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Dr. U. Bigler.

Potential eines homogenen
rechtwinklichen Parallelepipedes.

Eingereicht den 28. Mai 1887.

Nachstehender Aufsatz enthélt die Darstellung des
Potentiales des homogenen, rechtwinklichen Parallelepi-
pedes, wie ich dasselbe in meinen Vorlesungen an hiesiger
Hochschule vorgetragen habe. Aus der Literatur iiber
diesen Gegenstand ist mir nur ein Aufsatz des Hrn. Rothig
(Crelle, Bd. 58) aus dem Jahre 1860 bekannt. Obschon
beide Aufsdtze den gleichen Gegenstand so ziemlich vom
gleichen Gesichtspunkte aus behandeln, so hoffe ich doch
durch meine Arbeit auf einzelne Punkte der eben er-
wihnten Abhandlung des Hrn. Rothig ein helleres Licht
werfen zu konnen und namentlich die Unstatthaftigkeit
der Annahme zu zeigen, als wire das Potential fiir einen
inneren Punkt die analytische Fortsetzung des Potentials
fiir einen dussern Punkt. Auch glaube ich, die Potential-
funktion etwas eingehender betrachtet zu haben, als es
dort geschah.

§ 1. Vorbereitungen.

X, v, z seien die rechtwinklichen Coordinaten eines
Punktes im Raume. Setze ich nun abkiirzend
r2=x2 + y2+Z2, n2=Y2 +Z2, p2=X2+ZB, q2:X2 =C y2’
wo I, n, p, q pos. verstanden werden,

ne’=r + x, pe/g:r +y, qef =r + z, so folgt
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y—1logt T2

, B=log

1) c<=logr-:l_x r-Il)-y’
Weil ferner
ne “=r—x, p e f=r— Y, Q€ 7/ =r—z
also auch
= D = O

so hat man ebenfalls

_ r+x o, _1,,0+Y¥ 1. r+z
2) a= —*lgl_ ) —210gr__y,y-~210 P—

wo o, 3, y pos. verstanden werden, sobald x, y, z pos.

sind.

Aus obigen Formeln folgt ferner, dass
p2q2zx2r2+y222, q2n2=y2r2+x222, n2p2=r222+ x2y2;
man setze desshalb

pqei‘c’ =XTI + 1Yz, qnei'izyr +ixz,

10 .
npe —zr+ixy, also

cos t= X, sin¢g = Y2, tangt—= 2
Pq pPq Xr
COS # ==-"—, sin? =y 1 - 2%
n ) (s o’ n= yI
€S O = ) sm@=xy, tangb)—ﬁl,
np ZT
wo die Winkel ¢, », © zwischen Null und #;i liegen, sobald
X, ¥, Z pos. sind. Aus diesen Formeln folgt

Xy

yz _ Xy
y ©@ = arctg. e

3) ¢ =arctg rrlk arctg ;i
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1 - 14+u ; __du .
Wenn y = 71 & T—g % ist dy-_——l_u2 , also ist auch
a* |
do— Y _rdx—xdr ridxs—(xdx+ydy+zdz)x
x2  rf—x? r n?
1 = 2
)
somit
dg= ix _ X yg dy — -5 d 2 und ehenso findet man
r rn
- _ XY dy yz
4) {dg = rp2d ; rpzdz’
XZ V/ dz
ey vy e o e o B 10
1 4 q2 rq2 cYy o r

Aus den Formeln (3) folgt ferner

di=-—"—"5p = 55— und da
L L Yz - p'q’
" g
Ja . iE _ Yz
dXr xrdx+ dy+ XI,gdr,

__yz (P’+ ) NN ST S
o r r? x2 dx + Xr r? dy - X rzdz’
also
1'2x2dii::—yr—z(p2 T 2)+w~*~ p*dy + - y +q*dz
somit

Bern. Mittheil. 1836. Nr. 1185.



zZ {1 1 XZ X
d L— -— yr (F + q2) d + 1;72 d J + y2 d ZJ
und ebenso
Z xz2 /(1 1
May = JThde— "o+ Uy +
_ Yz Xz _ Xy 1 1) ;
4o = rp2dx+rnQdy Nl - = d z.

Aus diesem System ergibt sich nun, dass

d{:* d’?+d('):=0 _(_1C + d_f?__*_ d@_._

vdx T dx T ax %
d¢  dn , 40 d¢  dy _dO
iyYaytay = az Tz T a T

folglich
6) ¢ + 7+ ©=_Const.

Diese Constante soll nun noch bestimmt werden. Es ist

nge'xnpe’ = (yr+ixz) (zr + ixy)
=yz(r*—x* + ixr(y*+ 2%
=in?® (xr—iyz)

" —ig
=in®*pqe 7,
i ({471HE . fys oy s
also ' OH7THE) 1, folglich ist nur

5 moglich.

7) frn+ 0=
§ 2. Potential eines homogenen, rechtwinklichen
| Pipedes, wenn eine Ecke als Bezugspunkt
gewihlt wird.

Man verlege den Ursprung des Coordinatensystems
in eine Ecke des gegebenen || Pipedes und lasse die
Coordinatenaxen mit den Kanten desselben zusammen-
fallen. Bezeichnet man nun die Kanten mit x, y, z, so ist
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Xy z
8) f(x,y,2) = (| (4% dryi?

0 o ,
eine erste Form des Potentials. Um die Integration nach
y ausfithren zu konnen, setze ich

I);: Sin ¢, also d--{)— =Qol.pd ¢
somit
G dy . d_i): . I +
AE (et B i L5
¥ " ° v 1+ (}—)i o g
p.
also

(% Yl f e \ (/3 dxdz Ich integrire nun nach z.
Weil nun gleich wie oben bewiesen werden kann, dass
Y 2z

*d x dx ;
T =% V[ = so st
o

In dem letzten Integral setze man z = q tang ¢, also

2
4 4 ., dz de 1 cos? ¢
=% —d o, somit ——= = 4
dz cosly D r cosg’x*+z2 x24yisinlg

folglich ist
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z P sin @
dz _ (_cosedy s' _ dsing
J Pr  )x*+4 y¥sin®g J x2+ y?sin?eg
0 ®
Setzt man ferner XEE’&E =8, 80 findet man
dz “ | ;
DT T Xy arctg s und weil
q . Z .
€08 ¢ =", sin ¢ =—, 50 hat man schliesslich
z d )
SE L arctg Jz.. 1. ¢ und ebenso
Jpir Xy XT Xy
c d 1 ¢ 4 1
X ¢
_ . 27’ s' 2y ] @
qir Yz J n’r Xz
Es ist also
’dz:p‘ 7y —x ¢ und folglich

O_’?

f(x,v,z) =z (ﬁdx +y “;-dx—yx;dx und wir
haben nun noch eine Integration nach x auszufiihren, um
die FFunktion f (x,y,z) zu erhalten. Es kann nun gleich
wie oben bewiesen werden, dass

gy(lx:;'x + vz —Y7; “;idx=p’x+ay-~-z(-),

und es bleibt somit nur noch das Integral sx;:dxzu be-
o]

stimmen {iibrig. Weil
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5 xx & KM
—Sx;dx *_+ 27;1_“ S e

e ) o

so reduzirt sich diese Bestimmung auf die Berechnung
folgender 2 Integrale:

\)‘(' x&d.x x2d x
———und \ -,
J P°T J qr
> 2
Wir haben nun gefunden, dass g——l—)-gqf- =y — {;ﬁ,
X X 9
also ist auch QX L NP 1 7, “3—3.’{_ —a— 20,
q° z ) pr
o] o]
folglich
il g e X8 B R
—Sx:,dx_—- 5 ~YVZo+4 5 5

und wir erhalten schliesslich fiir das Potential den Aus-
druck

9) {(x,y,2)=ayz+ 8Xz24+ yXy—— — "5 —

Diese Formel ist nun direkt durch Integration ge-
funden worden. Wir erhalten dieselbe kiirzer auf folgende
Art: Aus Gleichung (8" ist leicht ersichtlich, dass f(x, y, z)
eine homogene Funktion 2. Grades von Xx,y,z ist, dass
also die Gleichung
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df df df
2 =xgr t¥q; TIq;

existirt. Wir haben aber gefunden, dass

.(;i_:__——,_—xg-{-y7+z(dist; also auch
df

W_xy———yn-l-Z(/.,

df

T Bx 4+ ay— 67z, folglich

x*¢  y*n 2°0
f(x,y,2) =«yz+ Bxz+ ;,fxy---_gﬁ_ﬁz’?___g___

Wir gehen nun zur Betrachtung der Funktion f und
ihrer Abgeleiteten iiber. Zu dem Zwecke betrachte ich
t (x,y,2z) einfach als analytische Funktion von x,y. z
und will ihr Verhalten im ganzen Raume néher unter-
suchen. Zunidchst ergibt sich aus den aufgestellten
Formeln sogleich, dass, wenn eine Variable auf Null
sinkt, die Funktion auch den Werth Null annimmt. Sinkt
X vun seinem positiven Werthe fortwiahrend bis auf —x
bherab, wihrend y und z fest bleiben, so verwandelt sich
ain —ea, Bin B, yiny, {iIna—¢, » in —» und © in O,
Bleiben hingegen x und z constant, wihrend y auf —y
herab sinkt, so geht ¢ in ¢, 8in —3, ; in + 5, % in
a—nxn, ©® in — O und ¢ in — ¢ iiber. Bleiben schliesslich
x und y constant und ldsst man z auf — z sinken, so
verwandelt sich ¢ in ¢, 8in 38, y in — y, £in —¢, % In
—¢und © in 7 —@. Es ist also

2 x?
f(— an:Z):_'f(X:yaz) — 9 f(X,—y, Z):

ay? 272
— f(x,y,2) — ”12y7 f(x,y,—2) = — f(x,y,2) — %_’
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W

Ich fithre nun zuerst die Funktion f aus dem Punkte
X, ¥, 2, wo alle Coordinaten positiv verstanden werden,
nach dem Punkte — x,y,z; von hier nach dem Punkte
—X, ¥y, — Z; dann nach dem Puukte x,y, —z und schliess-
lich durch die Ebene z =0 hindurch nach dem Ausgangs-
punkte x,y,z zuriick. Die einzelnen Wegstiicke seien so
beschaffen, dass jeweilen nur eine Coordinate ihren Werth
verandert und die beiden andern constant bleiben. Die
Funktion im Punkte (x,y,z) werde mit f,, im Punkte
(—X,¥5,z) mit f,, im Punkte (—x,y, —z) mit {, etc. be-

zeichnet. Man hat also
2

aXx
fl (_Xa Y, Z) = fu (X, Y, Z) - 72?
f2(~—X, Y, _Z):fo {.X: Y, Z) t g_ (ZS_X2)7
f3(+ 5Y - Z) :‘—fo (X7yiz) +i 22—:’”;27

,
und schliesslich
f4 (Xa Y Z) — fo (X, Y, z) + = (Zz_xz)-

Diese letzte Gleichung zeigt nun, dass die Funktion f
nach einer vollen pos. Drehung um die y-Axe nicht wieder
auf den alten Werth zuriickkehrt, sondern sich um den
Term = (z> — x*) vermehrt. Hitte man sie in negativer
Richtung um die y-Axe herum gefiihrt, so wiirde sie sich
um den Term .« (x> — z?) vermehrt haben. Aehnlich ver-
hilt sich die Funktion in Bezug auf die andern Axen.
Die Abgeleiteten nach x, y, und z sind schon oben an-
gegeben worden. Wir wollen sie aber hier noch aus
der Funktion selber ableiten. Zu dem Zwecke fiihre
ich die beiden Symbole D und D! ein. Das Symbol D
bezeichnet eine Ableitung nach den offenen Coordinaten,
wihrend D' die in den Transcendenten «, 3, y, § etc.
versteckten Coordinaten angreifen soll. Ich setze also
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df e df oA 1

gx = Dee {4 Ditef, 70 =Dy f4 Do f, =D, £4 Do
dﬂf L: 1 . .

dx dy D, - f. + D' fi ete. Esist nun

de ,  _dB8 dy
dx TA%qx ¥ Y qx—
xtd¢e  y* dqg_ 2°dO

2 dx 2 "dx

Dxl.f=yz

2 dx’
Entnimmt man nun aus den Systemen (4) und (5)

die Werthe fir g—:— etc. und setzt diese hier ein, so er-

hdlt man

np_ Y2z X X}y 2 X X\
Dl f= ( o o apr T p? q2+1)—0'
Ebenso leicht kann man beweisen, dass

Dyt f =0, D;' - f =0, somit

df

)dy Y Y

af o o

\H? z't—-—ﬁjX‘;'ay-—Omez.
ferner ist

fxx = Dx A4 fx + Dx1 . fx, wo aber

d ¢ dy ds . .
1- _— i ok AT R | [l
D,!.f, Xoe " Yax T % dx ist. Setzt man hier

wieder die Werthe fiir die Abgeleiteten ein, so hat man
xvz (1 1 | N .
o (—I;l--+ = + o1 q’) — (; ebenso ist
Dyl'fx:O, Dzl'fx———-o, Dxl f3:0 etc- und man ha.t.

Dx1 ufx ==
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o e é', fxy =X fxz = 'U
11) ty=—un, fn=), fu=0
Lo
f.=—0, f,; - o, Tee== 0
Aus diesem System folgt, dass
d*f d?f d?t 2
i e b — (4 O) = - .
12) d:i:z_*-dy2 Cod z? E+0+96) Qund

§ 3. Potential eines homogenen, rechtwinklichen
Parallelepipedes mit den Kanten a, b, ¢ fiir eine
beliebige Lage des Bezugspunktes.

Der Ursprung des Coordinatensystems werde in eine
Ecke des gegebenen |[| Pipedes verlegt und die Axen
seien so gewihlt, dass sie mit den Kanten a, b, ¢ zu-
sammenfallen. Der Bezugspunkt habe die Coordinaten
X, ¥, z und seine Lage sei durch

1) Xx>a, y>b,z>c

bestimmt. In diesem Falle ist
a=x—(x—a),b=y—(y—b), c=z—(z2—c)

somit der Inhalt des || Pipedes

abe=(x—(x—a)) G—F—>b) z—(z—¢c)) =xyz
~Xy(z—¢)—yz (x—a) - zx(y—b) + x(y —b)

X (z—-0)+y(@E—c) (x—a)+2z2(x-—a)(y—b)
- (x—2)(y—b) (z—o).

Derselbe ist also gleich der algebraischen Summe von
8 rechtwinklichen |} Pipeden, die alle in der Ecke (x,y, z)
zusammenstossen.

Bern. Mittheil. 1887. Nr. 1186.
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Das Potential ist also
13) Pot. =1 (x,y,2)—f(x,y,z —¢) ~f(x—a,y,2)
—f(x,y—b,z)+t(x,y—b, z—¢)+f(x—a,y,z2—c)
-f(x—a,y—b,z)-f(x—a,y—b,z—c¢)

Mit Hiilfe der Formel (12) erkennt man sofort, dass

Es sel ferner
2) 0 x<a, y>b, z>ec
Hier ist nun
a=X + (0 —X), b=y—(y—b), c=2—(z—¢),
also der Inhalt des | Pipedes
abe=x+@—x) (y—F—h) (z—@z—0)
=Xxyz - xX(y—b)(z—¢c)—z(y—b) a—x)—y
(a--%x) (z—c)+vz(a—x)—xy(z—c¢)—x2z y--b)
+(@—x)(y—b)(z—0
und somit das Potential
14) Pot. =1f(x,y,2) + f(x,y—b,z2—¢) —f(a—x,y—b, 2)
—f(@a—xy,z—c)+f(a—xy,2)—f(x,y—b,2)
—f(x,y,z2—¢) +t(a—x,y—b, z--c¢).

Die Funktion (13) soll nun in das Gebiet (2) analy-
tisch fortgesetzt werden. Ausf(x-—a,yz) wird —f(a —
Cavi2 P 2
X,¥,Z) ——'7-—(—ai-—2-——}9——. Der Term 1(—%---2-——9—- tritt also 2 Mal
mit dem 4 Zeichen und 2 Mal mit dem — Zeichen auf
und die Funktion bekommt die Form von (14), stellt so-
mit das Potential fiir den neuen Punkt dar. Auch formel
(14) ergibt sofort
d? Pot.

i = 0.
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Wenn

3) 0<<x<a, y>b, 0<z<¢, so ist

a=XxX + @—xXx), b=y—(y—0Db), c=z + (¢ —2z), also
abc=xyz +xy(c—z)—x2(F—b) +yz(a—x)—xX
y—bl—2)+yla—x)(c—2)—z(@a—x)(y—b)
— (@ —Xx) (y—Db) (¢ —12)

somit

15) Pot.=1f(x,y,2z) +f (x,y,¢c —2)—-f(x,y—D, 2)
+f(a—x,y,2) —f(x,y—b,c—z)+f(a—xy, ¢ —2)
—f(a—x,y—Db,z)—f(a—x, y—b, c—2).

Diese Formel wird auch erhalten, wenh Funktion (14)
aus dem Gebiete (2) in das Gebiet (3) analytisch fort-
gesetzt wird. Denn aus f (x,y — b, z —¢) wird

_ 2
—fx,y—b,c—z)— ! (CQZ)_ und da nun der Term
a(c—z)? ; y : ; :
g zwel Mal mit dem - Zeichen und zwei Mal mit
dem — Zeichen auftritt, so heben sich die Zusdtze auf

und man erhilt Formel (15). Auch hier ist

d? Pot.
g =P
Ich nehme ferner an, dass
4) 0 < x<a, y_>>b, z<0 stattfinde.

In diesem Falle setze ich
a=x+@—x),b=y—(y—blc=—(—12)+ (c— 2)
also

abec=—xy{—2)+xy(c—2) - @a—x)y(—12)

T+ X(y—b)(—2)—x(F—b)(c—2z) + (@ -x)y(c—2)
+(@—x)(y—b)(—z) —(a—x) (y —b) (¢ — z), somit
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16) Pot.=-- f(x,y,(—2z)) + f(x,y,c—z)—f(a —x, y,—2)
- f(x,y,—b,—2z)—f(x,y—b,c—2z) + f(a—x,y,c —2)
+f(a—x,y—b,—z)—f(a—x,y—b,c—2).

Diese Formel ergibt sich auch als analytische Fort-
setzung der Funktion (15) aus dem Gebiete (3) in das
Gebiet (4). Die Gleichung

d? Pot.
d x?
findet auch hier statt. So konnte man fortfahren und
zeigen, dass die Funktion /13) in jedem Punkte des Rau-
mes ausserhalb des || Pipedes das Pot. des betreffenden
Punktes darstellt und dass immer die Gleichung
% Pot..
d x*
erfiillt ist. Anders ist es aber, wenn die Funktion (13)

ins Innere des | Pipedes fortgesetzt wird. Um das zu
zeigen, gehe ich vem Gebiete (1) aus und setze

5) X>a, 0<y<b z>¢
also a=x—(x—a), b=y+(b—y), c=z—(z—2¢)

= 0

= 0

und folglich
abc=xyz—xy{z—c¢)+x(b—y)z—(x—a)yz
—x(b—-y)(z—c)+ (x—a)y(z—c)+(x—a)(b—y)z
+Ex—a)(b—y)(z—¢)
also das Pot. fiir diesen Punkt
17) Pot.=1f(x,y,2z) —-f(x,y,z2—c) +f(x,b — y, 2)
—f(x—a,y,z) —f(x,b—y,z—c¢c)+ f(x—a,y,z—¢)
+f(x—a,b-—-yz)+f(x—a b—y,z—c).

Die analytische Fortsetzung der Funktion (13) ergibt

dasselbe. Es sei ferner, ausgehend von (5)

6) x>a, 0ly<b, 0<z<c. Man setze wieder
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a=x—(x—a),b=y+(b—y),c=z+ (¢c—12)
und findet

abc=xyz +xylc—z)+x(b—y)z—(x—a)yz ¥
+x(b—ylc—2)—x—a)yc—z)—(x—a)b—y)z

—(x—a)(b—y) (c—2)
folglich
18) Pot.=f(x,y,2) + f(x,y,c—z) 4+ f(x,b—y,2)
—f(x—a,v,z) +fxX,b—y,¢c—z2)—f(x—a,y,c—12)
—f(x—a,b—y,z)—f(x—2a,b—y,c—2)
Auch hier fiihrt die analytische Fortsetzung der

Funktion (17) zum gleichen Ausdrucke. Ich fithre nun
den Bezugspunkt aus dem Gebiete 6 durch die Ebene
x = a in das Innere des || Pipedes. Fiir diese Lage des
Bezugspunktes hat man aber

T 0<x<a, 0<y<Cb, 0z <ec.
Man setze hier
a=x+ (a—Xx), b=y +(b-—y), c=z + (¢ —z), also
abc=3xyz +xy(c—z) +xz(b—y) +(a—Xx)yz
+x(b—y)(c—2z) + (a—Xx)y(c—2z)+(a—Xx)(b—y)z
(a— x) (b—y) (c — z) und somit das Potential fiir diesen
Punkt, das ich mit Q(x,y, z) bezeichnen will
19) Q(x,y,2) =f(x.y,2) + f(x,y,¢c—2z) + f(x,b —y,2)
+ fa—x,y,2) ~ f(x,b—y, ¢c-—2) + f(a—x,y,¢— z)
+ f(a—x,b—y,2z) - f(a—x,b—y,c—2z).
Wird hingegen die Funktion (18) analytisch in diesen
Punkt fortgesetzt, so hat man
Py z)="f(xyz + fxye—z)+ f(x,b - y,z)
+fa—x,v,2z) - f(x,)b—y.c—2)+f(a - Xx,y,¢c —2)
+ fla—x,b—y,2) +« fa—x."—¥y,¢c -2)+2( x)a
Also
P(xv,2) = Q(x,v,2) - 2(a—x)*7 oder
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20) Q(x,¥,2)=P(xy,2z) —2(a— x)? 2. Diese Formel
zeigt nun deutlich, dass das Potential eines innern Punktes
nicht die analytische Fortsetzung des Potentials eines
dussern Punktes ist. Aus Gleichung (20) folgt nun

2
21) i—Q—— =— — 4 =,

d x?

A A A

Ed. Fischer.

Bemerkungen tiber den Streckungsvorgang

des Phalloideen-Receptaculums.
Vorgelegt in der Sitzung vom 19. November 1887,

Es ist eine bekannte Thatsache, dass die Entwicklung
der Phalloideenfruchtkorper ihren Abschluss erreicht mit
einer relativ raschen Dehnung des Receptaculums, durch
welche die Volva gesprengt und die Sporenmasse empor-
gehoben wird. Die Zeitdauer, welche dieser Prozess in
Anspruch nimmt, betrigt nach de Bary?') bei Mutinus
caninus ungefihr 36 Stunden (an im Zimmer beob-
achteten Exemplaren), bei Ithyphallus impudicus nach
Feuilleaubois?) bis zum volligen Austritt des Hutes eine
bis mehrere Stunden und fiir den {ibrigen Theil der
Streckung 4—12 Stunden, nach Corda?®) dagegen und

1y Zur Morphologie der Phalloideen. Abh. der Senkenber-
gischen naturforschenden Gesellschaft, p. 203,

2

)

Revue mycologique VI, 1884, Januar, p. 21 ff.
%) Icones fungorum V, p. 73.
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