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Dr. U. Bigler.

A r——

Potential einer elliptischen Scheibe
von der Dichtigkeit 1,

deren Punkte den Gleichungen i + }]; =1, 7z=o0 geniigen,

abgeloitet mittelst des discontinuirlichen Faktors von Dirichlet.

Eingereicht den 22. Januar 1887.

Die Coordinaten des Bezugspunktes seien a, b, c;
diejenigen eines Punktes der elliptischen Scheibe x, y.
Wird nun die Entfernung dieser beiden Punkte mit r be-
zeichnet, so ist eine erste Form des Potentials

L Y

wo sich die Integration iiber alle Punkte der Scheibe aus-
dehnt. Ist N eine sehr grosse positive Zahl, so ist

2) = V%Se —lzdy

o

Ich betrachte nun das Integral S““hc——dt Der Weg

desselben sei eine aus dem Westpunkte um den Pol Null
geworfene rechtliufige Schlinge. Damit dieses Integra)
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convergire, miissen die reellen Componenten von a und
b positiv sein. Damit ferner der Pol 0 zugéinglich werde,
nehme ich an, ¢ sei ein positiver, dchter Bruch (0<<c<Z1).
Zieht man nun die Schlinge auf die Realitétslinie von
— N bis -0 zusammen, so folgt

e’ —e* dt— ot ?(1+0) ‘9 e’ —e** it
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Nach der bekannten Formel

1 1 x ,—8
F(a—) — “51; Se X dx
Ng=——————,")

(Weg eine rechtliufige Schlinge aus dem Westpunkte
um den Pol 0.)



ist aber auch

bt, —(14c¢) 2izbe
e t dt e m
a ,%
und
S t,—(1+0) 4, 2izac

4) Sbt —edt cldf = 21z (b—a°)
t1te ['(1+c)

Aus Gleichung (3) und (4) folgt

c.—bt _.—at
e —e __ TI'(1—c). (a°—Db>").
5) t 1+ dt= c
o

Ldsst man hier ¢ auf 0 herab sinken, so folgt

*~ bt _at
S’e — —ley
(o]

Die imagindre Componente dieses Log. werde aus-
gedriickt durch die Grosse der Drehung des Strahles aus
der Richtung vom Ursprunge nach b bis zur Richtung

nach a. Setze ich a=—ig+i, b=—ig —i, so folgt fiir
1< g, dass
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sint el8t Gt =1 g—1 4ot
ZIS dt ogg_m_'_1 ist.

Wenn aber a=ig+i, b=ig—i, 1 < g, so hat man

2 S’ﬂt‘.‘i lgtdt——logg“
(»]

folglich

L f et oiat)

Ist hingegen 0 <g<l a=—ig+1i, b=—ig—i, so
ergibt sich

msmt igt g¢=—1 1—g . .
2i < . e t 0g1+g+m,

o

und fir 0 <<g<<1, a=+ig+1i, b=ig—i findet man
21i S':t e 18t gt =1log 1+§+ln

somit

1 C 1nt :
1 t _ .
,,S el8t 4 ¢ lgt)dt-—l.

Ist a]so in dem Integral

1 * sint i — i
2yt (e e B a0y,
(o]
so ist der Werth desselben 1; ist aber 1< g, so ist der
Werth Null. Setze ich nun
x2 2
8= % * B
Q=r'y—ige, Q'=r’yx+ige,
Bern. Mittheil. 1887. Nr. 1177,
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so kann dem Potential der elliptischen Scheibe folgende
Form gegeben werden :

D Bt = b ({50 5 (00—

dxdydz.

In diesem Ausdrucke laufen die Variabeln ¢ und x
von 0 bis 4 oo und die Integrationen nach x und y er-
strecken sich iiber die ganze Ebene z=0. Ich beabsich-
tige nun bei 2, 2' ein Mal x in ein vollstindiges Quadrat
einzuschliessen, das andere Mal ebenso y und setze

3272 i(p asx
_ig A 19
A A

—_2_ b"”_iw b2y o
+y(y )2byy+y is B i(ﬂ%—cx.

L2 =g (y—-—-) —2axx+

B
Ist nun
]/Ax-—-iqp VA ax. VBy_Irp Vﬁobx
A= —— »B= Yt
VA  JArig /B VYBx—ig
e B —1h2 2
g — ia%y 1b? ¥ +c %

Ar—ig " Brio"’ ¢

VA VAx+ie ' VB VBxtig
S — ia®y , ib%y +02x
1" Ax+ig Bx+ie ' o’

so folgt, dass Q@ =U*+B+8 ¢, ' =1 24 B,>+8, ¢ ist.
Ich wihle denjenigen Werth von |/ A y—i ¢, dessen reelle
Componente positiv ist. Man hat also



ws BF e
1 sin —d
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- 2 2 ; _— 2 2
(OB | 4, +Sl(p)dxdydgod;g.

Ich integrire nun zuerst nach x und dann nach y
und setze

u:—————VAy:-i——goX— ——V—A .a.x ——"VA}E::iw-dx;
VA VAr—ig VA
durchliuft nun x die Realitdtsline vom Westpunkte bis
zum Ostpunkte, so durchlduft u eine Gerade, welche die-

, du=

A
4
ist, Ich darf desshalb den Anfang des u-Weges mit dem
Westpunkte und das Ende mit dem Ostpunkte der Rea-
litdtslinie verbinden und den Integrationsweg wieder in
die Realitdtslinie verlegen. Also ist

selbe unter einem Winkel schneidet, der kleiner als

« — A © —u? A o —u?
1 e QIdx= VA,—+ e udum 2VA——-Jre 1idu
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somit
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somit
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Denkt man sich zuerst ¢ constant und setzt, um sich

dic nachherige Integration nach ¢ zu erleichtern, y= %,

wo s die neue Variable bedeutet, die x ersetzen soll, so
hat man

dy=-~—82—db,
—ia? —ib? ¢? ia? ib? ¢?
S=rmtente ST rntE st

folglich
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Weil die gemeinschaftliche reelle Componente von
S und $! fiir jeden positiven Werth von s positiv ist, so
convergirt dieser Ausdruck auch an der obern Grenze.

Ich kehre nun die Folge der Integration um und
integrire zuerst nach ¢. Es ist

sing —Sg 1 g8 —=lp__ ~(S+ig
Y < e = 9] 3]
g o L g @
und weil die reellen Componenten von S--i, S+i positiv
sind, so erhidlt man nach Formel (5)

odgo’

j= o]

i, 55t
o ¥ 1

ebenso ist

sing —8,¢ {— VS5
§ e S, do=r()) VS, +i i]/S1 i,

wo die reellen Componenten von [/S +i, JS,+1i etc. positiv
verstanden werden. Folglich ist

| (e VS+i—ys=i ds
% Be—JAB ((SiV(A-—is)(B-is)']/—é—

CVS, +i— J5,—1  ds
JiY(A+is)B+is) Vs |

-+
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Die Zerlegung in die Summe zweier Integrale ist
desshalb moglich, weil beide fiir sich convergiren. Das
VS+i—)YS—i ds
i)(A—is)(B—is) |s
zonte wie —'71?. Man setze desshalb den geradlinigen In-
tegrationsweg im Ostpunkte des Horizontes bis zum Nord-
punkte fort, um die Nordhilfte der lateralen Axe zum
Integrationswege zu machen.

Integral verschwindet im Hori-

8]
Hier setze ich nun s=e *u; durchliuft nun s von
o aus die Nordhilfte der lateralen Axe, so u von o aus
die Osthilfte der Realititslinie. Ist nun t die Wurzel der

a’ b? c? ; _—
Gleichung it +3 Tut =1, die dem Ellipsoid

entspricht, das durch den Punkt (a,b,c) geht, so ist fiir
das Intervall o < u <t die Grosse T stets grosser als 1
und fiir t < u ist T kleiner als 1, wenn

a? b? c?

— A+u +B+u T u

T

gesetzt wird.
Fiir das Intervall o < u <t hat man demnach

in
2

log (S+i) = log (T—1) -—‘g—, log (S—1i) =log (T+1)
und fiir t< u
log (S +1) =log (1—T) + ., log (5—i) =log (1+T) g

wo die Logarithmen von T—1, 1—T etc. reell zu ver-
stehen sind. Man findet somit, dass
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Um das zweite Integral der Formel (9) auf #hnliche
Art umzuformen, setze man den Integrationsweg im Ho-
rizonte vom Ostpunkte bis zum Siidpunkte fort und ver-
lege den neuen Weg auf die Siidhilfte der lateralen Axe.

= 1T

—_—]

Hier setze man s==e "u Fiir 0 < u < t ist

log (8, +i) =log (T + 1)+ " log (S,~i) = log (T—i) ad -
und fir t << u

log (S, +i)=1log (T+ 1)+ " log (S,—i) =log (1—T) — .‘.ﬁ’f

wo die Logarithmen von T+1, 1—T etc. reell verstanden
werden. Es ist somit

(S — 5= ds _ —if (JTri—T=]
iy(A+is)(B+is) |5 "JY(A+u)(B+u)u’

du

 C YI+T 4 el y1—T
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folglich nach Formel (9)
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