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Dr. Albert Leuch.

Erieugung und Untersuchung

einiger

ebenen Curven hoherer Ordnung.

(Vorgetragen in der Sitzung vom 14. Januar 1888.)

®

Ein in Bezug auf das Fundamentaldreieck A: Az As*) in dessen
Ebene beliebig gelegener Kegelschnitt p wird durch Anwendung der
allgemeinsten birationalen quadratischen Transformation (Inversion, im
weitern Sinne aufgefasst) **) zu einer Curve vierter Ordnung p’ mit
drei Doppelpunkien in den Fundamentalpunkten. Den Tangenten
von p entsprechen Kegelschnitte, welche dem Fundamentaldreieck
umschrieben sind und die Curve p’ beriihren. Bringt man nun alle
diese Kegelschnitte mit ihren zugehorigen, den Kegelschnitt p um-
hiillenden Geraden zum Schnitt, so wird eine hohere ebene Curve
erzeugt als Ort der Schnittpunkte der Tangenten von p mit ihren
correspondirenden Kegelschnitten.

Die vorliegende Arbeit soll sich mit der Untersuchung dieser
Curve beschiftigen. )

A, Jede Tangente des Kegelschnittes p liefert
zwei Curvenpunkte, die zu einander invers
sind oder einander entsprechen; daraus geht
hervor, dass einem beliebigen Punkte der
Curve stets wieder ein Punkt derselben ent-

A, ~ A, spricht. Die Curve muss sich daher selbst

#) Ai, As, As sind die Fundamentalpunkte, A1As, Ai1As, A2As die Funda-
mentallinien oder Axen eines ebenen Coordinatensystems; sein Einheitpunkt E werde
in den Mittelpunkt des dem Fundamentaldreieck A: As As eingeschriebenen Kreises
gelegt, so dass unter den trimetrischen Coordinaten xi, x2, xs eines Punktes der
Ebene speziell Dreilinien-Coordinaten zu verstehen sind.

#%) Vergl. Salmon-Fiedler, Hohere ebene Curven. Art. 284,

4) In anderer Ausdrucksform lautet das zu behandelnde Problem: Eine
bewegliche Gerade g beriihre einen festen Kegelschnitt p, man bestimme und unter-
suche den Ort der Schnittpunkte der beweglichen Geraden mit ihrem entsprechenden
(inversen) Kegelschnitt g’. 1
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entsprechen und zwar in der Weise, dass je zwei enlsprechende
Punkte auf einer Tangente des Kegelschnittes p liegen; die Inverse
oder Transformirte unserer Curve ist also identisch mit der Original-
Curve. — Die durch die Fundamentalpunkte gehenden Tangenten von
p, denen Kegelschnitle entsprechen, welche in Linienpaare zerfallen,
liefern ebenfalls je zwei Curvenpunkte. Yon Ai aus gehen an den
Kegelschnitt p die beiden Tangenten ti und t:1*; der Geraden t: ent-
spricht ein Kegelschnill, welcher in das Linienpaar Az As, t." zerfillt,
wobei 1" denjenigen durch A: gehenden Strahl bedeutet, der mit A As
denselben Winkel bildet wie ti_ mit Ai A2, oder es ist t." der soge-
nannte inverse Strahl zu ti. Die Schnittpunkte A: und Q) von 1 mit

11" respective A2 As gehoren daher der Curve an. Die Tangente t*
gibt die Curvenpunkte A: und Q:* als Schnittpunkte von t1* mit seinein
inversen Strahle ¥ und der Fundamentallinie Az As oder x1 = 0.
Der Fundamentalpunkt A: zihlt also fiir zwei Punkte, die Curve geht
zwel Mal durch ihn hindurch oder A: ist ein Doppelpunkt der Curve.
Analog verhilt es sich mit den Fundamentalpunkten Az und As.

Die Fundamentallinie Az As oder xa — 0 kann nur die Doppel-
punkte Az, As, welche vier Punkte reprisentiren und die beiden Punkte
Qv und Qv* mit der Curve gemein haben; denn angenommen, es
existirte ein weiterer Schnittpunkt R, so miisste sein entsprechender
Punkt R” auf einer p-Tangente aus R liegen, auf tz oder tz*, welche
reell wiren, da K, wie alle Curvenpunkte, nicht im Innern von p sich
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befinden konnte. Nun entspricht aber dem Punkte R, wie jedem
Punkte der Fundamentallinie x1 = 0, der Fundamentalpunkt Ai, folg-
lich kann RR’ keine p-Tangente sein und somit R unméglich der
Curve angehoren. Die Curve lidsst also mit X1 = 0 hdchstens sechs
Schnittpunkte zu; ebenso schneidet jede der Fundamentallinien x2 = 0,
Xxs = 0 die Curve in sechs Punkten, worin allfillige imagindre Schnitt-
punkte inbegriffen sind. Unsere Curve wird daher von der sechsten
Ordnung sein miissen, was auch durch die folgende Betrachtung be-
statigt wird.

Wenn g die Ordnungszahl einer Original-Curve ist, dann ist die
Ordnungszahl ihrer Transformirten im Allgemeinen 2 w. Geht aber
die Original-Curve, wie unsere zu untersuchende Curve, zwei Mal durch
jeden der Fundamentalpunkte, so wird die Transformirte oder Inverse
von der Ordnung 2 u — 6, weil sich die Fundamentallinien, jede
doppelt gezihlt, absondern und daher nicht zur Inversen gerechnet
werden kionnen. Nun soll die Inverse identisch sein mit der Original
Curve, somit ist '

2u—2=6 w, woraus folgt:
u 6.

Die Tangenten der Curve sechster Ordnung Ce (wie sie im
Folgenden stets bezeichnet werden soll) im Doppelpunkt A: sind die
Inversen von t1 und t1*, also ti" und t:*’. Dem Schnittpunkt Q: der
Cs mit Az As enlspricht nimlich ein dem Punkte A: unendlich naher
Punkt Q:" in bestimmter Richtung von A: aus, niamlich so, dass wie
im Allgemeinen die Strahlen A: Qi, A1 Qi mit A Az resp. A1 As gleiche
Winkel einschliessen, d. h. einander entsprechen; es ist somit A: Q1
oder t.’ eine Tangente der Cs in A:. Analog ist t:*" die Tangente
eines zweilen durch A: gehenden Astes der Ce¢ in Ai.

Die Tangenten im Doppelpunkt A: sind gleichzeitig Tangenten
der Curve vierter Ordnung p’ und zwar ausser den Tangenten in Ax
die einzigen, welche von A; aus an p’ gehen; sie beriihren die Cs
in den Punkten Vi’ und Vi*', welche beziehungsweise den Beriihrungs-
punkten Vi und Vi* von t1 und t:* mit p entsprechen.

Die Tangenten von p im Doppelpunkt A: sind bekanntlich die
Inversen der Geraden, welche von A: mnach den Schnittpunkien P,
P1* der Curve p mit Az As gehen; wiirden Pr und Pi* beziehungs-
weise mit Q; und Q:* zusammenfallen, so hitten p’ und Ce¢ im gemein-
schaftlichen Doppelpunkt A; die nidmlichen Tangenten. In diesem Falle
fielen aber auch die Berihrungspunkte Vi und Vi* resp. mit Q: und
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Qi* und daher Vi’ und Vi*' mit A; zusammen, so dass die Tangenten
der Ce in A1 die einzigen von Ar aus an p’ gehenden Tangenten wiiten.*)

Im Falle der Realitit der Tangenten t: und t:*, also wenn A:
ausserhalb des Kegelschnittes p liegt, ist A1 ein Knotenpunkt der Cs.
Liegt A: im Innern von p, so sind die Tangenten im Doppelpunkt Ax
imaginir, d. h. A: ist ein isolirter Punkt. Befindet sich A: auf dem
Kegelschnitt p, dann fallen die Tangenten in A: zusammen, d. h. A:
wird zur Spitze; die zugehorige Riickkehrtangente ti” ist die Inverse
der Tangente t1 des Kegelschnittes' p in Ai. Im Schnittpunkie der
letztern mit x1 = 0 fallen Q: und Q:* zusammen und in diesem Punkte
wird daher die Gs von der Fundamentallinie x1 = 0 beriihrt. — Ana-
loges gilt fiir die tbrigen Doppelpunkte A2z und As; die Tangenten
der Cs in denselben sind die Inversen der respectiven Tangenten,
welche von Az und As aus an den Kegelschnitt p gelegt werden konnen.

Da die Cs sich selbst entspricht, so muss sie auch durch die
vier sich selbst entsprechenden Punkte der Ebene, die Centra E,E;, Ez, Es
der dem Fundamentaldreiseif eingeschriebenen Kreise, hindurchgehen.
Es seien tg und tg* die beiden von E aus an p gehenden Tangenten,
dann entspricht der Geraden tg ein durch A:, A2, As gehender Kegel-
schnitt, welcher 1g in E beriihrt; die beiden Punkte der Cs, welche
iz liefert, fallen also in E zusammen, woraus folgt, dass tg eine Tan-
gente der Ce in E ist. Ebenso ist tg* eine Tangente der Cs im sich
selbst entsprechenden Punkte E; letzterer ist daher ein Punkt, durch
welchen zwei verschiedene Aeste der Curve gehen, d. h. ein Doppel-
punkt der Ce, und die Tangenten in demselben sind die von E aus
an den Kegelschnitt p gehenden Tangenten tg und tg*. E ist ein
Knotenpunkt oder ein isolirter Punkt der Cs, je nachdem er ausser-
halb oder innerhalb des Kegelschnittes p liegt. Geht p durch E, dann
wird E ein Beriihrungsknoten der Ce, d. h. durch E gehen zwei Aeste
der Curve, welche sich in E berihren; die gemeinschaftliche Tangente
hat, wie spiter fiir einige spezielle Curven auch analytisch nachgewiesen
wird, in E vier zusammenfallende Punkte mit der Ce gemein. Der
Punkt E vertritt die Stelle von zwei Durchschnittspunkten der beiden
sich in ihm beriihrenden Aeste, d. h. von zwei Doppelpunkten der
Ce; derselbe kann als Vereinigung zweier Knotenpunkie angesehen
werden. Im Beriihrungsknoten beriihren sich die vier Curven p, p/,
Cs und der Kegelschnitt tg’. |

*) Weiteres hieriiber folgt im .zweiten, spezielleren Theile dieser Schrift.
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Dasselbe gilt fiir die Punkte Ei, Ez2 und Es. — Die Cs kann nicht
mehr als die sieben Doppelpunkte A1, A2, As, E, Ei, Ez2, Es besitzen,
denn gesetzt, es wiirde noch irgend ein Doppelpunkt D existiren, so
miisste sein inverser Punkt D’ ebenfalls ein Doppelpunkt der Ce¢ sein
und die Gerade DD’ hilte alsdann mehr als sechs Punkte mit der Cs
gemein,

Im allgemeinsten Falle (bei der allgemeinsten Lage von p gegen-
iber dem Fundamentaldreieck) besitzt daher die Ce sieben Doppel-
punkte und keine Spitzen und hat somit die folgenden Plicker’schen
Charaktere :

Ordnungszahl @ = 6, Zahl der Doppelpunkte 0 = 7,

Zahl der Spitzen % = 0,

Klassenzahl » = pu (u — 1) — 29 — 3 = = 16,

Zahl der Inflexionstangenten ¢ = 3 w (4 — 2) — 6 J — 8 » = 30,

1
« « Doppeltangenten 7z — 3 [(v —w)(r+4pu—9-42 6] =25 W,
Enthilt p einen der Punkte E, dann ist fiir die G¢ 0 = 8.
« « zwei « « « « « « « « (5 == 9.
« « d[‘ei « « « « « « « « 6 == 10_
« « simmtliche vier  « « « o« o« o« o« g =11.

Da 10 die Maximalzahl der Doppelpunkte einer Curve sechster
Ordnung ist, so miisste letztere nothwendigerweise zerfallen, wenn p
durch alle vier Punkte E ginge.

Da die Ce zu sich selbst invers ist, so entsprichl einem gemein-
samen Punkte von p und Cs ein gemeinsamer Punkt von p’ und Cs.
p’ und Ce schneiden sich in 4 > 6 = 24 Punkten, unter denen sich die
Fundamentalpunkte, und zwar jeder vierfach geziihlt, befinden. Sieht
man daher von den zwolf letzteren ab, so bleiben zwilf gemeinsame
Punkte von p’ und G, iibrig, welche die Inversen zu den zwolf gemein-
samen Punkten von p und Ce reprisentiren. Nun konnen niemals Punkte
der Cs innerhalb p liegen; ist daher S ein gemeinsamer Punkt von
p und Ce, so kann in S die Cs den Kegelschnitt p nicht schneiden,
muss ihn also beriihren und in Folge dessen beriihrt Cs die Carve p’
in 8, dem Inversen zu S. Von den zwolf gemeinsamen Punkien der
Cs und p miissen also je zwei zusammenfallen, so dass demnach p von
der Cs sechs Mal und ebenso oft p° von der Cs¢ beriihrt wird. Die
Gerade SS’ ist die Tangente an p in S, ihr correspondirender Kegel-
schnitt Cs* geht durch S und 8 und beriihrt die Curve p’ in §'; Ca*
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und p’ haben also in S’ die nimliche Tangente,
welche im Allgemeinen nicht mit SS’ zusammen-
fallen wird. Da eine Gerade g nur dann ihren
entsprechenden Kegelschnitt g beriihren Kkann,
wenn g und folglich auch g’ durch E; (i=0,1,2,3)
gehen, so wird auch SS8" nur dann ihren ent-
sprechenden Kegelschnitt C2* beriihren, wenn S
und mithin auch §° mit E; zusammenfallen; in
letzterem Falle ist dann SS’ eine gemeinschafl-
liche Tangente von p und p’ (auch von Ce* und Cs)
mit dem gemeinschaftlichen Beriihrungspunkt E;.
Im Allgemeinen wird demnach SS’ keine gemein-
schaftliche Tangente sein.

Es gibl nun sechs Punkle S und, da jeder einen einzigen ent-
sprechenden S’ auf C¢ hat, auch sechs Linien SS'. Diese Linien sind
solche Tangenten von p, deren enisprechende Kegelschnitte sie in
ihren Berihrungspunkten S schneiden und gleichzeitig p* und Cs in
den Punkten $’ beriihren.

Den zwilf gemeinschaftlichen Tangenten von p und p’ §) ent-
sprechen Kegelschniite, welche p° und p gleichzeitig beriihren.

Die Cs¢ schneidet den dem Fundamentaldreieck umschriebenen
Kreis K in zwolf Punkten, unter denen die Fundamentalpunkte sich
befinden, und zwar jeder zwei Schnittpunkte reprisentirend. Ausser
A1, A2, As existiren also noch sechs Schnittpunkte von K und Cs; ihre
Inversen, welche auch der Ce angehoren, sind unendlich fern, sie
stellen daher die sechs uneundlich fernen Punkte der Ce vor. Ist X
ein solcher Schnittpunkt von Cs und K, so gibt diejenige von X aus an
p gehende Tangente, welche parallel zur Inversen von AiX *) ist, die
Richtung Xi{' nach dem unendlich fernen Punkt §' an. X}' ist eine

p-Tangente, welche ihren entsprechenden Kegelschnitt in X u. X’schneidet ;
der Kegelschnitt wird also eine Hyperbel und die Gerade XX  eine

Parallele zu einer ihrer Asymploten sein, oder er ist eine Parabel und
XX’ eine Parallele zu ihrer Axe; dieser letztere Fall tritt nur dann

ein, wenn XX’ zugleich eine Tangente des Kreises K und zwar die-
jenige im Punkte X ist. Der unendlich ferne Punkt X' der Cs ist

1) p ist von der zweiten, p’ von der sechsten Klasse.
*) oder AsX, oder AsX.
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ein unendlich ferner Punkt der Hyperbel, respective der unendlich

ferne Punkt der Parabel, welche der Geraden XX  entspricht. Die
Tangente der Cs¢ in X', also eine Asymptote der Cs, ist parallel

XX, also parallel der zu X gehorigen Asymptote der Hyperbel,

respective parallel zur Axe der Parabel, welche XX’ entspricht. Wiirde
XX’ zugleich die Ce¢ in X beriihren, so hitten die Hyperbel und Cs
eine gemeinschaftliche Asymptote; im andern Falle, in welchem die
Inverse von XX' eine Parabel ist, wiirden die Parabel und die Cs sich
im gemeinschaftlichen unendlich fernen Punkt }5 beriihren, d. h. die

unendlich ferne Gerade wire die Tangente der Cs¢ in X'.
Wenn der Inverse X' eines Schnittpunktes X einer p-Tangente
tx mit dem Kreise K auf tx liegt, dann ist X' ein unendlich ferner

A, K- Punkt der Cs und tx gibt die Richtung

; nach demselben an. Es gibt sechs

solche Tangenten {x, von denen je
zwel imaginir sein kinnen.

Jedes Mal, wenn der Kegel-

“A; schnitt p eine der sechs Seiten des

vollstindigen Vierecks E Ei Ez2 Es

berihrt, vermindert sich die Ord-
nungszahl der Cs um eine Einheit;

denn ist z. B. die Linie Ez2 Es oder
X2 -+ xs = 0 eine Tangente von p,

A dann gehoren alle Punkte dieser
Linie, da sie sich selbst entspricht, der Cs an, es sondert sich daher
x2 -} X3 == 0 als Theil ab und der Rest ist eine Curve fiinfter Ordnung.
s konnen hoichstens vier der Linien E;Eg, von denen keine drei
durch einen Punkt gehen, von p beriihrt werden; tritt dieser Fall
ein, so reduzirt sich die Cs auf eine Cz, welche in ein Linienpaar
zerfillt. Ist beispielsweise p eine Ellipse, welche die Linien x2 - xs = 0
und x: +4- X3 = 0 zu Tangenten hat, dann zerfilll Ce in diese vier
Linien und eine Cz mit dem Doppelpunkt As, also ein Linienpaar durch
As und zwar ist es das Paar der von As aus an die Ellipse p gehenden
Tangenten ; letztere sind zu einander invers. Bezeichnen (s und ts’ diese
beiden Tangenten, so bilden die iibrigen Tangenten des Kegelschnittes
p auf ts und ts’ zwei projektivische Punktreihen, deren Erzeugniss, d. h.
die Enveloppe der Verbindungslinien entsprechender Punkte beider
Reihen, der Kegelschnitt p ist.

~




— 8 —

" Die Konstruktion der Cs ist sehr einfach, man hat nur mehr-
mals die Schnittpunkte einer Geraden mit einem durch fiinf Elemente
bestimmten Kegelschnitt zu bestimmen. Von jedem einer p - Tangente
entsprechenden Kegelschnitt kennt man die Tangenten in den Funda-
mentalpunkten. Bezeichnen nimlich Bi, Bz, Bs die Schnitipunkte
irgend einer p-Tangente t mit den Fundamentallinien xi — 0,
x2e == 0, x3 = 0, so sind die Inversen zu A1 Bi, Az B, AsBs die
respectiven Tangenten des Kegelschnittes t° in den Fuandamental-
punkten Ai, Az, As. Zur Konstruktion der gemeinsamen Punkte von
{ und t' geniigen fiir t. die Punkte Ai, A2, As und die Tangenien
in zwei derselben. '

Unter den den p-Tangenten entsprechenden Kegelschnitten gibt
es im Allgemeinen sechs Linienpaare, dieselben sind reell, wenn p
die Fundamentalpunkte ausschliesst, — Ellipsen und Hyperbeln, ersiere
entsprechen den p-Tangenten, welche den Kreis K nicht schneiden,
letztere sind die Inversen der den Kreis K schneidenden p-Tangenten, —
vier Parabeln, dieselben entsprechen den gemeinschaftlichen Tangenten
von p und K, — zwei gleichseitige Hyperbeln, wenn der Mittelpunkt
M des Kreises K ausserhalb p liegt¥) — endlich auch einen Kreis,
wenn p eine Parabel ist; in diesem Falle ist die unendlich ferne
Gerade eine p-Tangente, ihr entsprechender Kegelschnitt der Kreis
K und die Cs enthilt in Folge dessen die unendlich fernen imaginiren
Kreispunkte. Es ergibt sich hieraus, dass die Zahl der reellen ur-
endlich fernen Punkte der Ce¢ von der Lage des Kegelschniltes p in
Bezug auf den Kreis K abhingig ist. So wird z. B. die Cs keine
reellen unendlich fernen Punkte haben, wenn p den Kreis K ein-
schliesst, weil in diesem Falle den p- Tangenten nur Ellipsen**) ent-
sprechen konnen. ‘ ‘

Um zur Gleichung der Curve sechster Ordnung in Punklcoor-
dinaten zu gelangen, ermitteln wir zunichst die Coordinaten (besser
gesagt: die Verhiltnisse der Coordinaten) eines beliebigen Punktes P,
welcher dem Kegelschnitt p angehort; dieselben werden Funktionen

%) Dem Strahlenbiischel mit dem Scheitel M entspricht das Kegelschnitt-
biischel mit den Grundpunkten A, As, As, H, wo H den Hohenschnittpunkt des
Dreiecks Ai A2 As bezeichnet. Die Kegelschnitte dieses Biischels sind sémmtlich
gleichseitige Hyperbeln. Durch Anwendung der Inversion (im weiteren Sinne) ist
daher der Beweis des Satzes, dass jede einem Dreieck umschriebene gleichseitige
Hyperbel durch den Hohenpunkt desselben geht, ausserordentlich einfach.

##) Unter diesen befindet sich auch der Kreis K, wenn p eine Parabel ist.
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eines variablen Parameters 4 sein. Alsdann stellt man die Gleichung
der p-Tangente t, im Punkte P, auf und ersetzt hierin die Variablen
X1, Xz, X3 durch ihre reciproken Werthe, um die Gleichung des Kegel-
schnittes 1)’ zu erhalten, welcher der Tangente 1, entspricht. Eliminirt
man nun zwischen den beiden Gleichungen fiir t4 und t2" den in den
Coéfficienten derselben auftretenden Parameter A, so ergibt sich eine
Gleichung, welcher die Coordinaten der Schnittpunkte sidmmtlicher
p-Tangenten mit ihren entsprechenden Kegelschnitten geniigen, also
die Gleichung unserer Cs. *)

Nach diesen allgemeinen Betrachtungen gehen wir nun iiber zur
Untersuchung einiger Curven sechster Ordnung, die sich ergeben, wenn
der Kegelschnitl p spezielle Lagen gegeniiber dem Fundamentaldreieck
annimmt.

. Der feste Kegelschnitt p sei ein Kegelschnitt, fiir welchen das
Fundamentaldreieck ein Tripel harmonischer Pole ist,

- Ein Kegelschnitt, bezogen auf ein Tripel harmonischer Pole, hat
die Gleichung
p . . . . . axi® o axe? —axs?=0.

Bezeichnen ai, a2, a3 positive Zahlen, dann liegt der Fundamental-
punkt As innerhalb, A1 und A2 dagegen liegen ausserhalb des Kegel-
schnittes p. Die Fundamentallinien sind die Polaren der Gegenecken
in Bezug auf p. .

Die Inverse p’ von p hat die Gleichung
P) . . . arxe?xs® - axi®as? —asxuZne?=0;
sie ist eine Curve vierter Ordnung und sechster Klasse, welche in Ai
und Az doppelte Inflexionsknoten besitzt und fir welche As ein isolirter
Punkt ist. Da die von A: aus an den Kegelschnitt p gehenden Tan-

*) Da zwei zu einander inverse Punkte der Ebene die Brennpunkte eines
Kegelschnittes sind, welcher die Fundamentallinien beriihrt, so kann die nach-
gewiesene Curve sechster Ordnung auch betrachtet werden als Ort der Brennpunkte
derjenigen die Fundamentallinien beriihrenden Kegelschnitte, deren Axen eine feste
Curve zweiten Grades umbhiillen,



— 10 —

genten denselben in seinen Schnittpunkten mit x1 = 0 beriihren, so
sind die Inversen dieser Tangenten, d. h. die Tangenten der C: (p")
im Doppelpunkt A: zugleich Inflexionstangenten und somit A: ein
doppelter Inflexionsknoten. Diess wird duorch Rechnung bestitigt,
indem man zeigt, dass jede dieser Tangenien mit der Cs in A1 vier
zusammenfallende Punkte (drei mit dem einen Aste, einen mit dem
andern) gemein hat. Analoges findet fiir Az statt. p’ hal zwei reelle,
unendlich ferne Punkte, dieselben entsprechen den zwei Schnittpunkten
von p mit dem Kreise K. Die Asymptoten der C« lassen sich, wie
iiberhaupt simmiliche Tangenten derselben, leicht konstruiren; be-
zeichnet X einen gemeinsamen Punkt von p und K, so hat man nur
zu bericksichtigen, dass der Tangente im Punkte ;S’ oder einer

Asymptote der Cs derjenige Kegelschnitt entspricht, welcher durch Ai,
Az, As, X geht und den Kegelschnitt p in X beriihrt.

Um nun die Gleichung der Cs, welche im vorliegenden Falle
entsteht, abzuleiten, suchen wir zunéchst die Coordinaten eines be-
liebigen Punktes von p und bestimmen die Gleichung der Tangente
von p in diesem Punkt. Wir legen zu diesem Zwecke durch.A: einen

heliebigen Strahl
X2

— i

X3
derselbe schneidet p in zwei Punkten, fiir welche man hat:

. 2 4 2 ;
X1 X2 \~ X2

al—) -} az. — as = 0 und = 4.
X3 X3. X3

Daraus folgt :
X i\/as—azl2 )
X3 a

Beriicksichtigen wir nur das pos. Zeichen der Wurzel, so- haben
wir fiir die Coordinaten eines Punktes Pz auf p:
Py . . . X12X2:X3=\/as—azl2:l:1.

a1

Bezeichnet F die linke Seite der Gleichung von p, so haben die
ersten partiellen Differentialquotienten von F in Bezug auf x1, x2, Xs
die Werthe:

Fi = 2aix1 ; F2 == 2aex2 ; F3 = — 2asxs ;
demnach lautet die Gleichung der Tangenle von p in Pa:
(Fuor . xa 4+ (F2)2 . x2 4 (Fs)a . xs = 0 oder

W . . Voa (a8 — a2 A%) . x1 | asdxa — asxs = 0 .




Der Tangente ti entspricht der Kegelschnitt

) \/ ar (a3 — az A%) . XeXs - azdxaxs — asXixz = 0.

Betrachtet man A als einen variablen Parameter, so reprisentirt
die Gleichung fiir t, simmtliche geraden Linien, welche p umbhiillen
und die Gleichung von t:° simmtliche Kegelschnitte, welche dem
Fundamentaldreieck umschrieben sind und die Curve p° beriihren.
Eliminirt man endlich zwischen diesen beiden Gleichungen den Para-
meter A, so erhilt man die Gleichung des Ortes der Schnittpunkte
aller Geraden ti mit ihren inversen Kegelschnitien. Durch Elimination
der Anfangsglieder folgt zunéchst :

' Aaz (x1? — x2%) . Xs = asx2 (x1%® — xs?)

aaXz(_X12 — X32)

}u=

agxs(X1? — Xa?)

Setzt man diesen Werth von A4 in die quadrirte Gleichung von t,.
a1(as — azd?) . x1® = (asxs — a24x2)® ein, so ergibt sich:
a [33 . as?xe¥(x1? — X32)2] W — [33}(3 B asxz?(x1? — xs? ]2

' azxs(x12 — x2%)? | Xs(X1% — X2%)

oder nach gehoriger Reduktion ,
Ce) L) azasx1? . (x22 — x3%)% J-asa1x2?(x3%— x1%)?— a12e Xa? (X1 27— x2%)2= (),
welche Gleichung unsere (e reprisentirt.

Zur Untersuchung der Ce iibergehend, bestimmen wir zuerst ihre
Schnittpunkte mit den Coordinatenaxen. Substituiren wir in (I) x1 = 0,
s0 kommt

x2%x5% (as X3 — a2 Xe%) = 0, woraus folgt
Xe? = 0,X32=0,\/;X2 —{—\/;;—.Xaz(),\/; X2 —\/g i ==,
d. h. die Schnittpunkte der Fundamentallinie x1 =— 0 mit der Cs sind
die Doppelpunkte A2 und As und die Punkte, in denen x: — 0 den
Kegelschnitt p schneidet; die lefztern fallen zusammen mit den Punkten
Q1 und Q1*, in welchen die von A: aus an den Kegelschnilt p gehenden
Tangenten die Fundamentallinie x1 = 0 schneiden. Die zwei letztien
Gleichungen stellen die p-Tangenten Ai1Q: und AiQ:* vor. (Tafel I.)

X2 —
X

~ Analog ergiebt sich, dass A1< g — g) ein Doppelpunkt und

xe — 0 X2 =0

Qz(\/; x1 4 \/53—. X3 0) , Qz*(\/g—. X1 — \/E X = 0)
xs =0 xs =0

03(\/; x1 - i\/é; X2 0) , Qs* (\/5— X1 — i\/az < %3 === 0)

I




einfache Punkte der Cs sind. Q2 Q2* sind die Schnittpunkte von
xe = 0 mit p oder mit den von A: ausgehenden p - Tangenten, und
Qs, Qs* welche imaginir sind, stellen die Schnittpunkte von x3 = 0
mit p oder mit den von As ausgehenden p-Tangenten vor.

Die Gleichung (I) ist ferner erfiillt fir die Coordinaten der -
Punkte E, E:, E2, Es; diese Punktie ergeben sich als Schnittpunkte
der Cs mit den sechs Geraden

X2 +Xs=0,x1 +x8s=0, x1s +x2=0.
Substituiren wir in (I) x2 4 xs =0, so folgt:
asXs®(xs® — x1%)? — asxs’(xa® — xs¥)? = 0 oder

xs% (x12 — xs?)? = 0 und daraus
xs2 =0, (x1i 4 x3)! = 0, (xa — x8)®2 = 0. Diese Gleichungen
driicken aus, dass die Schnittpunkte Ai, E, E;, E2, Es der Linien
X2 — Xs =0 , X2 -}- xs = 0 mit der Ce¢ Doppelpunkte der letztern sind.
Um die Tangenten der Ce¢ in den bekannten Punkten zu bestim-

men resp. ihre Gleichungen aufzustellen, sind die Differentialquotienten
der Funktion u *) nach xi1, X2, xs erforderlich. Es ist

u1 = 2azasx1(X2? — x3%)% — Aasarx2?(xs® — x1?)x1 — Larazxi Xs%(X1% — x2?)
Uz =— La2asX1?x2(X2? — x3%) -}- 2asa1x2(xs% — x12)% - hara2X2X%3(X1 2 — X2?)
us = —%a2a5%X17X3(X2? — X3%) 4 Lasai x22xs(Xs?—xX1 %) — 2a1a2Xa(X1 *— x2%)®
U = 2azas(Xe? — X5%)% — Lasarx2?(xs? — 3x1%) — Larazxs®(3x1% — x2%)
U1z = 8a2asX1Xa2(X2? — Xs?%) — Basarxixe(Xs? — x1%) 4 8arazxexs?
Uis = — 8a2a3X1X3(X2? — Xs%) — 8asa1X1X22xs — BaraeXiXs(X1? — X2?)
Usz = hasasx1%(3x22 — xs?) -}- 2asa1(xs? — x12)% |- harazxs?(x1? — 3x2?)
U2z — — Basasx1®xs -} Basarxaxs(xs® — x1?) -} Barazxexs(x1? — x2%)
= — hasasX1%(x2? — 3xs?) |- Lhasarxe®(3xs? — X1 %) — 2ar32(x1% — x2%)*
Das Tangentenpaar in einem Doppelpunkte der Curve u = 0
wird nun reprisentirt durch die Gleichung
wixi? - usexe? -} ussxs? | 2uesxexs - 2wmsxixs | 2uzxixs = 0,
wenn Xxi, Xz, X3 die laufenden Coordinaten bedeuten und in die Ausdricke
fir ui, uze, uss, u2s, us, w2z die Coordinaten des Doppelpunktes
substituirt werden. '

Fir den Doppelpunkt A: (Xz — g) ist

uss

u

0 , 2w =0 , us =20
U1 == 0

0 , ue

Il

*) u = 0 bedeutet die Gleichung der C;.
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u2z = 2azaix1? | U2z = 0 , uss = — 2ma=xa* ; *) somit lautet die
Gleichung des Tangentenpaares in Ap:

asxe? — azxs? = 0 oder
(\/;:)(2 -+ \/52_.}{3) : (\/;5*.)(2 — \/5:}(5) = {.

Hieraus sieht man, dass die Tangenten im Doppelpunkt Ai die
resp. Inversen der p - Tangenten aus A: sind. Ganz dieselben Tangenten
hat die Curve p° im Doppelpunkt A:, was auch schon aus dem Um-
stande folgt, dass Ai(Qr und A1Q:* den Kegelschnitt p in Qi resp. Qi*
berihren. — Um zu untersuchen, von welcher Art der Doppelpunkt
A1 ist, bestimmen wir die Schnittpunkte der Tangenten asxs? — azxs*=0

_ a . . :
mit der Ce. X22=§ xs? in (I) substituirt, gibt:
3

2 2 2
az dz ’
azasX1? .(a—X32 — X32> a1 azaaz(Xaz — X1 2) = a1a2X32(X1 2W—X32) =0
3

as
a(a a
oder X34.[(231 —+ a2 —as)xi? — 1(—234_——& ‘ X32] = (.
8
xs* = 0 sagt aus, dass in A: vier Schnittpunkte zusammenfallen;

jede der Tangenten in A: hat also in A: vier zusammenfallende Punkte
mit der Ce gemein (mit einem Aste drei, mit dem andern einen), ist
daher Inflexionstangente und der Punkt A: ein doppelter Inflexions-
knoten, wie bei der Curve p’.

N x1 =0\ .
Fir A- (Xa . 0) 1st

urr = 2azasxa? ; we 0;ms =0
uzz2 — 0 ; Us2s 0 ; uss = — 2ajazxz?.
Die Tangenten der Ce¢ im Doppelpunkt Az haben daher die
Gleichungen

[

asx1?2 — axs? = 0 oder

\/;1;”.)(1 -{—\/g—.xg:(}, Vas . x1 —Var . xs =0 ;

dieselben stimmen iiberein mit den Gleichungen der Inversen der
p - Tangenten aus A:. Die Tangenten der Ce¢ in Az sind also identisch
mit den Tangenten der Cs in Az ; sie sind fiir beide Curven Inflexions-
tangenten und Az ist somit auch, wie A1, ein doppelter Inflexions-
knoten fiir p° und Ce. '

*) Hier bedeutet x1 eine Constante, ndmlich die erste Coordinate von A,
also das zu AzAs gehorige Hohenperpendikel des Dreiecks Ai1A:2As, wenn der
Radius des dem letztern eingeschriebenen Kreises gleich der Einheit ist.



— 14 —

Endlich erhédlt man fiir die Tangenten der Cs im Doppelpunkt As:
ax1? 4 axe? = 0 oder
Vas.xi +iVar .xe =0, Vas.xi —iVar.xe =10 .

As ist also ein Doppelpunkt mit imaginiren Tangenten, d. h. ein
isolirter Punkt der Ce. '

Die Punkte E, Ei, E2, Es sind, wie schon gezeigt worden, eben-
falls Doppelpunkte der Ce; diess wird dadurch bestitigt, dass fiir
dieselben die Ausdriicke ui, uz, us verschwinden. Ferner ist fir

=1
E(xa=1);
X3 =1

U1 = 8ai(as — az) ; Wz = 8aaz ; u1s = — Baias

Uzz = 8az(as — a1) ; Uss = — 8Bazas ; uss = 8as(a1 -}-az)..

Das Tangentenpaar im Doppelpunkt E hat demnach die Gleichung

31(33 = az) . X12 —I— az(aa e 81) . Xa2? + 33(31 + 32) . Xs®

-+ 2aiazxi1x2 — Z2a1asxiXs — 2az2asX2Xs = 0.
Dasselbe stimmt tliberein mit dem von E aus an den Kegelschnitt
p gehenden Tangentenpaare, denn die Gleichung desselben lautel :
(a1x1? 4 aexe? — asxs®) (a1 4 a2 — as) = (ux1 - 2X2 — asxs)®
oder ar(as — az)x1? -~ az(as — a1) x2? 4~ as(ar -} az)xs®
—+ 2aa2xixz — 2a1asX1Xs — 2asasxexs — 0.

Je nachdem E ausserhalb oder innerhalb des Kegelschnittes p
liegt, sind die Tangenten in E reell oder imaginir und E ist daher
ein Knotenpunkt oder ein isolirter Punkt der Cs.

Analog verhilt es sich mit den Punkten Ei, Ez, Es. Enthilt
der Kegelschnitt p einen der vier Punkte E, Ei, Ez, E;, dann muss
er alle enthalten, weil fiir simmtliche vier Punkte a1 4 az — as = 0
sein muss; in diesem Falle ist p eine gleichseitige Hyperhel. Die
Punkte E, Ei1, Es, Es liegen simmtlich entweder ausserhalb oder inner-
halb des Kegelschnittes p oder alle auf demselben und zwar

ausserhalb, wenn as < a1 -+ az
innerhalb, wenn as > a1 }- a:

auf p, wenn as = a -}~ az.
__ %
Fiir die Punkte Q: und Q:* ist x;1 =0, x2? = — \3 , daher u1 = ()
uz = 2asa \/——-— X3 —43133\/— X8 = — ‘231&3\/— x3®
a1as? aias? - 2 aras?
ns=—2=% .xg® — 2 o X e Xs%,

az a2 az -
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Die Tangenten in diesen Punkten haben daher die Gleichungen

as as
i\/a—-X2———-X3=O oder
2

as
Vas . x2 + Vas.xs = 0, also
Gleichung von g, : Vaz.x2 - Vas.xs = 0
« « tge : Var.xa — Vas.xs 0.

Die Tangenten der Cs¢ in Q1 und 1* sind also identisch mit
den p- Tangenten in jenen Punkten.t) Ebenso findet man, dass die
von Az resp. As ausgehenden p- Tangenten AszQ2, A2Q2*; AsQs, AsQs*
die Tangenten der Cs in Qz, Q2*; Qs, Qs* sind; die zwei letzteren Tan-
genten sind natiirlich, sowie ihre Beriihrungspunkte Qs, Qs*, imaginir.

Die Cs und der Kegelschnitt p beriihren sich in den sechs
Punkten Q (wovon zwei imaginir sind)., und da sie im Allgemeinen
nur zwolf gemeinsame Punkte haben konnen, so exisliren keine
weiteren gemeinsamen Punkte. Demnach werden auch die Ceé und p’
nur die Fundamentalpunkte Ai, A2, As gemein haben; in der That
liefert in A; jeder Ast der Cs mit den beiden Aesten der Cs 1 + 3 =14
-Schnitipunkte, es zihlt also jeder Fundamentalpunkt fir acht Schnitt-
punkte, simmtliche Schnittpunkte von p’ und Ce liegen daher in den
Fundamentalpunkten. -

Da A1Q1, A1Q:*; A2Q2, A2Q:* die Cs in den resp. Punkten Qi, Qi ¥;
Qz, Q2* beriihren, so folgt, dass ihre Inversen, d. h. die Tangenten der
Cs in den Doppelpunkten A: und Az Inflexionstangenten sein miissen ;
dasselbe Resultat hat friiher schon die Rechnung ergeben.

Die Cs hat sechs unendlich ferne Punkte, von denen entweder
vier reell und zwei imaginir oder gar keine reell sind. Die Curve
besitzt vier reelle unendlich ferne Punkte und besteht daher aus vier
ins Unendliche gehenden Zweigen (siehe Tafel 1, Fig. 1), wenn
as < a1 -}~ az, also siimmtliche E; Knotenpunkte sind. Die Ce schneidet
den dem Fundamentaldreieck umschriebenen Kreis K ausser Ai, Az, As
in vier Punkten Xi, Y1, Zi, W1, denen die unendlich fernen Punkte
der Cs entsprechen. Die p-Tangenten XiX:', YiY1', ZiZ/, WiWy'
geben die Richtungen an, nach-welchen die Cs ins Unendliche geht,
und die zu ihnen parallelen Tangenten der Cs in Xi', Y1i', Z1/, Wi’

I

+) Dieses Resultat liess sich erwarten, denn wenn die Ces diejenigen Punkte
enthilt, in welchen x1 = 0 den Kegelschnitt p schneidet, so muss in jenen Punkten
p von Cs beriihrt werden, da keine Pankte der Cs im Innern von p liegen konnen.
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sind die Asymptoten der Curve. XiX:', YiYy', Z:1Z', W1 W1 sind die

von Xi, Y1, Zi, Wi aus an den Kegelschnitt p gehenden Tangenten,
welche parallel zo den resp. Inversen von AiXi, Ai1Y:, AiZi, A/Wi
sind ; sie stellen diejenigen p- Tangenten vor, welche sich mit ihren
inversen Hyperbeln in je einem unendlich fernen Punkte schneiden,
welche also parallel sind zu je einer Asymptote der ihnen entsprechen-

den Hyperbeln. — Die Gs enispricht in der Weise sich selbst, dass
dem Stiic_k EA1Z1'E: das Stiick EQ:*Z1E:
« « EAW{E: « «  EQz*WiE:

« «  EiA2Y1Es « « FE1Q:Y1/Es und
« «  E2A1XuEs  « « E2Q:i1X:{'Es entspricht.
Jeder der vier Zweige entspricht sich also selbst.
Yon der Cs¢ liegen gar keine Punkte im Unendlichen, wenn
as > a1 -} az, also simmtliche E isolirte Punkte sind (Tafel II, Fig. 1).
Die Cs besteht in diesem Falle aus zwei geschlossenen, mit doppeltem
Inflexionsknoten versehenen Curven, von denen die eine in Qi und
Q1*, die andere in Qz und Qz* den Kegelschnitt p beriihrt. Dem Curven-

stiick Q1PA:RQ:* entspricht das Stiick AiP'Q:R'A: der andern Curve
und dem Stiick Q:*TA2Q: entspricht A:T Q:¥Ai.

In beiden Fillen sind die Plicker’schen Charaktere der Ce, wie
im allgemeinsten Falle :

p=06, »=16, =7, » =0, t =30, v = 72,

Wenn a2 = as, dann wird der Kegelschnitt p (eine Hyperbel)
von den Linien x2 — Xs = 0 und x2 -} xs = 0 in ihren Schnitt-
punkten mit xa = 0 beriihrt, es miissen daher A:E: und AiEz der
" Cs als Theile angehiren. Die Gleichungen von p und Ce lauten:

p) « . . . . axi® 4 as(xe? — x3%) = 0

Ce) . asx1®(x2? — x3%)% - arxa?(xs? — x1%)? — arxa?(x1? — x2%)? = 0.
Letztere kann umgeformt werden, wie folgt:

asx1?(x2? — xs%)? 4~ & [X14.(X22 — X3%) — x2%x3%(x2% — X32)] = 0 oder

(x2%2 — xs?) .[asxl (x2® —x8*%) a1 (1t — mgmz)] == {J.
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Es sondern sich also in der That die Faktoren X: -4 xs und
X2 — X3 ab, die Cs zerfillt somit in X2 — Xs = 0, X2 -} xs == 0 und
die Curve vierter Ordnung:

[ arxit — axe®xs? — asxi®xs? 4 asxa®x2? = 0 oder

‘ 1 xi3(arxi® — asxs?) - xe*(asxi® — aixs®) = 0.

Die C: enthilt die Punkte A2, As, E, E1, E2, Es, jedoch sind nur
Az und As Doppelpunkte der Cs. Ferner geht sie durch die Schnitt-
punkte Qz, Q=* und Qs, Qs* (die zwei letzteren sind imaginir) der
Hyperbel p mit x2 = 0 resp. xs = 0 und wird, wie die Hyperbel,
von A20Q2 und A=2Q2* in Q2 resp. Q2* beriihrt. Die Tangenten der Cs
in Az sind die Inversen von A:Qz und A20Q.%, ihre Gleichungen lauten:
Var.xs + Vas.xi = 0, Va.xs — Vas.xi = 0; da jede von
ibmen mit der Cs in Az vier Punkte gemein hat, so sind sie zugleich
Inflexionstangenten und Az ist ein doppelter Inflexionsknoten. Der
Fundamentalpunkt As ist ein isolirter Punkt der Ci. (Tafel II, Fig. 2)
Fir das Tangenlenpaar der Cs in E ergibt sich:

(N2 — X3) . [‘231)(1 + (a8 — a1) . x2 — (as + ('llj)x:-}] 2= 0,
daher reprasentirt die Gleichung
| a1\t b (as — a)xe — (as - al)xs =0

die Tangente der Cs in E, dieselbe stimmt tiberein mit der von E
aus an die Hyperbel p gehenden Tangente, welche nicht mit AiE:
zusammenfilll. Ebenso sind die Tangenten der Cs in Ei, Ez, Es die
von diesen Punkten aunsgehenden Hyperbellangenten, welche nicht mit |
A1E: oder AiE: zusammenfallen. — Die (Ci hat zwei reelle unendlich
ferne Punkte und besteht daher aus zwei ins Unendliche gehenden
Zweigen. Die Plicker’schen Charaktere der C« lauten: p =4, d = 2,
==, § =8, i=18 7= 8

Ce .

Wenn ai — a: — as, dann ist p die Hyperbel
xi? —}- x2? — Xs? = 0,
und da x2 | xs = 0 und xa + xs = 0 die Tangenten derselben

in Qr, Q* resp. Qz, Q2* sind, so sondern sich E:Es, AiEi, E1Es, A2E:
von der Cs¢ ab, so dass schliesslich noch eine Cz iibrig bleibt. Die
im vorigen Specialfalle erhaltene Cs geht tiber in
xi¥(xi? — xs%) 4+ xe*(1? — x3%) = 0 oder
(x1? — x8%) . (x4 xe?) = 0.
Die im vorliegenden Falle entstehende Ce lautet daher:
(x2? — x3%) . (1% — x8%) . (x1® -] \2®) = 0;
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sie besteht aus den Linien AiEi, AiE2; A2E:, AsEz und den imaginéiren
Geraden, welche As mit den (imaginiren) Schnitipunkten von p mit
xs = 0 verbinden. Sieht man von den erstern ab, so reducirt sich
die C¢ auf das Linienpaar

X1 4 ixa = 0, xtx — ixa = 0;
da dasselbe imagindr ist, so werden die Hyperbeltangenten die ihnen
entsprechenden Kegelschnitte niemals reell schneiden.

Es bleibt nun noch der besonders interessante Fall zu behandeln
ibrig. in welchem p eine durch E, Ei, E2, Es gehende gleichseitige

Hyperbel vorstellt; derselbe tritt ein, wenn as — a1 -} az ist.
Die Gleichung der gleichseitigen Hyperbel p lautet:

p) . . . axi? o axe? — (ar } a2) . x3? = 0.
Ihr entspricht die Curve vierter Ordnung:

p') - arxXz?xs® ~|‘ azx1x3? — (81 + 32)}(12}(22 ==z {}

und die Cs hat die Gleichung:
Ce) as(ar - az) . x1%(x2* — x3%)%  av(ar - a2 xe¥(xs? — x1%)?
== 3132X32(X12 — X22)2 == {J
Alle drei Curven p, p’ und Cs gehen durch E, Ei, Es, Es und
haben in jedem dieser Punkte die ndmliche Tangente. Die Gleichungen
der vier gemeinschaftlichen Tangenten lauten:

tg) . . . . axi -} axe — (@ 4 a)xzs = 0
tg) . . . . axi — axz2 | (& 4 82)x3 = 0
tg) - . . . aXt — aXz — (m |- az)x3 = 0
1558 ... oaxt - axe 4 (& -} a)xs = 0

Die Ce beriihrt also p nicht nur in Qr, Qc*, Q2 Q2% Qs, Qs¥,
sondern auch noch in E, Ei, Ez, Es. (Tafel IIl.) Wenn aber Ce¢ und
p mehr als zwilf gemeinsame Punkte haben, so nuissen sidmmtliche
Hyperbelpunkte der Cs angehiren, d. h. die Hyperbel p bildet einen
Theil der Cs, welche zerfillt. Enthilt aber die Cs simmtliche Punkte
von p, so miissen ihre Inversen d. h. die Punkte von p’ nothwendiger-
weise ebenfalls der Cs angehiren; es bildet also auch die Curve p’
einen Theil der Cs. Im vorliegenden Falle zerfilll demnach die Curve
sechster Ordnung in die gleichseitige Hyperbel p und die ihr ent-
sprechende Curve vierter Ordnung p’. Diess zeigt auch die Gleichung
der Cs, dieselbe kann niimlich in folgender Form geschrieben werden :

[31X12+32X22——(81+32)X32] . [31X22X32+32X1 xs®— (a1 -f-az)x 2X22]——-0.
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Wihrend im allgemeinsten. Falle die Verbindungslinie ent-
sprechender Punkte der (e den Kegelschnitt p umhiillen, so liegen
hier zwei entsprechende Punkte der Cé, von denen der eine stets
der Hyperbel p, der andere der Curve p’ angehéren muss, auf der
p- Tangente im ersten der beiden Punkte. Der entsprechende Kegel-
schnitt einer jeden Hyperbel-Tangente schneidetl die lelztere in ihrem
Beriihrungspunkie und der Ort des zweiten Schnitipunktes ist die Cs,
welche zur Hyperbel invers ist. Der inverse Punkt P’ eines Hyperbel-
punktes P liegt auf der zu P gehirigen Hyperbel-Tangente.

Die C¢ hat vier reelle unendlich ferne Punkle, da die Hyperbel
und die Cs (p') je zwei besitzen; sie entsprechen den Punkten, in
denen der Kreis K die Curven p und p’ trifft. Die unendlich fernen
Punkte der Cs sind die Inversen der Schnitipunkte X und Y von K
mit p, und die unendlich fernen Punkte der Hyperbel p entsprechen
den gemeinsamen Punkten Z und W von K und p’ (siehe Tafel III).

Nun muss nach Vorigem

XX’ die Tangente der Hyperbel in X

Y Y, « « « « « Y
r :I; #
A A « « « « « Z
it = S
W \V « « « « « W SB[]’]

es sind daher M und WW die Asymptoten der Hypelbel Der Tangente
der Cs in X (Abymptote der Cs) entspricht ein Kegelschnitt, welcher

durch Aj, Az, As, X geht und die Hyperbel in X beriihrt (XX ist die
Tangente desselben in X). Construirt man von demselben die Tangente
z. B. in A1 und zu derselben die Inverse, so geht durch den Schnitt-
punkt der letztern mit AzAs, zu XX’ parallel, die erwihnte Asymptote

der Cs. Analog kann die andere Asymptote der Csi, die Tangente den
C« in Y, construirt werden.

Man kann die Ce betrachten als eine aus den vier Zweigen:
X'A:EA Y , } E1WA0E3AIZE2\
ZEXEYE/W | W Q2E301/
zusammengesetzte Curve. Der erste Zwelg beru'hrt den dritlen in E,
der zweile Zweig beriihrt den dritten in E; und Ez2 und der vierten
in Es. Die Punkte E, Ei, Ez, Es sind dann also als Beriihrungsknoten

der Ce¢ anzusehen. Die Tangente tg hat in E vier zusammenfallende
Punkte mit der Cs gemein, niimlich zwei mit Hyperbel und der zwei
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mit der Cs, welche beide Curven sich in E beriihren. Analoges gilt
fir die Tangenten in E:, E: und Es.*) '

Die Cs kann aber auch angesehen werden als Curve, welche aus
den vier Zweigen besteht:

Y AdEQi*YE: Y’ X A2EQ2*XE2X’
7 2 )1 EsA1ZE:Z W Q:EsA:WE{ W'

Diese Auffassung entspricht ganz derjenigen bei der Curve Ce
in Fig. 1, Tafel I, wo je zwei inverse Punkte auf demselben Zweige
der Cs liegen und also jeder einzelne Zweig sich selbst entspricht.

Bei der hier vorliegenden Ce entspricht dem Curvenstiick
EA1Y'E; das Stiick EQ:*YE: ; beide bilden den CurvenzweigY‘A;EQ:*YE;Y*

EA:X'Es « « EQs*XEz; « « « « X‘A2EQ2*XEz X"
EsA1ZE: « « EsQiZ/Ez; « « « « 2'Q1EsA1ZE2 7!
EsAz:WE; « « E3Q:WEi; « ¢ « « W/ Q:EsA:WE{ W'

Daraus geht hervor, dass in E die Tangente (lg) der Cs fiir
beide durch E hindurchgehende Aeste der Ce Inflexionstangente 1ist,
sie reprisentirt also zwei zusammenfallende Inflexionstangenten; man
kann daher E als einen doppelten Inflexionsknoten ansehen, bei welchem
die beiden Tangenten im Knoten zusammenfallen. Die beiden durch
E gehenden Zweige der Cs berihren und durchsetzen sich in E, oder
es findet zwischen den beiden Aesten in E eine Osculation statt; einen
solchen Punkt nennt man einen Osculationsknoten. Derselbe kann als
Vereinigung von drei Knotenpunkten betrachtet werden, d. h. er ver-
tritt die Stelle von drei Doppelpunkten der Ce. Ebenso sind Ei, Ez, Es
Osculationsknoten der Curve sechster Ordnung. *¥)

Aus den Gleichungen der Tangenten (g, tg, tg, tm in den Os-
culationsknoten ist noch folgendes Erwihnenswerthe ersichtlich :

tg und tg, schneiden sich auf x; — 0 im Punkte F
tg, und tg, - « « « « « « Fi
(Tafel III, Fig. 2.) und F, F; sind harmonisch conjugirt in Bezug auf Az, As.
tg und tg, schneiden sich auf xe =— 0 im Punkte G
tg, und lg, « ¢ « « G
und G, G: sind harmonisch conjugirte Punkte in Bezug auf A1, As.

*) Die Ce ist zweitheilig; jeder Theil (C2 und Cs) besteht aus zwei unend-
lichen Aesten, die eine zusammenhingende Curve bilden.
#¥) Nach der zweiten Auffassung besteht die Cs aus vier unendlichen Aesten,
die nicht zusammenhingen ; sie ist also eine viertheilige Curve.



tg und tg, schneiden sich auf xs = 0 in H
tg, und tg, « « o« « « Hi
und H, H: sind harmonisch conjugirte Punkte in Bezug auf A, Ae.
Auf tg liegen die Punkte F, G, H
" w iy, « « ‘ F, Gl, H;
« tg o« « « Fi, G, H:
« tg @« « « Fi, G1, H
Die vier Tangenten bilden also ein vollstindiges Vierseit, fiir
welches die sechs Punkte F, G, H, Fi, Gi, Hi die Ecken, die Funda-
mentallinien die Diagonalen und A:, A2, As die Diagonalpunkte sind.
Das vollstindige Viereck E E; E2Es besitzt das ndmliche Diagonal-Dreieck.
Sobald eine der vier Tangenten gegeben ist, ergeben sich die iibrigen
sofort mit Hiilfe der Punkte F, G, H. Umgekehrt folgt: Sind vier
Tangenten einer gleichseitigen Hyperbel gegeben, so findet man ihre
Beriihrungspunkte, indem man das Dreieck der Diagonalpunkte und fiir
dieses die Punkte E; Ei, Ee, Es construirt.
Der Kegelschnitt p, dessen Gleichung in Punkicoordinaten xi, xz2, X3
lautet : aixi® - asx2? — asxs? = 0, hal in Liniencoordinaten &, &, &
die Gleichung:

»

azaséi? 4+ aas? — 32252 = 0.
Fir seinen Mittelpunkt O erhilt man die Gleichung:
a2a3sinA1 . & - aiassinAz . & — arassinds . & = 0,
d. h. fir die Coordinaten von 0 ist
X1 : X2 : X3 = a2a3SINA1 : asa1SinAz : — aiazsinAs.
Wenn nun p eine gleichseitige Hyperbel, also a1 - a2z — a3 = 0
ist, darin liegt 0 auf dem Kreise K und zwar auf der Geraden
X1 : X2 = a2S8inA; : aisinAs.
Im speziellen Falle a; = a2 liegt 0 auf der Inversen der Schwer-
linie AsS *) des Fundamentaldreiecks.
Fiir alle unendlich vielen gleic'hseitigen Hyperbeln, welche durch
E, E1, E2, Es gehen, befindet sich das Centrum 0 auf K. Die Geraden
OZ und OW sind die Asymptoten der gleichseitigen Hyperbel, und da

dieselben aufeinander senkrecht stehen, so muss ZW ein Durchmesser
von K sein.

*) 8 bezeichnet den Schwerpunkt des Dreiecks Ai Az As.
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Il Der Kegelschnitt p sei dem Fundamentaldreieck eingeschriehen

Fin dem Fundamentaldreieck eingeschriebener Kegelschnitt hat
die Gleichung:
Varxi 4 Vaexe |+ Vasxs = 0 oder
1. p) ] a?xi? 4 a%xe® 4 as?x? — 2maxixz — 22183X1%3
— 2azasx2Xx3 — 0.

Die correspondirende Curve p’ ist die Curve vierten Gerades:

[ Varxexs - Vaxixs 4 Vasxuxs = 0 oder
2. p')i a?x2?xs? - a2¥xi’xs? - as?xi®xe? — 2aia:xaixixe
— 2aasx22x1x3 — 2a2a3X1%x2x3 = 0.
Diese Cs bhesitzt drei A,
Spitzen in den Fundamental-
Punkten; die zugehérigen P 2
Riickkehr-Tangenten sind die #
Inversen zu den resp. Ver- =
bindungslinien der Fundamen-
talpunkte Ai, Az, As mit den
Berihrungspunkten des Kegel-
schnittes auf den Gegenseiten.
_ ) A < 04,
Die betreffenden Gleichungen B,
Jauten :
Fiir die Tangente in der Spitze Ar: asxz — asxs = 0
« o« « « o« « Az aixs — asxi = 0
« « « « € 5 A?;.' a2X1 — a1Xz = 0

Die drei Tangenten gehen durch einen und denselben Punkt,
den Inversen des gemeinsamen Punktes von AiBi, A2Bs:, AsBs, wobei
Bi, Bz, Bs die Beriihrungspunkte von p mit A2As, Ai1As, A1Az be-
zeichnen, ¥)

Um die Gleichung der Curve sechster Ordnung Cs zu erhalten,

setzen wir wieder fiir einen Punkt P; auf p —ii =— A, dann gibt
: A3
Gleichung (1):

*) Unter dem eingeschriebenen Kegelschnitt wurde, wie gewohnlich, derjenige
verstanden, fiir welchen die Berithrungspunkte Bi, B:, Bs zwischen den Ecken des
Fundamentaldreiecks liegen ; es liegen dann auch keine Punkte von p und p’ ausser-
halb des Dreiecks Ai1A2As und p' kann somit keine unendlich fernen Punkte
besitzen. Diess ist der Fall, wenn die Coefficienten a1, a2, as positive Werthe haben.
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\/arz—; -+ \/EJIx 4 Vas = 0  oder
(Vas + Vast)®
X3 a1

Fiir die Coordinaten des Punktes P, ist daher

Xy iXz ! XKg — (\/:;;4— \/Ez—i)g aid @ an.
Bedeutet f die linke Seile der Gleichung (1), so sind
_Va o Va o Va
2\/‘(1 2\/\2 2\/;{3—
die ersten Differentialquotienten von f nach xi, Xz, xs; durch Substi-
tation der Coordinaten von Pj gehen dieselben iiber in
_ Vm

\/51_ fp — \/az

o(\as | Vad)  oVmk | oam
wobei ein gemeinschaftlicher constanter Faktor weggelassen worden
ist. ¥) Nun erhill man fir die Tangente ti des Kegelschnittes p im
Punkte P, die Gleichung:

0w — _\/; X \/5’_ cxa VB Vas = 0
\/33 -+ \/ael \/311 \/31

und fir ihren entsprechenden (inversen) Kegelschmtt

4. U_’) — _\/31 —— - X2X3 —I—\/ﬂé_ )
\/aa 1— \/a*zl ail
Multiplizirt man (3) mit — x2x3, (4) mit x: und addirt beide
Gleichungen, so kommt :

az as
ark
hieraus folgt:
[ Vas . xa(xs? — x1%) aXs?(x1? — x2%)?
\/*L— — T xs(xi® — x2) und & = asx2®(xs? — x%)*
Setzt man den gefundenen Werth von A in (3) ein, so ergibt
sich als Resultat der Elimination des Parameters 4 zwischen (3) und
(4) die folgende Gleichung:

fi = —

- X3(x1? — x2?) = - X2(X3? — x1%);

#* Anmerkung. Vx ist positiv oder negativ, je nachdem }/x» und
Vxs beide negativ oder positiv sind. Wenn V/x2 und Vx5 positiv angenommen
werden, wie hier geschehen ist, so muss {/x1 negativ sein, da die Werthe von

Vxi, Vxz, Vxs der Gleichung Vaixi - Vamxe + Vasxs = 0 geniigen miissen.

-



. 94 —

a1 . X1 a3 Xe(xs?—xi? as
g V o + “_i. (3 1).x2_l__\/_ai-X3:0
1

\/5; + asXs(x1% — Xo?) ar X3(x1? — x2%)

oder
aX1X2(Xs? — x1%)
- 2) +

asxz2(Xs? — x1%) 4 a2x3(x1? — X2
oder

\/5-3——- X2(X32 S X12)

x2%(x3% — x1%)
Xa(X12 — ng)

+x3 =10

— 31X1X2X3(X32 — X12) . (X12 — X22)
-+ x22(xs% — x1?) . [33X2(X32 — x1%) - a:x3(x1? — X22)]

+ xs?(x1? — x2?) . [337(2(){32 — X1%) - aaxs(x1® — X22)] =0

oder
— a1X1X2X3(X32 — X12) . (}(12 — X22)
— [33X2(X32 — x1%) -+ aexs(x1? — Xzz)] . X12(x2? —— x3%) = 0
oder
I . . . asX1Xz(X2? — X3%) (x8® — x1%)

-—f— 32X1X:5(X22 e X:;g) (25’.12 — X22) + 31X2X3(X32 = X12) (}{12 s X22) ===},
Diese Gleichung représentirt die Cs.
Nehmen wir speziell a5 == az = as an, d. h. stelll p den Kegel-
schnitt vor, welcher die Fundamentallinien in den Punkten

X, == Ko=) ( Xs —20
X2 —X3=0/ ’ \x1 —xs=0) > \xy —x2=10

beriihrt, dann sind x2 — xs =0, x1 — X3 =0, x1 — X2 = 0 die

Riickkehrtangenten der Cs (p*) und die beziiglichen Gleichungen lauten:

fir p: Vxi  Vxe 4 Vxo = 0

« p'iVxexs - Vxixs - Vxixe = 0

« Co:xaxz(x2? — x3%) (ns? — xi¥) - xaxs(x2? — x3%) (if — x2?)
+ Xexs(xs® — x1%) (M? — \2¥) = 0.

Die Untersuchung der Curve (II) zeigt zunichst, dass die Funda-
mentalpunkte Ai, A2, As Knotenpunkte derselben sind. Die Funda-
mentallinie x3 = 0 schneidet die Cs in sechs Punkten, fir welche
x2® . X3 =0, also x2* = 0, x3* =0, d. h. A2 und As sind Doppel-
punkte, die Fundamentallinie Az As ist Tangente der Ce¢ sowohl in A:
als in As, und die Punkte Q: und Q:¥* fallen mit A2 resp. As zusammen.
(Tafel IV, Fig. 1.)

Ferner folgt aus Gleichung (II)

fir xa=0:x%.xs=0 oder x,*=0, w?*=0 und
fir xa ==0 : xi®.x2* =10 oder xi* =0, x2? =0;




demnach ist x2 = 0 Tangente in den Knotenpunktlen As, A1 und xs =0
Tangente in A1, Az; Q= filll mit As, Q2* mit Ay, Qs mit A; und Qs*
mit Az zusammen.

" Die Fundamentallinien reprisentiren also die sechs Tangenten
in den Knotenpunkten Ai, A2, As, jede ist somit eine Doppeltangente
der Cs. _

Weitere Doppelpunkte der Ce sind E, Ei, Es, Es.  Substituirt
man in (II) x2 + xs = 0, so folgt:
4+ x3% (x3® — x1%) (242 — x3¥) = 0 oder xs%*(xs® — )% =0

woraus Xx3* =0, (xs + x1)?2 =0, (xs — x1)? = 0,

d. h. die Punkte Ai, E, E1, Ez2, Es gehoren der Cs an und sind Doppel-
punkte derselben. E wird, weil innerhalb des Kegelschnittes p gelegen,
zu einem isolirten Punkt der Cs; Ei, E2, Es dagegen sind Knoten-
punkte, die Tangenten in denselben stimmen iiberein mit den von Ei,
Ez, Es aus an den Kegelschnitt p gehenden Tangenten. Fir das
Tangentenpaar in E: (— 1,1, 1) z. B. erhilt man:

x1? — Xo? — xs% 4 XiX2 - x1%3 - 3X2xs = 0, ¥)
woraus sich die Gleichungen der einzelnen Tangenlen in E: ergeben:

2X1—|—(1 +\/g).x:' -1~ (1 —-—\/‘5).X3 = 1

2x1 —f"(l ———\/g)\z -+ (l +\/g)X3 — i

Die (e hat sechs unendlich ferne Punkte. welche simmtlich reell

sind; dieselben sind die Inversen der Schnittpunkte der Ce¢ mit dem
Kreise K. Bezeichnen X, Y, Z, ¥, W, T diese Schnittpunktle, dann
reprasentiren X', Y', Z', V', W', T’ die unendlich fernen Punkte der
Curve und die Geraden XX, YY', ZZ', YV, WW’, TT, welche die
Richtungen angeben, nach welchen die Curve ins Unendliche geht,
missen Tangenten des Kegelschnittes p sein. Von den sechs Punkten
X, Y etc. gehen an den Kegelschnitt p je zwei Tangenten, allein nur
eine derselben gibt jeweilen die Richtung nach einem unendlich fernen
Punkt der Ce¢ an und zwar diejenige, welche parallel ist zum Inversen
des Strahles, der einen Punkt X, Y etc. mit einem Fundamentalpunkt.
verbindet. Die Cs besteht aus sechs ins Unendliche gehenden Aesten,
von denen je zwel eine zusammenhingende Theilcurve bilden.

Dem Curvenstick AiWE: entspricht Qi W'E:

« « ALY Eq « Q1§?E1 )
Die beiden Aeste Y A/WE:W' und W Q1YE(Y, welche in der
angegebenen Weise einanozier ents;rechen, oti’lahen gT'osse Aehnlichkeit

*) Vorausgesetzt, dass a1 = a2z = as sei.
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mit den Aesten der Hyperbel xs* | xixz = 0. Leltztere hat mit der
Ce gemein die Punkte Ai, Az sammt Tangenten und die Punkte Ei
und E:, dagegen sind die Tangenten der Hyperbel in Ei und E: ver-
schieden von den Tangenten der Cs in diesen Punkten. Ferner
entspricht )
dem Stick Ai1VEs das Stick Qi*V'Es
« « A1X’E1 « « Ql*XEl.
Die aus diesen Curvenstiicken zusammengesetzien Aeste
X'AVEsY | VQ*XE X

(]

welche in der angeliihrien Weise zu einander invers sind, haben
Aehnlichkeit mit der Hyperbel x2* 4 xixs = 0, welche durch A,
Az, Ei, Es geht und Ai1Az in A: und AsAz in As berihrt, wie die Ce.
Endlich entspricht
dem Stiick A:ZEs das Stiick Q27Z'Es
« « AsT'Ez2 « «  QzTE:.
Die aus diesen Stiicken bestehenden Aesle
T’ AsZEsZ |, Z'Q:TE:T
der Cs, welche in der soeben angegebenen Weise einander entsprechen,
bilden eine hyperbelihnliche Curve; dieselbe hat mit der Hyperbel
X1? 4 xexs = 0 gemein die Punkte A2, As, Ez, Es und die Tangenten
in A2 und As.
Die Pliicker’schen Charaktere der vorliegenden Ce sind die nidm-

lichen wie bei der Cs, welche im allgemeinsten Falle resultirt. *)
Sind die Werthe von ai, a2, as respective proportional zu

A 2 . . . .
cos® _?1 , cos® %m , cos? %i, dann gibt Gleichung (II) die spezielle
Cs, +) welche entsteht, wenn p der dem Dreieck AiAzAs eingeschrie-
benen Kreis (mit dem Centrum E) ist, dessen Gleichung lautet:

A _ — S
003—2—1-\/311 + cos%g-\/x‘z - cus%i~\/x?, e=

Setzt man nun voraus, dass ai, az, as sowohl negative als positive
Grossen sein konnen, so stellt die Gleichung

*) Anmerkung. In Uebereinstimmung mit der Note auf Seite 22 wurde
die Gleichung (L) discutirt unter der Voraussetzung, dass ai, a2, as positiv seien und
in Fig. 1, Tafel IV ist speziell a1 = a: = as angenommen worden.

1) Der Unterschied zwischen dieser Curve und der in Fig. 1, Tafel 1V
skizzirten ist unwesentlich.



a?x1? - a2?xe? -} as¥xs? — 2acasxexs — 2asuxsx1 — 2maxixe = 0
allgemein einen Kegelschnitt vor, welcher die Fundamentallinien beriihrt.
Ausser dem betrachteten Falle, in welchem a1, az, as positiv sind,
kionnen folgende Fille vorkommen : ,

ai negativ, az und as positiv

az « a o« A«

as « a o« Az«
d. h. entweder konnen in der Kegelschnittsgleichung alle drei Doppel-
produkte negativ sein oder es sind zwei der Doppelprodukie positiv,
wihrend das dritte negativ ist. Bedeuten z. B. ai, a2 positive Zahlen
und ist as = — s, so ergeben sich fiir die Curven p, p’ und Ce
folgende Gleichungen :
p) ar*xi® - as%x2® - as®xs? - 2a208X2X3 |- 20821 X3X1 — 2a122x1x2 = ()
D) an®xe®xs? |- a?xi®xs? | es?xi®xe? |- 2acasxixexs | 2esaixa?xsxi

— Zaia2xs*x1x2e = 0
Ce) arXaxs(xs® — x1?) (X1 — X2%) -} asxuxs(X2® — xs%) (X1 — x2%)
— asXiXa(X2? — Xs%) (X3 — xi?) = 0.%)

Der Kegelschnitt p beriihrt die Fundamentaldreiecksseite AiAs
und die Verlingerungen der Seiten AiAs, A2As, so dass simmtliche
Punkte von p ausserhalb des Fundamentaldreiecks liegen. Die ihm
entsprechende Curve vierter Ordnung p’ liegt in Folge dessen eben-
falls ganz ausserhalb des Dreiecks AiA2As und besitzt zwei reelle un-
endlich ferne Punkte, da p den Kreis K zwei Mal schneidet. Die Cs
hat in diesem Falle nur zwei reelle unendlich ferne Punkte und besteht
aus einer hyperbelihnlichen Carve (zwei unendlichen Aesten) und zwei
Ovalen, von denen das eine mit der Ellipse x2* — xixs = 0 die
Punkte Ai, As, E, E2 und die Tangenten in A: und As, das andere
mit der Ellipse xi> — x2x3s =— 0 die Punkte Az, As, E, E1 und die
Tangenten in A2 und As gemein hat. (Vergl. Fig. 2 in Tafel IV, wo
p den die Fundamentallinien beriihrenden Kreis bedeutet, dessen Mittel-
punkt Es ist.) ¥*)

*) Diese Gleichungen erhdlt man aus den fritheren auch dadurch, dass man
xs durch — xs ersetzt.
#¥) Dijeser Kreis hat die Gleichung

cos—éi Vx4 cos% Vxe cos-%s—\/ —x =0
und die Gleichung der Ce lautet:

A ; A; . .
008271 xoxs(xs? — x1%) (x1¥ — xe?) }- c0327 x1x3(x2® — x3%) (%12 — x2?)

— coszézi xixe(x2? — x8%) (%87 — x%) = 0.



ll. Der Kegelschnitt p sei die Ellipse, welche die Punlﬂe A, Ay E Es

enthilt und die Fundamentallinien A.A; und A.A, in A, resp. A. berihrt,
Die Gleichung von p lautet:

1. p) x32 — xixz = 0; die Curve p’ ist mit p identisch.

Wir schreiben die Gleichung:

1 — .2 — 0 und setzen wieder i — A; diess gibt:
X3 X3 X3
X1 X1 1
1 — 7. o = 0, woraus folgt: =
Fiir einen Punkt P, auf p ist daher
X1 i X2 :xs =4 : 4% : A
Da fiir die Ellipse p (f = 0)
ih = — X2, b = — x1, 5 = 2x3,

so hat die Tangente der Ellipse in P, die Gleichung:
2. t) A 4 Xxe — 24xs = 0; der ihr correspondirende Kegel-
schnitt heisst :
3. ') A¥exs - xixs — 2Axixe = 0.
, , . Xs(xi® — xe%)
Aus (2) und (3) folgt: A = Fe(® — xF)
stitution dieses Werthes in Gl. (2) erhélt man:

und durch Sub-

xixs¥(x1% — x2%)2 Na?(x1? — xe?
X1 32( 12 22)2 1 xg — 73(12 20) — 0 oder
hx2®(x1* — x3%) xa(x1* — X3?)
OL)  xs%(x1? — x2®)? — dxaxe(xe? — Ns%) (8% — x1%) = 0.
Diess ist die Gleichung der im Falle (IIl) erzeugten Curve sechster

Ordnung.
Aus der Erzeugungsweise der Cs geht zunichst hervor, dass A:
und Az, weil auf p gelegen, Spitzen der Ceé werden und fiir beide ist

xs = 0 Riickkehrtangente; diess bestitiget auch die Rechnung. Fir
die Schnittpunkte der Curve mif xs =— 0 hat man nimlich
hx:%x2® — 0, woraus folgt: xi® = 0 und x2* = 0,

d. h. xs = 0 hat in A: und Az mit der Cs je drei zusammenfallende
Punkte gemein. Ferner ergibt die Rechnung, dass das Tangentenpaar
in jedem der Doppelpunkte A:; und Az die Gleichung xs® — 0 hat,
dass also A1 und Az Spitzen der Ce¢ sein miissen, deren Tangenten mit
AtAz zusammenfallen. — Wenn u = 0 die Gleichung (IIl) bedeutet, so ist
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ur = Axixa?(xe? — %) — fxe(xe? — xs%) (x3? — 3w?)

uz = — Axexs?(a? — x2%) — Axa(xs? — x1%) (3xe? — xs%)
i = 2xs(x1? — xe¥)? — Buxexs. (317 4 xe? — 2xs%)
unr = &xs?(3xa% — xe®) 4 2hxexs(xe® — xsf)

w2z = — 8xixexs? — A(xs? — 3x1%) (3xe? — X3%)

us = 8xixs(X1? — Xo¥) — 8xaxs(3xu? |- xe? — 2x3%)

Uzz = — A4xs%(x1? — 3xe?) — 24vixe(xs® — x¢%)-

U2z = — 8xexs(xi? — o) — 8xuxs(ni? 4 3xe? — 2xs5%)
w3 = 2(x1? — x2%)? — Bxixz(x1? |- X2 — 6x3%)..

Fiir den Doppelpunkt As wird unn = 0, w2z = 4&xs*, wms = 0,
w2 — 0, u2s — 0, uss = 0, daher hat sein Tangentenpaar die
Gleichung xi . x2 = 0. Der Fundamentalpunkt As ist also ein Knoten-
punkt der Ceé und die Tangenten in demselben sind A2As und A1As;
sie sind die respectiven Inversen der Tangenten AsQs und AsQs*
(Qs fillt mit A;. Qs* mit Az zusammen), welche von As aus an die
Ellipse gehen. (Siehe Fig. 1, Tafel V.) Aus dem Umstande, dass
As(Qs, AsQs* die Cs in Qs resp. Qs* berihren, folgt, dass die Tangenten
im Knoten As Inflexionstangenten sind (vergl. Fall I); diess stimmt
mit der Thatsache iiberein, dass x1 = 0 und x: = 0 die Tangenten
der C¢ in den Punkten Q¢ und Q2 welche mit As zusammenfallen,
vorstellen. Die folgende Rechnung liefert den einfachsten Nachweis
hiefir. Substituirt man in (IIl) xy = 0, so kommt x3% . x2* =— 0,
woraus folgt: xs3? == 0, x2* = 0, d. h. x1 = 0 schneidet die Cs in
A2 zwei Mal, in As vier Mal

Ferner ist fir x2=0: x32.x1* =0, oder xs* =0 und x1* =0,
was hesagt, dass X2 = in As vier Punkte
gemein hat.

As ist also ein doppelter Inflexionsknoten.

1
;1> sind Doppel-

I

X3

n=—1 X1
Die Punkte E: <X2= 1 ) und Es (X‘z
punkte mit reellen und von einander verschiedenen Tangenten, also
Knotenpunkte der Cs. Die Tangenten in denselben stimmen tiberein
mit den von E; resp. E2 aus an die Ellipse gehenden Tangenten. Die
heziiglichen Gleichungen lauten :
Fiir das Tangentenpaar in Ei :
—]— Xe? — fxs® - 6X1X2 — A&x1Xs - 4xexs = 0
und fir damemge in Ea:
4 x2% — Axs? - 6x1X2 | AXiXs — AXexs = 0.



— 30 —

Was die Punkte Es (1,1, — 1) und E (1, 1. 1)- betrifft, so sind
dieselben zunichst als Doppelpunkte der Cs anzusehen, weil fiir diese
Punkte w, uz, us verschwinden.

Als Gleichung des Tangentenpaares in Es erhilt man:

(x1 + x2 — 2x3)2 = 0
und diejenige fiir das Tangentenpaar in E lautet:

(x1 4 X2 — 2x3) = 0,
d. h. die beiden Tangenten der Ces im Doppelpunkt Es fallen zusammen
mit der Ellipseniangente x1 4 x2 | 2xs = 0 im Punkte Es und
die Tangenten im Doppelpunkt E sind vereinigt in der zu E gehdrigen
Ellipsentangente xi1 4 x2 — 2xs = 0. %)

Allein diese Punkte sind nicht etwa Spitzen, wie die nachfolgende
Betrachtung zeigt.

Fiir die Schnittpunkte der Cs mit der Tangente x1 - X2 -}- 2x3 =10
X1 —{— A2

2

ergibt sich, wenn man in der Curvengleichung xs — — setzt :

(xi1 — x2)* . (1% 4 3xixe -} x2?) = 0. _
Im Doppelpunkt Es; hat also die Tangente mit der Curve vier
vereinigte Punkte gemein und schneidet sie noch in den zwei Punkten

(%:—1 +Vs, =—a +\/5))
(== +VH, 3= =1 +V5)

Der Punkt Es muss daher ein Beriihrungsknoten sein, d. h. durch
Es gehen zwei Aeste der Cs, welche sich in ihm zweipunktig beriihren.
Die beiden Curvenzweige sind aber nicht reell, denn setzt man im
Bereiche des Punktes Es y = X1 -}- X2 |} 2X3, z=1X1 — X2, WO Y
und z sehr klein sind, in die Gleichung der Cs ein, so wird annéhernd
16x3%y* - 8xsyz® |- bz* = 0; diese Gleichung reprisentirt zwei
1maginire Curvenzweige, die einander in Es beriihren, ihre gemein-
schaftliche Tangente y =— 0 ist reell. In Uebereinstimmung damit
findet man auch, dass die Schnittpunkle der Cs mit der Geraden
X1 — Kxe = 0 mit Ausnahme der zwei sich in Es befindenden ima-
gindr sind, so lange k zwischen 0 und - oo liegt. Weil die Curve
nicht reell durch Es hindurch geht, so ist Es ein isolirter Punkt der
Ce, allein er muss als imaginirer Beriihrungsknoten angesehen werden.
Da im Punkte Es zwei Durchschniltspunkte der beiden sich in ihm

#) Die beiden Tangenten in Es und E gehen durch den Punkt (X1 ﬁ_z i o)
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beriihrenden Curvenzweige vereinigt sind, so repriiseniirt derselbe
zwei vereinigte Knotenpunkte. Ebenso ist E ein imaginirer Beriihrungs-
knoten mit reeller Tangente.
Die gemeinsamen Punkte der Ellipse und der Cs sind A, Az,
Es, E; die Cs beriihrt die Ellipse in A; und A2 zweipunktig, in Es
und E vierpunktig.
Die Cs hat die folgenden Plicker’schen Charaktere :
= 6, d= T, w=s &
pe= {ll, =15, ===81.

Wenn die Hyperbel xs* 4 xaXe = 0 den festen Kegelschnitl
p vorstellt, dann ergibt sich die Cs:

X3%(X1? — X28)? 4 AxaXa(Xe? — X3%) (Xs? — x1%) = 0.

Die Hyperbel geht durch Ai, A2, Ei, E2 und beriihrt in Ai, A
die respectiven Fundamentallinien A1As, A2As. Die Ce hat zwei Spitzen
in A:x und A, fir welche wieder x3 = 0 die Riickkehrtangente ist;
ferner besitzt sie drei Knotenpunkte, den doppelten Inflexionsknoten
As und die Knotenpunkte ¥ und Es. Die Punkte E; und E:2 sind
isolirte Punkte der Cs und zwar imaginire Beriihrungsknoten, die
Tangenten in denselben sind reell und zwar die zu E: und Ez gehirigen
Hyperbeltangenten, also die den Punkt (X3 = 0, X1 — Xz = 0) mit
E: resp. Ez verbindenden Geraden. (Fig. 2, Tafel V.)

IV. Es sei p ein dem Fundamentaldreieck umschriebener Kegelschnitt,

Ein Kegelschnitt, welcher durch die Fundamentalpunkie geht,
hat allgemein die Gleichung:

1. p) . . . aixeXs -+ a:xuXs | asxaxe = 0;
ihm entsprieht alsdann die gerade Linie
2. p) . . . . axi - asxe - asxs = 0.

Fiir die Coordinaten eines beliebigen Punktes P, von p ist
X1 @ Xz @ X3 = A(au 4 Aaz) @ (an 4 Aas) @ — Aas.
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Bezeichnet F — 0 die Gleichung von p, so haben die ersten
Differentialquotienten von*F nach Xi, X2, Xs die Werthe
Fi = asXs + asxz, F: = aixs 4 asx1, Fs = aixe 4 aa2x1;
dieselben gehen, wenn man die Coordinaten von Pp substituirt, abge-
sehen von einem constanten Faktor, iiber in
(Fi)a = a1as, (F2)i = a2asAd?, (F3)i == (a1 -} a=21)2

Demnach lautet die Gleichung der Tangente ti von p im Punkte P :
3. ) . . arasxi 4 azasd*xz 4 (a1 4 a:1)*xs =0
und diejenige des der Geraden t) entsprechenden Kegelschnittes 13 :
b, 1)) . aidsXeXs -} a2a3Ax1Xs - (a1 4 a24)%xX1x2 = 0.

Betrachlet man 4 als variablen Parameter, so représentirt Gleichung
(4) simmiliche dem Fundamentaldreieck umschriebene Kegelschnitte,
welche die feste Gerade p’ beriihren. Duarch Elimination von 4 zwischen
(3) und (4) folgt:

IV)  a®xi2(Xe? — X32)% 4~ a2?x2%(Xs® — x1%)% - as?xs?(x1? — X2?%)2
— 2a122X1X2(Xe? — X3%) (X3% — X1?) — 2a1a5X1Xs(X2® — X3?) (X1 — X2%)
— 2azasXzXs(Xs® — x1?) (xu? — x2%) = 0. '

Die erhaltene Gleichung (IV), welche im Allgemeinen eine Curve
sechster Ordnung reprisentirt, ist die Gleichung des Ortes der Schnitt-
punkte aller Tangenten ti mit ihren entsprechenden Kegelschnitten.
Diese C¢ hat drei Spitzen in Ai, A2, As; .die zugehorigen Riickkehr-
tangenten sind die resp. Inversen der Tangenten von p in Ai, As, As,
also bhezw. die Geraden A1Bi, A2B2, AsBs, ‘wobei Bi, Bz, Bs die Schnitt-
punkte der Geraden p’ mit den Fundamentallinien Az24s, AjAs, AiA:
bezeichnen. Bedeutet u — 0 die Gleichung (IV), so ergibt sich fiir A; :

=490, =10, is =10
U1 =0, 2= 0, Ur3==0, uze = 2a2%X1*, uzs=2a2asX1*, uss =2as?x1%; %)
das Tangentenpaar im Doppelpunkt A: wird daher ausgedriickt darch
die Gleichung :

az®x2? 4 2asasXaXs 4 as®xs® = 0 oder
(azxz -+ asxs)* = 0,
d. h. die Tangenten im betrachleten Doppelpunkt fallen zusammen,
A: ist eine Spitze der (s und die zugehorige Riickkehrtangente ist
AsX2 ~ asXs =— 0, also A:Bi. Letztere hat mit der Cs in A: drei
vereinigle Punkte gemein. Analog findet man, dass
axi - asxs = 0, axt 4 ax2 = 0

die Tangenten in den resp. Riickkehrpunkten Az, As vorstellen. (Tafel YI.)

#) Unter xi ist hier die erste Coordinate von Ai zu verstehen.
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Die Punkte E, E;, E2, Es sind Doppelpunkle mit je zwei von
einander verschiedenen reellen oder imaginiren Tangenten, also
Knotenpunkte oder isolirte Punkte, je nachdem sie ausserhalb oder
innerhalb des Kegelschnittes p liegen; die Tangenten in denselben
werden namlich angegeben durch die resp. von E, Ei, E2, Es aus-

gehenden Kegelschnitlstangenten. Das Tangentenpaar im Doppelpunkt
Es; z. B. hat die Gleichung:

(a2 — a13)®x1? - (a2 — Qe23)’Xe? | (a1s 4 a23)%xs?
+ 2[&12(&23 — 2) | as(azs a.m)] . X1X2
2[&13(313 — a12) - azs(us + 312)]. X1Xs

-+ 2[323(&23 — iz2) + as(aes - Ehz)] . XaXs = 0.

Enthillt der Kegelschnitt p einen der Punkte E, E;, Ez, Es (mehr
als einen kann p nicht enthalten, wenn er nicht in ein Linienpaar
zerfallen soll), dann wird derselbe zu einem Beriihrungsknoten der Ce
und die gemeinschaftliche Tangente der beiden sich in ihm beriihren-
den Aesle ist die Tangente von p in diesem Punkte.*) Die Cs mit
drei Spitzen kann hochstens einen Berihrungsknoten besitzen.

Fiir die Schnittpunkte der Ce¢ mit X =— 0 hat man
a2*Xa?Xs* - as®Xs®Xe* |- 28283X2°Xs® = 0 oder
x2®xs%(a2xs 4 asx2)? = 0,
d. h. x1 = 0 schneidet die Cs in den Spitzen A2, As und beriihrt

sie in Qi(x1 = 0, asXz -} a2xs == 0), dem Schnittpunkte der p-
Tangente in A; mit X3 = 0.

X1 X2 ds
5 e SO, S IR ... 1 [ S -
Da fiir O (Xa = aa) uz 0 und us 0,

wihrend u; von O verschieden ist, so ergibt sich, in Uebereinstimmung
mit dem Vorigen, als Gleichung der Tangente der Cs¢ im Punkte Qi :

X = O
Analog findet man, dass X2 = 0 und X3 = 0 die resp. Tan-
genten der Ce¢ in den Punkten
Xi a1
X2=—=0, — = — —
Q2( : S ¢ &3)
Qa(Xs i f, b= a") sind.
X2 az

#) Geht z. B. p durch Es, dann ist p’ die Tangente von p in Es, also
gleichzeitig die Tangente im Beriihrungsknoten der Ce.

3
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Die Cs und der Kegelschnitlt p haben zwolf gemeinsame Punkte,
unter denen sich die doppelten Fundamentalpunkte befinden; sehen
wir von den letztern ab, so bleiben noch sechs gemeinsame Punkte,
welche die Inversen der sechs gemeinsamen Punkte von Ce und der
Geraden p’ sein miissen. Ist S ein von Ai, A2, As verschiedener
gemeinsamer Punkt von p und Ce, so miissen sich in diesem Punkte
die beiden Curven beriihren; S reprisentirt also zwei gemeinsame
Punkte. Im entsprechenden Punkte S beriihren sich alsdann Ce und
die Gerade p’. Die Cs beriihrt daher in drei Punkten den Kegel-
schnitt p und in ihren Inversen die Gerade p’. Der Geraden SS',
welche p in S beriihrt, entspricht ein Kegelschnitt C2*, welcher durch
S und §" geht und sowohl p’ als Cs in 8 beriihrt. Es gibt drei
Tangenten von p, deren entsprechende Kegelschnitte (C2*) sie in ihren
Beriihrungspunkten schneiden; diese Punkte sind gleichzeitig die
Beriihrungspunkte der heiden Curven Cs und p, und in ihren Inversen
beriihren sich Cs, p° und die beziiglichen Kegelschnitte Cs*. Die
Gerade p  ist somil eine dreifache Tangente der Cs, ihre Beriihrungs-
punkte sind entweder reell und (im Allgemeinen) von einander ver-
schieden oder es isl nur einer derselben reell. Um die Coordinaten
der Berihrungspunkte der dreifachen Tangente p° zu erhalten,
hat man die Gleichungen (2) und (IV) in Bezug auf f—; und 3\%
aufzulosen.

Die Cs hat scchs unendlich ferne Punkte, welche paarweise
iunaginar sein konnen. In dem in Tafel VI skizzirten Falle, in welchem
E und Ei isolirte Punkte sind, liegen gar keine Punkte der Ce¢ im
Unendlichen und nur ein Berihrungspunkt der dreifachen Tangente
p’ ist reell.

Die Pliicker’schen Charaktere der Curve IV sind im allgemeinsten
Falle (bei der allgemeinsten Lage des dem Dreieck AiAzAs umschrie-
benen Kegelschnittes p):
: u
v

1l

6, d = &, =
= 24, &

Il

39.



Spezialfdlle.

a) Der dem Fundamentaldreieck umschriebene Kegelschnitt p
gehe durch E:; dieser Fall tritt ein, wenn as — a: | as.

Der feste Kegelschnitt hat die Gleichung

5 p) . . aXaXs } axixs -} (a -} az)xixe = 0.
| Die ihm entsprechende Gerade
6. p) . . . mxy -} axe |} (a1 -} az)xs = 0

enthilt Es ebenfalls und beriihrt p in Es.
Die hier entstehende Ce
IVa) a1?x1 2(X22 — X32)2 + 322)&22()&32 - X1 2)2 -I— (31 + 32)2)(32()(12 = K22)2
— 2a1a2x1X2(x2® — X3?%) (8% — x1%)
— 2a1{ar -} az)xixs(x2? — x3%) (x1% — xe?)

-— 2&2(31 —f— 82)X2X3(X32 — X12) (Xlz — X22) = 4
unterscheidet sich von der Curve IV wesentlich nur dadurch, dass Es
ein Beriihrungsknoten ist, seine Tangente ist identisch mit der Geraden
p’. Dieselbe ist eine dreifache Tangente, bei welcher zwei ihrer
Beriihr ungspunkte in Es zusammenfallen, und der dritte Berihrungs-
punkt muss dann nothwendigerweise auch reell sein. Da Es zwei
Doppelpunkte reprisentirt, so sind die Plicker’schen Charaktere der
Curve :

ne 6, = B, 2= 8
pe==44, = 18, 7 =— 25
In dem speziellen Falle (siehe Tafel VII)
P) . . . . . . xt 4 2% -} 3xs =0
P) . . . . . Xexs - 2xaux3s - 3xuxe = 0
Co) x1%(x2? — xa%)? 4 4xe?(x3? — x12)? - Oxs(xu? — x22)?
— Axixe(x2? — x3%) (x3? — x1?)

— 6xixs(x2? — X3%) (x1% — x2%) — 12xexs(Xs® — x1%) (xi®? — x2%) =0
ist E ein isolirter Punkt, Es ein Beriihrungsknoten und Ei, Ez sind
Knotenpunkte der Ces. Die Tangente in Es schneidet die Curve in
sechs Punkien, fir welche man hat:

A (xi — x2)* . (4x1 - Bxe)? = 0,
d. h. p’ hat in Es mit der Cs vier zusammenfallende Punkte gemein
und beriihrt sie ausserdem im Punkte
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@4(&:_43325)_

X3 Xs
Die beiden sich in Es beriihrenden Curvenzweige sind imaginir.
Beriihrt der Kegelschnitt p (Gleichung 5) eine der Seiten des
Dreiecks E(E:Es, z. B. E:E2 in As, *) dann sondert sich von der
Curve IVa die Gerade x1 -} x2 = 0 ab und es bleibt eine Curve
fiinfter Ordnung, welche zwei Spitzen (A1, Az), einen Doppelpunkt (der
isolirte Punkt E) und einen Beriihrungsknoten (Es) besitzt, welch’
letzterer ein isolirter Punkt der Cs ist, da die beiden sich in ihm
beriihrenden Curvenzweige imaginir sind. Fir die Cs ist E1E: die
Tangente im einfachen Punkte As und die Gerade p eine Doppel-
tangente, deren Beriihrungspunkte in Es zusammenfallen; der fiinfte
Schnittpunkt von p’ mit der Cs ist der Punkt (xs =0, x1 4 x2==0).
Die Cs hat die folgenden Plicker’schen Charaktere :
I 5, 0= 3y n=—2
v 8, t=11, =09

I

b) Es sei p die dem Fundamentaldreieck umschriebene Ellipse,
weleche die Linien E:Es, E:Es, E: E: beziehungsweise in Ai, A:,
As beriihrt.

In diesem Falle hat p die Gleichung

7. p) . . . . Xaxs + xixs + xixe = 0.
Die dieser Ellipse entsprechende Gerade p’ ist
8. p) . . . . . xt 4 x4 xs=0;

sie ist die auf allen Seiten und an allen Ecken des Fundamentaldreiecks
vom Punkte E harmonisch getrennte Einheitgerade e des mit Ai1Az2As
identisch gedachten Liniencoordinatensystems AzAs, AiAs, AiAs. Die-
selbe schneidet die Fundamentallinien in den respectiven Punkten

X1 =10 X2 == 0 X3 =0
Bl(X2—[—X3::0)’ Bg(m —l—Xs:O)’ B3(X1—I—X2=0)'

Fiir die sich hier ergebende Cs erhilt man nach (IV) die Gleichung
X1%(x2? — x3%)% - x2%(xs? — x1%)% 4 x3%(x1? — xa2?)?
— 2x1xz2(X2? — x3%) (x3* — x1%) — 2xuxs(x2? — x3%) (x1% — x29)
— 2X2X3(x3% — x1?) (12 — x2%) = 0.

*) p ist die den Punkt E einschliessende Ellipse xoxs 4 xi1xs 4 2x1xe = 0
und p’ die Gerade x1 4 x2 -} 2xs = 0.
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Diese Cs muss zerfallen. Weil E2Es eine Tangente von p ist,
so miissen ihre simmtlichen Punkte der Ce¢ angehiren, die Gerade
X2 -} Xs = 0 ist daher ein Theil der Cs. Ebenso sondern sich von
der Ce¢ die geradlinigen Theile x1 - xs =0, x1 4 x2 =0 abund
es bleibt somit ibrig eine Cs. In der That kann man auf der linken
Seite obiger Curvengleichung die Faktoren x: 4 xs, x1 - Xs, x1 - X2
abtrennen und bekommt als Gleichung der Cs:

(x2 4 x3) (X1 - x3) (x1 } xe).
[X12X2 4 x1%s -} Xe®xs 4 xuxe® 4 xuXs? | Xoxs® — 6X1X2X3] = 0.
Sieht man von den Geraden x: -} xs = 0, x1 + x3 = 0,

X1 |+ x2 = 0 ab, so ist im vorliegenden Falle das Erzeugniss die
Curve dritter Ordnung:

X1%X2 - X12Xs 4 X2%Xs - X1X2? - X1 Xs® 4 XaXs? — 6X1X2Xs =0
vy oder

X12(X2 + Xs) —l— X22(X3 —I— X1) + X32(X1 —I— Xz) — 6X1X2Xs = 0.

Diese Cs wird von den Fundamentallinien in je drei Punkten
geschnitten und zwar

o x1=20 X1 =10 X1 =0
von X1 == 0 in Az(x?,:O) ; Aﬁ(m:O) ) BI(X2+X3=O)

. Xz = () X2 =10 C Xe=10
von Xz = 0 in A1(X3:0), A3(X1"—“—0) , BZ(X1+X3=“—O)

e — 0 (3 Z0) L m(BZ0) L B( L)
Die Fundamentalpunktie sind also einfache Punkte der Cs und
die Tangenten in denselben stimmmen iiberein mit den Ellipsentan-
genten in A, Az, As. *) Bezeichnet u =— 0 die Gleichung (IVy,) so ist
W = 2X1Xz2 - 2X1Xs - Xe? - Xs® — 6XoXs
Uz = X1% - 2XaXs | 2X1Xz | Xs? — 6X1Xs
s = X1? -} x2% 4 2xuxs -} 2X2Xs — 6X1Xa2
U1 = 2X2 -} 2Xs, Wiz = 2X1 - 2Xz — 6Xs, Ws = 2X1 -} 2X3 — 6X3
U2z = 2X3 -} 2x1, U2z = 2X2 + 2Xs — 6X1, Uss = 2x1 -~ 2Xa.

*) Da die Cs sich selbst entspricht, so entspricht dem Punkte B: ein mit
A: zusammenfallender Punkt B: in der Richtung AiKEe, d. h. es ist E: Es die
Tangente der Curve in Ai.



Es ergeben sich nun folgende Gleichungen :

fir die Tangente in A:: X2 + Xs = 0

« “ « A2: Xt }+ Xs =0

« o« « « As: Xt + X2 =0

£ « « Bi: —8x1 - x2 + xs =0
« 4 « « Ba: X1 — 8xe + Xs = 0
« o« « « Bs: X1 + Xz — 8xs = 0.

Von den Punkten E, Ei, E:, Es gehort einzig E der Cs an,
derselbe ist. ein Doppelpunkt mit imaginiren Tangenten, also ein
isolirter Punkt der Curve.

Das Tangentenpaar in E hat die Gleichung
x12 4 x2? 4 X3? — XXz — XiXs — XaXs = 0.
Die einzelnen Tangenten sind die von E nach den imaginiren
Schnittpunkten von p’ mit p gehenden Geraden, da X1 4 X2 4 Xs = 0

(oder e) die Polare des Punktes E in Bezug auf die Ellipse p ist.
Ihre Gleichungen lauten : :

(1 —iV3)x + (1 +iy3)xe — 2xs = 0
(1 -+ i\/g)m |- (1 — i\/g)XZ — 2x3 = 0.

Die Tangente
in B: enthilt die Punkte Dl( Xz = 0 ) Fl(%:\'a —0

8X1 — X3 =10 —X2=0
Xi =0 X3 =20
< By ) ) Dg(SXz — Xxs =10/~ Fg(m — 8xs =10
X1 =0 Xe = 0
* Ha a ) t Ik X2 — 8X3 == 0)’ Fs(m — 8xs =0
AiD2 und AiDs sind inverse Strahlen
A2D1 « A2F3 « « «
AsF1 « AsFs  « « « : ¥

wenn daher eine der drei Tangenten in Bi, Bz, Bs bekannt ist, so
~ lassen sich die iibrigen durch einfache Construction finden. (Tafel VIII,
Fig. 1). Fiir die Schnittpunkte der Cs mit ihrer Tangente in B: er-

X2 + Xs
8

gibt sich, wenn man in der Gleichung der Curve X1 = selzt:

(x2 -} x3)®> =0, d. h. alle drei Schnittpunkte fallen im Beriihrungs-
*) A1De, A1Ds, A1B1, A1E bilden ein harmonisches Biischel und D2, Ds, By,

'E: sind vier harmonische Punkte. Ebenso bilden je eine harmonische Gruppe
Dy, Fs, Bz, ?Ee und Fe, F1, Bs, 3Es.
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punkte B: zusammen. Die betrachtete Tangente hat also in Bi mit
der Cs drei vereinigte Punkie gemein, sie ist daher eine Inflexions-
tangente und B: ein Inflexionspunkt der Cs. Ebenso besitzt die Curve
Inflexionen in Bz und Bs.

~ Die Curve dritler Ordnung hat einen Doppelpunkt (isolirten
Punkt), keine Spitzen, ist daher von der vierten Klasse und besitzt
drei Inflexionslangenten und keine Doppeltangenten. Die drei Inflexions-
punkte sind die Schnittpunkte der Geraden e (p’) mit der Cs.

Der dem Fundamentaldreieck umschriebene Kreis K schneidet
die Cs in sechs Punkten, worunter Ai, Az, As sich befinden; ausser
den letztern gibt es also noch drei Schniltpunkte X, Y, Z von K mit
Cs, ihre Inversen X', Y, Z’ sind die unendlich fernen Punkte der
Curve, welche alle reell sein miissen. XX', YY', ZZ', welche die Rich-
tungen nach den unendlich fernen Punkten angeben, sind die resp.
von X, Y, Z ausgehenden, zu den resp. Inversen von AX, AiY, A)Z ¥*)
parallel laufenden Ellipsentangenten.

Die Cs zerfillt in drei unendliche Aeste, von denen der eine
(eine einfache Hyperbel genannt) keinen Inflexionspunkt hat und seine
Asymptoten nicht durchschneidet, wihrend der zweite (eine einfach
inflektirte Hyperbel genannt) einen Inflexionspunkt hat und somit eine
Asymptote durchsetz(, und der dritte (eine zweifach inflektirte Hyperbel)
zwei Inflexionen hat und daher beide Asymptoten durchsetzt. Alle
drei Theile bilden eine continuirliche Curve; der Theil eines Astes,
welcher die Asymptote an ihrem einen Ende beriihrt, hingt zusammen
mit dem Theil des zweiten Astes, welcher dieselbe Asymptote an ihrem
andern Ende beriihrt. (Tafel VIII, Fig. 1.)

Wenn das Fundamentaldreieck gleichseitig ist, dann wird e (p)
zur unendlich fernen Geraden und die Ellipse p zum Kreise, welcher
dem Dreieck Ai1A2As; umschrieben ist. Die Punkte X, Y, Z der Curve
dritter Ordnung fallen resp. mit A1, A2, As und daher ihre entsprechen-
den Ig, Z;', g mit den unendlich fernen Punkten der Fundamental-
linien, d. h. resp. mit g;, Eg, Ea zusammen. Die unendlich fernen
Punkte der Cs sind daher identisch mit den im Unendlichen (auf den
Fundamentallinien) liegenden Inflexionspunkten derselben. Die zuge-
horigen Tangenten oder die Asymptoten -der Cs sind die drei zu den

Seiten des Fundamentaldreiecks und gleich weit von denselben ab-
stehenden Parallelen

*) Al bedeutet Ai oder A2 oder As.



— 8X1 X2+ Xs =0, X1 — 8x2 +Xs=0, X1 |+ X2 — 8%Xs = 0;
dieselben bilden ein zu Ai1A:2As dhnliches Dreieck mit dem niimlichen
Mittelpunkt E. :

Die Tangenten der Cs im isolirten Punkt E sind die von E nach
den unendlich fernen imaginiren Kreispunkten gehenden Geraden.

Da die Cs im Endlichen keine Inflexionen haben kann, so wird
sie von ihren Asymptoten nirgends geschnitten und besteht daher aus
drei sogenannten einfachen Hyperbeln. Die drei hyperbolischen Zweige
sind symmetrisch in Bezug auf die Symmetrieaxen des gleichseitigen
Fundamentaldreiecks und unter sich congruent. (Tafel VIII, Fig. 2.)

Wenn die Coordinatenaxen, wie gewohnlich, ein beliehiges Drei-
eck bilden, so ergibt sich fiir die Ecken des von den Inflexionstan-
genten der Cs gebildeten Dreiecks Folgendes :

Bezeichnet Ai* den Schnittpunkt der beiden Inflexionstangenten
BzD2, BsDs (vergl. Fig. 1, Tafel VIII), so geniigen seine Coordinaten
den beiden Gleichungen :

Al*{X1_‘8X2+X3 0
X1 + Xz — 8xs 0.
Durch Subtraktion folgl: 9xX2 — 9x3 =0 oder X2 — Xs = 0, d. h.
Ar* liegt auf AjE. Ferner hal man fiir A2*, dem Schnittpunkt von
BiDi und BsDs :
— 8x1 + X2 + X3 =
X1 + X2 — 8xs = 0
und fiir die dritte Ecke As*:
— B +_X2 + X =0 } , woraus folgl: X1 — X2 = 0;
Xi — 82 |- xs = 0
d. h. Ae* liegt auf A:E und As* auf AsE. Nun sind (vergl. die Note
auf Seite 38) EAz, EAs, EBi, E'E: vier harmonische Strahlen, daher
auch EAz* EAs* EB:, EE/*, und die Punkte As*, As*, By, E1* bilden
eine harmonische Gruppe. Analog sind
Ar¥, As*, Bz, E2* vier harmonische Punkte,
ebenso Ar¥*, A2*, Bs, Es*

Die Gerade p’ ist somit auch auf allen Seiten und an allen Ecken
des Dreiecks Ai*¥*A2*As* vom Punkte E harmonisch getrennt, oder der
isolirte Punkt der Cs ist der Pol der Verbindungslinie der Inflexions-
punkte in Bezug auf das von den Inflexionstangenten gebildete
Dreieck. *)

Il

} , woraus folgl: Xy — Xs =20

*) Vergl. Salmon-Fiedler, Hohere ebene Curven. Art. 216, pag. 239.



¢) Der feste Kegelschnitt p sei der dem Fundamentaldreieck
umschriebene Kreis K.

Die Gleichung des Kreises K heisst:
p) . . sinAr. X2Xs - sinAz. XiXs - sinAs . XiXe = 0.

Die Inverse von K ist die unendlich ferne Gerade der Ebene,
ihre Gleichung lautet :

P) . . . sinAi.x: -} sinAz. Xe - sinAs. xs = 0. ¥)

Im vorliegenden Falle geht Gleichung (IV) iiber in
IVe) sin®Ar . X1¥(X2® — Xs%)® 4 sin®Az . X2%(Xs? — x1%)?

-+ sin®As . Xs®%(xa1% — X2%)® — 2sinAisinAz . XiXz(Xa? — X3?) (X3 — x12)
— 2sinAssinAs . XiXs(X2? — X3%) (X12 — X2?)
— 2sinAzsinAs . XeXs(Xs® — Xi?) (X1 — X2?) = 0.

Die durch diese Gleichung repriisentirte Cs besitzt drei Spitzen
in A1, Az, As, drei Knotenpunkte in Ei, E2, Es und einen isolirten
Punkt in E. Die Punkte Bi, B2, Bs sind unendlich fern, Qi, Qz, Qs
die Schnittpunkte der resp. Kreistangenten in Ai, Az, As mit den
gegeniiberliegenden Fundamentallinien. Die Riickkehrtangenten sind
die Geraden Allil, Az]iz, Aslis, deren Gleichungen lauten :

sinAz . X2 4 sinAs . x3 = 0, sinAi . X1 -} sinds . Xxs = 0,
sinAr . X1 -} sinAz . X = 0.

Die Tangenten der (s in Qi, Qz, Qs sind, wie im allgemeinen

Falle IV, bezw. die Fundamentallinien x1 — 0, X2 = 0, xs = 0.
Da den Kreistangenten lauter
Parabeln entsprechen, mit Ausnahme
der drei Paare paralleler Geraden
AzAs,Allix; A1As, Az%a; AiA:, AsB:.,
so stellt die Ce¢ den Ort der Schnitt-
punkte der Kreistangenten mit ihren
entsprechepden Parabeln vor. (T.IX.)
Die unendlich ferne Gerade ist
X eine dreifache Tangente der Cs, ihre
Berihrungspunkte sind reell und
von einander verschizden, wie sich
in der Folge zeigen wird. Ist §' ein

A, A

*) Unter Ai, A2, As sind hier die Winkel des Fundamentaldreiecks zu
verstehen.
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Beriihrungspunkt, so liegt der Inverse X auf dem Kreise K (fillt mit
keinem Fundamentalpunkt zusammen, so lange das Fundamentaldreieck
ein beliebiges ist) und reprisentirt einen Berihrungspunkt von Ce
und K. Die Gerade Xg muss die Kreistangente in X sein und ihr

entspricht die durch A1, Az, As, X, X' gehende Parabel, deren Axe
parallel XX’ ist und welche die unendlich ferne Gerade, also auch die
Cs, in X' beriihrt.

\\}tenn X2 -} Ax3 = 0 die Gleichung des Strahles AiX bedeutet,
dann hat man fiir die Coordinaten von X:
X1 @ Xz @ X3 = AsinA; : — A(sinAz2 — AsinAs) : (sinAz — AsinAs),
fiir diejenigen von X :
0 X X = (sinAz — AsinAs) : — sinA: : AsinA
und die Gleichung der Kreistangente in X lautet :
(sinA2 — AsinAs)® . X1 -}~ sinAisinAz . X2 -} A% . sinAisinAs . X3 = 0.
Diese Gleichung muss auch fiir die Coordinaten von IS erfiillt

sein, setzt man daher X; an Stelle von X;, so erhilt man zur Bestim-
mung von A die cubische Gleichung :

A’sin(A1 — As) 4 3A%inAs — 3AsinA: — sin(A1 — Az2) = 0.
Ihre Wurzeln sind reell und von einander verschieden, woraus folgl,
dass es auf dem Kreise K drei Punkte X, Y, Z gibt, in denen die
Tangenten der C, zugleich Kreistangenten sind. *) Die Tangenten
XX, YY’, ZZ' geben gleichzeitig die Richtungen nach den unendlich
fernen Punkten )i Y;’, Z; der Ce an. VYon den im allgemeinen Falle
IV aufiretenden sechs unendlich fernen Punkten fallen also je zwei
zusammen und bilden einen Berihrungspunkt der Ce¢ mit der unendlich
fernen Geraden. Die (e hat also keine im Endlichen liegenden
Asymptoten und sie besteht aus drei Theilen, wovon der eine, mit
zwel Spitzen und einem Knotenpunkt versehen, ganz im Endlichen
liegt, — der zweite, eine Spitze und einen Knoten besitzend, ein
unendlicher Ast ist, der, dhnlich wie die Parabel, die unendlich ferne
(rerade beriihrt, und der dritte, einen Knoten enthaltend, die unendlich

¥ X, Y, Z bilden ein gleichseitiges Dreieck,. was planimetrisch leicht be-
wiesen werden kann; daher Kreistangente XX' | YZ, YY' || XZ und ZZ' | XY. Die

Richtungen nach den unendlich fernen Punktea X', Y', Z' werden also angegeben
w0 fe o] w
durch die respectiven Dreiecksseiten YZ, XZ, XY.
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ferne Gerade zwei Mal beriihrt. Jeder dieser Theile bildet einen
zusammenhingenden Curvenzweig. ¥)

Ist im Fundamentaldreieck f As = ¥ As, so geht die cubische
Gleichung fiir 4 iiber in

sin(Ar — Az) sin(A1 — As)
Hiervon ist A = 1 eine Wurzel, ein Beriihrungspunkt X fillt also in

den Schnittpunkt von x2 4 Xs = 0 mit K, d. h. fillt mit A: zusam-
men. Der entsprechende unendlich ferne Punkt X' ist dann der

28 JsinAz Y 3sinAs L—1—0.

Schnittpunkt der Fundamentallinie X1 = 0 mit der zu ihr parallelen
Kreistangente in Ar (X2 -} xs = 0). Die beiden andern Wurzeln
ergeben sich aus
Ja - _Sln(Al -— Az) -} 3sinA: A4-1=0
sin(Ar — Az)

2sin(A1 — Az)

sie sind beide negativ oder beide positiv, je nachdem A1 = A: ist, und
die eine ist der reciproke Werth der andern. Denselben gehiren die
Punkte Y und Z zu, welche auf einer Parallelen zu A:2As liegen und
zwar beide unter oder iliber Az2As; die Tangenten in Y und Z sind
symmetrisch zu AiM. **) — Da X2 4+ Xs = 0 eine Tangente von
K isl, so reducirt sich die Ce auf eine (s; ihre Gleichung lautet :

sinA1 . x1%(X2 - x3) (Xe — X3)® - sin®Az2 . (X2 - Xs) (X1% — XoX3)?
—+ 2sinAisinAz . X1(X2 — X3)? (X1? 4 X2xXs) = 0.

*) Die durch die Gleichung 1V. ausgedriickte Cs ist der Ort der Brenn-
punkte derjenigen die Fundamentallinien beriihrenden Kegelschnitte, deren Axen
den dem Fundamentaldreieck umschriebenen Kreis K umhiillen.

) Beriicksichtigt man, dass sin(A1 — A2) == sin3A2, so wird
— (8 — 2sin®As) + 2sinAscosAz . V3

A= oder
3 — 4sin?Ae
L _ —(3—2sin®A) + V3 . sin2As
- 3 — 4sinAs

#¥) X Y, Z bilden ein gleichseitiges Dreieck, ebenso die Tangenten X%’,
YY, ZZ. |

: ———[Sin(Al —A2)} SSinAz]i\/ [Sin(;h — Az) -}- 3sinAz |*—4sin®(A1 —As) 1)

—
—_—

b]
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Diese Cs besitzt zwei Spitzen (in Az und As), -zwei Doppelpunkte
(den isolirten Punkt E und den Knotenpunkt E:), ist daher von der
zehnten Klasse, hat 17 Inflexionstangenten und 17 Doppeltangenten.
(Tafel X.) Sie beriihrt
die Gerade x2 4 xs =10
,in A: und die unendlich
> X ferne Gerade in lm und

A

7', den Inversen von Y
o

und Z, welche Beriih-
rungspunkte von Cs und
K sind. Die unendlich
ferne Gerade ist eine
Doppeltangente der Cs
und schneidet die Curve
in §'. Die einzige im End-
lichen liegende Asymp-
tote der Cs ist die Tan-
gente in 25’, dieselbe ist

o % eine zu Az2As parallele
Gerade, welche die Gleichung hat :

— 8sinA: . X1 | sinAz . X2 4 sinA:xs = 0.
Die Asymptote hat mit der Curve in X  drei zusammenfallende
Punkte gemein, ist daher Inflexionstangente und X' ein Inflexionspunkt

der Curve; letztere wird im Endlichen von der Asymptote nicht
geschnitten. |

Die Cs ist vollstindig symmetrisch in Bezug auf die Halbirungs-
linie des Winkels Ai.

Wenn J A1 = A2 = L As ist, so filll X mit A:, Y mit Ae,
Z mit As zusammen und es ergibt sich genau dieselbe Curve dritter
Ordnung, die wir unter IV, in dem speziellen Falle erhielten, in
welchem ein gleichseitiges Fundamentaldreieck angenommen wurde.
(Siehe pag. 40 und Tafel VIII, Fig. 2.)



Das behandelte Problem kann in der Weise verallgemeinert
werden, dass der feste Kegelschnitt p ersetzt wird- durch eine Curve
m.) Ordnung n.) Klasse; ihre Inverse oder Transformirte ist eine Curve
von der Ordnung 2m, fiir welche die Fundamentalpunkte mfache Punkte
sind. Als Ort der Schnittpunkte aller Tangenten der festen Curve
(C2) mit ihren entsprechenden Kegelschnitten ergibt sich eine Curve
von der Ordnung 3n, fiir welche sowohl die Fundamentalpunkte als
die sich selbst entsprechenden Punkte E, Ei, E:, Es nfache Punkte
sind. Die Tangenten der C;, im Fundamentalpunkt A; sind die In-
versen der von A; aus an die feste Curve p gehenden n Tangenten,
in A; schneiden sich also (im Allgemeinen) n Curvenzweige, welche
natiirlich paarweise imaginir sein konnen. Gehort A; als einfacher
Punkt der Curve p an, dann vereinigen sich zwei von den n Curven-
tangenten, und zwei der durch A; gehenden Aeste der C,, bilden daher
eine Spitze. Im Schnittpunkt der zu A; gehorigen Tangente von p
mit der Fundamentallinie x; = 0 beriihrt die letztere die Curve G,
und schneidet sie ausser in den Fundamentalpunkten Ax und A; noch
in n — 2 einfachen Punkten.

Die Tangenten der C,, in einem der nfachen Punkte E sind die
von E aus an die feste Curve p gehenden Tangenten. Ist.E ein ein-
facher Punkt der Curve p, so gehen durch denselben nZweige der
Curve Cy, von denen sich zwei in ihm beriihren.

Wenn die feste Curve eine der Seiten des vollsféindigen Vierecks
EE: Ez Es 8 Mal beriihrt, so hat die erzeugte Curve die-Ordnungs-
~zahl 3n — B. %) '

Eine eingehende Untersuchung einzelner besonders interessanter
Fille, in welchen die feste Curve p von hoherem als dem zweiten
Grade ist, soll demnichst an andeérer Stelle erfolgen.

*) Die Cen ist der Ort der Bremnpunkte derjenigen die Fundamentallinien
beriihrenden Kegelschnitte, deren Axen eine feste Curve CJ wmbhiillen.
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Zum Schlusse verdient noch besondere Beachtung der Spezialfall,
in welchem der feste Kegelschnitt p zu einem Punki P zusammen-
schrumpft. Die Gesamintheit der beweglichen Geraden d. h. der Tan-
genten von p geht iiber in das Strahlenbiischel mit dem Scheitel P

P und die den beweglichen Geraden

entsprechenden Kegelschnitle bilden

A, das zum Strahlenbiischel projekti-

vische Kegelschnitthiischel mit den
Grundpunkten Ai, Az, As, P’, wobei

» P’ den entsprechenden (inversen)
Punkt von P bedeutet. Der Ort
der Schnittpunkte der beweglichen
Geraden mit ihrem entsprechenden
Kegelschnitt ist das Erzeugniss der beiden projektivischen Biischel.

Um das Strahlenbiischel durch eine Gleichung auszudriicken,
miissen die Coordinaten seines Scheitels P oder aber die Gleichungen
von zwei durch P gehenden (und P bestimmenden) Strahlen gegeben
sein. Die einfachsle Gleichungsform haben im Biischel P die Strahlen
PAi, PA2 und PAs. Wenn PA; und PA: durch die Gleichungen

4 4,

1. PA1) . . . . . QXe | asxs = 0
2. PA2) . . . . . aixa 4 asxs = 0 ¥)
reprisentirt werden, so ist fir die Coordinaten von P:
X1 as Xeg as
= — . = — oder
X3 di1 X3 ae
X1 ¢ X2 ! Xg — Qzds . dsay . — di1dz

und fir die Coordinaten des entsprechenden Punktes P’:
X1 xe i oxs =, d1 . dz [ — as.
Der Strahl PAs hat die aus (1) und (2) durch Subtraktion sich
ergebende Gleichung :
3. PAs) . . . . . axa — asxz = 0.
Das Strahlenbiischel wird nun reprisentirt durch:
(asxz - asxs) - A(arXs - asxs) = 0 oder

| A - asxe (1 4 A) . asxs = 0.
Wenn der variable Parameter die Werthe 0, oo, — {1 annimmt,
so gibt (&) respektive die Gleichungen der Strahlen PAi, PAs, PAs.
Das entsprechende Kegelschnitthiischel erhilt alsdann die Gleichung :

*) a1, az, as bedeuten positive oder negative constante Zahlen.
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azxiXs -} asxixe 4 A(aiXeXs 4 asxixe = 0  oder
" | Aaixexs - asxixs -} (1 -} 4) . asxixz = 0.
In diesem Biischel gibt es stets drei in Linienpaare zerfallende
Kegelschnitte, nimlich die Gegenseitenpaare des Vierecks AiAzAsP’:

AP A2As; AP, AtAs; AsP’, AjAs;
dieselben entsprechen den resp. Strahlen
AP, AP, AsP.

Da einer Geraden eine Ellipse, Parabel oder Hyperbel entspricht,
je nachdem sie den Kreis K nicht schneidet, beriihrt oder schneidet,
so wird das Kegelschnittbiischel bei jeder beliebigen Lage des Punktes
P Hyperbeln enthalten, darunter eine gleichseitige, die Inverse des
Strahles PM. Dagegen konnen Ellipsen und zwei Parabeln nur dann
vorkommen, wenn P ausserhalb des Kreises K liegt; die zwei Parabeln
entsprechen den von P ausgehenden Kreistangenten. Befindet sich P
auf dem Kreise, so existirt nur eine Parabel, sie ist die Inverse der
zu P gehorigen Kreistangente ; in diesem Falle liegt der vierte Grund-
punkt P’ im Unendlichen. Endlich kann das Kegelschnittbiischel einen
Kreis und zwar K selbst enthalten, wenn P ein Punkt der unendlich
fernen Geraden ist und demzufolge P’ auf K liegt.

Das Strahlenbiischel mit dem Scheitel P und das Kegelschnitt-
biischel mit den Grundpunkten Ai, A2, As, P’ sind nun offenbar projek-
tivisch und erzeugen demnach eine ebene Curve. Das Erzeugniss
dieser beiden projektivischen Gebilde ist der geometrische Ort der
Schnittpunkte entsprechender Elemente; seine Gleichung ergibt sich
durch Elimination von . zwischen den Gleichungen (4) und (3).
asXz - asxs
XL |- asxs

Aus (&) folgl: 1 = —
setzt gibt:

(a2x2 - asxs) (axexs -} asxixe) — (a1x1 |- asxs)(azx1xs |- asxax2) — 0

; diess in (B) einge-

oder
( 31X12(83X2 —|~ azxs) — a2X22(33X1 + a1X3) '[— 33X32(32X1 — 31X2) == ()
oder
6. { arxexs(asxe | asxs) — azx1xs(a1x1 -} asxXs) — asxix2(arx1— aexz = 0
| oder
L3283X1(X22 — x3%) -} arasxe(xs? — x1?) — ardexs(x1? — x2?) =0.

Das Erzeugniss ist daher eine Curve dritter Ordnung. Diese
Cs enthilt sowohl die Grundpunkte des Kegelschnitthiischels als den
Scheitel des Strahlenbiischels, ferner die Punkte
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x1 =1 xn=—1 x1=1 x1=1
E(xa—_ml), El(xz_—_l ), Ea xz=—1), Ea(xz=1‘ )
xs =1/~ x3 =1 Xs =1 Xs = —1

und die Punkte Qi, Qz, Qs, in denen die Strahlen PA:, PAz, PAs die
resp. Fundamentallinien A:As, A1As, A1Az schneiden. (Tafel XI.) Diese
zwolf ausgezeichneten Punkte der Cs
At und Qr, A2 und Qz, As und Qs, E, Ei, Ee, Es, P und P’
sind die Durchschnittspunkte der acht Strahlen
PAi, PAs;, PAs, PE, PE;, PE:, PEs, PP’

mit ihren entsprechenden Kegelschnitten. (Dem Strahl PP’ entspricht
der durch Ai, Az, As, P, P° bestimmte Kegelschnitt.) Die Punkte Qi,
Qz, Qs, welche zu den Schnittpunkten der Cs mit den resp. Funda-

mentallinien x1 = 0, x2 = 0, xs — 0 gehoren, haben folgende
Coordinaten :

Q1) Xt P X2 Xx3s= 10 :a: — a

Q2) Xt X2 : Xs = a3 : 0 : — a

Qs) X1 : Xz . X3 =— az . a : 0.

Die Cs entspricht sich selbst und zwar in der Weise, dass ent-
sprechende Punkte aof Strahlen durch P liegen. *)

Jeder durch P gehende Strahl hat mit der Cs ausser P noch
zwei Punkte S; und Sz gemein, die zu einander invers sind und
welche reell und verschieden oder zusammenfallend oder imaginir sein
konnen. *¥) Sie fallen zusammen fiir die vier Strahlen PE, PEi, PE:,
PEs. Bei dem Strahl PP’ fillt einer der Punkte Si, Sz mit P, der
andere mit P’ zusammen.

 Nach dem Vorhergehenden ist es nun leicht, fiir einige der
bereits bekannten Punkte der Cs die Tangenten anzugeben. Die Tan-
gente in A: ist die Gerade P’Ay, denn da die Curve sich selbst ent-
spricht, so entspricht dem Punkte Q: ein dem Punkte A: unendlich
naher Punkt in der Richtung von A;P’, demmach muss A:iP‘ die Cs
in A: beriihren. Ebenso sind P‘A2, P‘As die resp. Tangenten der Cs

#) Diess ergibt sich ohne Weiteres aus der Erzengungsweise der Cs und
wird direkt nachgewiesen, wenn man ihre Gleichung transformirt.

%¥) 81 und S: sind die Brennpunkte eines Kegelschnittes, welcher dem
Fundamentaldreiseit eingeschrieben ist; es liegen daher die Bremnpunkte simmt~
licher die Fundamentallinien beriihrenden Kegelschnitte, deren Axen das Strahlen-
biischel mit dem Scheitel P bilden, auf der Cs.
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in Az und As. Dem Strahl PE entspricht ein ihm in E beriihrender
Kegelschnitt, PE hat daher mit der Cs in E zwei zusammenfallende
Punkte gemein, d. h. ist die Tangente der Curve in E. Aus analogen
Griinden wird die Cs von den Strahlen PE;, PE:, PE; bezw. in E,,
Ez, Es beriihrt. Der Strahl PP’ hat mit der Cs in P zwei vereinigte
Punkte gemein, ist daher die zu P gehorige Tangente der Curve.
In Folge dessen (und des Umslandes, dass dem Curvenelement hei P
dasjenige bei P’ entspricht) muss der dem Strahle PP’ correspondirende
Kegelschnitt die Cs in P4 beriihren; die Tangente des durch die fiinf
Punkte A:. Az, As, P, P’ bestimmien Kegelschnittes in P/ stellt somit
die Curventangente in letzterem Punkte vor.

Vorstehendes wird analytisch am einfachsten bestitiget durch die
Aufstellung der Gleichungen der Tangenten.

"Wir schreiben die Gleichung der Cs in der Form:

== aa3\1°\e2 - a1a2X1%Xs

a122X2%\s — a2a3X1X2? |- azasxixs?

— a1a3Xa2ynsg? = ( und bilden
A _ : , .
m = ——— = Z2mazxiNz -} 2mazxiXs — asasXe® - azazns®
9\1
du )
g == - .— == §1a3X1° — 2a1a2X2\3 — 2a2a3X1X2 — 2193\32
Xz
9!.1 2 2
g = o arazx1? — aazx2® - 2a2a3X183 — 2arasxa\,
3

In diesen Ausdriicken sind nun an Stelle der x; die Coordinaten
der Beriihrungspunkie der betreffenden Tangenten zu setzen. Fiir
Ai(xy = In, x2 =0, x3 = 0) folgt:

ur = 0, uz = arashi®, 13 = aachi?;
somit lautet die Gleichung der Tangenle in Ai: asxz - asxs = 0.

Diess ist aber die Gleichung des zu PA: inversen Strahles P/A;.
Fiir A2(x1 = 0, x2 = he, x3 = 0) ergibt sich:

u = — azashe®, uz = 0. 3 = — ajazhe?;
die Tangente der Cs in Az hat daher die Gleichung
X1 | axs = 0,

welche identisch ist mit der Gleichung von P‘As.
As(xt = 0, xe = 0, x3 = hs) gibt:
u — azashs?, u2 = — aashs?, us = 0;
die Tangente in As wird also ausgedrickt durch a:xi — aixz = 0,
d. h. sie ist identisch mit dem Strahl P’As.
Bern. Mittheil, 1889. Nr. 1221,
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Bevor wir die Gleichungen der Tangenten der Cs in den Punkten
E, Ei, Ez2, s, P, P/ ermitteln, suchen wir die Gleichungen der Strahlen
PE, PEi, PEz, PEs, PP* und der zu P‘ gehirigen Tangente des dem
Strahl PP’ entsprechenden Kegelschnittes.
Fiir die Coordinaten von E(l, 1. 1) geht die Gleichung (%) iiber in
az -} as -} Al -} as) = 0, woraus folgl:
az - a3
L= — — -
a1 "l* a3

Der Strahl PE erbhalt somit die Gleichung :
dz —l— ds
ai + as

PE) ... ai(az |- as)xs — az(as |- ar)\e — as(ay — az) .\ == 0,

a2X2 <|~ asxs — (:«‘11)(1 '~|— aNs) =—= () oder

Analog ergehen sich fiur PEi, PE2, PE;, PP’ die Gleichungen:
PE1)  a(az - as)xi — az(as — an)xe -+ asfar 4 az)xs =— 0
PEz)  ai(az — as)xi - az(as - an)xe -} astar -} az)xs = 0
PEs) ar(az — as)\t -} az(as — a2 — as(a azixs — 0
PP") ar(az? — as?)xt |- ae(m? — arthhe — as(a? — axi)xg — 0.

Der dem Strahl PP" entsprechende Kegelschnitt hat die Gleichung
ar(a2? — as¥)xexs - az(as® — ar)xins — ;m(a? — a2fxixe = 0
und seine Tangenle in P’ isl
azas(az? — as?) . X1 - amias? — ar?) L v — az(a? — a2?) L x5 — 0.
Da nun ui, vz, uz fir die Coordinaten von b, Ei, Ez, Es, P, I’
die Werthe annehmen:

[ = 2ai(az -} as) ' m == — Z2a(az |- as)
(E) Uz =— — 2az(a3 *[f ar) (E1){ ne = Qaz(as — a1)
us = — 2a3(a — a2) ] us = — 2ag(ar -}~ a2)
u = 2a1(a2 — as) J == — Z2a1(az — as)
(E2) & 2 = 2az(as - ar) (Is){ uz = — 2as(as — ar)
Us == 2as(a -|- a2) ] My == 2as(ar — az)
W = -— ar%azas(a? — as?) U = — azas{az® — as®)
(P) { uz =— — ara2%az(as* — ar?) (P’) | w2 = — ajas(az? — a?)
s =2 arazas?(ar® — a2®) 18 &= araz(ar® — a2%) ¥)

#) Bei jeder dieser sechs Werthegruppen ist ein constanter Faktor weg-
gelassen worden.



so lauten die Gleichungen der Tangenten der Cs in E, Ei, Es, Es, P, P’
folgendermassen :

tg)  ar(a2 - as)xu — ax(as - a)ne — as(ar — az)xs = 0
tg,)  a(az - as)xa — ax(as — a)xe - as(a |- az)xs = 0
lg.) a(az — as)x1 - asz(as -}- axz -} as(ar |- az)xs = 0
1g;) a(a2 — as)xi + azx(a3 — ain: — a(a — a2)xs = 0
tp) ai(az? as?)x1 -} az(as® — arf)xe — as(a® — axf)xa — 0

1p) 8283(322 e 332)X1 —}~ 3133(332 — a1®)xe — 8132(312 o 322)X3 == {},
Die Tangenten (g, g, lg., (g, tp stimmen also vollstindig mit
den resp. Strahlen PE, PE:, PEz, PEs, PP’ und {p- mit der Tangente
des zu PP’ inversen Kegelschnittes in P’ iiberein.
Endlich erhiilt man fiir die Tangenten der Cs in Qi, Qz, Qs fol-
gende Gleichungen :

lg) -« - . (a2* — as¥)xi 4 adexe - atasxs = 0
@) . . . aang — (B8 — a®)xe | acasxs = ()
) -« . . @wasxy — azasxz — (u? — a?)xs = 0.

Fiir diese Tangenten lassen sich auch sehr einfache Construc-
tionen herleiten. Zu diesem Zwecke stellen wir die Gleichungen der
Geraden Qi1P’, Q2P und QsP’ auf und vergleichen dieselben mit den-
ienigen von tg,, tg, und tg,.

Die Yerbindungslinie der Punkle

0i(0 : as : — az), Pla : a1 — as)
hat die Gleichung:

i X1 . X2, \3
I 0, a3, —a | =20 oder
} a, az, — 43

WP . (a2 — as?)x1 — aazxe — arasxs = 0.

Die vier Strahlen QiAi( == A(P), Q1As, QiP’, 1g, bilden, wie aus
ithren Gleichungen ersichtlich ist, ein harmonisches Biischel und zwar
ist 1, der harmonisch conjugirte Strahl von Q:«P’ in Bezug auf Q1Ax
und Q:1As. Um daher die Tangente der Cs in (i zu erhalten, hat
man im Bischel Q: . AiAzP’ den vierten harmonischen, zu Q:P’ con-
jugirten Strahl zu conslruiren. ‘

Fiir Q:P/ und QsP‘ ergeben sich die Gleichungen:

XL, X2, X3 X1, Az, \3
a. 0, — a | =0, | a, a, 0| =20

a, a, — as a, a&, — as oder
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QP . . aamxa - (as® — a®)xe - azasxs = 0
QsP) . . amaxi — amxe (@ — af)xs = 0.
Die Gleichungen
QaA2(=QeP) . . . axi + wxs = 0
QA1) . . . . . . x2=0
Q2P’)  arazx1 |- (as® — ai®)xe - azasns = 0
tq.) AdXi — (as® — a1®)xs |- azasns = 0

zeigen, dass QzAz, Q2A1, Q2P’, 1g, vier harmonische Strahlen sind. und
zwar ist die Tangente tg, der harmonisch conjugirte zu Q:P’ in Bezug
auf QzA2 und QzA:.

Endlich bilden die durch die Gleichungen

Qsds) . . . . . axt — axe = 0

QA1) - . . . . . . . x3z=10

QsPY) . . ards\i — azaXz |- (¥ — &)y — 0
) - - @asX1 — a2Xe — (ar? — a)xs = 0

reprisentirten Strahlen QsAs, QsAi, QsP’, tq, ein harmonisches Biischel,
in welchem die Tangenle tg, der zu QsP’ conjugirte Strahl ist.
Unsere Curve dritter Ordnung Kann keine Doppelpunkte besilzen,
weil auf jedem durch P gehenden Strahl neben P nur noch zwei Curven-
punkte liegen Konnen; wire nun ein Doppelpunkt D vorhanden, so
hiitte, da dem Punkte D im Allgemeinen wieder ein Doppelpunkt ent-
sprechen miisste, PD mit der Curve fiinf Punkie gemein. (Ay, Az, As,
5, E1, E2, Es konnen nicht Doppelpunkte sein, weil in jedem dieser
Punkte eine einzige Curventangente existirt, wie nachgewiesen worden
ist.) *) Aus dem gleichen Grunde enthilt die Cs Keine Riickkehr-
punkte. Auch die folgende Betrachlung zeigt deutlich, dass die Cs
weder Doppelpunkte noch Spitzen hal. Die erste Polare des Punktes
P in Bezug auf die Cs ist ein Kegelschnitt, welcher durch E, Ei, Eo,
Es, P geht und die Curve in P beriihrt und hat somit keine weitern
als diese sechs Punkte mit der Cs gemein. Wiren nun Doppelpunkte
und Spitzen vorhanden, so miissten dieselben auf der ersten Polaren
liegen, und die letztere hiitte alsdann mit der Cs mehr als sechs Punkte
gemein, was unmiglich ist. (Die erste Polare von P’ in Bezug auf
die Cs geht durch Ai, Az, As. P, P* und beriihrt die Cs in P’, sie ist
also gerade derjenige Kegelschnitl, welcher dem Strahl PP/ entspricht.)

*) Lige D in A; oder Ei, so hitte PD vier Punkte mit der Cs gemein
(im Falle D in Ei konnten PD und die Cs auch fiinf gemeinsame Punkte haben,
dann miisste aber E;j ein Beriihrungsknoten der Cs sein).



Da die Cs Kkeine Doppel- und Riickkehrpunkte enthilt, so ist
ihre Klassenzahl » =— pu(u — 1) = 6, die Zahl der Wendetangentien
t = 3u(u — 2) =19 und die Zahl der Doppeltangenten

T =5 —;— (g — 2y (v —3) (v + 3 oder
M1
9

(r— ) r +u — 9 = 0.

Die vorliegende (s ist daher die allgemeinste Curve drilter
Ordnung.
Die Cs hat im Allgemeinen drei unendlich ferne Punkte U, V/, W/,

[- SIS 5] o ]

die Coordinaten derselben ergeben sich durch Auflosung der Gleichungen
\2

. 1
der unendlich fernen Geraden und der Cs nach —— und Ihre

X3 A3
Inversen sind die im Allgemeinen von Ar, A2, As verschiedenen Schnitt-

punkte U, V. W des Kreises K mit der Cs, und die Strahlen UU’, VV/,
WW* gehen durch P. U zu untersuchen, welche Strahlen des Biischels

P die im Unendlichen liegenden Punkte der Cs liefern, bestimmen
wir den Schnittpunkt des Strahles

g,-“) . . . Aarxa —l— dz2\2 + ("l —{— 7?)33\3 = ¥
mit der unendlich fernen Geraden
g.) . . . sinAixi - sinA:n: - sinAsny = 0.

Aus den vorstehenden Gleichungen folgt:
v A assinAs — (I - AassinAx X2 (1-}-Z)assinA1 — AaisinAs
' N3 JasinAgz — azsinAr x5 ZaisinA: — assinA;

Soll nun U’ der (s angehiren, so muss secin enlsprechender
Punkt U. der di: (loordinaten
l 5 B Q[(ii - A)assinAr — /'La].sinA's] [lalsinAz — azsinA1]
U} ove = gfassinds — (1 + Dassindz | [Zarsinds — assinA, |
el g[azsinAs — (1 - Af)a:;sinAz] [(-l -} A)assinAq w-?.alsinAa]

hal, auf g;, K und Cs liegen. Selzt man seine Coordinaten in die
Gleichung von g; ein (die Gleichung von K ist identisch erfiillt), so
resultirt die cubische Gleichung :

all[( 1 4 MassinAr — lmsinAg] [lmsinAz e azsinA1] -} |
- az[azsinf\a — (1 4 },)assinAg] [lms'mAz == 32SillA1:' -
+ as(1--4) [azsinAs —(1 4—2,)aasmA2] | (4 LyassinAs—AaisinAs [=0,
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deren Wurzeln 41, 42, 4s diejenigen Werthe von 72 liefern, welche
den die Richtungen nach den unendlich fernen Punkten U‘, V. W' der

Cs angebenden Strahlen des Biischels zugehoren. Die Gleichungen
der Strahlen PU‘, PV‘, PW‘ gehen aus der Gleichung von g, hervor,
o [v.2] o -

wenn man in derselben 4 successive durch Zi, A2, As erselzt. Von
den drei unendlich fernen Punkten der Cs ist stets mindestens ciner
reell. Bezeichnet U’ den lelztern, dann entsprichl dem Strahl PU‘ eine

Hyperbel, die durch Ai, As, As, U, U4 geht und deren eine Asymplote

also parallel zu PU sein muss. Zu PU parallel verldufl auch die Tan-
gente der Cs in U’ d. h. eine Asymptote der letztern. Dieser Asymp-

tote entspricht ein Kegelschnitt, welcher durch Ai, Az, As. U gelit und
die Cs in U berihrt. Derselbe konnte zur Construction der Asymptote
benutzt werden, wenn man seine Tangente,
| mithin auch diejenige der Cs, in U kennen
wiirde. Die beiden erwihnten Asymptoten

AN (der Hyperbel und der Cs) kinnen nur dann
\ zusammenfallen, wenn P auf dem Kreise K

\\

\i{
Ay A\ A, bel und die Cs sich in U’ beriihren miissen,
/ %3 '
J/ so ist PU‘ die Tangente der Cs in U, und
4 es kann daher die Asymptote der Cs leicht
construirt werden, entweder nach dem
Pascal’schen Satze oder mit Hiilfe des der
Asymptote entsprechenden Kegelschnittes,
i der die (s (also auch PU’) in U beriihrt.
l ry’ Fillt speziell P(U) mit einem der Punkte
X, Y, Z (vergl. pag. 42) zusaminen, so be-

riihrt PP/ und in Folge dessen auch die (s den Kreis K in P, und
die unendlich ferne Gerade ist die Tangente in P/ sowohl fiir die dem

liegt; in diesem Falle ist dann P mit U
und P/ mit U’ identisch, und da die Hyper-

Strahl PP/ entsprechende Parabel als fiir die Cs (die vorige Asymplote
ist ins Unendliche geriickt). In P’ sind zwei unendlich ferne Punkte
U’ und V* der Cs vereinigt, und esmexistirt ausser diesen ein dritter W/,
:;elc-hermreell sein muss. )
Die Tangenten der Cs in U und E‘ konnen auch .in dem Ialle

durch einfache Construction gefunden werden, in welchem P im Un-
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endlichen liegt, also P und P’ resp. mit U’ und U zusammenfallen.

Alsdann ist PU die Asymptole der Cs, und daher miissen die Cs und
die zu PU inverse Hyperbel in U die nimliche Tangente haben.

Je nach der Lage von P hat die Cs drei reelle und von einander
verschiedene unendlich ferne Punkte, — ‘oder zwei imaginire und
einen reellen, — oder drei reelle. wovon zwei zusammenfallen.

Im ersten Falle ist unsere Curve eine zweitheilige Curve dritter
Ordnung, sie besleht aus einer sogen. Serpentine (welche in die con-
choidale Form iibergehen kann) *) und einem sogen. hyperbolischen
Paar, d. h. zwei unendlichen (hyperbolischen) Aesten, die als eine
stelig zusammenhiingende Curve zu betrachten sind. Bei speziellerer
Lage von P kann die Serpentine zur geraden Linie werden, und der
ithrige Theil geht in eine Hyperbel iiber (welche auch gleichseitig
sein und im speziellsten Falle in ein Linienpaar zerfallen kann). Bei
drei unendlich fernen Punkten kann die Cs aber -auch bestehen auns
einem Oval und drei unendlichen Aesten. die eine zusammenhingende
Curve bilden. Wenn die unendlich fernen Punkte gewihnliche Punkte
sind, so hat einer der Aeste keinen Inflexionspunkt, der zweite einen
und der dritte zwei Inflexionspunkte. Liegt dagegen ein Inflexions-
punkt im Unendlichen, so Kkonnen entweder zwei Aeste mit Keinen
ond ein Ast mit zwei Infllexionsstellen oder zwei Aesle mil je einem
und ein Asl it keinem Inflexionspunkt vorkommen.

Im zweilen Falle. in welchem nur ein unendlich ferner Punki,
also auch nur eine Asymplote existirt, setzt sich die Cs zusammen aus
einem Oval und einer Serpentine. Letzterc kann in eine gerade Linie
und das Oval in eine Ellipse, speziell einen Kreis iibergehen.

Im dritten Falle kann die Cs bestehen aus einer Serpentine und
cinem Oval, welches parabolische Form hat, d. h. die unendlich ferne
Gerade beriihrt; die Serpentine kann speziell zur Geraden und das
Oval zur Parabel werden. Oder die beiden Theile der (s sind ein
Oval und eine Curve, welche eine Asymptote hat und die unendlich
ferne Gerade beriihri, d. h. eine Curve, welche in parabolischer Form
auseinander geht. Ein Zweig der lelztern hal zwel Iﬂﬂexionspunkte,
der andere einen oder, wenn ein Inflexionspunkt im Unendlichen liegt,
so hahen beide Zweige je eine Inflexionsstelle.

Die viel Interessantes bietende Untersuchung aller moglichen
Spezialfille, welche ich vollstindig durchgefiihrt habe, soll den Gegen-
stand einer bhesondern Abhandlung bilden, die demniichst verdffent-
licht wird.

#} Vergl. Salmon-Fiedler, Art. 205.
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dieselben durch ihre reupmkeu Werlhe, d. h. wendet die duuh dm
Relationen &' — 255, &' =— &S, &' — 15 & ausgedriickte birationale
guadratische Transformation (Methode der Inversion) an, wobei einer

.

Geraden & eine einzige, bestimmte Gerade & = - und umgekehrt

[y

ey
e

entspricht, so entsprechen sich oder sind zu einander invers:

Punkt und Curve zweiter Klasse (welche dem Fundamentaldreiseit
eingeschrieben ist).

Gerade und Gerade,

Curve zweiter Klasse und Curve w(,rtel Klasse (mit drei Doppel-
tangenten in den Coordinatenaxen ; fir dieselbe ist im All-
gemeinen » =4 ¢=23, =0, u =26, » =6, § = &)

Curve n. Klasse und Curve von der Klasse 2n (letztere hat die
Fundamentallinien zu nfachen Tangenten).

Zu dem behandelten Problem, als dessen Losung sich die Corve
sechster Ordnung mit sieben Doppelpunkten und keinen Spitzen ergab.
gibt es nun das folgende dualistisch entsprechende :

Ein Punkt S bewege sich auf einem festen Kegelschnilt, man
hestimme die Enveloppe der durch S gehenden Tangenten der Curve
zweiler Klasse, welche als Inverse dem Punkte S entspricht.

Die Untersuchung, von welcher ich an dieser Stelle nur die
Resultate mittheilen will. ergibt als gesuchte Enveloppe im allgemeinsten
Falle eine Curve sechster Klasse mit sieben Doppelltangenten und keinen
stationiren TanQeuten. Die Doppeltangenten sind die drei Fundamental-

linien (xi =— 0 oder & =0, & —0; xa = 0 oder & =—= 0. & — (:

xs == 0 oder & = 0, & == 0) und die vier sich selbst entsprechenden

Geraden e, e;, ez. es, deren Liniencm)rdinalen sind: (& = 1, §3 =1,
Es=i), (§1——1 SG-—1, &8=1), L=, L& =—15=1),
(G =1. &= 1. &= — 1) oder dBan Punkte nmdnmtenrrlmchunqen

Jlauten :



(e ) M xe R =0
(e1) — Nt - e 4 xs = 0
(e2) Xt — 22 4 xs = 0
(e3) X1 | N — x5 = 0. _
Da v = 6. r = 7. ¢ = 0. so sind die iibrigen Pliicker'schen

Charaktere der Curve
u=16, 2= 30, & = 72,
d. h. sie hat 30 Spitzen, 72 Doppelpunkte und ist von der 16. Ordnung.

Schneidet der feste Kegelschnitt p die Fundamentallinie AzAs in
zwel Punkten Bi. Bi*. so sind die Schaittpunkte Bi‘, B:i* der resp.
[nversen von AiBi. AiB:i* (A1Bi und A:Bi* sind Tangenten der Cf)
mit A2As die Berihrungspunkte der Doppeltangente AzAs (lelztere
sind 1maginir, wenn A24s den Kegelschnilt p nicht schneidet). Fallen
B: und Bi* zusammen. d. h. wird AzAs von p berihrt, dann vereinigen
sich Bi* und Bi*/, d. h. die Doppeltangente A2As3 geht in eine In-
flexionstangente tiber. Es fallen auch die bheiden Tangenien A:1B: und
A1B:i* zusammen, und die C® geht daher durch A: hindurch (A; wird
Beriihrungspunkt der Curventangente AiBi).

Analoges gilt fiir die iibrigen Fundamentallinien. Die Beriihirungs-
pankte der Doppellangenten e. er, ez, es sind die resp. Schniltpunkte
dieser Linien milt dem festen Kegelschnitt p. Berithrl p eine der
Linien ¢; (i==0. 1, 2, 3), dann sind im Beriihrungspunkt &, die beiden
Beriihrungspunkte der Doppeltangente e; vereinigl, von &, aus gehen
an die C® sechs Tangenten. von denen vier mil ¢; zusammenfallen:
es sind daher in ¢; vier Curventangenten vereinigl oder die Tangente
e; ziahlt als Doppeltangente zweifach, ist also keine Inflexionsiangente.

Die sechs Ecken des vollstindigen Vierseils ¢ e ez es sind Punkle,
die sich selbst entsprechen: geht demnach der feste Kegelschnitt p
durch einen derselben. so sondert sich dieser (resp. das Strahlen-
biischel. dessen Scheitel er ist) als ein Theil der Enveloppe ab, und
der Rest derselben ist eine Curve fiinfter Klasse. Enthalt p vier
(die hichste Zahl) sich selbst entsprechende Punkte, so reduzirl sich
die C* auf eine C%, welche in ein Punktepaar zerfillt.

Die Ci6% ist zu sich selbst invers (in Bezug auf die Tangenten)
und zwar in der Weise, dass je zwei entsprechende Tangenten der
Curve sich in einem Punkte des festen Kegelschniltes schneiden. Von
jeder einem Punkle S entsprechenden Curve zweiler klasse Kennt
man drei Tangenten (die Fundamentallinien) und die Berihrungs-

Bern. Mittheil. 188%. _ Nr. 1222,
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punkte derselhen (der Beriihrungspunkt auf der Fundamentallinie
A A; ist der Schnittpunkt von A;S‘ mit Ag Ay, wobei A S den zu
A;S inversen Strahl bedeutet). Es Konnen daher siammtiche Tan-
agenten der Ci6® leicht constrairl werden.

Spezialfall.

Bewegl sich der Punkt S auf einer geraden Linie g, dann
resultirt als Enveloppe der Tangenten, die von S aus an seine inverse
Curve zweiter Klasse moglich sind, eine Curve dritler Klasse, welche
keine Doppeltangenten und Inflexionstangenten hat, demnach neun
Spitzen und keine Doppelpunkte besitzt und von der sechsten Ordnung
ist. Diese Curve ist die dualistisch entsprechende zu der ausfiihrlich
behandelten Cs® und reprisentirt das Erzeugniss der auf g befindlichen
Punktreihe mit der zu lelzterer projektivischen Kegelschnittschaar,
deren Grundtangenten die Fundamentallinien und die zu g inverse
Gerade g’ sind.

il ol s ot
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