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Dr. G. Huber.

Die Cassinischen EurYen«

Vorgetragen in der Sitzung vom 4. Februar 1888.

Eine Cassinische Kurve ist der Urt aller Punkte, für welche das

Produkt der Abstände \on zwei feste Punkten, den Brennpunkten,
gleich einer constanten, positiven Grösse k ist.

Liegen die beiden Brennpunkte auf der \ A\e im Abstand x=+ 1

vom Coordinatenanfangspimkl, so ist ihre Gleichung:

(V + r + i)2 - 4x2 k2. i)
Lässt man k von 0 bis oo variiren, so erhält man unendlich

\iele solche Kurven, die alle die imaginären unendlich fernen
Kreispunkte zu Doppelpunkten haben. Da sie sonst keinen Doppelpunkt
mehr besitzen, so ist ihr Geschlecht p 1, die Coordinateli x, y

eines Punktes der Kurve lassen sich daher durch elliptische Funktionen
eines Parameters ausdrücken. Zu dieser Darstellung gelangt man

folgenderweise :

Setzt man in der Gleichung 1) x2 -j- y2 \, so erhält man :

4x2 (v -f 1 — k) (v -j- 1 -f k)
4y2 (v — 1 + k) (k -f 1 - v).

Hierin v (1 -f- k) gesetzt, ergiebt :

(1 — kl) (k — ti
*2 ^1 + k)"TT^uüd f (1 + k)TT+1^'

Damit \ und v reell werden, muss immer t <C k sein.



0, u - 0 und x -f-\/l 4" k. Schnittpunkte A und A'

0, u : K, „ X :i:\/l — k „ B „ B'.
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Es sind nun 3 Fälle zu unterscheiden:
I. k < 1

II. k > 1

III. k 1 (Lemniskate).
Diese 3 Fälle sollen der Reihe nach behandelt werden.

I. k < 1.

In diesem Fall kann man setzen : t k sn'1 u. wo k der Modulus

der elliptischen Funktion sei.

Dann werden die Coordinaten eines Punktes der Kurve :

ni dn u sn u en u-) x + \/l -f k —-r- —' y -|- k V 1 + k—7-, i—— v 1 -f- k sn2 u — 1-f-k sn2 u

Zu jedem Werthe von u gehören 4 zu den Coordinatenaxen

symmetrisch liegende Punkte.
Für y 0:

1) sn u

2) en u

Die letzteren Schnittpunkte auf der x Axe sind nur reell, wenn
k < 1.

Für x — 0 wird:
dn u 0. u K -f- L, und y — + y k — 1 imaginär.
Dabei sind K und L die reelle und die imaginäre Periode der

elliptischen Funktionen.
Die Kurve schneidet die y Axe nicht, sie besteht aus 2 getrennten

Ovalen, symmetrisch zur y Axe, um die Brennpunkte Fi und Fa herum,
denn für alle Werthe von u zwischen 0 und K erhält man reelle,
endliche Werthe für x und y.

Für k 0 erhält man die Brennpunkte selber.
Es sollen nun die Doppeltangenten der Kurve untersucht werden.

Die Parameter der Schnittpunkte der Parallelen y + q zur x Axe
bestimmen sich aus der Gleichung:

sn u en u

q k vi 4- k -—:—; —> woraus folgt:v 1 -j- k sn2 u

sn2 u —
k (1 + k) - 2q2 ± (1 + k) ^2 ~ 4q2

2k (l -f k Ar q2)

k
Die Schnittpunkte werden nur reell, wenn q < — ist.
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Für q + — fallen je 2 der 4 Schnittpunkte der Geraden mit

der Kurve zusammen, die beiden Geraden y + ~ werden zu

Doppeltangenten der Kurve. Für die Berührungspunkte derselben wird
1

sn2 u ~ ; ~' und ihre Coordinaten
2 -f- k

1 k
x + Ty/4-k2'y +- 3)

Durch Elimination des k ergiebt sich:
x"' + tf 1,. 4)

d. h. die Berührungspunkte der Doppeltangenton parallel der x Axe

liegen auf dem Einheitskreis um 0.

+ t

+ A

Die Parameter der Schnittpunkte der Geraden

y tg a x m x
erhält man aus der Gleichung

k (1 + m2) +\/k2 (1 + m2)2 — 4m"2
sn- u — ' =ï

2 k

Ist k2 (1 -f m2)2 — 4m2 0, so fallen von den 4

Schnittpunkten je 2 zusammen, die Gerade wird zur Doppeltangente. Es

geschieht dies für die 4 Werthe : m +
1 + 1

wo
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gesetzt ist. Yon diesen 4 Werthen ergeben aber nur die zwei,
/1 — 1\ 1

m — + —i— li reelle Lösungen ; für dieselben wird sn u ~
"V k / '

y 1 -f-1
K

also u ~"
Es giebt also 2 reelle Doppeltangenten CC und DD' durch 0,

so lange k < 1 ist. Die Coordinaten der Berührungspunkte sind

iv/^a-iv/ï5) "¦— ' ' ' * ' '-' '

Für k 1 werden diese zu x 0, y 0. Die Berührungspunkte

auf der Doppeltangente fallen in 0 zusammen, es ist dies

ein Doppelpunkt der Kurve, die Doppeltangenten gehen in
Wendetangenten in demselben über. Für dieselben wird m tg a + 1,

« 4- 45°. Die Kurve isl die Lemniskate.
Durch Elimination des 1 aus den obigen Gleichungen ergiebt sich :

(,T2 _j_ yy _ rx2 _if) 0

d. h. die Berührungspunkte der innern Doppeltangenten liegen auf

einer Lemniskate mit Doppelpunkt in 0 und den Brennpunkten
1

x 4- ~T^i y 0. Sie geht durch die Brennpunkte x 4- 1
— y 2 —

der Cassinischen Kurven.
Der Bogen s der Kurve ist ausgedrückt durch das Integral ;

— k sn2 u.s=k\/i+kjYr k3 sn4 u

Um dasselbe auszuführen, zerlegt man

du.

2

formt den Zähler etwas um und erhält

• k\/^ P^-'-^du+u/L^ fl-d+Dsn'o,
V 2 J \/l — k2 sn4 u V 2 J y 1 — k2 sn4 u

1 — (1 4- 1) sn2 u
Setzt man im ersten Integral: : t, so

dn u

geht dasselbe über in:
k r» dl

du.

- ^) <)¦
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Ebenso geht das zweite Integral durch die Substitution:

t' 1- (1 - 1)

dn u

sn2 u
über in:

--•s
dt'

\7(< - .-)
/

v 2
J).-).

somit wird:

_ k-x (6

dt r dt'

,-,)(,-(±=-v) -VM('-<W
Der Bogen der Cassinischen Kurve ist also durch 2 elliptische

Normalintegrale erster Art dargestellt.

Cm den halben Umfang eines Ovales zu erhalten, muss man von
u o bis u K integriren, also

für t von t 1 bis t — I
t' t' — \ V — I

Die Grenzen des zweiten Integrals sind also einander gleich, es

verschwindet und es wird

2 2

dt /Z dt
k

/1-1, A 1.1/ A / ,1-1
2i-t« i-(—)f Jv/ i_t2 i-(--t>

Der Werth dieses vollständigen Normalintegrals ist gleich K für

den Modul —-—, es werde mit K l V/—-—J bezeichnet. Der

Umfang eines Ovals wird also

u 2k k (y ^-—J. (7

Für k i, 1 0 erhält man den Umfang einer Lemniskaten-
schleife

S 2 K (v/>Ä).
7
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Der Inhalt.eines Sektors OAP der Kurve von der x Axe aus

gerechnet, bestimmt sich aus dem Integral:

S

Im vorliegenden Falle ist :

V

— fr2 dv.
2j

r2 x2 A-f (1 + k) j^r-
k sn2 u

k sn2 u
und

1—2 sn2 u + k2 sn4 u
dv k : — ; du,v 1 — k2 sn4 u ' '

somit

'1 — 2 sn2 u + k2 sn4 u
S - (1 + k) J (1 + k sn2 u)

du.

Setzt man 1 -|- k sn2 u p und berücksichtigt die Formel:

d2 4(l4-k)2 4(1 4-k)3— Lg (1 4- k sn2 u) ; + 2 k p, so folgt:
du2 ' p2 p

'

S y I
TT, Lg (1 4-ksn8u) — 2 kp-f 2 k (1-f-k) du oder

0

S — — Lg (1 -f k sn3 u) 4- 2 (k2 — 1) u A- 2 I dn2 u du

0

a
1 fk sn u en u dn u 1

8) S — —-- -— — l2 u 4- Earn, u
2 L 1-f ksru ' J

0

Dieser Sektor OAP ist von 0 aus bis zur äussern Begrenzung
der Kurve gerechnet. Der Sektor APP'B, welcher der Kurve angehört,

ist:
S Sektor OAP — Sektor OBP' Si — S2.

In den Schnittpunkten A und B der Kurve mit der x Axe hat

u die Werthe 0 und K, der Berührungspunkt C der äussersten
K

Tangente hat, wie gefunden, den Parameter u -r~. Das Argument

hat daher auf den Bögen AC und BC, in Punkten, die auf demselben
Strahl durch 0 liegen, die Werthe u und K — u.
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Der Sektor Si wird durch Formel 8 bestimmt, und S2 erhält

man, wenn in derselben u durch K — u ersetzt wird
u

1 Tk sn u en u dn u 1
S2=— — : -—— l2(K-u) + E-Eamu

2 L 1 — k sn2 u v ' J
0

wo E das vollständige Normalintegral zweiter Art ist.

Der Kurvensektor APP'B wird nun:

k2 sn3u en u dn u
S — Earn u — l2u — — — : (9

1 — k2 sn4 u
v

K
Für u ~~ erhält man den Inhalt eines halben Ovals :

2
0 * / x- - (E - I3 K),

somit der Inhalt eines Ovals:

0 E — l* K, (10

7t
annähernd ~r k2 für kleine k, mit Vernachlässigung der vierten

M

und höhern Potenzen von k.
Für k 1 erhält man den Inhalt einer Le mniskatenschleife

L 1.

II. k > 1.

In diesem Falle gelten die vorigen Formeln nicht mehr. Man
1

transformirt zu einem Modul k 77 < 1 durch Transformation

des ursprünglichen Periodenverhältnisses z zu einem neuen z durch
z

Substitution z' 7—;—.1 -(-z
Im transformirten System werden alle Grössen durch Accente

bezeichnet. Dann gelten die Gleichungen:

z * yV2 — 1
fz -—;—1 k 77> 1 > u k u t

1 + z k' k'
sn u k' sn' u', en u — dn' u', dn u cn' u'.

Die Gleichungen der Cassinischen Kurve werden nun:
(11

sn' u',

/l 4- k' cn' u' /l -f- k' sn' u' dn' u
X ~~ — V ~k'~~ 14-k'sn'27' y~±\ ~k'~~ H-k'sn'2u'
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Die Schnittpunkte mit den Axen werden:

_[_ \J{ _i_ k'
Für y o l)sn' u =o, u' o, x= -=-%¦—~— =iv1—k-

/k' i
2) dn' u' o, u' K' 4- L', x +\/ ~,~ imaginär.

x o cn' u' o, u' K' y V / r— y'k — 1.

Die Kurve besteht aus nur einem Zweig, symmetrisch zu den Axen.
k

Die Geraden y + 77 sind wieder Doppeltangenten der Kurve ;
2

die Coordinaten der Berührungspunkte sind :

_k_

2

1
t /4 k'2 - 1 1 ,- r-2 1

4- — V / : H y 4 — k2, y 4- —T + ¦

— 2 V k' — 2 — 2k —

Sie werden durch dieselben Gleichungen bestimmt wie diejenigen
für die Cassinischen Kurven aus zwei Ovalen bestehend, die

Berührungspunkte liegen also auf demselben Kreis
x2 + y2 i,

der durch die Brennpunkte geht.
Die Doppeltangenten sind nur reell, so lange k < 2 ist. Für

k 2 fallen die Berührungspunkte auf jeder derselben zusammen in
den Punkten x 0, y + i, die Doppeltangenten werden zu Undu-

lationstangenten. Die Cassinische Kurve k 2 hat daher 2 Undulations-

punkte in x o, y + 1.

Für die Parameter der Inflexionspunkte muss die Bedingung
erfüllt sein:

dx d2y dy d2x

du' du'2 du' du'2

Es ist diese Bedingung erfüllt, wenn

k' -f- 2 + \/3 (1 — k'2)
sn 'u k' (2 k'-f 1)

Von den 8 Wendepunkten, die sich hieraus ergeben, sind aber

nur 4 reell, denn das positive Vorzeichen der Wurzel liefert imaginäre
Werthe für u'.

Für k k' 1, die Lemniskate, wird sn' u' 1, u' K'
und x

'

o, y o ; die 4 Wendepunkte fallen im Doppelpunkt
zusammen.
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Das negative Vorzeichen der Wurzel liefert einen reellen Werth
für u', also 4 reelle Wendepunkte, so lange 1 > k' > V2 oder
1 < k < 2 ist. Denn wird k' < V2 so wird der obige Ausdruck
für sn'2u' wieder > 1, also u' imaginär.

Für die Grenze selber k — 2 wird sn'u' 1, u' K' und
die Coordinaten der Wendepunkte werden :

x — o, y + 1

d. h, in diesen beiden Punkten, die wir bereits als Undulationspunkte
der Kurve k 2 gefunden haben, fallen je 2 Wendepunkte zusammen.

Die Cassinischen Kurven mit 4 reellen Wendepunkten erhält
man, wenn k zwischen 1 und 2 liegt ; die untere Grenze k 1 ist
die Lemniskate mit Doppelpunkt, die obere Grenze k 2 ein Oval
mit 2 Undulationspunkten. Für k > 2 haben die Curven keine
Doppeltangenten und keine Inflexionspunkte mehr, es sind Ovale ; ein
Kreis mit unendlich grossem Radius bildet die Grenze.

Die Coordinaten der Wendepunkte sind:

x2 î_(ï2 _ R' 1' v/3) u. y2 —-—(l'2 4-k' 1' v/3). (12
6 k'2 v ' 6k"

Durch Elimination von k' und l' ergiebt sich:
(x2 + y3) 2 4- (x2 - y2) 0 (13

d. h. die Wendepunkte sämmtlicher Cassinischen Kurven liegen auf
einer Lemniskate mit Doppelpunkt in 0, und den Brennpunkten auf

1
der y Axe im Abstand y 4- —1=-. Dieselbe geht durch die Un-

y2
dulationspunkte x 0, y + 1 und ist congruent mit der vorher
gefundenen Lemniskate, auf welcher die Berührungspunkte der innern
Doppeltangenten liegen, nur ist sie um 90° gedreht.

Für den Bogen s der Kurve erhält man:
1 f 1 — k' l„ _

WVl + k Js/i-k'* - ' du-y'k sn * u

1
Vom Faktor —-.=^- abgesehen, ist das Integral dasselbe wie das

yV
im Fall I behandelte; es wird daher:

1

dt'
2yY

dt

SJ 1-1' +)tta 1 -t'2)(i-(4^)t'2)
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Man erhält den Quadranten der Kurve, wenn man nach u' von
u' o bis u' K' integrirt, und man erhält wie dort :

somit der ganze Umfang der Kurve:

14) U 4 \ß K (y/j-=-L).
Für k k' 1, i' o erhält man den Umfang der

Lemniskate :

U 4 K (y^Ä)
Den Kurvensektor erhält man durch Transformation der Gleichung 8

auf das neue Periodenverhältniss :

u'

„, „ 1 fk' sn' u' cn' u' dn' u' _,, ,1
io) S — —- —— \- E am u

2k' L 1 + k' sn'2 u' J
0

Da die Kurve eintheilig ist, wird der Sektor vom Ursprung aus

gerechnet. Der Inhalt eines Quadranten wird erhalten, wenn man

von u' 0 bis u' K' integrirt, somit

0 1 „» v> E' k
— E am K — E.
4 2k' 2k 2

Der Inhalt der ganzen Kurve wird also :

16) 0 2k E'.

Für kleine Werthe von k' oder grosse Werthe von k wird
annähernd

/4k2 - rU 7t I
V 4k

nach Vernachlässigung der vierten und höhern Potenzen von k'.
Für k' k 1 erhält man den Inhalt der Lemniskate:

L 2.

III. k 1. Die Lemniskate mit Doppelpunkt.

In diesem Falle wird bei Einführung von hyperbolischen Funktionen:
en — e_n fin u 1

sn u — — tana. u. en u dn u —.—.
e11 -f e_u cof u cof u

Die Coordinaten eines Punktes der Lemniskate werden nun,
sowohl nach den Gleichungen 2 als auch nach den Gleichungen 11 :

• «s
"

i /TT cof u /— fin u
17) x + y 2 —'— und y + y 2 J

cof2u cof2u
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TE
Für cof 2 u 0, u + i — wird x +ooj=-|-ioo4

und die Richtung dieser unendlich fernen, imaginären Punkte ist :

y
— 4~ i, d. h. die unendlich fernen, imaginären Kreispunkte ge-
x

hören der Lemniskate als Doppelpunkte an.

Für u oo fallen je zwei entgegengesetzte Werthe von x und y

im Ursprung zusammen, derselbe ist ein Doppelpunkt der Kurve.
Der Bogen der Lemniskate wird dargestellt durch das Integral:

s v/2 Ç-^ (18
VV\/cof2u

Um den halben Umfang einer Schleife zu erhalten, muss man

x y7 2 bis x 0 oder von u — 0 bis u oo integriren, so dass

\ =*f, *
\/cof2u

1
Setzt man co) 2u so wird:

cos2 (p

ü f-T^^i 2K (VV

"2

1
,- 2

(19
1 — - - tin 2cp

Der Kurvensektor wird:

/= ^— — tang. 2u. (20
cof2 2u 2

Den Inhalt einer halben Schleife erhält man durch Integration
von u 0 bis u oo. Also:

— — tang. 2u l —
2 2 j J 2

Der Inhalt einer Schleife wird daher
J 1

wie bereits früher gefunden.
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