - i\/é; X2 0) , Qs* (\/5— X1 — i\/az < %3 === 0)

I




einfache Punkte der Cs sind. Q2 Q2* sind die Schnittpunkte von
xe = 0 mit p oder mit den von A: ausgehenden p - Tangenten, und
Qs, Qs* welche imaginir sind, stellen die Schnittpunkte von x3 = 0
mit p oder mit den von As ausgehenden p-Tangenten vor.

Die Gleichung (I) ist ferner erfiillt fir die Coordinaten der -
Punkte E, E:, E2, Es; diese Punktie ergeben sich als Schnittpunkte
der Cs mit den sechs Geraden

X2 +Xs=0,x1 +x8s=0, x1s +x2=0.
Substituiren wir in (I) x2 4 xs =0, so folgt:
asXs®(xs® — x1%)? — asxs’(xa® — xs¥)? = 0 oder

xs% (x12 — xs?)? = 0 und daraus
xs2 =0, (x1i 4 x3)! = 0, (xa — x8)®2 = 0. Diese Gleichungen
driicken aus, dass die Schnittpunkte Ai, E, E;, E2, Es der Linien
X2 — Xs =0 , X2 -}- xs = 0 mit der Ce¢ Doppelpunkte der letztern sind.
Um die Tangenten der Ce¢ in den bekannten Punkten zu bestim-

men resp. ihre Gleichungen aufzustellen, sind die Differentialquotienten
der Funktion u *) nach xi1, X2, xs erforderlich. Es ist

u1 = 2azasx1(X2? — x3%)% — Aasarx2?(xs® — x1?)x1 — Larazxi Xs%(X1% — x2?)
Uz =— La2asX1?x2(X2? — x3%) -}- 2asa1x2(xs% — x12)% - hara2X2X%3(X1 2 — X2?)
us = —%a2a5%X17X3(X2? — X3%) 4 Lasai x22xs(Xs?—xX1 %) — 2a1a2Xa(X1 *— x2%)®
U = 2azas(Xe? — X5%)% — Lasarx2?(xs? — 3x1%) — Larazxs®(3x1% — x2%)
U1z = 8a2asX1Xa2(X2? — Xs?%) — Basarxixe(Xs? — x1%) 4 8arazxexs?
Uis = — 8a2a3X1X3(X2? — Xs%) — 8asa1X1X22xs — BaraeXiXs(X1? — X2?)
Usz = hasasx1%(3x22 — xs?) -}- 2asa1(xs? — x12)% |- harazxs?(x1? — 3x2?)
U2z — — Basasx1®xs -} Basarxaxs(xs® — x1?) -} Barazxexs(x1? — x2%)
= — hasasX1%(x2? — 3xs?) |- Lhasarxe®(3xs? — X1 %) — 2ar32(x1% — x2%)*
Das Tangentenpaar in einem Doppelpunkte der Curve u = 0
wird nun reprisentirt durch die Gleichung
wixi? - usexe? -} ussxs? | 2uesxexs - 2wmsxixs | 2uzxixs = 0,
wenn Xxi, Xz, X3 die laufenden Coordinaten bedeuten und in die Ausdricke
fir ui, uze, uss, u2s, us, w2z die Coordinaten des Doppelpunktes
substituirt werden. '

Fir den Doppelpunkt A: (Xz — g) ist

uss

u

0 , 2w =0 , us =20
U1 == 0

0 , ue

Il

*) u = 0 bedeutet die Gleichung der C;.
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u2z = 2azaix1? | U2z = 0 , uss = — 2ma=xa* ; *) somit lautet die
Gleichung des Tangentenpaares in Ap:

asxe? — azxs? = 0 oder
(\/;:)(2 -+ \/52_.}{3) : (\/;5*.)(2 — \/5:}(5) = {.

Hieraus sieht man, dass die Tangenten im Doppelpunkt Ai die
resp. Inversen der p - Tangenten aus A: sind. Ganz dieselben Tangenten
hat die Curve p° im Doppelpunkt A:, was auch schon aus dem Um-
stande folgt, dass Ai(Qr und A1Q:* den Kegelschnitt p in Qi resp. Qi*
berihren. — Um zu untersuchen, von welcher Art der Doppelpunkt
A1 ist, bestimmen wir die Schnittpunkte der Tangenten asxs? — azxs*=0

_ a . . :
mit der Ce. X22=§ xs? in (I) substituirt, gibt:
3

2 2 2
az dz ’
azasX1? .(a—X32 — X32> a1 azaaz(Xaz — X1 2) = a1a2X32(X1 2W—X32) =0
3

as
a(a a
oder X34.[(231 —+ a2 —as)xi? — 1(—234_——& ‘ X32] = (.
8
xs* = 0 sagt aus, dass in A: vier Schnittpunkte zusammenfallen;

jede der Tangenten in A: hat also in A: vier zusammenfallende Punkte
mit der Ce gemein (mit einem Aste drei, mit dem andern einen), ist
daher Inflexionstangente und der Punkt A: ein doppelter Inflexions-
knoten, wie bei der Curve p’.

N x1 =0\ .
Fir A- (Xa . 0) 1st

urr = 2azasxa? ; we 0;ms =0
uzz2 — 0 ; Us2s 0 ; uss = — 2ajazxz?.
Die Tangenten der Ce¢ im Doppelpunkt Az haben daher die
Gleichungen

[

asx1?2 — axs? = 0 oder

\/;1;”.)(1 -{—\/g—.xg:(}, Vas . x1 —Var . xs =0 ;

dieselben stimmen iiberein mit den Gleichungen der Inversen der
p - Tangenten aus A:. Die Tangenten der Ce¢ in Az sind also identisch
mit den Tangenten der Cs in Az ; sie sind fiir beide Curven Inflexions-
tangenten und Az ist somit auch, wie A1, ein doppelter Inflexions-
knoten fiir p° und Ce. '

*) Hier bedeutet x1 eine Constante, ndmlich die erste Coordinate von A,
also das zu AzAs gehorige Hohenperpendikel des Dreiecks Ai1A:2As, wenn der
Radius des dem letztern eingeschriebenen Kreises gleich der Einheit ist.
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Endlich erhédlt man fiir die Tangenten der Cs im Doppelpunkt As:
ax1? 4 axe? = 0 oder
Vas.xi +iVar .xe =0, Vas.xi —iVar.xe =10 .

As ist also ein Doppelpunkt mit imaginiren Tangenten, d. h. ein
isolirter Punkt der Ce. '

Die Punkte E, Ei, E2, Es sind, wie schon gezeigt worden, eben-
falls Doppelpunkte der Ce; diess wird dadurch bestitigt, dass fiir
dieselben die Ausdriicke ui, uz, us verschwinden. Ferner ist fir

=1
E(xa=1);
X3 =1

U1 = 8ai(as — az) ; Wz = 8aaz ; u1s = — Baias

Uzz = 8az(as — a1) ; Uss = — 8Bazas ; uss = 8as(a1 -}-az)..

Das Tangentenpaar im Doppelpunkt E hat demnach die Gleichung

31(33 = az) . X12 —I— az(aa e 81) . Xa2? + 33(31 + 32) . Xs®

-+ 2aiazxi1x2 — Z2a1asxiXs — 2az2asX2Xs = 0.
Dasselbe stimmt tliberein mit dem von E aus an den Kegelschnitt
p gehenden Tangentenpaare, denn die Gleichung desselben lautel :
(a1x1? 4 aexe? — asxs®) (a1 4 a2 — as) = (ux1 - 2X2 — asxs)®
oder ar(as — az)x1? -~ az(as — a1) x2? 4~ as(ar -} az)xs®
—+ 2aa2xixz — 2a1asX1Xs — 2asasxexs — 0.

Je nachdem E ausserhalb oder innerhalb des Kegelschnittes p
liegt, sind die Tangenten in E reell oder imaginir und E ist daher
ein Knotenpunkt oder ein isolirter Punkt der Cs.

Analog verhilt es sich mit den Punkten Ei, Ez, Es. Enthilt
der Kegelschnitt p einen der vier Punkte E, Ei, Ez, E;, dann muss
er alle enthalten, weil fiir simmtliche vier Punkte a1 4 az — as = 0
sein muss; in diesem Falle ist p eine gleichseitige Hyperhel. Die
Punkte E, Ei1, Es, Es liegen simmtlich entweder ausserhalb oder inner-
halb des Kegelschnittes p oder alle auf demselben und zwar

ausserhalb, wenn as < a1 -+ az
innerhalb, wenn as > a1 }- a:

auf p, wenn as = a -}~ az.
__ %
Fiir die Punkte Q: und Q:* ist x;1 =0, x2? = — \3 , daher u1 = ()
uz = 2asa \/——-— X3 —43133\/— X8 = — ‘231&3\/— x3®
a1as? aias? - 2 aras?
ns=—2=% .xg® — 2 o X e Xs%,

az a2 az -
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Die Tangenten in diesen Punkten haben daher die Gleichungen

as as
i\/a—-X2———-X3=O oder
2

as
Vas . x2 + Vas.xs = 0, also
Gleichung von g, : Vaz.x2 - Vas.xs = 0
« « tge : Var.xa — Vas.xs 0.

Die Tangenten der Cs¢ in Q1 und 1* sind also identisch mit
den p- Tangenten in jenen Punkten.t) Ebenso findet man, dass die
von Az resp. As ausgehenden p- Tangenten AszQ2, A2Q2*; AsQs, AsQs*
die Tangenten der Cs in Qz, Q2*; Qs, Qs* sind; die zwei letzteren Tan-
genten sind natiirlich, sowie ihre Beriihrungspunkte Qs, Qs*, imaginir.

Die Cs und der Kegelschnitt p beriihren sich in den sechs
Punkten Q (wovon zwei imaginir sind)., und da sie im Allgemeinen
nur zwolf gemeinsame Punkte haben konnen, so exisliren keine
weiteren gemeinsamen Punkte. Demnach werden auch die Ceé und p’
nur die Fundamentalpunkte Ai, A2, As gemein haben; in der That
liefert in A; jeder Ast der Cs mit den beiden Aesten der Cs 1 + 3 =14
-Schnitipunkte, es zihlt also jeder Fundamentalpunkt fir acht Schnitt-
punkte, simmtliche Schnittpunkte von p’ und Ce liegen daher in den
Fundamentalpunkten. -

Da A1Q1, A1Q:*; A2Q2, A2Q:* die Cs in den resp. Punkten Qi, Qi ¥;
Qz, Q2* beriihren, so folgt, dass ihre Inversen, d. h. die Tangenten der
Cs in den Doppelpunkten A: und Az Inflexionstangenten sein miissen ;
dasselbe Resultat hat friiher schon die Rechnung ergeben.

Die Cs hat sechs unendlich ferne Punkte, von denen entweder
vier reell und zwei imaginir oder gar keine reell sind. Die Curve
besitzt vier reelle unendlich ferne Punkte und besteht daher aus vier
ins Unendliche gehenden Zweigen (siehe Tafel 1, Fig. 1), wenn
as < a1 -}~ az, also siimmtliche E; Knotenpunkte sind. Die Ce schneidet
den dem Fundamentaldreieck umschriebenen Kreis K ausser Ai, Az, As
in vier Punkten Xi, Y1, Zi, W1, denen die unendlich fernen Punkte
der Cs entsprechen. Die p-Tangenten XiX:', YiY1', ZiZ/, WiWy'
geben die Richtungen an, nach-welchen die Cs ins Unendliche geht,
und die zu ihnen parallelen Tangenten der Cs in Xi', Y1i', Z1/, Wi’

I

+) Dieses Resultat liess sich erwarten, denn wenn die Ces diejenigen Punkte
enthilt, in welchen x1 = 0 den Kegelschnitt p schneidet, so muss in jenen Punkten
p von Cs beriihrt werden, da keine Pankte der Cs im Innern von p liegen konnen.
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sind die Asymptoten der Curve. XiX:', YiYy', Z:1Z', W1 W1 sind die

von Xi, Y1, Zi, Wi aus an den Kegelschnitt p gehenden Tangenten,
welche parallel zo den resp. Inversen von AiXi, Ai1Y:, AiZi, A/Wi
sind ; sie stellen diejenigen p- Tangenten vor, welche sich mit ihren
inversen Hyperbeln in je einem unendlich fernen Punkte schneiden,
welche also parallel sind zu je einer Asymptote der ihnen entsprechen-

den Hyperbeln. — Die Gs enispricht in der Weise sich selbst, dass
dem Stiic_k EA1Z1'E: das Stiick EQ:*Z1E:
« « EAW{E: « «  EQz*WiE:

« «  EiA2Y1Es « « FE1Q:Y1/Es und
« «  E2A1XuEs  « « E2Q:i1X:{'Es entspricht.
Jeder der vier Zweige entspricht sich also selbst.
Yon der Cs¢ liegen gar keine Punkte im Unendlichen, wenn
as > a1 -} az, also simmtliche E isolirte Punkte sind (Tafel II, Fig. 1).
Die Cs besteht in diesem Falle aus zwei geschlossenen, mit doppeltem
Inflexionsknoten versehenen Curven, von denen die eine in Qi und
Q1*, die andere in Qz und Qz* den Kegelschnitt p beriihrt. Dem Curven-

stiick Q1PA:RQ:* entspricht das Stiick AiP'Q:R'A: der andern Curve
und dem Stiick Q:*TA2Q: entspricht A:T Q:¥Ai.

In beiden Fillen sind die Plicker’schen Charaktere der Ce, wie
im allgemeinsten Falle :

p=06, »=16, =7, » =0, t =30, v = 72,

Wenn a2 = as, dann wird der Kegelschnitt p (eine Hyperbel)
von den Linien x2 — Xs = 0 und x2 -} xs = 0 in ihren Schnitt-
punkten mit xa = 0 beriihrt, es miissen daher A:E: und AiEz der
" Cs als Theile angehiren. Die Gleichungen von p und Ce lauten:

p) « . . . . axi® 4 as(xe? — x3%) = 0

Ce) . asx1®(x2? — x3%)% - arxa?(xs? — x1%)? — arxa?(x1? — x2%)? = 0.
Letztere kann umgeformt werden, wie folgt:

asx1?(x2? — xs%)? 4~ & [X14.(X22 — X3%) — x2%x3%(x2% — X32)] = 0 oder

(x2%2 — xs?) .[asxl (x2® —x8*%) a1 (1t — mgmz)] == {J.
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Es sondern sich also in der That die Faktoren X: -4 xs und
X2 — X3 ab, die Cs zerfillt somit in X2 — Xs = 0, X2 -} xs == 0 und
die Curve vierter Ordnung:

[ arxit — axe®xs? — asxi®xs? 4 asxa®x2? = 0 oder

‘ 1 xi3(arxi® — asxs?) - xe*(asxi® — aixs®) = 0.

Die C: enthilt die Punkte A2, As, E, E1, E2, Es, jedoch sind nur
Az und As Doppelpunkte der Cs. Ferner geht sie durch die Schnitt-
punkte Qz, Q=* und Qs, Qs* (die zwei letzteren sind imaginir) der
Hyperbel p mit x2 = 0 resp. xs = 0 und wird, wie die Hyperbel,
von A20Q2 und A=2Q2* in Q2 resp. Q2* beriihrt. Die Tangenten der Cs
in Az sind die Inversen von A:Qz und A20Q.%, ihre Gleichungen lauten:
Var.xs + Vas.xi = 0, Va.xs — Vas.xi = 0; da jede von
ibmen mit der Cs in Az vier Punkte gemein hat, so sind sie zugleich
Inflexionstangenten und Az ist ein doppelter Inflexionsknoten. Der
Fundamentalpunkt As ist ein isolirter Punkt der Ci. (Tafel II, Fig. 2)
Fir das Tangenlenpaar der Cs in E ergibt sich:

(N2 — X3) . [‘231)(1 + (a8 — a1) . x2 — (as + ('llj)x:-}] 2= 0,
daher reprasentirt die Gleichung
| a1\t b (as — a)xe — (as - al)xs =0

die Tangente der Cs in E, dieselbe stimmt tiberein mit der von E
aus an die Hyperbel p gehenden Tangente, welche nicht mit AiE:
zusammenfilll. Ebenso sind die Tangenten der Cs in Ei, Ez, Es die
von diesen Punkten aunsgehenden Hyperbellangenten, welche nicht mit |
A1E: oder AiE: zusammenfallen. — Die (Ci hat zwei reelle unendlich
ferne Punkte und besteht daher aus zwei ins Unendliche gehenden
Zweigen. Die Plicker’schen Charaktere der C« lauten: p =4, d = 2,
==, § =8, i=18 7= 8

Ce .

Wenn ai — a: — as, dann ist p die Hyperbel
xi? —}- x2? — Xs? = 0,
und da x2 | xs = 0 und xa + xs = 0 die Tangenten derselben

in Qr, Q* resp. Qz, Q2* sind, so sondern sich E:Es, AiEi, E1Es, A2E:
von der Cs¢ ab, so dass schliesslich noch eine Cz iibrig bleibt. Die
im vorigen Specialfalle erhaltene Cs geht tiber in
xi¥(xi? — xs%) 4+ xe*(1? — x3%) = 0 oder
(x1? — x8%) . (x4 xe?) = 0.
Die im vorliegenden Falle entstehende Ce lautet daher:
(x2? — x3%) . (1% — x8%) . (x1® -] \2®) = 0;



— 18 —

sie besteht aus den Linien AiEi, AiE2; A2E:, AsEz und den imaginéiren
Geraden, welche As mit den (imaginiren) Schnitipunkten von p mit
xs = 0 verbinden. Sieht man von den erstern ab, so reducirt sich
die C¢ auf das Linienpaar

X1 4 ixa = 0, xtx — ixa = 0;
da dasselbe imagindr ist, so werden die Hyperbeltangenten die ihnen
entsprechenden Kegelschnitte niemals reell schneiden.

Es bleibt nun noch der besonders interessante Fall zu behandeln
ibrig. in welchem p eine durch E, Ei, E2, Es gehende gleichseitige

Hyperbel vorstellt; derselbe tritt ein, wenn as — a1 -} az ist.
Die Gleichung der gleichseitigen Hyperbel p lautet:

p) . . . axi? o axe? — (ar } a2) . x3? = 0.
Ihr entspricht die Curve vierter Ordnung:

p') - arxXz?xs® ~|‘ azx1x3? — (81 + 32)}(12}(22 ==z {}

und die Cs hat die Gleichung:
Ce) as(ar - az) . x1%(x2* — x3%)%  av(ar - a2 xe¥(xs? — x1%)?
== 3132X32(X12 — X22)2 == {J
Alle drei Curven p, p’ und Cs gehen durch E, Ei, Es, Es und
haben in jedem dieser Punkte die ndmliche Tangente. Die Gleichungen
der vier gemeinschaftlichen Tangenten lauten:

tg) . . . . axi -} axe — (@ 4 a)xzs = 0
tg) . . . . axi — axz2 | (& 4 82)x3 = 0
tg) - . . . aXt — aXz — (m |- az)x3 = 0
1558 ... oaxt - axe 4 (& -} a)xs = 0

Die Ce beriihrt also p nicht nur in Qr, Qc*, Q2 Q2% Qs, Qs¥,
sondern auch noch in E, Ei, Ez, Es. (Tafel IIl.) Wenn aber Ce¢ und
p mehr als zwilf gemeinsame Punkte haben, so nuissen sidmmtliche
Hyperbelpunkte der Cs angehiren, d. h. die Hyperbel p bildet einen
Theil der Cs, welche zerfillt. Enthilt aber die Cs simmtliche Punkte
von p, so miissen ihre Inversen d. h. die Punkte von p’ nothwendiger-
weise ebenfalls der Cs angehiren; es bildet also auch die Curve p’
einen Theil der Cs. Im vorliegenden Falle zerfilll demnach die Curve
sechster Ordnung in die gleichseitige Hyperbel p und die ihr ent-
sprechende Curve vierter Ordnung p’. Diess zeigt auch die Gleichung
der Cs, dieselbe kann niimlich in folgender Form geschrieben werden :

[31X12+32X22——(81+32)X32] . [31X22X32+32X1 xs®— (a1 -f-az)x 2X22]——-0.
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Wihrend im allgemeinsten. Falle die Verbindungslinie ent-
sprechender Punkte der (e den Kegelschnitt p umhiillen, so liegen
hier zwei entsprechende Punkte der Cé, von denen der eine stets
der Hyperbel p, der andere der Curve p’ angehéren muss, auf der
p- Tangente im ersten der beiden Punkte. Der entsprechende Kegel-
schnitt einer jeden Hyperbel-Tangente schneidetl die lelztere in ihrem
Beriihrungspunkie und der Ort des zweiten Schnitipunktes ist die Cs,
welche zur Hyperbel invers ist. Der inverse Punkt P’ eines Hyperbel-
punktes P liegt auf der zu P gehirigen Hyperbel-Tangente.

Die C¢ hat vier reelle unendlich ferne Punkle, da die Hyperbel
und die Cs (p') je zwei besitzen; sie entsprechen den Punkten, in
denen der Kreis K die Curven p und p’ trifft. Die unendlich fernen
Punkte der Cs sind die Inversen der Schnitipunkte X und Y von K
mit p, und die unendlich fernen Punkte der Hyperbel p entsprechen
den gemeinsamen Punkten Z und W von K und p’ (siehe Tafel III).

Nun muss nach Vorigem

XX’ die Tangente der Hyperbel in X

Y Y, « « « « « Y
r :I; #
A A « « « « « Z
it = S
W \V « « « « « W SB[]’]

es sind daher M und WW die Asymptoten der Hypelbel Der Tangente
der Cs in X (Abymptote der Cs) entspricht ein Kegelschnitt, welcher

durch Aj, Az, As, X geht und die Hyperbel in X beriihrt (XX ist die
Tangente desselben in X). Construirt man von demselben die Tangente
z. B. in A1 und zu derselben die Inverse, so geht durch den Schnitt-
punkt der letztern mit AzAs, zu XX’ parallel, die erwihnte Asymptote

der Cs. Analog kann die andere Asymptote der Csi, die Tangente den
C« in Y, construirt werden.

Man kann die Ce betrachten als eine aus den vier Zweigen:
X'A:EA Y , } E1WA0E3AIZE2\
ZEXEYE/W | W Q2E301/
zusammengesetzte Curve. Der erste Zwelg beru'hrt den dritlen in E,
der zweile Zweig beriihrt den dritten in E; und Ez2 und der vierten
in Es. Die Punkte E, Ei, Ez, Es sind dann also als Beriihrungsknoten

der Ce¢ anzusehen. Die Tangente tg hat in E vier zusammenfallende
Punkte mit der Cs gemein, niimlich zwei mit Hyperbel und der zwei
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mit der Cs, welche beide Curven sich in E beriihren. Analoges gilt
fir die Tangenten in E:, E: und Es.*) '

Die Cs kann aber auch angesehen werden als Curve, welche aus
den vier Zweigen besteht:

Y AdEQi*YE: Y’ X A2EQ2*XE2X’
7 2 )1 EsA1ZE:Z W Q:EsA:WE{ W'

Diese Auffassung entspricht ganz derjenigen bei der Curve Ce
in Fig. 1, Tafel I, wo je zwei inverse Punkte auf demselben Zweige
der Cs liegen und also jeder einzelne Zweig sich selbst entspricht.

Bei der hier vorliegenden Ce entspricht dem Curvenstiick
EA1Y'E; das Stiick EQ:*YE: ; beide bilden den CurvenzweigY‘A;EQ:*YE;Y*

EA:X'Es « « EQs*XEz; « « « « X‘A2EQ2*XEz X"
EsA1ZE: « « EsQiZ/Ez; « « « « 2'Q1EsA1ZE2 7!
EsAz:WE; « « E3Q:WEi; « ¢ « « W/ Q:EsA:WE{ W'

Daraus geht hervor, dass in E die Tangente (lg) der Cs fiir
beide durch E hindurchgehende Aeste der Ce Inflexionstangente 1ist,
sie reprisentirt also zwei zusammenfallende Inflexionstangenten; man
kann daher E als einen doppelten Inflexionsknoten ansehen, bei welchem
die beiden Tangenten im Knoten zusammenfallen. Die beiden durch
E gehenden Zweige der Cs berihren und durchsetzen sich in E, oder
es findet zwischen den beiden Aesten in E eine Osculation statt; einen
solchen Punkt nennt man einen Osculationsknoten. Derselbe kann als
Vereinigung von drei Knotenpunkten betrachtet werden, d. h. er ver-
tritt die Stelle von drei Doppelpunkten der Ce. Ebenso sind Ei, Ez, Es
Osculationsknoten der Curve sechster Ordnung. *¥)

Aus den Gleichungen der Tangenten (g, tg, tg, tm in den Os-
culationsknoten ist noch folgendes Erwihnenswerthe ersichtlich :

tg und tg, schneiden sich auf x; — 0 im Punkte F
tg, und tg, - « « « « « « Fi
(Tafel III, Fig. 2.) und F, F; sind harmonisch conjugirt in Bezug auf Az, As.
tg und tg, schneiden sich auf xe =— 0 im Punkte G
tg, und lg, « ¢ « « G
und G, G: sind harmonisch conjugirte Punkte in Bezug auf A1, As.

*) Die Ce ist zweitheilig; jeder Theil (C2 und Cs) besteht aus zwei unend-
lichen Aesten, die eine zusammenhingende Curve bilden.
#¥) Nach der zweiten Auffassung besteht die Cs aus vier unendlichen Aesten,
die nicht zusammenhingen ; sie ist also eine viertheilige Curve.



tg und tg, schneiden sich auf xs = 0 in H
tg, und tg, « « o« « « Hi
und H, H: sind harmonisch conjugirte Punkte in Bezug auf A, Ae.
Auf tg liegen die Punkte F, G, H
" w iy, « « ‘ F, Gl, H;
« tg o« « « Fi, G, H:
« tg @« « « Fi, G1, H
Die vier Tangenten bilden also ein vollstindiges Vierseit, fiir
welches die sechs Punkte F, G, H, Fi, Gi, Hi die Ecken, die Funda-
mentallinien die Diagonalen und A:, A2, As die Diagonalpunkte sind.
Das vollstindige Viereck E E; E2Es besitzt das ndmliche Diagonal-Dreieck.
Sobald eine der vier Tangenten gegeben ist, ergeben sich die iibrigen
sofort mit Hiilfe der Punkte F, G, H. Umgekehrt folgt: Sind vier
Tangenten einer gleichseitigen Hyperbel gegeben, so findet man ihre
Beriihrungspunkte, indem man das Dreieck der Diagonalpunkte und fiir
dieses die Punkte E; Ei, Ee, Es construirt.
Der Kegelschnitt p, dessen Gleichung in Punkicoordinaten xi, xz2, X3
lautet : aixi® - asx2? — asxs? = 0, hal in Liniencoordinaten &, &, &
die Gleichung:

»

azaséi? 4+ aas? — 32252 = 0.
Fir seinen Mittelpunkt O erhilt man die Gleichung:
a2a3sinA1 . & - aiassinAz . & — arassinds . & = 0,
d. h. fir die Coordinaten von 0 ist
X1 : X2 : X3 = a2a3SINA1 : asa1SinAz : — aiazsinAs.
Wenn nun p eine gleichseitige Hyperbel, also a1 - a2z — a3 = 0
ist, darin liegt 0 auf dem Kreise K und zwar auf der Geraden
X1 : X2 = a2S8inA; : aisinAs.
Im speziellen Falle a; = a2 liegt 0 auf der Inversen der Schwer-
linie AsS *) des Fundamentaldreiecks.
Fiir alle unendlich vielen gleic'hseitigen Hyperbeln, welche durch
E, E1, E2, Es gehen, befindet sich das Centrum 0 auf K. Die Geraden
OZ und OW sind die Asymptoten der gleichseitigen Hyperbel, und da

dieselben aufeinander senkrecht stehen, so muss ZW ein Durchmesser
von K sein.

*) 8 bezeichnet den Schwerpunkt des Dreiecks Ai Az As.



	Der feste Kegelschnitt p sei ein Kegelschnitt, für welchen das Fundamentaldreick ein Tripel harmonischer Pole ist

